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1. Introduction 

The notion of  topological entropy was introduced by Adler, Konheim, 
and McAndrew in [1], with some indications of the analogy to measure 
theoretic entropy. In this paper, we investigate the topological analogue of  
generators of measure-preserving transformations. The structure of  flows with 
generators is examined, with the main result (Theorem (2.7)) being that every 
such flow is a transformation group homomorphic image of  a subflow of  a 
symbolic flow. 

The notion of expansiveness in topological dynamics has been extensively 
investigated. In Section 3, we show that the discrete flows with generators 
are precisely the expansive flows. This connection between topological entropy 
and topological dynamics enables us to obtain significant information about 
each concept. On the one hand, the large class of flows which are known to 
be expansive yields flows in which the existence of a generator is not apparent. 
Moreover, we show that distal flows do not support generators since they 
are not expansive. On the other hand, we use the results from studying 
generators to obtain a new result about expansive flows as well as an alternate 
proof  of a result due to W. Gottschalk [4, p. 345]. Moreover, we note some 
additional properties of  flows with generators. Finally, in Section 4, we 
generalize the definition of  a generator to an arbitrary transformation group. 
Although the notion of topological entropy is no longer applicable, we use 
the same techniques to provide results on expansive transformation groups 
analogous to those of expansive discrete flows. 

Throughout this paper, X will denote a compact Hausdorff space and 50 a 
homeomorphism of X onto X. We introduce some modifications in the 
notation of [1]. Since the finite open covers are cofinal, it is no restriction to 
consider only finite open covers, and we shall do so. Moreover, we use the 
notion of  refinement (i.e., q / i s  refined by "¢/" (q/-<~/') if each member of ~¢" is 
contained in some member of q/) and joins for any cover (i.e., whether it is 
an open cover or not). We let z~¢ denote the collection of finite open covers 
of  X. Finally if q /E d and m, n are integers such that m < n, then q/m,, = 

n 

\ / 5 0 - i q / .  All other notation follows [1]. 
j=ra 
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Let ~ x  be the compatible uniformity of X. Then (X, ~o) is expansive if 
there exists ~ e q/x (an expansive index) such that if x, y e X and x # y, then 
(9"x, 9"Y) ¢ ~ for some integer n. If (Y, ~b) is another discrete flow, we write 
(X, 9) m ( Y, ~b) if there exists a continuous map p from X onto Y such that 
p9 = ~bp. Such a p is called a transformation group homomorphism. 

2. Generators for the Topological Entropy 

We now establish conditions on an open cover which imply that the 
entropy of 9 is given by the entropy of 9 with respect to this cover. 

LEMMA 2.1. If  o~, 3~ e d  and 3C~ ~ _ . . . f o  r some n, then h(% ~ )  <_ 
h(9, ~) .  

Proof. If  3¢z~(~_. . . ,  it follows that 3¢Zo, k< :~_ . ,  .+k for every positive k. 
Hence H ( ~ o .  k) < H ( ~ _ . ,  .+,) < H ( ~ _ . .  o ) + H ( ~ o . . + k )  and 

1 H(Y/'o k) < H ( ~ _ . ,  o) + - -  H ( ~ o ,  .+k) 
' n+ +l ' 

since k is positive. If  we take limits, the result follows. 

Definition 2.2. Let ~', $/" e d .  Then YP is ~-refined by ~' (write Y / ' - ( ~ )  
if for every bisequence (Ai) of members of ~', there exists an integer n and 
B e 3¢/" such that ~ 7 = - .  9 ~- i(A3 c B. 

LEMMA 2.3. Let ~ ,  3 ¢r e d .  Then ~ ¢ / ' ~  if and only if 3¢~-(¢~_., 
f o r  some n. 

Proof, Suppose that 3¢z~ ~ ' _ . , .  for any n. Then for every n, there exists 
a sequence (A~,)Z, such that ( ~ ,  9-i(Ai.) ¢ B for any  B e $/'. Since ~ is 
finite, it follows easily by induction that there exists a bisequence (A3 such 
that A t = Aim for infinitely many m, say Ii, and [i] < ]j[ implies I~ ~ I i. Let 
n be a positive integer. If  m e I~ such that m > n, then 

(~"_. 9-i(Ai) = ~ .  9-i(A,m) D_ (~-z  9-'(a,m)" 

Since ~_mg- i (A im)¢  B for any BeY/.  , the same statement holds for 
On._, 9-i(Ai). Thus, 3¢z~,q/. Since the converse is clear, the lemma is 
established. 

Definition 2.4. Let ~//e ~¢. Then ~// is a generator for (X, 9) if for every 
bisequence (Ai) of elements of ~//, ( ~ ®  9-i(AE) is at most one point. 

The analogy between Definition 2.4 and the corresponding measure-theoretic 
concept [9, p. 1] is quite clear. Moreover, it is easily seen that if ~*  is the 
cover of all sets of the form N_°2~o 9- i (A[) ,  where (Ai) is a bisequence in ~', 
then ~ is a generator if and only if ¢/'-< q/* for every ¢/'e z~'. 

LEMMA 2.5. Let ql be a generator for (X, rp). Then ~/'-<~,ql for every 
~e'e d .  

Proof. Choose ~//'e~¢. Consider any bisequence (Ai) in @'. Letting 
C~ = ~"_, 9-i(A7), it follows that (C,) is a nested sequence of closed sets. 
Since ~ o  C, is at most a point, ( ~  C, ~ B for some B e 3¢'. By compactness, 
C, ~ Bfor  some n. Thus, ~ ,  9-i(Ai) ~ B. The result follows. 
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In general, the converse of Lemma 2.5 is undoubtedly false. However, 
if X is a metric space and ~ is a closed-open cover (every set in v~ is both 
closed and open), the converse holds. This is easily seen by choosing for each 
c > 0 a cover ~¢" of c-neighborhoods and noting that every bisequence (A i) 
in ~ has diam (N~_co 9-i(A/-)) < 2~. 

The following result justifies the terminology of Definition 2.4. 

THEOREM 2.6. Let ~ be a generat~r for (X, 9). Then h(9 ) = h(9, v~). 
Proof. By Lemma 2.5, ~¢ '-<,~ for every ~ / / ~ d .  The result follows by 

Lemmas 2.3 and 2.1. 
The converse of Theorem 2.6 obviously fails by considering 9 to be the 

identity. 
The next few results show that the flows with generators are intimately 

related to subflows of the symbolic flows on finite sets, i.e., the shift on 
bisequences on a finite space [5, Chapter 12]. 

THEOREM 2.7. Suppose ( X, 9) has a generator. Then there exists a d-ary 
symbolic flow ( Y, ~) and a closed invariant subset Z of Y such that (Z, ~) ~ ( X, 9). 

Proof. Suppose that v~ = { A o , . . .  ' Ad_l } is a generator for (X, 9). 
Let (Y, ~) be the d-ary symbolic flow and consider Z = (mira = (mi) ~ Y 
and N _ ~  9-i(Am,) # ~). Suppose that (m j) is a sequence in Z such that 
mJ-~ m. Set (yj) = N_~co 9-i(An-,~). By passing to a subsequence if necessary, 
assume that Yi --~ Y" Since for all i, m~ --> mi, we have that m~ = m1 for j _> Jv 
Thus y j ~ 9 - i ( A m , ) f o r  all J > J i  and hence y~9-i(A~,,).  Hence N~_co 
9-1(Am,) # o and m e Z. Thus Z is closed. Clearly Z is invariant, since if 

~ co 9 -  i(A~,) # ~, then 

- - i + 1  --  
9 ( A m , )  [ I - i A -  = 

= 9 ( . , + )  (~ - i  - 

- o o  - c o  - o o  

and ~(m) E Z. 

Define ~: Z--~ X by ~(m) = ~_~co 9-1(Am,)- Then 

= 9 (a,(m),) = 9-  ( =,+ ~) = 9 9-i(A~,,) = 9~b(m) 
--CO --CO 

for m e Z. Since ~ is a cover, ~b is clearly onto. Suppose m i --~ m. By the first 
paragraph, every convergent subsequence of (~b(mJ)) converges to ~b(m). Since 
X is compact, it follows that ~b(m j) -+ ~b(m). Thus ~b is continuous. The result 
follows. 

As a consequence of Theorem 2.7, we have that (X, 9) is isomorphic to 
(Z/R, ~), where R is the compatible equivalence relation induced by ~b. 

COROLLARY 2.8. Suppose (X, 9) has a generator. Then X is metrizable. 
Proof. By Theorem 2.7, (Z, or) -% (X, 9), and Z is metrizable. The proof is 

completed by the following well-known topological result: If  p is a continuous 
map from a second-countable compact  space W onto a Hausdorff space V, 
then V is second-countable. For if ~ is a countable base for W, let ~ be 
the collection of finite unions of members of ~ ,  and let (6 be the complements 
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in V of images of complements of members of ~ .  Since p is closed, each 
C e cg is open. It is direct to verify that c6 is a base for V. 

It is obvious that if q / i s  a generator for (X, 9) and q / <  ~", then ~g" is a 
generator for (X, 9). We use this in the following corollary. 

COROLLARY 2.9. Suppose X is zero-dimensional and ( X, 9) has a generator. 
Then there exists a d-ary symbolic flow ( Y, or) such that (X, 9) is imbedded 
in (Y, ~). 

Proof. Since closed-open covers are cofinal, we can choose a closed-open 
generator q / f o r  (X, 9). Let 3V" be the partition generated by Y/. Then 4//" is 
a closed-open generator for (X, 9), and if (Z, ~r) is the flow obtained from 
applying the construction of Theorem 2.7 to ~/', it follows that ~b is one-to-one. 
The proof  is completed. 

It is known in measure theory [8] that a generator yields the measure 
algebra underlying the space. We examine the corresponding topological 
notion. 

Remark 2.10. Let all be a generator for (X, 9). Then ~_oo ql_,, , is a base 
for the topology of X. 

Proof. Since each 9 - ~ q /  is a cover, it follows that every x ~ X has a 
bisequence (Ai~) in q/ such that x ~ ('] ~ oo 9 -  i(A~). Then 

moo -co 

Choose B open and x E B. Since (]°2_o~ 9- i (A~)  
2.5 that N"-, 9-i(Aix) ~ B for some n. Since 
follows. 

Note that we have actually shown that if 

c B, it follows as in Lemma 
x E (~"_, 9-i(Aix), the result 

q/E ~¢ satisfies the property 
that each x e X has a bisequence (A~x) in q/ with (~Eoo 9- i (A~) = (~_~oo 
9-~(Aix) = {x}, then U_°£oo q / _ , , ,  is a base. In general, the converse of 
Remark 2.10 fails. However, we do have the following. 

COROLLARY 2.11. I f  X is first countable and qI is an open partition of 
X, then ql is a generator for (X, 9) if and only if U~_oo qZ_,. , is a base for the 
topology of X. 

Proof. Let x E X and {U.In >__ 1) be a decreasing neighborhood base of x. 
J.  

Then for each n, there exists B, = N 9-~(AT) c U,. Suppose j ,  = j for an 
--jn 

infinite set of n's, say N o. Then there exists an infinite subset N 1 c N O and a 
sequence (Ai)~ j such that A n = A i for every n e N I. It follows that {x} = 
(V-J 9-~(Ai) , and there exists a bisequence (Ci) in ~' such that {x} = N_~oo 
9- ~(C3. 

Now suppose that j ,  ~ ~ .  We can assume that (j ,)  is increasing. Suppose 
that n < m. Since x ~ B, n B,, implies that 

J.  

Bn n N 9-'(Am) ~ ~, 
--in 

and that q/ is a partition, it follows that A 7 = A~' = A t if lit -< L. Thus, 
there exists a bisequence (At) in o// for which A 7 = A~ if Ill -< j . .  It follows 
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again that {x} = N_°2oo ~0-~(A~). Since q/_®, oo is a partition, the proof is 
easily completed. 

As a corollary, we note that if q / i s  a closed-open cover for which U_~o~ 
q/_, ,  ~ is a base, then (X, ~o) has a generator. For, using the partition 
generated by q/, it follows easily that ~ e~ has the same property. The result 
follows by applying Corollary 2.11. 

3. Expansive Flows and the Existence of Generators 

We now show that the flows with generators are precisely the expansive 
flows. 

LEMMA 3.1. (X, ~o) is expansive if and only if there exists q /~  d such 
that for every bisequence (Ai) in ql, N~_~o ~-i(Ai) is at most one point. 

Proof. If  ~ is an expansive index for (X, ~o), choose a symmetric open 
/3 e q/x such that /32 c ~. Let q/ be a finite covering of/3-neighborhoods. 
Suppose that some bisequence (Ai) in q/ has N_°2~ ~0-1(Ai) containing two 
distinct points x, y. If A i = xi/3, then for every i, (~oix, ~oiy) ~ (xi/3) x (x~fl) c 
/32 c ~. But this contradicts the assumption that a is an expansive index. 

Suppose that q/ satisfies the condition of the lemma on bisequences. Let 
E q/x be a Lebesgue index for q/. It is easily seen that ~ is an expansive 

index for (X, ~o). The result follows. 
We call a cover satisfying the condition of Lemma 3.1 a weak generator. 

THEOREM 3.2. ( X, ~o) has a generator if and only if ( X, ~) is expansive. 
• Proof. Suppose that v# is a weak generator. For every x z X, choose an 

open neighborhood Vx and Ax ~ q/ such that V~ c Ax. Then X = U~ ~ rVx 
for some finite F c X. Letting ~e~= {V~[x E F}, it follows that ~/" is a generator 
for (X, ~0). The converse being obvious, the proof is completed. 

Note that, in general, a weak generator is probably not a generator. 
Theorem 3.2 yields that a large class of flows have generators. Many toral 

flows are expansive (see [3, Theorem 4]) and the symbolic flows are expansive. 
It also shows that many minimal flows fail to satisfy the converse of Theorem 
2.6 (e.g., the equicontinuous flows, cf. [1, Example la]). Moreover, the following 
result is immediate from Theorem 2.7 and Corollary 2.9. 

COROLLARY 3.3. Let (X, ~o) be expansive. Then (1) There exists a d-ary 
symbolic flow (Y, ~) and a closed invariant subset Z such that (Z, ~) ~ (X, ~o); 
(2) I f  X is zero-dimensional, then ( X, ~) is imbedded in some d-ary symbolic flow. 

The second statement of Corollary 3.3 is originally due to Gottschalk. 
If  (X, cp) is a point-transitive or minimal, then (Z, or) can be chosen with 

the same property by choosing the orbit closure of a point in Z which maps 
onto the transitive point in the first case and choosing an almost periodic 
point in Z in the second case. 

Remark 3.4. Suppose X is an infinite metric space and (X, ~) is distal. Then 
(X, ~o) does not have a generator. 

Proof. By Theorem 3.2, we need only show that (X, ~o) is not expansive. 
But if (X, ~0) is expansive, then there exist distinct points a, b such that a and b 
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are positively asymptotic [2, Theorem 2]. This contradicts the assumption 
that (X, ~o) is distal. The result follows. 

As a corollary, we have that the only closed distal subflows of a d-ary 
symbolic flow are the finite subflows. 

If  X is metrizable, the weakly mixing flows [7] are "almost" expansive, 
since almost all points in the product have dense orbit. However, in general, 
they are not expansive and we cannot assert the existence of a generator. 
For example, consider the flow on the 4-torus given by I°l°°] 

0 0 1 0 
0 0 0 1 . 

- 1  3 - 3  3 

By examining the eigenvalues, it is seen that the flow is weakly mixing (in 
fact, weakly mixing with respect to Lebesgue measure [6, p. 55]) but not 
expansive [3, Theorem 4]. 

Remark 3.5. Suppose that X is a connected finite-dimensional topological 
group and ~o is a group automorphism of X. I f  ( X, ~o) has a generator, then X 
is abelian. 

Proof. This follows from [10]. 
It is easy to see that if each of the transformation groups (X~, ~oi) 

(i = 1, .  • . ,  n), where Xi is compact Hausdorff, has a generator q/i, then 

X q/i is a generator for i=iX X~, i--X1 ~°i " The infinite analogue fails, since if 

((Xi, ~i) [ ie I )  is an infinite collection, the only way for which (XXi ,  X~i) 
can be expansive is if X; is trivial for all but a finite number of i. Also, if 
(X, ~o) has a generator, then h(~0)< oo. Thus, any flow with infinite entropy 
is not expansive. In particular, the shift flow (or symbolic flow) on an infinite 
compact metric space is not expansive, cf. [1, p. 315]. Finally, it follows that 
if (2", ~) has a generator and if n ¢ 0, then (X, ~") has a generator, since the 
corresponding result holds for the expansive case. However, this is immediate 
by noting that if q / i s  a generator for (X, ~o), then q/o, Inl-1 is a generator for 
(x, ~"). 

4. General izat ions  

Instead of considering the homeomorphism % we now assume that T is 
a discrete group such that (X, T) is a transformation group. Motivated by 
Definition 2.4, we have the following definition. 

Definition 4.1. Let q / e  d .  Then q/ is an (abstract) generator for (X, T) 
if for every T-family (At[t ~ T) in q/, Nt  ~ r(AT) t-1 is at most a point. 

If  T is any discrete group and Z any finite set, then the left symbolic 
transformation group over T to Z is the transformation group (Z r, T) with 
action (z,lt ~ T)to = (Zto,lt T), i.e., T acts on the index set T by group left 
multiplication. The following result generalizes Theorem 2.7. 
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T H E O R E M  4.2. Suppose ( X, T) has a generator. Then there exists a d-ary 
left symbolic transformation group (Z  r, T) and a closed T-invariant subset Zo 
of Z r such that (Z o, T) ~ (X, T). 

Proof. The proof  follows that of  Theorem 2.7 with only minor modifications. 
If q / =  {Ao, • • • , Ad-1} is a generator for (X, T), let Z = {0, • • • , d - l }  
and consider (Z r, T). Let Z o = {n[n = (n,) ~Z  r and nr(A~,t  -1) ~ ~}. Let 
n ~ Z  o. Then n (A~, t - l )  ~ ~. If  s e T ,  then ('] ( A ~ , t - l s ) 4 0 .  Letting 
w-1 = t - i s ,  we have that t = sw and n (A,sww-1) ~ o. Hence ns ~ Zo, and 
Zo is invariant. Using nets instead of  sequences, we can show that Zo is closed. 

Define ~b: Z o --> X by ~n)  = n (A~,t-1). It easily follows that ~bzr' = rrt~b 
for all t, and that ~ is continuous onto. The proof  is completed. 

The analogue of  Corollary 2.9 follows in a similar fashion. 
In precisely the same way as in Section 3, we have that (X, T) is expansive 

if and only if there exists q / e  d with the property that for every T-family 
(A,lt ~ T) in q/, c~ A , t  -1 is at most one point, and that (X, T) is expansive 
if and only if (X, T) has a generator. Thus, we have the following result. 

T H E O R E M  4.3. Let (X, T) be expansive. Then (1) There exists a d-ary 
left symbolic flow (Z r, T) and a closed T-invariant subset Z o of Z r such that 
(Zo, T) :~ (X, T); (2) I f  X is zero-dimensional, then (X, T) can be imbedded 
in some d-ary symbolic flow (Z  r, T). 

Theorem 4.3 (2) is originally due to Gottschalk (unpublished). 
A large class of  expansive flows which are not necessarily discrete flows 

is contained in the index-permuting transformation groups [7, Definition (2.2)]. 
For consider (y r ,  G), with action (Yg)i = Yg~o and where Y is finite, and 
suppose that (/, G) is transitive, i.e., for all i, j ~/,  there exists g ~ G such that 
g(i) = j. Let i ~/,  and consider the index ~i = {(Y, z)Iy, z ~ y1 and Yi = zi}. 
Suppose that x, y E Y~ and x # y. Then for some j, xj  ~ yj. If  g ~ G is such 
that g(i) = j, then (xg)~ = x~(i) = xj # yj  = Yg(o = (Yg)v Thus, (xg, yg) ¢ 0% 
and (YI, G) is expansive. 

T H E O R E M  4.4. Let X be a zero-dimensional topological group. Let T be 
a discrete group of automorphisms of  X. Let (X, T) be expansive. Then there 
exists a finite group Z such that (X, T) is imbedded in (Z  r, T) both as a trans- 
formation group and as a subgroup. 

Proof. Note that T acts on Z r as a group of  automorphisms. By com- 
pactness, we can assume that a generator q / i s  refined by {xUIx ~ X}, where 
U is a neighborhood of  the identity of  X. Since X is zero-dimensional, U 
contains some closed-open normal subgroup N. Then for some finite F c X, 
the finite closed-open partition 3e" = {xNlx  E F} is a generator. The set Z in 
Theorem 4.2 can be identified with the finite group )f/N, and 

Zo = {nln = (n,) ~(X /N)  r and n ((x. ,N) - t - l )  = n (x., Nt-~)  # ~}. 

Consider the inverse ~b -1 of  the homeomorphism ~b: Z o ~ X .  If  x = 
n x., Nt -1 ,  y = n Xm, Nt-1 ,  then 

xy = (n Xn, N t -  1) (n Xm, N t -  1) = n (Xnt Xm,)Nt-1, 

since xt ~ x .  N and yt ~ x,. N implies that (xy)t ~ x., x.~ N. Then 
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~b-'(x). ~b- '(y) = ( x , N  I t ~ T)" (xmtN[ t e T) = (x,, XmN [ t e T) = ~-1  (Xy), 

and ~b-1 is a group homomorphism. The result follows. 
Again, Theorem 4.4 is due to Gottschalk (unpublished). 
The restriction that T be discrete is not severe. Recalling that (X, T) 

effective means t = e if t =  idx, it is known that if (X, T) is expansive 
effective, X is compact Hausdorff, and T is locally compact with equivalent 
left and right uniformities (in particular, T can be locally compact abelian), 
then T is discrete. A more general statement involving the period of a trans- 
formation group asserts that the non-trivial action of T on X is given by a 
discrete quotient group of T. 

We also note that all the results, except Corollary 2.8, hold when X is 
compact uniformizable. 

Finally, there is a natural extension of Definition 2.4 in case that q~ is 
simply a continuous map. This is the notion of a one-sided generator. Namely, 
~' ~ d is a (one-sided) generator if for every sequence (Ai) of members of 
8/, A~  ~-i(AT) is at most one point. With obvious modifications, everything 
in Section 2 through Theorem 2.6 is still valid. 

The notion of a discrete semi-flow is known (see [3], for example). This 
corresponds to the notions in Section 1 when a continuous map acts on a 
space. Invariance in this case means that the image of a set is contained in 
the set. All the one-sided symbolic semi-flows have one-sided generators, 
and it is easy to generalize Theorem 2.7 to the corresponding statement with 
semi-flows and one-sided generators. Thus Corollaries 2.8 and 2.9 follow; 
moreover, it is easy to see that the invariant set Z actually satisfies <rZ = Z. 
Using the notion of positively expansive introduced in [3] for semi-flows, we 
may generalize Lemma 3.1 and Theorem 3.2 immediately to obtain the result 
that (X, q~) is positively expansive if and only if (X, ~) has a one-sided generator. 
Thus, Corollary 3.3 holds for one-sided symbolic flows and positively expansive 
semi-flows. 

We now note the surprising fact that the above one-sided notion, unlike 
many others in topological dynamics,, does not generalize the two-sided notion. 
Indeed, there does not exist any homeomorphism on an infinite metric space 
satisfying this property. For suppose X-is an infinite metric space and ~ is 
a one-sided generator. Then it easily follows that diam (~'o, ,) --> 0 as n -+ oo. 
But it is shown in [1, Theorem, p. 316] that if ¢/ 'e d ,  diam (~/'1, ,) is bounded 
away from '0. Since ~o is a homeomorphism, by letting ~ =  ~ ( 8 / ) =  
{q~(U)[U e 8/}, we obtain that diam (Y/o, ,-1) is bounded away from 0, a 
contradiction. So homeomorphisms on infinite compact metric spaces never 
have one-sided generators or, in other words, a homeomorphism never yields 
a positively expansive action on an infinite compact metric space. This result 
provides a simple alternate proof of [5, Theorem 10.30] (the hypothesis that 
X be self-dense in [5, Theorems 10.30 and 10.36] can be replaced by Xbeing 
infinite. Note that [3, Example, p. 319] shows that the above result fails in 
non-compact spaces, and it is easily seen that finite spaces can support 
positively expansive homeomorphisms. Moreover, the one-sided symbolic flows 
show that the result fails for continuous, open and closed maps. Since [1, 
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Theorem, p. 316] can be generalized to an assertion about refinements of  covers 
if X is simply compact Hausdorff, we can obtain the same result for infinite 
compact Hausdorff spaces (cf. [2, Theorem 1]). 

REFERENCES 

[1] R. L. ADLER, A. G. KONHEIM and M. H. McANDgEW, Topological entropy, Trans. 
Amer. Math. Soc. 114 (1965), 309-319. 

12l B. F. BRYANT, On expansive homeomorphisms, Pacific J. Math. 10 (1960), 1163-1167, 
[3] M. EISENBERG, Expansive transformation semigroups of endomorphisms, Fund. Math, 

59 (1966), 313-321. 
[4] W. H. GOTTSCHALK, Minimal sets: an introduction to topological dynamics, Bull. 

Amer. Math. Soc. 64 (1958), 336-351. 
[5] W. H. GOTTSCHALK and G. HEIgLUND, Topological Dynamics, Amer. Math. Soc. Colloq. 

Publ., Vol. 36, Providence, 1955. 
[6] P. R. HALMOS, Lectures on Ergodic Theory, Chelsea Publ. Co., New York, 1956. 
[7] H. B. KEYNES and J. B. ROBERTSON, On ergodicity and mixing in topological trans- 

formation groups, Duke Math. J. 35 (1968), 809-819. 
[8] W. PARRY, Generators and strong generators in ergodic theory, Bull. Amer. Math, 

Soc. 72 (1966), 294-296. 
191 V. A. ROKHLIN, New progress in the theory of transformations with invariant measure, 

Russian Math. Surveys 15 (1960), 1-22. 
[10l T. S. Wu, Expansive automorphisms in compact groups, Math. Scand. 18 (1966), 23-24. 

(Received 23 October 1967) 


