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ABSTRACT 

We obtain results on local controllability (near an equilibrium point) for a nonlinear 
wave equation, by application of an infinite-dimensional analogue of the Lee-Markus 
method of linearization. Controllability of the linearized equation is studied by 
application of results of Russell, and local controllability of the nonlinear equation 
follows from the inverse function theorem. We prove that every state that is sufficiently 
small in a sense made precise in the paper can be reached from the origin in a time T 
depending on the coefficients of the equation. 

1. Introduction. We consider  the nonl inear  wave equat ion  

(1.1) p(x)ut, = (p (x )ux )x -F(x ,  u )+b(x) f ( t )  (0 < x <_ X, 0 < t < T).  

This equat ion governs the small t ransverse displacement  u of  a string with  
density p(x) and modulus  of  elasticity p(x) acted upon  by a nonl inear  res tor ing 
force - F(x, u) and by an external  force b(x)f(t) .  The func t ionf ( t ) ,  the magni tude  
of  the external  force, is thought  of  as a cont ro l  or  steering funct ion by means  o f  
which we try to influence the mot ion  of  the string in a way tha t  will be made  
precise la ter ;  the funct ion b(x), the spat ial  d is t r ibut ion  of  the external  force, is 
fixed. 

We assume tha t  the pos i t ion  of  the string satisfies the bounda ry  condi t ions  

SAou(O, t)+Alux(O, t) = 0 (0 < t < T) 
(1.2) 

I Bou(X, t)+B~u~(X, t) = 0 " (0 < t < T), 

where the real numbers  Ao, A~, Bo, B1 satisfy A~+A~  > O, B ~ + B ~ >  O. 

* This research was supported in part by the National Science Foundation under contract 
GP-9658. 
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We examine in the sequel the problem of bringing the position and speed of 
the string to arbitrarily prescribed values at time t = T starting at zero position 
and speed at t = 0 (or, equivalently, the problem of bringing the string to zero 
position and speed starting at some arbitrary position and speed). This problem 
is handled by applying a method due to Lee and Markus ([6], [7]) in the finite- 
dimensional case. The Lee-Markus method, adapted to deal with the present 
infinite-dimensional problem, can be roughly described as follows. Assume that 
u = ut = 0 is an equilibrium point for the system (1.1)-(1.2), i.e., that 

(1.3) F(x ,  O) = 0 (0 < x < X )  

and let • r be the map 

(I .4) f ( ' )  - + o r ( f ( ' ) )  = (u(., T), u,(., r ) )  

that carries the c o n t r o l f  into the values (at t = T) of the solution of (1.1), 
(1.2) with u(x, O) = ut(x, O) = 0 (0 < x < X )  and of its t-derivative. Choosing 
adequately the domain and range of • r and imposing some rather natural 
conditions on the coefficients of (1.1) (all this will be made precise later), one 
can show that • r is continuously differentiable everywhere in the sense of 
Fr&het and that its differential do t (0  ) a t f  = 0 is given by the map 

(1.5) h(.) -+ a%(O)h(.) = (y(. ,  r ) ,  y,(-, r ))  

defined in the same way as (1.4) but now in reference to the "linearized" system 

(1.6) p(x)ytt = (P(x )Yx )x -F . ( x ,  O)y+b(x)h(t) (0 <_ x <_ X, 0 <_ t <_ T) 

(1.7) Aoy(O, t )+AxYx(O,  t) = Boy(X,  t )+B1yx(X ,  t) = 0 (0 < t < T). 

Controllability of the system (1.6)-(1 .7)-- that  is, the range of the map dO r -  
has been exhaustively studied by Russell in [12]. Precisely, he has shown that 
dO r is onto if b satisfies certain conditions. This, in view of the results previously 
sketched, makes possible the application of the inverse function theorem to the 
nonlinear map • r. We are able to show in this way (as in [6] for a different 
problem) that the range of • T must contain a neighborhood of the origin, 
which furnishes a local answer to our controllability problem. 

It appears that the Lee-Markus method as outlined above could be applied 
to more general classes of hyperbolic equations, for instance the genuinely 
nonlinear wave equations studied in [1], at least in the case of one space variable 
where controllability results are available in the linear case. Success would then 
exclusively depend on having the right existence, uniqueness and "differentiable 
dependence" results for the nonlinear system under consideration. We wish 
merely to illustrate the method with an example and thus we restrict ourselves 
to the mildly nonlinear equation (1.1) for which these results are readily avail- 
able. 

The assumptions on the coefficients of (1.1) are as follows. The functions 
p(x) and p(x)  are twice continuously differentiable and positive in 0 < x < X. 
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The function F(x,  u) is twice continuously differentiable in the strip 0 < x < X, 
- o o  < u < 0% and odd in u for each fixed x, so that (1.3) is automatically 
satisfied. As for b(x), we shall assume that it belongs to L2(0, X). (Additional 
conditions on F and b will be needed in the following sections.) Rather than 
dealing with the equation (1.1) directly we shall make, as in [12], the customary 
change of independent and dependent variables 

(1.8) ~(x) = f :  p(r)'/2p(r)-'/2dr (0 < x <_ X) 

(1.9) ~(~, t) = (p(x(~))p(x(~)))~/4u(x(~), t), (0 < ~ < L = ~( X) ,  0 < t <_ T). 

The function ~(~, t) is a solution of the simpler equation 

(1.10) ft,, = ~ ¢ - f f ( ~ ,  u)+b(~)f(t)  (0 < ~ < L, 0 < t <_ T). 

The coefficients of this equation are F(~, u) = a(x(~))u- S(x(~))F(x(~), R(x(~))u), 
where a(x) = S(x)(p(x)R'(x)) ' ,  R(x) = p(x)- l/4p(x)- 1/,, S(x)  = p(x)-3/4p(x)l/4, 
and/~(~) = S(x(~))b(x(~)). The boundary conditions (1.2) become 

.~ofi(0, t)+.~l~¢(0, t) = (AoR(O)+A1R'(O))~(O, t) 

+ alp(O)l/4p(O)-3/'a~(O, t) = 0 (0 <__ t < T), 
(1.11) 

Bo ~(L, t) + B1 fie(L, t) = (BoR(X) + B1R'(X)) ~(L, t) 

+ Blp(X)X/4p(X)-3/'~te(L, t) = 0 (0 < t < T). 

We note that the coefficients of the new equation (1.10) satisfy all the conditions 
so far required of the coefficients of (1.1). Likewise the coefficients/To, Bo, A~, B~ 
in the new boundary conditions (1.11) satisfy the same conditions as the Ao, Bo, 
A1, B1. 

We establish in Section 2 the necessary existence, uniqueness and differenti- 
ability results for (1.10), (1.11). The results on linear controllability in [12] are 
stated--and some of them proved--in Section 3. Finally, local controllability 
of the system (1.10)-(1.11) is studied in Section 4. We include there also a 
detailed discussion on how local controllability of (1.10)-(1.11) is related 
through the transformation (1.8), (1.9) to local controllability of the original 
system (1.1)-(1.2). 

We note that the problem of controllability of nonlinear hyperbolic systems 
in one space dimension was already considered by Cirina in [3]. Although the 
systems considered there are, in a sense, more general than the nonlinear 
wave equations studied in this paper, Cirina considers boundary controllability. 
His method is totally different from the present one. 

I am grateful to M. Artola for some very useful remarks about existence and 
uniqueness theory for (1.1). 

2. Existence, Uniqueness and Differentiability Results. Reverting to the 
original x, u notation, we consider the equation 

(2.1) un = uxx -F(x ,  u)+b(x) f ( t )  (0 < x <_ L, 0 <__ t >_ T). 



We shall assume that the boundary conditions take one of the three following 
forms: 

The assumptions on F and b are the same as those in Section 1. 
Let A l be the operator in L2(0, X) defined by 

with domain I-I~ consisting of all functions y continuously differentiable in 
[0, L], such that y '  is absolutely continuous, y" E L2(0, L) and y(0) = y(L) = O. 
The operators All, A m are similarly defined, but their domains Hit, H m  are 
determined by the boundary conditions y(0) = y'(L) = 0 and y'(0) = y'(L) = 0 
respectively. We shall ordinarily denote by A any of the three operators At, AH, 

A I l I  • 

It is well known that A is self-adjoint and possesses a sequence {An} of 
distinct real eigenvalues, 0 < A o < h~ < - . .  corresponding to a complete 

2 orthonormal set of eigenfunctions {~on}. The eigenvalues are given by A n = w n, 
where 

We shall denote by K~ the domain D(A~/2) of the (unique) self-adjoint non- 
negative square root of At. The subspaces Kxt and K1x I are similarly defined. We 
shall always assume the spaces H and K endowed with their graph norms: for 
H, this norm is equivalent to 

in the cases (I) and (II) or to 

in case (III). Similarly, the graph norm of K is equivalent to 

and in cases (I) and (II) to 

in case (III). 
For any Banach space E we denote by L°°(0, T; E) the space of  all strongly 

measurable, essentially bounded functions from (0, T) to E endowed with its 
usual essential supremum norm ([8], [9]). 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 
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THEOREM 2.1. Assume that for  some v < h o = [east eigenvaiue o f  A 

F(x, u)+ ~u >_ 0 (u >__ 0), 

b(x) = ~. b,~0~(x), l ira sup n Ib.l < ~ ,  
~ t = O  tl--~ oO 

f~ L2(O, T), 

uo~H,  n i c K .  

Then 

(2.13) 

(2.14) 

and 

(2.15) 

there exists a function t ~ u(t) ~ H defined in [0, T] such that 

u(-) ~ L ~ (0, T; n ) ,  u'( . )  ~ L°~(0, T; K), u"(t) ~ L~(0,  T; L 2) 

u"(t) + Au(t) + F(u(t)) = bf(t) 

u(O) = Uo, u'(O) = ul. 

We comment briefly on Theorem 2.1. We have written L 2 instead of L2(0, L), 
which we will keep on doing later. The derivatives in (2.13), (2.14) and (2.15) are 
understood in the sense of the theory of vector-valued distributions. Equation 
(2.14) is equation (2.1) plus one of the boundary conditions (2.2) written in 
operational form; for instance, u(x, t) is thought of as a function t ~ u(., t) 
of t with values in the function space H, and so on; F(u(t)) (x) = F(x ,  u(x, t)), 
bf(t) (x) = b(x)f( t) ,  etc. The prime indicates t-derivative; x-derivatives will be 
indicated, as above, by the subindex x. We shall revert one or two times in this 
section, however, to the notation used at the beginning for reasons of con- 
venience. 

Theorem 2.1 is not, strictly speaking, contained in any of the results in [10]. 
However, the proof can be carried out essentially in the same way as that of 
Theorem 1.3 in [10], Chapter 1, that is by the Faedo-Galerkin approximation 
method combined with a priori estimates and compactness properties of various 
function spaces. Since these a priori estimates have exactly the same aspect as 
other estimates we will need to derive later in this section for different purposes, 
we omit the proof of Theorem 2.1. 

We note, finally, that it follows from the theory of Lebesgue-Bochner inte- 
gration of vector-valued functions that, by modifying u, u' in a null set, we may 
assume that u' is the indefinite Lebesgue-Bochner integral of u", both thought 
of as L2-valued functions; likewise, u is the indefinite integral of u', both 
thought of as K-valued functions. This will be important in what follows. 

We study in the sequel the nonlinear map 

(2.16) (I): L2(0, T) -+ L~(0, T; H x K )  

defined by 

(2.17) dP(f ) ( t )  = ( u ( t ) , u ' ( t ) ) E H x K  (0 <_ t <_ T), 

where u(.) is the solution of (2.14) with u(0) = u'(0) = 0 produced by Theorem 
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2.1. The space H x K is equipped with its Hilbert product norm. In all the 
results that follow, we assume without explicit mention that the assumptions 
contained in Theorem 2.1 are fulfilled; however, to simplify somewhat the 
notation we shall assume that the boundary conditions are either (I) or (II) and 
that (2.9) is verified with v = 0. We indicate later how these additional assump- 
tions can be removed. In the various estimates that will be derived, C, C ' , . . .  
denote positive constants--not necessarily the same for different inequalities-- 
which are, in each case, independent of the parameters subject to variation. 

LEMMA 2.1. Let C > 0 be given. Then there exists C' > 0 such that 

(2.18) l ie(f)  (t)ll-< C '  

whenever I f l  -< C. 
Proof. We begin by observing that F(x, u )=  uG,(x, u 2) (0 < x < L, 

- o r  < u < ~),  where G(x, u) = 2 S"o 1/= F(x, v) dv (0 < x < L, u > 0). Since 
Gu = u-~/2F(x, ul/Z), it is clear that G is continuously differentiable in the half- 
s t r i p 0 _ < x < L , u > 0 .  

Taking the scalar product of (2.14) with u'(t) in L z we obtain 

(u'(t), u'(t)) + ½ (A '/2 .(t), A (2.19) 

d 1 (L + ~ • Jo G(u2(t)) dx = f( t)  (b, u'(t)) (0 <_ t < r). 

Integrating, 

(2.20) 
; ' L  

(u'(t), ,,'(t)) + + Jo G(u2(t)) dx 

= 2 ftof(S) (b, u'(s)) ds (0 < t < T). 

We make now use of (2.5), of the fact that G is non-negative, of Schwarz's 
inequality and of the elementary inequality ab <_ (a 2 +b2)/2. We obtain an 
inequality of the type 

(2.21) T). 

It follows from Gronwall's inequality [2] that 

(2.22) lu'(t)t ~ _< c fro If(s)[ ~ ds (0 <_ t <_ T), 

and again from (2.21) that 

(2.23) lu(t)l~ -< C f :  If(s)12 ds (0 <_ t <_ Z). 

To obtain from these estimates a uniform bound for u(x, t) we note that K 
may be characterized as the space of all functions y e L 2 with Fourier develop- 
ment 

y(x) = ~ c~o.(x), ~ I°~nC,I z = lYlx < 
/ I = 0  n = 0  
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or, equivalently, as the space of all y absolutely continuous in !0, L], such that 
y '  ~ L 2 and 

(2,24) y(0) = y(L) = 0 

in the case of boundary condition (I) or 

(2.25) y(0) = 0 

in the case of boundary condition (II). The norm 1" Ix is in 'both cases equivalent 
to ['ll, where [YL~ = [Yi2+IY'I 2. It  is no t  hard to show, using the norm I" 11, 
that 

(2.26) [y(x)[ < Ciy[K (0 < x < L, y e K) 

so that (2.23) implies 

< C f :  If(s)l 2 ds (0 < x <_ L). (2.27) lu(x, 012 

We wish now to prove that F(u(t) e K and IF(u(t)l~ < C jr  o If(s)l 2 ds (0 < t < T). 
Since 

F(x, u(x, t)) x = Fx(x , u(x, t))+ Fu(x , u(x, t))ux(x , t), 

this follows from (2.23) and from the characterization of  K commented on after 
that inequality. As a consequence of  this characterization, we also obtain that 
F(u(t)) = ~.~= o F.(t)q~. with 

(2,28) ~ Ico.2F.(t)l z = IF(u(t)[~ <_ C f :  [f(s)l 2 ds (0 <_ t <_ T). 
n = 0  

We now take the scalar product in L 2 of both sides of (2.14) with each q~.. 
Setting u.(t) = (u(t), qQ, we obtain 

u;(t) + w~u.(t) = - r . ( t )  + b. f( t)  (0 < t < T), 

where {b.} are the Fourier coefficients of b(x). Since u.(0) = u~(0) = 0, 

( 2 . 2 9 )  u.(t) = - ±f' sin ~o. ( t - s ) F . ( s ) d s  + b-z" ~' sin co . ( t - s ) f ( s )d s  
tO n d O  COn d O  

= vn(t)+ w.(t) (0 <<_ t < T). 

It follows immediately from (2.28) and (2.4) that 

(2.30) ~ [~o2v.(t)[ 2 _< C f :  If(s)l z ds (0 < t  <_ T). 
t l = 0  

On the other hand, because of (2.10), it is not difficult to see that w.(t) satisfies 
an estimate of the same type. Accordingly, 

(2.31) lu(t)l~ = ~ Ico.2u.(t)] 2 _< C f :  [f(s)l 2 ds. 
n = O  
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Now differentiating (2.29), we obtain 

u'(t) = f'o cos to. ( t - s )  (F,(s)+b,f(s)) ds (0 <_ t (2.32) _< T). 

Operating with (2.32) in the same way as with (2.31) we deduce that 

¢f'o If(s)12 ds (0 < t < T), (2.33) .[u , (t)[ K2 < 

which ends the proof of Lemma 2.1. 
We define now 

(2.34) Or( f )  = * ( f )  (T) = (u(T), u'(T)) ~ H x K 

f o r f ~  L2(0, T). 

THEOREM 2.2. The map • r is Fr~chet continuously differentiable everywhere 
in L2(0, T). Its differential dd~r(f) at f ~ L2(0, T) is given by 

(2.35) dOr(f)h = (y(T), y'(T)), 

where y(.)  is the solution of  

(2.36) y"(t)+ Ay(t)+ Fu(U(t))y(t) = bh(t) 

that satisfies y(O) = y'(O) = O. 
We note that equation (2.36) obeys an existence and uniqueness theorem of 

the same form as Theorem 2.1. 
Proof of  Theorem 2.3. Let tT, u, y be, respectively, the solutions (with both 

initial data zero)  o f  

(2.37) ff'(t)+ A~(t)+ F(~(t)) = b(f(t)+h(t)), 

(2.38) u"(t)+ Au(t)+ F(u(t)) = bf(t), 

(2.39) y"(t)+ Ay(t)+ F,(u(t))y(t) = bh(t). 

If  we let v(t) = t~ ( t ) -  u(t), v satisfies 

(2.40) v"(t) + Av(t) + F(~(t))-  F(u(t)) = bh(t). 

If  we take f fixed and h, say, obeying a eonstraint [h i < C, then, by virtue of 
Lemma 2.1, fi and u remain bounded in K and, after (2.26), uniformly bounded 
in 0 < x < L, 0 _< t _< T. Since F, being differentiable, is locally Lipschitz 
continuous, we see that ]F(~(x, t ) ) -F(u(x,  t))] < C]~(x, t ) -u (x ,  t)] so that 

(2.41) [F(u(t))-F(u(t))l <- Clv(t)l. 

Operating with (2.40) in the same way as in Lemma 2.1 with (2.14), we obtain 

d 
d {  (v'(t), v'(t)) "4- dt½ (A'/2v(t)' A1/2v(t)) 

= - ((F(t~(t)) - F(u(t))), v'(t)) + (bh(t), v'(t)). 
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Taking into account the obvious inequality iv(t)[ 2 _< t ~ Evl(s)[ 2 ds and imitating 
the reasoning leading to (2.21), we obtain the inequality 

c(f'o 
wherefrom we deduce, by Gronwall's inequality, that 

(2.42) Iv(t)l 2 = 1~7(t)-u(t)l 2 _ C f :  Ih(s) l 2 ds. 

Let now 3( 0 = f t ( t ) - u ( t ) - y ( t ) .  Then 3 satisfies 

(2.43) 8"(t) + A~(t) = - F . (u ( t ) )8 (O-  e( t ) ,  

where 

(2.44) P(t)  = F(a( t ) )  - F(u(t))  - Fu(u(t)) ( O ( t ) -  u(t)) 

Operating with (2.43) once again as with (2.14) and (2.40) we obtain easily the 
inequality 

la(t)l~ -< C f ~  IP(s)12 ds (0 <_ t <_ T).  (2.45) 

Making use of an argument similar to the one that led to (2.41) we obtain 

(2.46) P(t)  = o(]~( t ) -u( t ) l ) ,  ]~( t ) -u( t ) i  ~ 0 

uniformly in [0, T], so that, in view of (2.45), 

(2.47) [8(t)I K = o(]u( t ) -u( t ) l ) ,  ]u( t ) -u( t ) l  ---> 0 

also uniformly in [0, T]. Observe now that 

P(t)x = Fx(Yt(t)) - Fx(U(t)) - Fx,(u(t)) (a(t)  - u(t)) 

+ [F.(a(t)) - F . ( u ( t ) ) -  F.u(u(t)) (~ t ( t ) -  u(t))]u(t)~ 

+ (F,(ff(t)) - F,(u(t))  ( f i f O -  u(t))x. 

Clearly, this implies that 

(2.48) Ie(t)x] = o ( l~ ( t ) -u (OI ) ,  I~t( t)-u(t) t  -> 0 

uniformly in 0 _< t _< T. It is easy to see that, for each t, P(t)  satisfies (2.24) in 
the case of boundary condition (I) and (2.25) in the case of boundary condition 
(II), This, combined with (2.48) and the comments following (2,23), yields 

(2.49) Ip(t)[a = o( l~ ( t ) -u ( t ) l ) ,  I f~ ( t ) -u ( t ) l -+  0 

uniformly in 0 __< t < T; moreover, in the same way we deduce that the relation 
(2.47) holds as well for Fu(u(t))3(t). Putting now together this relation with 
(2.49) and making use of (2.42) we finally obtain 

[ -F , (u ( t ) ) 3 ( t ) -P ( t ) ] i f  = o(ih[), [hi ~ 0 

uniformly in [0, T]. Using now the Fourier series techniques applied in Lemma 
2.1 we see that 

(2.50) l~(t)la+ ]8'(/)Ix = o([h[), th[ --+ O, 
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again uniformly in [0, T]. This shows that • is Fr~chet differentiable and that 
its differential d~b(f) a t f e  L2(0, T) is given by 

(2.51) d~b(f)h = (y(.), y'(.)), 

where y is the same function used in the expression (2.35). 
Let, finally, f,  f e  L z (0, T), f fixed and f such that I f  ] _< C. If  (~(.), ~'(. )) = 

O ( f  ), (u(. ), u'(. )) = O(f) ,  ( f ( .  ), y ( .  )) = d~b(f )h and (y(.), y '( .  )) = d~( f )h ,  the 
function z(t) = ~( t ) -y( t )  satisfies 

(2.52) z"(t)+Az(t) = -F(u(t))z( t)-(F(a(t))-F(u(t)))y(t)  (0 <_ t < T). 

Equation (2.52) can be treated exactly in the same way as (2.43). Taking (2.42) 
into account it is not hard to show that the right-hand side of (2.52) is o([~7(t)- 
u(t)D = O([f-fl) as f - + f i n  L2(0, T), uniformly in 0 < t < T, and then that 
Iz(t)[ri+ Iz'(t)[x -< C[f-fl. This shows that d~( f ) ,  as a function from L2(0, T) 
into the space of bounded linear operators from L2(0, T) into L°°(0, T; H x K), 
is continuous. 

Since all the estimates that were used to show continuous differentiability 
of • hold everywhere (and not just almost everywhere) in 0 _< t < T, the 
statements in Theorem 2.2 about ~ r  follow. This completes the proof. 

The assumption that the boundary conditions are (I) or (II) and that v = 0 
in (2.9) can be easily eliminated by writing (2.1) in the operational form 

u"(t) + ( A -  vI)u(t) + F(u(t)) + vu(t) = bf(t) 

rather than in the form (2.14). One can then reason exactly as in the proof of 
Theorem 2.2, replacing A by A - v l ,  F(x, u) by F(x, u)+ vu. 

3. Russell's Results on Linear Controllability. Let a(x) = Fu(x, O) (0 < x < L) 
and define 

(3.1) (Bly) (x) = -y"(x)  + a(x)y(x) = (A,y) (x) + a(x)y(x), 

where D(BI) = D(AI) = HI. The operators Bix, Bm are similarly defined. As 
in the case of A, B will denote any of the three operators defined above when 
distinction is not necessary. 

The operator B shares most of the properties of A; in particular, B is self- 
adjoint and possesses a sequence {/Zn} of distinct real eigenvalues such that 
tz0 </~i  < t~z < " "  corresponding to a complete orthonormal set of eigen- 
functions ~bo, ~b 1, ~b2,.... We have/*o > 0. Indeed, because of assumption (2.9) 
of Theorem 2.1 and of the fact that F is odd in u, we must have a(x) > - v ,  
where v lies below the least eigenvalue A o of A. Accordingly, (Bu, u) > (Au, u ) -  

2 the sequence { a, } obeys the asymptotic v(u, u) = (h o - v )  (u, u). Setting tz, = %, 
relationships 

(3.2) { %=(rr /L ) (n+l )+O(1 /n )  as n - + ~  for B t 

% (~r/L)(n+½)+O(1/n) as n - - * ~  for Btx 

~. (~r/L)n+O(1/n) as n - - ~  for Btu. 

For proofs of these and other related facts see [14], especially Chapter IV. 
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Let B 1/2 be the unique non-negative self-adjoint square root of B. Then, 
since B is a bounded perturbation of  A, D(B 1/2) = D(A 1/2) = K. Let y( . )  be a 
solution of 

(3.3) y"( t )+By( t )  = bh(t) (0 <_ t <_ T)  

with 

(3.4) y(0) = y'(0) = 0. 

Then it is easy to see, taking the scalar product of both sides of (3.3) with each 
~b., that ify(t)  = ~ = o  y.(t)~b., b = ~ = o  b.~b., then 

(3.5) y.(t)  = b~ ~ ff sin e. ( t - s ) f ( s ) d s  (0 < t <_ T, n > 0). 
O . n .  O ~ - -  

Let now Yr ~ H, y~ e K; then we have 

(3.6) Yr = ~ ~.~b., ~ 1o2~.12 < oo 
n = 0  n = O  

(3.7) Yr = fl.~b., lo./3.12 < oo. 
n = O  n=O 

According to (3.5) and the formula obtained from it by differentiating both 
sides, the solution y( .)  will satisfy 

¢ 
(3.8) y (T)  = Yr, y ' (T )  = Yr 

if and only if the function g(s) = f ( T - s )  satisfies 

(3.9) f r  o g(s) sin o.s ds = a.%/b. (n > 0), 

(3.10) fS cos =  .lb. (,, >_ 0). 

The two moment problems (3.9), (3.10) can be subsumed into 

(3.11) f S g ( s ) e i ' " ~ d s = c .  (n . . . .  , - 1 ,  - 0 ,  0, 1 , . . . ) ,  

where we have set or. = -or_.  for n < 0 (note that we differentiate between 0 
a n d - 0  as subindices) and 

(3.12) c, = bil l  1 (fll.l + is.~'l.l~l.I), 

where n varies over the same set as in (3.11) and s. = 1 for n >__ 0, s. = 1 for 
n < - 0 .  A moment problem more general than (3.12) was solved by Russell 
[12]. We state next (and prove, for the most part) the results in [12] that are 
relevant to our situation. 

We assume that 

(3.13) b. ~ 0, liminfnlb.I > 0. 
n ~ o  
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Then, in view of (3.2), if {~,} and {fin} are sequences satisfying (3.6) and (3.7) 
respectively, the sequence { c,} given by (3.12) belongs to l 2, that is, 

(3.14) ~ Ic, I 2 < oo. 
n = O  

The moment problem (3.11) is a particular case of the abstract moment problem 

(3.15) (g,f , ,)  = c,,, 

where {f, } is a sequence in a Hilbert space H and { c, } is a sequence of complex 
numbers. Assume that there exists C > 0 such that 

(3.16) ~ ]c,I 2 < C I~ c.f.[ z 

for any finite sequence { e. }. Then, as 

fn -- ~n  Crafra2~> C- l (  1 -'l- ~n 1<"12) >- c-: ,  

the distance d. f romf ,  to the subspace K. generated by {fro; m ¢ n} is positive. 
It is then an elementary exercise in Hilbert space theory to show that, if r. E K. 
is the unique element of K. that lies closest tof . ,  the functions g. = d ~ Z ( f . - r . )  
provide a sequence {g.} biorthogonal to {f.} (i.e., such that (gin, Jr.) = 3m.- 
Clearly, any other sequence biorthogonal to {f. } contained in K (the subspace 
generated by {f. }) must coincide with { g. }. 

Let now {e.} be a finite sequence of complex numbers. We wish to show 
that 

(3.17) IE c.g.] 2 -< c E  Ic.P. 

Indeed, let u = ~ c .g .  and choose another finite sequence {din} of complex 
numbers such that, i fv  = ~ dmfm, we have l u - v l  < E for some E > 0. Then 

I,,I 2 = (u, v )+@,  , , - v )  _< (u, v ) + ,  lul 

= E c .a ,+ ,  lul -< (E Ic.l~) '/2 (Z lao12)'/2+ , lul 

-< c ' / 2  (E It,12) 1/2 Ivl + ,  lul 

<- c'lZ (E Ic.12) l/z ( l u l + , ) + ,  lul. 

Letting E ~ 0, (3.17) follows. 
Inequality (3.17) shows that, if {c,} E l z the series g = ~ c,g,, converges in 

H and clearly furnishes a solution of the moment problem (3.15). Moreover, it 
is clear that g is the only solution of (3.15) that belongs to K (for if ~ were 
another such solution, g - g  would have null scalar product with all of the f , ,  
thus would be zero itself). 

We apply now these simple observations to the case H = L2(0, T) and to 
f . ( s )  = {ei'"s}, n . . . .  , - 1 ,  - 0 ,  0, 1 , . . . .  If T > 2L and the ~. are given by 
any of the three asymptotic formulas in (3.2) then there exists a no such that 

(3.18) o . - , r . _ ~  >_ 2=IT (Inl >-- no). 
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It was shown by Ingham (see [12]) that (3.18) implies that the sequence (e i#"s} 
satisfies (3.16) and then the moment problem (3.15) has a solution for any 
square-summable sequence (cn}. If the sequence (cn} is given by (3.12), then, 
as o,~ and ft, are real numbers, c_, = g,. This implies that the solution g of 
(3.15) must be real-valued. Indeed, both g and ¢ are solutions of (3.15) and, 
since K is invariant through complex conjugation, ¢ ~ K and must then coincide 
with g. 

Assume next that T = 2L. It has been proved by Paley and Wiener ([11], 
Chapter V) that there exists a constant K > 0 such that, if 

(3.19) ]%-hi _< K(n . . . .  , - 1 , 0 ,  1 , . . . ) ,  

then the sequence { e ~*"s } satisfies (3.16) in L2(0, T). (Moreover, it also satisfies 
an inequality of the type of (3.17) and is total in H). It was shown by Russell 
that these properties still hold if { % } satisfies only the weaker condition 

(3.20) I~,-nl-< K, In] >-no. 

Then it is clear that in the case of boundary condition (I) the sequence { e ~*"s } u 
{ 1 } satisfies (3.20); accordingly, the moment problem (3.15) has a solution g for 
any square-summable {c,}. This solution is not unique, but it is uniquely 
determined if we specify 

(3.21) fS g(s) ds. 

The case of boundary condition (II) is even simpler; here the sequence 
(e i~s/2L e i'"~ } satisfies (3.20). Accordingly, it also satisfies (3.16) in L2(O, T) and 
afortiori so does the sequence (e i`: }, which is obtained from (3.22) through the 
(unitary) operator of multiplication by e -~'/2z. We deduce that (3.15) has a 
unique solution g for any {c,} in l 2. By means of an argument similar to the 
one following (3.18) we deduce that g must be real: the same applies to the case 
of boundary condition (I) commented on above. 

In the case of boundary condition (III), the sequence ( e f*: } does not verify 
(3.20). However, it can be made to satisfy that condition through removal of 
any of its elements. It follows that (3.15) cannot have, in general, a solution 
for arbitrary square-summable {c,}. 

It remains to settle the case T < 2L, which clearly we only have to do for 
boundary conditions (I) and (II). We begin by observing that not all g, can 
vanish in the interval (T, 2L). For, if this were true, the problem (3.15) in 
L2(0, 2L) for boundary condition (II) or the problem (3.15) plus (3.21) in the 
case of boundary condition (I) would have an infinity of solutions (we may 
define g arbitrarily in (T, 2L)) which contradicts the results obtained in the case 
T = 2L. Assume then that the moment problem (3.15) has a solution in L2(0, T), 
T < 2L, for all square-summable {c,}, and let g~ be such that it does not 
vanish (a.e.) in (T, 2L). Let { c,} = { 3,,,}. Then the solution of (3.15) extended 
to (0, 2L) by setting g(s) = 0 in (T, 2L) must coincide (by uniqueness in the 
case T = 2L) with g,, in (0, 2L), which is absurd. We conclude that the moment 
problem (3.15) does not have in general a solution in the case T < 2L no matter 
what boundary conditions we use. 
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4. Local Controllability of (2.1). We consider again the nonlinear equation 
(2.1). The assumptions on the coefficients are the same as those in Section 2, 
that is, Fis  twice continuously differentiable and odd in u in the strip 0 < x < L, 
- o o  < u < m and b belongs to L2(0, L). 

THEOREM 4.1. (I) Assume that for some v < rr/L 

(4.1) F(x, u)+vu > 0 (0 < x <_ L, u > 0), 

and that, i f  { ~b, } are the eigenfunctions of  BI, then 

(4.2) b(x) = ~ b,~b,(x) 
n = 0  

with bn ¢ O (n >_ O) and 

(4.3) 0 < lira infn [bn[, lira sup n ]b,[ < oo. 
B --.+ oo n - -+  oo 

Then i f  T > 2L, there exist e > 0, 8 > 0 such that, for any ur E 1"1i, u} e KI 
satisfying 

(4.4) luTI~ -< ,,  lu~l~ -< ,, 

there exists f e L2(O, T), 

(4.5) Ifl-< 
such that the solution of  (2.1) satisfying boundary condition (1) and initial 
conditions 

(4.6) u(., 0) = u,(., 0) = 0 

satisfies 

(4.7) u(., T) = ur('),  u,(', T) = u}('),  

(H) Assume that (a) For some v < zr/2L (4.1) holds; (b) (4.2), (4.3) hold, 
where { ~ } are the eigenfunctions of  B H. Then if  T > 2L, the conclusion of  
Part (I) holds as well. Moreover, i f  T = 2L, the map 

(4.8) f ( ' )  -+ (UT('), U~-(')) 

is a homeomorphism between the &sphere in L2(0, T) and the c-sphere in H x K. 
(III) Assume that (a) For some v < 0 (4.1) holds; (b) (4.2), (4.3) hold, where 

{ ~n } are the eigenfunctions of  Bm.  Then i f  T > 2L, the conclusion of  Part (I) 
holds. 

Most of the work necessary for the proof of Theorem 4.1 has been already 
carried out. We begin by observing that the second condition in (4.3) is similar 
to the one required in Theorem 2.1 and subsequent results in Section 2, but it is 
formulated in terms of the eigenfunctions of B rather than those of A as in 
Section 2. However, both formulations are equivalent, as %(x) = ~n(x)+ O(1/n) 
(n-+ m) uniformly with respect to x, 0 < x < L (see [14], Chapter IV). 
Regrettably, the first condition in (4.3) cannot be formulated in terms of the 
eigenfunctions of A, which are explicitly known. 

As for the proof of Theorem 4.1, it has been established in Section 2 that 
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the map ~, which is none other than (4.8), is continuously differentiable every- 
where in the sense of Fr6chet as a map from L2(0, T) into H × K, and it was 
proved in Section 3 that d~(0) is onto under the hypotheses written down in 
Theorem 4.1 in each of the three cases. Then the conclusion follows from the 
inverse function theorem in the form stated in [4] (Chapter X, p. 263, Exercise 
8). This result can be stated (in a slightly less general form, but amply sufficient 
for our purposes) as follows. 

LEMMA 4.1. Let E, F be two Banach spaces, • a continuously differentiable 
map from a neighborhood of  zero in E into F such that qb(0) = 0. Assume dc~(O) is 
onto. Then the range of  ~b contains a neighborhood of  zero in F. 

The additional information contained in Part (II) of Theorem 4.1 about the 
map (4.8) can be deduced from the standard inverse function theorem ([4], 
Theorem 10.2.5). 

There remains the question of relating the results just obtained for the 
equation (2.1) with the original equation (1.1). We note that the map (1.8)-(1.9) 
is a homeomorphism between the space H(0, X; Ao, A1, Bo, B1) (defined as H 
but with reference to the interval [0, X] and the general boundary conditions 
(1.2)) and the space H(0, L, A o, A 1, B o, B1) and it is also a homeomorphism 
between K(0, X, Ao, A1, Bo, B1) and K(0, L, A o, A1, Bo, B1) (these spaces are 
defined modifying the definition of K in a way similar to the one above for H). 
Accordingly, our results can be applied as long as the transformed boundary 
conditions (1.11) have one of  the three forms (I), (II) or (111) of  Section 2. This 
is a serious restriction, as only the form (I) is kept through the transformation 
(1.8)-(1.9) save when rather fortuitous relations between p and p hold. 

We note, finally, that as the map u(., t) -+ u(., T -  t) transforms solutions 
of (2.1)--or of (1.1)--again into solutions and preserves the boundary con- 
ditions as well, the conclusion of Theorem 4.1 can be re-interpreted by inter- 
changing the role of the initial condition (4.6) and the final condition (4.7); 
that is, Theorem 4.1 can be thought of as a result assuring that "every suffi- 
ciently small state can be brought to equilibrium" under the conditions set 
forth in the theorem. 

We end by illustrating the results obtained with an example where all the 
necessary assumptions can be instantly verified. 

C O R O L L A R Y  4.1. The conclusions of  Theorem 4.1 hoM for the equation 
u ,  = uxx-u3 + xf(t) (0 < x < L) for any L > 0 and any of  the boundary 
conditions (I) or (I1). 
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