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Introduction 

The existence of an intimate relationship between the theory of ordinary 
differential equations ~ = f (t, x ,  u(t)) involving more or less arbitrary "control" 
functions u and the theory of contingent equations initiated by Marchaud [1, 2] 
and Zaremba [3] over thirty years ago is by now well recognized. An examination 
of this relationship and the further development of the Marchaud-Zaremba 
Theory has been the object of several studies in the recent past [4, 5, 6]. Implicit, 
and in some cases explicit, motivation for these studies resides in the funda- 
mental work of Filippov [7] and Roxin [8] on optimal control theory. 

The original object of the research which led to the preparation of this paper 
was to generalize the results of [9] on the minimum miss distance problem and 
of [10], [11] on the problem of approximation of optimal trajectories. The 
decision to enlarge the scope of this article beyond the treatment of the afore- 
mentioned generalizations was predicated upon the following factors: 

(i) the lack of a readily accessible, English language treatment of the 
Marchaud-Zaremba Theory; 

(ii) the author's opinion that the family of solutions of a contingent equation 
should be the principal object of study in the theory rather than the 
"funnel" ("zone of emission") emphasized by some writers including 
Marchaud and Zaremba or the "attainable set" emphasized in recent 
work. 

Thus the purposes of this paper are: (a) to present a generalization of the 
Marchaud-Zaremba Theory from the point of view enunciated in (ii) above; 
(b) to develop this generalized theory to an extent sufficient to permit establish- 
ment of generalized forms of the aforementioned results of [9, 10, 11]. The 
remainder of this introduction will be devoted to a discussion of the manner in 
which these purposes are accomplished in the sequel. 

* This research was carried out while the author was associated with the University 
of Alabama Research Institute. It was supported in part by the U.S. Army Missile Command 
under contract DA-AH01-67-C1630 and in part by a stipendiary grant from Brown 
Engineering Company. 
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In Section 1 fundamental properties are obtained for spaces of nonvoid 
compact subsets of several different Banach spaces. Two results of particular 
significance for the Marchaud-Zaremba Theory should be mentioned here. 
The first (Theorem 1.I) cites the existence of an isometry between the space F n 
(metrized by Hausdorff distance) of nonvoid, compact, convex subsets of 
Euclidean n-space E" and the space G", suitably metrized, of positively homo- 
geneous, subadditive functions on E n. This isometry permits replacing the study 
of functions with range F" by a study of functions with range in G ~ and, in 
particular, permits a new proof of Zaremba's approximation theorem [3, II.8.] 
which is analytic in character as opposed to the geometric character of Zaremba's 
proof. The second result to which we alluded above is actually the body of 
results comprehended by Theorems 1.4, 1.5, Lemmas 1.9, 1.11 and Corollary 1.3. 
This body of results deals with the properties of the space S~v~(1) (metrized by 
Hausdorff distance) of nonvoid compact subsets of the Banach space c~(l) 
(supremum norm) of continuous functions on I into E ~, where I is a compact 
interval of E 1. In Section 2 it is shown (Theorems 2.3 and 2.5) that for appropri- 
ate choice of I, the solution family of the generalized differential equation we 
treat is an element o f ~ n ( l ) .  All of the known results I concerning the "funnel" 
and the "attainable set" then follow as corollaries from the results of Section 1 
concerning the sets F(H) and G(t;H) respectively. 

In Section 2 the Cauchy problem for generalized differential equations is 
stated; the main existence theorems (Theorems 2.3, 2.5), as well as some elemen- 
tary approximation theorems, are proved. Our proof of Theorems 2.3 and 2.5 
follows the general lines laid down by Zaremba; however, there are important 
points of difference. Zaremba defines a "contingent derivative" of a vector- 
valued function and then requires that the contingent derivative of a continuous 
function satisfy certain conditions in order that the function be called a solution 
of the contingent equation. Prompted by the concerns of modern control theory, 
we consider as solutions of a generalized differential equation only absolutely 
continuous functions whose ordinary derivatives satisfy specified conditions. 
Hence, the core of our proof of Theorems 2.3 and 2.5 rests on the arguments 
used by Filippov in [7]. Wakewski [5] has written on the equivalence of con- 
tingent equations and generalized differential equations. 

In Section 3, the elementary approximation theorems of Section 2 are utilized 
to obtain properties of solution families of generalized differential equations. In 
particular, Theorems 3.3 and 3.4 relate to the important question of continuous 
dependence on initial data. In Section 4 further approximation theorems are 
proved, the results of this section providing the basis for the generalization 
of the approximation theory developed in [10, 11]. 

In Section 5 an optimization theory is developed which is abstractly equiva- 
lent to that of [9]. This theory is based on the elementary proposition that a 
real-valued, lower semicontinuous function defined on a metric space attains a 
minimum on each compact subset of the space (cf. [13, p. 944]). The context 

1 I.e. all those results involving only compactness. We leave out of account here 
generalizations of the classical theorems of Kneser and Hukuhara [12, pp. 15-18] which 
involve connectivity. 
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in which the theory is developed is that of a class @ of functions having range in 
~ " ( I ) .  The defining properties of d ~ (see (18)) are quite simple; the nonemptiness 
of ~ is guaranteed by the existence theory of Section 2. This optimization 
theory is thus free of any direct reference to generalized differential equations; 
this freedom permits a new perspective on the relationship between optimality 
and controllability. 

In Sections 6 and 7 approximation theories for optimization are established, 
that of Section 6 being abstractly equivalent to that stated in [10, Theorem 5] 
and that of Section 7 being abstractly equivalent to that stated in [11, Theorems 
2, 3]. These developments being carried out in the context described above for 
Section 5, again there is freedom from direct reference to generalized differential 
equations. In Section 8, the results of Sections 5, 6, and 7 are interpreted for 
generalized differential equations, Theorems 8.1, 8.2 and 8.3 being the explicit 
statements of the aforementioned extensions of the results of [9, 10, 11]. 

1. Metric Spaces of Compact Sets 

Let E" denote Euclidean n-space, the inner product of a, b ~ E" being 
designated by aob; the norm of a e E" is defined as usual by (aoa) 1/z and denoted 
by Ilall. With n fixed we shall use ]tl+ I[xll as a norm for (t, x) • E  1 xE"  and 
designate this norm by II(t, x)I/. Given a compact interval I c E l, we shall 
denote by c~"(1) the Banach space of all continuous functions q~: I - +  E" normed 
by 

(~> = max { Ilk(t)It: t • I}. 

In this paper we shall be primarily concerned with four spaces, denoted by 
f~", ~"(I) ,  3f~"(I) and F". The first three are the spaces of nonvoid compact 
subsets of E", I x E" and W"(I), respectively, whereas F n is the space of nonvoid, 
compact, convex subsets of E". Each of these spaces may be metrized by the 
Hausdorff distance, the notation for which is introduced next. 

For A, B e f~" the Hausdorff distance is denoted by p(A, B), where 

p(A, B) = max {#(A, B), #(B, A)}, 

#(A, B) = max {~(a, B): a • A}, 

~(a, B) = min {llx-all:  x ~B}. 

We assume for r'" the metric of f~". 
For A, B e J¢'"(I) the Hausdorff distance is denoted by e(A, B), where 

e(A, B) = max {0(A, B), 

0(A, B) = max {fl(a, B): 

fi(a, B) = min { ( x . a ) :  

For A, B ~ W"(1) the Hausdorff distance 

v(A, B) = max {o(A, B), 

o(A, B) = max {w((t, x), 

o4(t, x), 

(s(B, A)), 
aeA},  

x ~B}. 

is denoted by v(A, B), where 

~(B, A)), 
B): (t, x) • A}, 

B) = min {H(t-z, x-~:)H: (r, ~:) •B).  
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The remainder of this section will be devoted to an examination of properties 
of these spaces which will be useful in the sequel. We shall investigate as well 
some properties of functions having domain and/or range in these spaces. Our 
first result is actually a step in the proof of the triangle law for the Hausdorff 
distance. 

LEMMA 1.1. For A, B, C ~f~", /~(A, B) =< /~(A, C)+#(C, B). Analogous 
results hold for F", ~F"(I) and ~" ( I ) .  

Proof. Let a, c denote points in A, C respectively; then ~(a, B) < I la-cl l+ 
~(c, B) for all c ~ C. Hence ~(a, B) _-< ~(a, C)+ ~(c, B) for some c • C and then 
/~(A, B) _-< #(A, C)+  ~(c, B) for some c • C. From this the assertion follows. 

LEMMA 1.2. For A, B • f~" define the gap, ~,(A, B), between A, B by 

~,(A, B) = min {lla-bll: a • A ;  b •B} ;  

then ),(', ") is a uniformly Lipschitz continuous function on f2"x f~". Again, 
analogous results hold for I'", tF"(I) and ~" ( I ) .  

Proof. Let A o, B o, A, B ~ £)" and let ao, bo, a, b be points of the respective sets 
which satisfy k[ao-boll = ~,(ao, Bo), [[a-bl[-- ~,(A, B). Let a* •A,  b* • B  be 
points nearest ao, bo respectively. Then 

y(A, B) = I[a-bll _-< Ila*-b*ll < Ila*-aol[+ IIb*-boll+ Ilao-boll, 

and this in turn implies 

y(A, B ) - y ( A  o, Bo) < o~(a o, A)+~(bo, B) < #(Ao, A)+~(Bo, B). 

From this estimate and symmetry there follows 

I~,(A, B)-y(Ao ,  Oo)l <= p(A, Ao)+p(B, Bo). 

Since ~(a, B) = 7({a}, B), the next result is an immediate consequence of 
Lemma 1.2. 

COROLLARY 1.1. The functions ~(', "), [3(., .), o~(., .) are uniformly 
Lipschitz continuous. 

From the proof of Lemma 1.2 it is evident that a general notion of semi- 
continuity is desirable for functions having domain and/or range in one of the 
Hausdorff metric spaces introduced earlier. Hence, let d4' 1, ~gt' z, ~ '3 ,  be 
generic symbols for any of these spaces with the corresponding Hausdorff 
distances denoted by/z~, tz2, P-3. Thus, for example, if all' x be taken as f2" then 
t2~ is identified with t~. 

Definition 1.1. A function H: J/¢~ × dg 2 ~ ~¢¢a is said to be upper semi- 
continuous at a point (ao, bo) • J/g1 × ~ 2  if and only if for ~ >0 there exists 
3 = 3(E, ao, bo)>0 such that #l(a, ao)<3 and #2(b, bo)<8 imply #a(H(a, b), 
H(ao, bo)) < E. 

Since each of E", I x  E" and c~"(I) is isometrically imbedded in f2", ~F"(I) 
and ,;/t°"(/) (we say that E" generates ~", etc.), the corresponding definition of 
upper semicontinuity, when any of Jg~, d¢'2 is replaced by its generating 
space, is obtained from Definition 1.1 by replacing the # in question by the 
metric of the corresponding generating space. The definition of lower semi- 
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continuity is dual to that of upper semicontinuity in the sense that #t(a, ao), 
#2(b, bo), #3(H(a, b), H(ao, bo) ) are replaced respectively by #l(ao, a), #2 (bo, b), 
#3(H(ao, bo), H(a, b)). It is easy to see that a function which is both upper and 
lower semicontinuous at a point is continuous at the point. 

Let us confine our attention briefly to the space F n. For A • F n we define 
the support function, g(A, .), of A by 

g(A, p) = max {po(r: (r • A}. 

The fundamental properties of  support functions of compact convex sets are 
detailed in [14, 15, 16]. In particular, for fixed A e F' ,  g(A, .) is positively 
homogeneous and subadditive on E ' - -hence  convex there--and by [15, 
Theorem 24] g(A, .) is thus continuous on E' .  Hence for A, B • F" we may 
define A(A, B) by 

A(A, B) = max {g(A, p ) - g ( B ,  p): Ilp[I = 1}, A n B '  # o 

A(A, B) = 0 , A C~B' = ~, 

where the prime denotes complement with respect to E ~ and o denotes the null 
set. We define A(A, B) by 

A(A, B) = max {A(A, B), A(a, a)}. 

The easy proof of the next result is omitted (cL [14, p. 35]). 

LEMMA 1.3. For A, B • F ~, #(A, B) = A(A, B) so that p(A, B) = A(A, B); 
moreover, 

A(A, B ) =  max {lg(A, p ) - g ( a ,  p)[: Ilpll = 1}. 

Somewhat more fundamental is the next lemma. 

LEMMA 1.4. I f  A • I TM has a nonvoid interior, then the interior of A has the 
representation 

int A = {y • En: yop<g(A,  p) for all p # 0}. 

Proof. From [16, Theorem 5.3] we have 

A = {y e E ~: y .p  < g(A, p) for all p :# 0}. 

Suppose that y e A satisfies y Opo = g(A,po) for some Po ~ 0; then (y +-0p0) °P0 > 
g(A, Po) for all 7/> 0 and y is thus a boundary point. On the other hand, i f y  is a 
boundary point of  A, there exists a • support hyperplane to A at y with normal 
Po ~ 0. This hyperplane has the expression {z: zopo = g(A, Po)}, so that one 
must have Y°Po --- g(A, Po). 

A result closely related to Lemma 1.4 is Fenchel's theorem: 

T H E O R E M  1.1. [16, pp. 62, 63] I f g  is apositively homogeneous, subadditive 
function on E ~ into E 1, then the set A(g), defined by 

A(g) = {z ~ E~: zop < g(p) for al lp  # 0}, 

is in F ~ and g is its support function. 
Now let us denote by G ~ the space of  all positively homogeneous, subadditive 

functions on E ~ into E 1 ; for gl, g2 e G n we define: 
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~7(gl, g2) = max  {gl(P)-g2(P): i[Pll = 1} if there exists Po ~ 0 such that  

gl(Po) > g2(Po), 

VT(ga, g2) = 0 i fg~(p)  __< g2(P) for  a l l p  ~ 0; 

V(gl,  g2) = max  (~7(g~, g2), ~7(g2, gO}. 

I t  is easy to see that  

~7(gl ,  g 2 )  = max {[gx(P)-g2(P)[: [[pll = 1} 

and that  V is a metric for  G". The  next result then follows f rom L e m m a  1.3, 
Theorem 1.1 and [16, Theorem 5.3]. 

T H E O R E M  1.2. If  A(g) is defined as in Theorem 1.1, then the mapping 
defined by g --+ A(g) is an isometry of G" onto F" with inverse given by A --~ g(A, • ). 
In fact we have for gl, g2 e G" 

Vg(gl, g2) = A(A(gl), A(g2)). 

Definition 1.2. A function g: I x  E" ~ G" is said to be upper  semicont inuous 
at  a point  (to, Xo) ~ I x E" if and only if for  E > 0 there exists ~ = 8(~, to, Xo) > 0 
such that  I / ( t - to ,  x - x o ) [ [ < 3  implies V(g(t, x), g(t o, xo))<~.  Lower  semi- 
continuity is defined dually. 

The  next result follows readily f rom Theorem 1.2 and L e m m a  1.3. 

C O R O L L A R Y  1.2. A function R: I x E " - - > r "  is continuous [upper semi- 
continuous], (lower semicontinuous) if and only if the function gR: 1 x E" -+ G" 
defined by gR(t, x) = g(R(t, x), ") is continuous [upper semicontinuous], (lower 
semicontinuous). 

Definition 1.3. For A e f2" the set {x e E": ~(x, A) < ~} is called the v-neighbor- 
hood of A and is denoted by A ~. Corresponding definitions for ~F"(I) and ~"(I) 
may be stated in a similar way. 

L E M M A  1.5. If  A ~ f2"[F", qP"(1)], then for each ~ > O, A ~ ~ f2"[F", 'F"(I)] .  
Proof. In every case closure and boundedness  follow f rom the continuity of  

0c or  co (cf. p r o o f  of  L e m m a  1.10). I f A  ~ I ~" the convexity o f A  ~ is proved,  for  
example,  in [16, Theorem 3.5]. 

L E M M A  1.6. If  R: I x E n ---> F n is upper semicontinuous and D c I × E" is 
compact, then 

sup {Ig(R(t, x), P)I: Ilpll = 1; (t, x) s D} < oo. 

Proof. Let E = 1; then there exists 3 = 3 (to, Xo)>0  such that  t l ( t - t o ,  
X-Xo) ] l<  3 implies ~,(R(t, x), R(t o, Xo))< 1 and the sets 

S(to, Xo) = {(t, x) e I x E": ] l ( t - to ,  x -Xo) I I  < 3(to, Xo)} 
k 

fo rm an open cover  o f  D f rom which one may  extract a finite subcover  U 
S( t ,  xi). Then (t, x) e D implies that  i= x 

k 
R(t, x)~ U (R(t', x')) ~, 

i = l  
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this union being compact. But then so is the convex hull of this union and, 
denoting by g* the support function of this hull, we find that for all (t, x) e D 

- g * ( - p )  < -g(R( t ,  x), - p )  < g(R(t, x), p) < g*(p). 

Since g* is continuous, we obtain 

sup{lg(R(t, x),p)l:  [[Pll = 1} < max {[g*(p)[: [IpH = 1}. 

Our next result was first proved by Zaremba [3, II.8]; the proof we shall give 
is motivated by a proof due to Hobson [17, pp. 151-152] of Baire's theorem on 
the monotone approximation to a semicontinuous function by continuous 
functions. Our proof also illustrates the usefulness of the support function and 
of Fenchel's theorem in dealing with functions having range in pn. An earlier 
illustration of this usefulness appears in the proof of [11, Theorem 1]. 

THEOREM 1.3. Let R: D--~ P" be upper semicontinuous, where D is the 
sphere {(t, x ) ~ E l x E " :  II(t-to, X-Xo)ll _-< r}; then there exists a sequence 
{Rm} of functions Rm : E 1 x E" ~ P~ possessing the following properties: 

(i) for each m, Rm is continuous on D; 
(ii) for each m and all (t, x) ~ D, A(Rm+ l(t, x), Rm(t, x)) = O; 
(iii) for each rn and all (t, x) ~ D, R(t, x) = int Rm(t, x); 
(iv) for each (t, x) ~ D, limm_~ooA(Rm(t, x), R(t, x)) = O. 

Proof. In the interest of brevity, in this proof we denote E 1 x E n by M and a 
generic point of M by a single symbol such as y. We may extend gg (vide 
Corollary 1.2) as an upper semicontinuous function to all of M by requiring 

gR(Y) = gR( r IlY--Y0 II- l (y_yo)),  [ ly-yo 1[ > r; 

a corresponding extension of R ensues by virtue of Theorem 1.1. Let K be a 
simplex in M containing D; by repeated barycentric subdivision one may obtain, 
corresponding to each value of m, a simplicial partition of K for which the 
fundamental subsimplices have diameter less than 2 -m. For each m, a point 
y s K has a unique representation of the form 

n + 2  
y = ~ ~m(y).y,, 

i = l  

where the Yl, i = 1, • • • ,  n+2 ,  are the vertices of the fundamental subsimplex 
n + 2  m tTm(y ) to which y belongs and where am(y) > 0, ~i= 1 ~/(Y) = I and the functions 

a m are continuous on K. By virtue of Lemma 1.6 we may define 

gm(y~, v) = max {sup {g(R(y), v)[y ~ ~m}[Crm ~O~m(Yi)}-b2 -m, 

where I[ v I[ = 1 and "~'m(Yi) is the (finite) family of fundamental subsimplices cr m 
of which y~ is a vertex. Then for a point y ~ K we may define 

n + 2  
gin(y, v) = £ ~m(y)gm(y~, v). 

i = 1  

Now we have g(y, v) < gm(y i, v) for each vertex Yi of gm(Y) SO that 



Hence, if we 

(c) 

If  we define 
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n + 2  n + 2  

(a) g(y, v) = ~ ~T(Y)g(Y, v)< ~ ~(y)gm(yl ,  v) = gin(y, V). 
i = 1  i = 1  

We may extend gin(y, .) to all of  E" by defining 

gin(y, p) = ]lpllg"(y, p/l[pl[), p ~ E"-{O}, 

g"(y,  O) = O, 

and then the fact that g"(y, .) ~ G" for each y ~ K follows from g(y, • ) E G" and 
the construction. The continuity of the function g,,: y - + g " ( y ,  .) is a conse- 
quence of the continuity of the functions ~7' together with the fact that 

max {gm(yi, p): Yi ~K;  [tP[I = 1}< ~ .  
That 
(b) g"(y,  p) > g,.+l(y, p) 

for all y ~ K, p ~ E" and all m is an easy consequence of the construction. 
By virtue of the upper semicontinuity of gg it follows that given -q ~ (0, 1) 

there exists 3 = 3(7/, Yo)c(0,  1) such that ] ly -yol l<3  implies V(gR(Y), 
gR(Yo)) < ~7/2. If  ~ is a point belonging to a fundamental subsimplex of order m 
which shares a vertex Yi with %(Yo), then 

[l~-Yo[[ --< ]l~-y~l[+ I l y ~ - y o l l < 2 - " + 2 - "  = 2 -(m-l). 

let/z = min {~, 8}, it follows from our construction that 

V(g,,(Yo), gR(Yo)) < n, m > 1 - (In/z/In 2). 

R,,(y) = {z ~ E": zop < g"(y, p) for a l lp  :~ 0}, 

then Theorem 1.1 implies that Rm(y) ~ F" and that gin(Y) is its support function. 
Now (i) follows from Corollary 1.2 and the continuity of g,,, whereas (ii) is 
implied by (b). Condition (iii) is a consequence of (a) and Lemma 1.4. Finally 
(iv) is implied by (c) and Theorem 1.2. 

The next lemma seems to be due to Wa/:ewski [5, Lemme !];  it.is a trivial 
consequence of Theorem 1.1 and [16, Theorem 5.3]. 

LEMMA 1.7. I f  A ~ F" and if x: [a, b] ~ E" is absolutely continuous and its 
derivative i¢ satisfies ~(~(t), A) = 0 almost everywhere on [a, b], then ~ ( (b -  a)-1 
(x (b ) -x (a) ) ,  A) = O. 

Our final result in connection with 17" is 

LEMMA 1.8. Let R: I x  E" ~ I'" be continuous and let R(t, x) have a nonvoid 
interior for  each (t, x) ~ I x  E"; then for  each (t o, Xo) ~ I x  E" there exists 8 -- 8(to, 
Xo) > 0 such that 

N{R(t ,  x): tl(t-to, X-Xo)ll < 3} ~ ~. 

Proof. Let ~ be an arbitrary point of the interior of  R(t o, Xo); we demonstrate 
the existence of a 3 for which ~ is in the given intersection. Suppose no such 3 
exists; then there exists a sequence {(t,,, x,,)} c I x E" such that (t,., x.,) ¢ (to, Xo), 
lim,._~o~ H(tm-t O, Xm--Xo)[I = 0, and ~(~, R(t,,, Xm))>0. Hence, by [16, Theorem 
5.3], there exists a sequence {v,.)cE", IIv,. 11 = 1, for which 
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~ov,,> g(R(t,,, xm), vm); 

let ~ be an accumulation point of {vm} and denote a subsequence converging to 
by the same indices. From the continuity of R together with Corollary 1.2 

there follows 
~o~ > g(R(to, Xo), ~); 

by virtue of Lemma 1.4 this contradicts the status of g as an interior point of 
R(to, Xo). 

We now turn our attention to the space Jt~"(I). For a nonvoid subset H of 
c~"(l) we denote by G(t; H) the set {qo(t): ~ E H}. 

Remark 1.1. It is elementary that if H c cK,(I), then H e ~ " ( I )  if and only 
if H is closed and conditionally compact. The Arzela-Ascoli theorem asserts 
that a set H c cK,(I) is conditionally compact if and only if it is both bounded 
and equicontinuous [18, pp. 166-167]. 

THEOREM 1.4. I f  H ~ ~ " ( I )  then G(t; H) E f~" for each t ~ L 
Proof. By Remark 1.1, together with [18, Theorems 3-15 IV, 3-8II], we know 

that for each t ~ I, G(t; H) is conditionally compact. There only remains to show 
that G(t; H) is closed and this is trivial if H is finite. For the infinite case, let 

be a point of the closure of G(t; H) and let {~m} c G(t; H) satisfy limm-.~m = 
~. Let {hm) c H satisfy h,,(t) = ~m; then there is a subsequence of {h,,} which 
converges to a limit h ~ H. Hence h(t) = ~ so that ~ ~ G(t; H). 

THEOREM 1.5. G(.; .) is continuous on I × ~ " ( I ) .  
Proof. We make the following assertions: (a) for each H e ~ " ( I ) ,  G(.; H) 

is continuous on I; (b) the family {G(t; .): t s I} is equicontinuous on ~,'~"(I). 
The theorem then follows from these assertions via the triangle law. We shall 
prove (a) here; (b) is an immediate consequence of Lemma 1.9 below. By the 
definition and continuity of~, there exists a ~ G(t; H) such that 

~(a, G(to; H)) = t~(G(t; H), G(to, H)); 

let b ~ G(to ; H) be a point nearest a. Now there exists ~ ~ H such that ~0(t) = a 
and evidently Ila-q~(to)ll > IIa-bll; but, given e>0, there exists 3 = 3(E)>0 
such that I t -  to l < 3 and q~ e H imply [lop(t)- ~o(to)II < ~. Hence, I t -  to[ < 8 
implies ts(G(t; H), G(to; H)) = [la-b I] < E, which yields upper semicontinuity. 
Lower semicontinuity follows by symmetry. 

LEMMA 1.9. I f  H a, H2 egF"(I),  then 

sup {t~(G(t; H2), G(t; H1)): t e l}  < 6(H2, H1). 

Proof. There exists qo ~//2 such that: 

t3(G(t;/-/2), G(t; H0)  = ~,(~o(t), G(t; H0)  
= min (ll~o(t)-~'ll: ~' ~ G(t; H1)} 

= min {l¥(t)-~b(t)][: ~ ~ nx} 

__< min {(~o-~b): ~b eHt}  

__</3(~, H 0  _-< 6(H~, H0.  
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Now let II : I -+ ~"  and define 

Sn = {(t, x) E I x E " :  c~(x, n(t)) = 0}; 
we have 

L E M M A  1.10. I f  [I is continuous, then S n e tF"(I). 
Proof. This is a direct consequence of  the compactness of  {0}, the continuity 

of  ~(-, II(-))  and the easily verified fact that  there exists a number  q > 0 such 
that  

~(x, I I ( t ) )+q  > [[xl[, (t, x) e l x g " .  

By virtue of  Theorem 1.5 and Lemma 1.10 we may define F: 5~"( I )  -+ W"(I)  
by 

F(H) = {(t, x) e I x  E": ~(x, G(t; H)) = 0}; 

it is easy to see that this is equivalent to 

F(H) : {(t, q~(t)): t e I;  ~ e H}. 
We prove 

L E M M A  1.11. I f  H1, HE e ~"(1) ,  then P(F(Hz), F(H1)) < O(Hz, H1). 
Proof. There exists (t, x) e F(H2) such that  

~7(F(Hz), F(HO) = w((t, x), F(HO) 

= min {l](t-~-, x-~:)l l :  (r, ~:) e F(H1) } 

_-< ~¢(x, G(t; HI)) <- p(G(t; Hz), a(t; H~)) 

and the assertion follows from this estimate and Lemma 1.9. An immediate 
consequence of  Lemma 1.11 is 

C O R O L L A R Y  1.3. F(- )  is uniformly Lipschitz continuous on ~ " ( I ) .  
Comment. It is easy to deduce that both v(F(Hz), F(HO) and max 

{p(G(t; 112), G(t; Hi)) :  t e I} are metrics for  Jt°"(I). However,  each is definitely 
a weaker metric than ~(H1, H 0 ,  as the following simple example in Jet~l(I) 
shows. Letting I = [ -  1, 1 ], define y:  I × I ---> I and x:  I x I --> I by 

y(t, 0) = sin (t+Orr/2), 

x( t ,  o) = o. 

If  we define H1, Hz e~(~l(i)  by 

H ,  = {y(.,  0): 0 e I}, 

Hz = {x(., 0): 0 e I}, 
it is easy to see that 

v(F(H2), F(H1)) = max {p(G(t; 112), G(t; H1)): t e I} = 0 

but  that a(H2, H I ) >  0. 
The following convergence principle will prove to be of  fundamental  im- 

portance in the sequel. 

T H E O R E M  1.6. Let the sequence {Hm} c ~ " ( I )  satisfy 6(Hm+ 1, H,,) = 0 
for all m and denote by H* the set (~ H,,; then H* e ~ " ( I )  and lim,,-.o~ 5(Hm, 
H*) = O. 
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Proof. By Cantor's theorem H* # ~ ; it is certainly closed and then, as a 
subset of the compact space H,., H* is compact. Hence H* e~'cg~"(I). There 
exists hm ~ Hm such that o(H,,, H*) =/3(hm, H*); let/3 be an accumulation point 
of {/3(hm, H*)} and denote by the same indices a subsequence of {h,.} for which 
lim,,_~ ~o/3(h,., H*) = #. If  h is an accumulation point of {hm}, then/3(h, H*) = 0; 
but then by continuity of/3 we have 

lim #(Hm, H*) = lim/3(hm, a * )  = ~ = O. 
m - , o o  m ~ o O  

We close this section with the statement of a well-known lemma of Filippov 
[7]. 

LEMMA 1.12. Let  f :  I x E m - - > E "  be continuous, let Q: I - -~f2  m be upper 

semicontinuous and define R: I ~ f2" by 

R(t)  = { f ( t ,  u): u ~ Q(t)}; 

i f  z: I - +  E" has Lebesgue measurable components and ~(z(t), R(t)) = 0 almost 
everywhere on I, then there exists u: I --~ E m having Lebesgue measurable com- 
ponents which satisfies ~(u(t), Q(t)) = 0 on I and z(t) = f ( t ,  u(t)) almost every- 
where on L 

2. Generalized Differential Equations: Existence Theory 

We start by formulating precisely the Cauchy problem for generalized 
differential equations. 

PROBLEM. Let D be an open subset of E 1 × E", (to, Xo) a fixed point in D 
and R: D--~ f2" a given function. We wish to determine conditions on R 
sufficient to ensure the existence of an open interval J c E 1 and an absolutely 
continuous function x: E ~ --~ E" satisfying: 

(i) t o ~ J and X(to) = x o; 
(ii) for each t E J, (t, x(t))  ~ D; 

(iii) £(t) s R(t, x(t)) almost everywhere in J. 

We denote this problem by 

(1) ~ e R(t,  x), X(to) = Xo; 

an absolutely continuous function x: E ~ ~ E" satisfying (i), (ii), (iii) will be called 
a solution of (1). The existence theory we develop for (1) is parallel to that de- 
veloped by Zaremba [3] for contingent equations; even our proofs are modelled 
largely on those given by Zaremba. 

THEOREM 2.1. Let  R: D -+ P n be continuous and satisfy int R(t, x) # o on 
D; then fo r  each (t o, x o) ~ D a solution of(1) exists. 

Proof. Since D is open there exists 8 = 8(to, Xo)> 0 such that S(to, Xo) - 
{t, x): II(t-to, X-Xo)]l _-< 3} c D and, by taking 8 sufficiently small we may 
have, by virtue of Lemma 1.8, ~ {R(t, x): (t, x) E S(to, Xo) } -~ ~. Let ~ be an 
arbitrary element of this intersection. We define x: E ~ -+E" by x(t)  = Xo+ 
( t - to)~ and let 
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M = max {,~(t, x): (t, x) ~ S(to, Xo)), 
where 

a(t, x) = max {llqll: q eR(t ,  x)}. 

The continuity of  a on D follows readily from that of R, so that M is well- 
defined. Let ~ = 8(M+ 1)- 1 ; then for I t -  to] < ~ we have H ( t -  to, x ( t ) -  xo) ll 
< 3, so that (t, x ( t ) )e  S(to, Xo). Moreover, on this same interval 2 ( t ) =  

e R(t, x(t)). Certainly X(to) = Xo and this completes the proof. 

COROLLARY 2.1. Under the hypotheses of Theorem 2.1 every solution of 
(1) may be continued over the interval [t o - e ,  t o + ~]. 

The proof  is like that for ordinary differential equations. 

COROLLARY 2.2. Let Q: D -+ P" satisfy the hypotheses of Theorem 2.1 
as well as the condition A(Q(t, x), R(t, x)) = 0 on S(t o, Xo); then every solution of 

(2) 2 • Q(t, x), X(to) = Xo 

may be continued over the interval [ t o - ~  , to +~], where ~ is that quantity 
determined relative to R in Theorem 2.1. 

Proof: Obviously every solution of (2) is a solution of (1) and then the asser- 
tion follows from Corollary 2.1. 

Now let I be a common interval of existence for the solutions of (1) and 
denote by /7~(to, Xo) the family of  restrictions to I of  all solutions of (1); 
evidently Ht(to, Xo) c ~"(I) .  

T H E O R E M  2.2. Let R: D ~ F" satisfy the hypotheses of Theorem 2.1 and let 
I = [ to -~ ,  to+cq, where ~ is determined as in the proof of Theorem 2.1; then 
Hr(t0, Xo) • ~ " ( I ) .  

Proof. The case in which H(to, Xo) is finite being trivial, we consider 
H(to, Xo) to be infinite. From x(t) = xo+f~o2(r)dr we have readily [[X(tz)- 
x(tl)ll < M l t z - t l ]  for tl, tz • I; thus Rr(to, xo) is conditionally compact by 
Ascoli's theorem. Let {x"} c H~(to, Xo) be a sequence converging to a point 
in the closure of Bt(to, Xo); there follows easily [Iq~(t2)-~o(tl)j] < M[t2- t l [  for 
t l ,  t 2 • I, SO that ~o is in fact absolutely continuous and ~0(to) = Xo. Now let 
R" denote the function whose value on D is given by (R(t, x))"; by Lemma 
1.5 R"(t, x) • P" and it is easy to see that R" is continuous. Since 2"(t) • R(t, xm(t)) 
almost everywhere on I, equicontinuity implies that for sufficiently small 

= a(~) > O, 
£"(t) • Rq/2(t *, x"(t*)) 

for almost all t • [ t * -~ ,  t *+  ~]. If t* is a point at which ~ exists, then for all 
large m, 

JOin(t) • gn(t  *, ~o(t*)) 

almost everywhere on [ t * -~ ,  t *+  3]. Hence it follows from Lemma 1.7 that 

(t-- t*)- 1 [xm(t)--x~(t*)] • R~(t *, cp(t*)) 

for all I t - t* [  < & But then by the compactness of R~(t *, ~o(t*)) we find that 

( t -  t*)- 1 [~(t) - ~(t*)] = lim ( t -  t*)- 1 [x~(t)-  xm(t*)] • R"(t*, ~o(t*)), I t -  t*l _-< 8. 
m---~ oo 
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By the same token ~(~(t*), R"(t *, ~(t*))) = 0, and if we let V ~ 0, the continuity 
of a yields 4(t*) E R(t*, ~o(t*)). Thus H # o  , Xo) is closed and then by Remark 1.1 
the assertion of the theorem follows. 

Comment. Of course the above proof  is almost precisely that used by Filippov 
[7, Theorem 1]; we have reproduced it here partly for completeness and partly 
for later reference. 

We are now in a position to prove our main existence theorem. 

T H E O R E M  2.3. Let  R: D--~ F" be upper semicontinuous; then for  each 
(to, Xo) ~ D there exists a compact interval I having to as midpoint for  which 
B~(to, Xo) ~ Ye~"(I). 

Proof. On a compact neighborhood of (to, Xo) contained in D one may 
approximate R by a sequence {R,~} having the properties ( i) , .  • . ,  (iv) of 
Theorem 1.3. In a perhaps smaller neighborhood of (to, Xo) there follows from 
Corollaries 2.1 and 2.2 the fact that there exists I having midpoint t o on which 
the sets H~'(to, Xo), corresponding to 

Y¢ e Rm(t , x), X(to) = Xo, m = 1, 2, 3, • • • , 

satisfy HT'(to, Xo) E J(f"(I). Since A(Rm+l(t , x), Rm(t, x)) = 0. for all m, there 
follows easily ~(H~+l(to, Xo) , --m H 1 (t o, Xo)) = 0 and now Theorem 1.6 applies to 
yield the following facts: 

H*(to, Xo) = N - "  H I (to, Xo) e 
and 

lim #(H~'(to, Xo), H*( t  o, Xo)) = O. 
m--* oo 

Let ~o E H*(to, Xo); then ~ e H~'(to, Xo) for all m. This is equivalent to ,(~(t),  
Rm(t, cp(t))) = 0 for all m and almost all t ~ L Hence the continuity o f ,  together 
with Theorem 1.3 (iv) permits the conclusion that W is a solution of (1). Thus 
H*(to,  Xo) c Hi(to, Xo) and, the reverse inclusion being obvious, the proof  is 
complete. 

In applications of  the theory of generalized differential equations, more 
interest attaches to the case of  nonlocal existence than to the purely local theory 
we have developed up to this point. The next theorem contains two conditions 
guaranteeing such nonlocal existence for the solutions of (1); the proof  is 
omitted since it is easy and readily accessible [8], [9]. 2 

T H E O R E M  2.4. I f  R: I x  E" --~ F n is upper semicontinuous, where I c E x is 
a compact interval and if  R satisfies either (i) or (ii) below then f o r  each 
(to, Xo) ~ I x  E n, hr1(to, Xo) ~ " ( I ) :  

(i) there exists P ~ f2" such that R(t, x) ~ P on I x  E"; 
(ii) max {g(R(t, x), x), g(R(t,  x), - x )}  < C(l[x[12+l) on I x E n  .for some 

C>0.  

With R satisfying the conditions of Theorem 2.4 we may extend the Cauchy 

2 For this proof, reference must also be made to Bebernes, et al, J. Differential Equations 
2 (1966), 102-106. 
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problem stated at the beginning of this section in the following way. We replace 
conditions (i), (ii) by the following ones: 

(i') (to, Go) ~ I x  ~" and X(to) + Go; 
(ii') for each t ~ I, (t, x(t)) ~ I × E n. 

We denote this problem by 

(3) 5c ~ R(t, x), X(to) ~ Go, 

and we denote the family of all solutions of (3) by Hi(to, Go). 

THEOREM 2.5. I f  R: I × E n - +  F ~ is upper semicontinuous and satisfies 
either (i) or (ii) of  Theorem 2.4 then for  each (to, Go) ~ I x  f2", Hi(to, Go) ~ Wn(I ) .  

Proof. Let ~ be a point in the closure of H,(to, Go)--that /~1(to, Go) is 
nonempty is a consequence of Theorem 2.3--and let {x m} c Hr(to ' Go ) be a 
sequence converging to % Letting :? be an accumulation point of {xm(to)}, we 
denote by the same indices a subsequence of {x m} for which {xm(to)} converges 
to ~; evidently g + G O and ~o(to)=g. The argument that ~o satisfies (1) with x o 
replaced by ~ is a repetition with minor changes of that of Theorem 2.2 as is the 
demonstration that H,(to, Go) is conditionally compact. The assertion of the 
theorem then follows from Remark 1.1. 

In the sequel we shall be concerned exclusively with questions associated 
with nonlocal existence; since in this case the interval I is stipulated a priori we 
shall henceforth omit this symbol as a subscript in Hx(to, Go). Strictly speaking, 
when G o -- {Xo} we should write H(to, {Xo}) but for convenience we choose to 
retain the earlier notation H(t o, Xo). In view of the fact that H(to, Go) = [J 

xoEGo 
H(to, Xo) the choice is justified. 

As is the case with ordinary differential equations, approximation theorems 
are of fundamental importance in the theory of generalized differential equations. 
In the remainder of this section we shall devote our efforts to proving several 
such theorems. 

THEOREM 2.6. Let  R: I x  E ~ -* F n satisfy the conditions of  Theorem 2.5; 
then for  each (to, Go) ~ I x  f2 ~, the function ~7 -~ H(to, G~o) is continuous at ~7 = O. 

Proof. Evidently 9(R(t o, Go), H(to, G[)) = 0 for all 7/>0; hence we need 
prove only that lim~+ o 5(H(t o, G~), H(t  o, Go) ) = 0. Now there exists 
y~ + H(to, G[) such that 

6(R(to, as),  H(to, Go)) = fi(y', H(to, Go))=-fiL 

Let {~/,,} be a positive null sequence; then {fl+"} has an accumulation point/3 as 
does the sequence {y"m}--call it ~7--and then by the continuity of fl(-, -) we 
find that /3 = fl(~, H(t o, Go)). Since ~(H(to, G~ ~+'), H(to, G~')) = 0 for all m 
we have from Theorem 1.6 that y + H*(t  o, Go), and then an argument like that 
for Theorem 2.3 permits the conclusion that/3(y,/7(to, Go)) = 0 so that/3 = 0, 
whence follows the assertion of the theorem. 

Let us consider now the autonomous equation 

(4) :c ~ S(x), X(to) ~ Go ; 

for such equations we may state the following lemma whose proof is trivial. 
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LEMMA 2.1. Let  S: E" ~ F ~ be upper semicontinuous and have the property 
that all its solutions are continuable to El;  then y is a solution of (4)/f and only if  
the function z defined by z(t) = y(t + to) is a solution of (4) with to replaced by O. 

COROLLARY 2.3. I f  N • f~" and if S satisfies the hypotheses of Theorem 2.5, 
then for  (4) the family  {H(., G): #(G, N) = 0} is equicontinuous on 1. 

Proof. If  Yo • H(~, G) then by Lemma 2.1 there exists z • H(0, G) for which 
yo(to) = z(t o-~-); by the same token the function Yl defined by yl( t )  = z ( t - t o ) "  
is in H(to, G). Now for any G satisfying p(G, N) = 0 a solution z e H(0, G) is 
lipschitzian with a Lipschitz constant K that depends only on N; hence 
< Y o - Y l )  < g[~ - to l .  Hence 6(H(r, G), H(to, G)) < Kt~'-t0[; the assertion 
of the corollary follows by symmetry. 

Corollary 2.3 may be improved considerably; in fact we will prove 

THEOREM 2.7. I f  R: I x  E" ~ ~n satisfies the hypotheses of Theorem 2.5, 
then for  each N • f2" the family  {H(., G): is(G, N) = 0) is equicontinuous on I. 

Proof. We may extend gR as an upper semicontinuous function to all o f E  1 × 
E" by defining, when I = [a, b], 

gR(t, x) = gR(a, x), t < a, 

gR(t, x) = gR(b, x), t > b; 

a corresponding extension of R ensues by virtue of Theorem 1.1. It then follows 
that whichever of the conditions (i), (ii) of Theorem 2.5 is satisfied by the given R 
is also satisfied by the extended R. Mapping E 1 xE"  onto E "+1 by 

(t, x) -+ y = (yO, yX, . . . , y , ) r_ (yO,  yl)r,  

where the superscript r denotes the transpose, we define R * : E " + ' - +  F" by 
R*(y) = R(t, x); then we may define R * : E  "+1 -+ F "+1 by 

R'(y)  = { ( •E"+~:  ~o = 1; ( '  •R*(y)}. 

Further we define G~ • ~2" + 1 by 

G~ = {{: eE"+ l :  ~o = 0; ~:' eGo}. 

It is easy to verify that R'  is upper semicontinuous so that the solutions of 

(5) )~ = R'(y),  Y(to) • 6'o, 

exist locally and every solution of (5) satisfies 

(6) y(t) = ( t -  to, x(t)) r, 

where x is a solution of (3). Conversely, if x is a solution of (3), then the function 
y defined by (6) is a solution of (5). The continuability to all of E '  of the solutions 
of (5) is thus the consequence of the continuability of the solutions of (3). If 
we let ](to, G'o) denote the family of solutions, restricted t o / ,  of (5), a straight- 
forward computation yields both #(G', G0) = t~(G, Go) and 

62(](% G'o), J(to, G~))) = (~--to)2+ #2(R(z, Go), H(to, Go) ). 

With this result, the assertion of the theorem follows by virtue of Corollary 2.3 
and the autonomy of R'. 
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LEMMA 2.2. For ~ > 0 let R ~ denote the function defined in the proof  of  
Theorem 2.2. I f  R: I x  E n ~  F n is upper semicontinuous and satisfies (i) [(ii)] 
of  Theorem 2.4, then R ~ is upper semicontinuous f o r  each ~7 > 0 and satisfies 
(i) [(ii)] of  Theorem 2.4. 

Proof. If (i) is satisfied by R then it is satisfied by R" with P replaced by P". 
If  (ii) is satisfied by R then, since 

g(R"(t, x), p) = g(R(t,  x), P)+~IIPII, 

(ii) is satisfied by R" with C replaced by C+~7. 
In view of Lemma 2.2, if R: I x  E" ~ F" satisfies the conditions of Theorem 

2.5, then so does R" for all ~7 >0, and then we may denote by H,(to, Go) the 
family of restrictions to I of the solutions of 

(7) fc ~ R"(t, x), X(to) e Go, 

so that H~(to, Go) e ~ ( I ) .  Only minor modifications to the proof of Theorem 2.6 
permit the establishment of the following results. 

THEOREM 2.8. I f  R: I×E~- -~  F n satisfies the conditions of Theorem 2.5, 
then fo r  each (to, Go) c I x  f2 ~ the function ~ ~ H,(to,  Go) is continuous at ~ = O. 

Let us now define a function d :  I x  I x  f2 n ~ ~ by 

~¢(t, to, Go) = G(t; H(to, Go)); 

then ~¢(., to, Go) is the "attainability function" which has been of such great 
interest in recent work (e.g., [6]). The following theorems are direct consequences 
of Theorem 1.5 together with, respectively, Theorems 2.6, 2.7, 2.8. 

THEOREM 2.9. Let  R: I x  E" --~ F ~ satisfy the conditions o f  Theorem 2.5; 
then fo r  each (t o, Go) E I x  f2 ~ the fami ly  {~7 ~ ~¢ ( t, t o, G~): t ~ I} is equicontinuous 

a t ~  = O. 

THEOREM 2.10. I f  R: I x  E ~ ~ F n satisfies the hypotheses of  Theorem 2.5, 
then for  each N ~ f2 ~ the fami l y  {~¢(t, ., G): t ~ I; p(G, N) = 0} is equicontinuous 

on L 

THEOREM 2.11. I f  R: I x  E ~ --~ F" satisfies the hypotheses o f  Theorem 2.5, 
then fo r  each (t o, Go) ~ I x f2 ~ the fami ly  (7 --~ ~¢,(  t, t o, Go): t E I} is equicontinuous 
at ~ = O, where ~ ' , ( t ,  t o, Go)= G(t; Hn(t o, Go) ). 

Remark  2.1. Scrutinized in the light provided by the comment following 
Corollary 1.3, Theorems 2.9, 2.10, 2.11 provide cogent evidence for the value of 
making the solution family of (3) the fundamental object of analysis rather than, 
say, the attainability function. For whereas these theorems may be (and Theorem 
2.9 has been) proved independently, it is not apparent that Theorems 2.6, 2.7, 
2.8 may be obtained as corollaries to Theorems 2.9, 2.10, 2.11 respectively; 
indeed in view of the comment following Corollary 1.3, one is tempted to 
conjecture that such an implication is not valid. 

Remark  2.2. Defining a function ~ :  I x  f2 n ---~W~(I) by ~r(to, Go)=  
F(H(to, Go)), one obtains the "funnel" or "zone of emission" [I, 2]. Theorems 
similar to Theorems 2.9, 2.10, 2.11 may be stated for ~ ;  the statements and 
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proofs (which depend on Corollary 1.3) of these theorems are left to the reader. 
Being forewarned, the reader will observe that at several points in the re- 
mainder of this paper theorems which are stated for H have easy (unstated) 
corollaries concerning ~¢ and ~,~ which stem from Theorem 1.5 and 
Corollary 1.3. 

m 

3. Generalized Differential Equations: Properties of H(., .) 

One may observe that in the results of the preceding section no essential loss 
occurs through replacing the hypotheses o f  Theorem 2.4 by the following 
condition: 

(*) R: E 1 x E n - +  F" is upper semicontinuous, all solutions of (1) may be 
continued to E*, and for each compact I c E *  and each (t, G ) ~ I x  ~ ,  
H(t, G) is a bounded subset of ~ ( I ) .  

Hence the hypotheses of the remaining theorems of this paper will include (*) 
explicitly or implicitly and then the choice of the compact interval I is inde- 
pendent of R. 

The theorems of this section are concerned with the continuity of the func- 
tion H(. ,  • ); aside from their intrinsic interest these theorems will prove to be of 
fundamental importance in the theory developed in later sections. In Theorem 2.7 
we have already proved in effect the following theorem. 

THEOREM 3.1. I f  R: E 1 x E ~ --~ F ~ satisfies (*), then for  each N ~ ~)~ the 
fami ly  {l~(., G): ~(G, N) = 0} is equicontinuous on I. 
For H(. ,  .) we have 

THEOREM 3.2. / f  R: E*x En--~ P~ satisfies (*), then H( . ,  .) is upper 
semicontinuous on I × ~ ' .  

Proof. From Lemma 1.1 we obtain 

6(R(~', G), H(to, Go) ) < 5(H(~, G), H(to, G))+ 5(H(to, G), H(to, Go)), 

so that if ~(G, Go) < ~/, then 

5(H(~-, G), H(to, Go)) < 5(H(r, G), H(to, G))+ 5(H(to, G~o), H( t  o, Go)). 

The assertion then follows from this inequality together with Theorems 2.6 and 
3.1. 

The following well-known lemma provides the bond--together with Lemma 
1.12--between modern control theory and the theory of generalized differential 
equations. The easy proof is omitted. 

LEMMA 3.1. Let  ~" E 1 x E ~ -+ f~m be upper semicontinuous [continuous], let 
f :  E ~ x E ~ x E m ~ E ~ be continuous, and define R: E 1 x E ~ ~ f~n by 

R(t, x)  = { f ( t ,  x, ~0): ~o eqb(t, x)}. 

Then R is upper semicontinuous [continuous] on E 1 x EL  

Definition 3.1. If for R: E 1 x E ~ --> F ~ there exists a continuousf  : E* x E" x 
E m -+ E" and a (I): Ex x E" --~ f2 m which is upper semicontinuous [continuous] 
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(constant) which satisfy the remaining condition of Lemma 3.1 then R will 
be said to have an upper semicontinuous [continuous] (constant) representation. 

We shall denote by U(t o, Xo) the set of all functions u: E 1 --> E"  satisfying: 

(a) the components of u restricted to I are Lebesgue measurable and 
bounded; 

(b) for t E I, u(t) ~ ~(t,  x(t)), where x is a solution of 

(8) :c = f ( t ,  x, u(t)), X(to) = Xo, (t o, Xo) ~ I x E " .  

T H E O R E M  3.3. I f  R: E 1 ×E"-+  F" satisfies (*) and has a constant 
representation and if, for  each (t o, xo) ~ I x  E" and all u ~ U(to, xo), (8) has a 
unique solution, then H( . ,  .) is continuous on I x ~2". 

Proof. By virtue of Theorems 3.1, 3.2 and Lemma 1.1 it is sufficient to 
prove that for fixed to +/,  H(to, ") is lower semicontinuous on f2". In fact 
it is sufficient to prove that limm+~ 6(H(to, Go), H(to, G,,)) = 0 for every 
sequence {G,,} satisfying O<p(Gm, Go), limm-.® p(G", Go) = 0; it is this last 
assertion which we shall prove. To this end let {G"} be a sequence satisfying 
the last stated conditions; there exists y(G,,) + H(to, Go) such that 

6(H(to, Go), H(to, G")) = /3(y(G"), H(to, G,,)) =-/3(Gm). 

It is easy to find that the sequence {/3(G,,)} has an accumulation point/~. There 
is thus a subsequence {Gmk} for which {/3(G,,k)} converges to /3. Now {y(G,,~)} 
has an accumulation point y and a subsequence of  {G"~} may be selected for 
which the corresponding subsequence of {y(G,,~)} converges to 37. For brevity 
we denote our final selections simply by {G,,}, {/3m} and {Ym}, where /3,,-+/3 
and y" ~ 37 as m ~ oo. Since H(to, Go) is compact, 37 ~ H(to, Go) and by 
Lemma 1.12 and the hypotheses there exists fi ~ U(to, Xo) such that 37 is a 
solution of (8) with u, Xo replaced by ~, 37(to). Let z" be the solution of 

:c = f (t, x, ft(t)), X(to) = ~", 

where ~:,, ~ G" is a point nearest y"(to). Then z" ~ lq(to, G") so that /3" < 
( y m - Z " ) .  Since lim,,~+ IlY,.(to)-£"ll = 0 and lim"_.~ Ily,,(to)-37(to)ll = O, 
we have l i m " ~  ll~"-37(to)ll = 0. But then by uniqueness we must have 
l i m " ~  ( z " - ~ )  = 0; hence lim"_.o~ ( y , , - z " )  = 0. Consequently j3 = 0, from 
which the assertion of the theorem follows since {G,.} was arbitrary. 

Let us now introduce a strengthened form of  condition (*). 

(**) (a) R: E 1 × E" -+ I'" is continuous, all solutions of (1) are continuable to 
E 1 and, for each compact I c E  1 and each ( t ,G)+I×f2",  H(t,G) 
is a bounded subset; moreover, 

(b) there exists f />0 and a function p: E 1 x E ~ -+ E ~ which is continuous, 
non-negative and satisfies p(t, 0 ) =  0 on E ~ and is such that 
(i) a = + p(t, u), U(to) = Uo, ]Uo] < f7 has a unique solution for 
each to ~ E  1, and (ii) for all (t, x )  ~ E  1 xE" ,  i = 1, 2, 

A(R(t, x2) , R(t, xa) ) < p(t, IlXz-X 11l). 

Certainly (**) implies (*). We may now prove 
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THEOREM 3.4. I f  R: E 1 × E" ~ F" satisfies (**), then H( . ,  .) is continuous 
on I x  f2". 

Proof. We may consider the first seven sentences of the proof of Theorem 
3.3 to have been restated here. Again y ~ H(to, Go) and we denote by ~:,, a 
point of G,, nearest ym(to). Let qR (t, x, y) denote the unique point of R(t, x) 
nearest y ~E"; by virtue of [11, Lemma 3] qR(', ", ") is continuous on 
El x E " x E " .  It is readily verified that the function whose value is qg(t, x, 
p,.(t)) satisfies Carath6odory's conditions for the local existence of solutions 
of the differential equation 

(9) .~ = qR(t, X, )~(t)), X(to) = ~m" 

The continuability to E 1 of the solutions of (9) is a consequence of (**). Hence 
denoting by zm a solution of (9) we have zm E H(to, Gin) so that tim < (Y,,--Zm). 
Let ~ denote the function whose value is given by ~,.(t)= Iiy.,(t)-zm(t)l]. 
From its definition and the properties of y,,, z,, it follows readily that ~m is 
lipschitzian, hence absolutely continuous on L An easy estimate then shows 
that almost everywhere on I n [to, ~ )  

~m(t) < l[~gm(t)--qR(t, zm(t), ~m(t))I1 = ~O,,(t), R(t, z,,(t))), 

so that 

~( t )  < A(R(t, y,,(t)), R(t, zm(t)) ) < p(t, ~m(t)). 

Hence, setting "~m -- p(G,,, Go) and denoting by u(.; to, r/,,) the solution of 
a = p(t, u), U(to) = r/,,, we have from [19, Theorem 16.2] that ~m(t)< u(t; to, ~/m). 
Uniqueness then implies that lim,,_~oo ~m(t)= 0 uniformly on I n [to, oo). 
A similar argument holds to the left of t o E I and we conclude that /3 -- 0. 
Since the original {Gin} was arbitrary the assertion of the theorem follows. 

Remark 3.1. The proof of the following assertion is trivial. I f  R: E 1 x E" ---~ 
I TM has a constant representation, then there exists ~o = ~o(x, y) ~ ~,  where 
denotes the constant value of  O, such that 

A(R(t, x), R(t, y)) < ]If(t, x, cp ) - f  (t, y, ~o)[]. 

4. Generalized Differential Equations: Approximation Theory 

For the type of approximation with which we shall deal in this section 
we have already obtained a first result in the form of Theorem 2.8. If  the 
hypothesis of that theorem--which is, in effect, (*)--is replaced by (**), the 
behavior of r / ~  B~(to, Go) may be further restricted as shown in the next 
theorem. 

THEOREM 4.1. I f  R: E x xE"---~ F" satisfies (**) with p(t, u) =- Ku, then 
the fami ly  {~ ~ Hn(t, G): (t, G) E I x  ~2"} is equieontinuous at ~ = O. 

Proof. Evidently a(H(t o, Go), _Hn(t o, Go) ) = 0 for all V>0, we need to 
prove that lim,~ o 6(B,(to, Go), H(to, Go)) = 0 uniformly for (to, Go) e I x  ~". 
Now for each V > 0 there exists y" ~ H,(to, Go) such that 

6(H~(to, Go), H(to, Go)) = [3(y", B(to, Go) ) =_ fl". 
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Let qR ( ' ,  ", " ) b e  the function defined in the proof of Theorem 3.4. We 
denote by z ~ a solution of 

Yc = qR(t, x, ~"(t)), X(to) = y~(to); 

then z ~ E H(to, Go) and fin _-< (y~-zn>.  But we find that 

[[Y~(t)-z~(t)]l = flo [Y~(r)--qR(r' Z"(r), y"(r))] dr 

f' ar __< ~(~"(r), R(r, z"(r))) 
to 

f' ar < A(R~(r, y"(r)), R(r, z"(r))) 
to 

and from the hypotheses and the last inequality we find, for t e / ,  that 

I[y"(t)-z"(t)[I <= ~[[I[[+ f t  dr to KllY~(r)-z"(r)[I 

where [I/ll is the length of L Hence, by the Bellman-Gronwall inequality, we 
find that 

fin < <Y"-Zn> < 711111 exp (KIIIII), 

from which we conclude that lim,~ 0 /3"= 0 uniformly on I x f~". This 
completes the proof. 

In the same vein we may state the following result. 

T H E O R E M  4.2. I f  R: E 1 x E" -+ F" satisfies (*) and has a constant repre- 
sentation, and if there exists K >= O for  which (t, x~, ~o) e E1 x E" x E m, i = 1, 2, 
implies IIf(t, x l ,  qo)- f ( t ,  Xz, ~0)l[ < Kllx~-x2l l  for  the function f of  the 
representation, then the family  {~? -+ Rn(t, G): (t, G) e I x O n} is equicontinuous 
at ~ = 0 .  

Proof. As in the proof of  Theorem 4.1 we let Y"e H,(to, Go) satisfy 
~(H~(to, Go), H(to, Go)) = fl(y", H(to, Go)) = fl~. Now since ~ ( t )  e Rn(t, y"(t)) 
almost everywhere o n / ,  it follows that 

(10) f"(t) = qR(t, y"(t), ~"(t))+~?v(t) 

where qg( . , . ,  -) is the function defined in the proof  of  Theorem 3.4. As 
in the proof of that theorem we assert that qg(., y"(.), 2"(')) is measurable 
on I; hence the function v(-), whose value is defined by (10), is also measurable 
on I. Moreover, IIv(t)ll _-< 1. By Lemma 1.12 we conclude that there exists 
f~ e U(to, y"(to)) such that y" is the solution on I of  

Yc = f (t, x, f~(t)) + ~v(t), X(to) = y"(to). 

Now let z" be the solution of Yc = f (t, x, f4(t)), X(to) = y"(to); then z ~ e H(to, 
Go) and we find, with Hill denoting the length of I, that 

Ily"(t)- z"(t)II =< ? IIIll + flo IIf (7, y"(r), ~( r ) ) -  f (7, z~(r), ~(r))II dr ,  t e I. 

From the Lipschitz condition satisfied b y f  together with the Bellman-Gronwall 
inequality we find that 

~" <= <y"-z~> <= ~11III exp (KllEI), 

from which the assertion of the theorem follows. 
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Comment. A simpler proof,  displaying Theorem 4.2 as a corollary to 
Theorem 4.1, may be based on Remark  3.1. 

Theorems 2.8, 4.1 and 4.2 carry important  implications for the approxima- 
tion theory developed in [10, 11]. To  substantiate this assertion let us first 
introduce the concept of  a uniform approximation. 

Definition 4.1. A family {S~: 0 = 7/ __< f/} of  functions S~: E 1 x E"--~ I"" is 
said to be a uniform approximation to a function R: El xE"--~ F" if and 
only if the following conditions are satisfied: 

(i) if ~7 ~(0, ~/] then 7~(R(t, x), S~(t, x)) = 0 on E 1 xE~;  
(ii) R = S O and the family {7 ~ S,(t, x): (t, x) ~ E 1 x E") is equicontinuous 

at V = 0 .  

L E M M A  4.1. I f  {S~: 0 < ~7 =< Y/} is a uniform approximation to R: E 1 x E" 
--~ P" and if R satisfies either of the conditions (i), (ii) of Theorem 2.4, then 
there exists 7" ~ (0, ~1] such that every member of the family {S~: 0 < V < ~7"} 
satisfies the same condition. 

Proof. Given ~ > 0 there follows from Definition 4.1 (ii) the existence of  
an 7 '  = ~7"(~) e (0, ~/] such that  7X(S,(t, x), R(t, x)) < ~ for all n ~ [0, 7/*] 
and all (t, x ) ~ I x E " .  But this implies that 7~(S,(t, x), R'(t, x ) ) =  0. The 
assertion then follows from Lemma 2.2 and the fact, stemming from the last 
equation, that  

-g(R' ( t ,  x), - p )  < -g(S~(t,  x), - p )  < g(S~(t, x), p) < g(R'(t, x), p). 

The implications to which we referred previously are embodied in the 
following result. 

T H E O R E M  4.3. Let {S~: 0 < ~ < f/) be a uniform approximation to 
R: E 1 x E"--~ F"; then for the function ~7 ~ J~(t, G), where J~(to, Go) is the 
family of solutions restricted to I of  ~ ~ S,(t, x), X(to)e Go, the following 
properties obtain. 

(i) I f  for  each ~ ~ [0, ~l], S~ satisfies (*), then for each (t, G) ~ I x  ~2 ~ the 
function ~7 ~ J~(t, G) is continuous at ~7 = O. 

(ii) I f  for  each ~ E (0, ~], Sq satisfies (*) and if  R satisfies (**), then the 
family {~ -+ J~(t, G): (t, G) ~ I × f~") is equicontinuous at ~ = O. 

(iii) I f  for  each ~7 ~ (0, ~], Sq satisfies (*) and if  R satisfies the hypotheses 
of  Theorem 4.2, then the family {~ ~ J~(t, G): (t, G) ~ I × £2") is equicontinuous 
at ~ = 0 .  

Proof. Define, for  ~7 e (0, ?/], 

~*(~, t, x) = inf  {,  > 0: 6(S~(t, x), R'(t, x)) = 0}; 

then for  all sufficiently small r/> 0, ~*(r/, t, x) is independent  of  (t, x) ~ E ~ × E n 
by virtue o f  Definition 4.1 (ii) so that  we may denote this number  by ~*(-q). 
We then define ~(~7) as ~(~7) = max {~, ~*(r/)) and, again by Definition 4.1 (ii), 
it follows that  lim,_.o+ ~(-q) = 0. Moreover ,  ~(~)>0 for ~>0 .  Since ~(J,(to, 
Go), H,(,)(to, Go)) = 0, it follows from Lemma 1.I that  

#(J,(to, Go), H(to, Go)) < #(H,(~)(to, Go), H(to, Go)). 
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The assertions (i), (ii), (iii) o f  the theorem are then consequences of  this estimate 
together with, respectively, Theorems 2.8, 4.1, and 4.2 for we already have 
f rom Definition 4.1 (i) that 

a(H(t  o, Go), Y~(t o, Go) ) = 0 for 7/~ [0, ~/], (to, Go) ~ I x f2". 

5. Optimal Control and Domains of Controllability 

The basis for  the optimization theory developed in this section is the 
classical theorem which states that a real-valued, lower semicontinuous function 
defined on a metric space has a minimum on each compact  subset of  that  
space. The particular form of  this theorem which we shall need is the following. 

T H E O R E M  5.1. Let )t: ~"(I )  ~ E 1 be lower semicontinuous; then on Jz:" (I), 
min {A(7"):/3(7", H)  = 0} exists. 

Now let [I: E 1 ---> f2" be continuous and define 3n: I ×  ~"( I ) - - ->E 1 by 

(11) an(t, 7') = min {~(7"(r), II(r)): ~- E I[t]}, 

where I[t] denotes I n [t, oe). We shall prove a series of  lemmas. 

L E M M A  5.1. an(. ,  .) is continuous on I x  ~"(I) .  
Proof. From Corollary 1.1 it follows that for  all t ~ / ,  

[~(7"z(t), 171(t))-~(~ol(t), n(t))l 5 <7"2-7"1>. 

This result, together with well-known estimates, then yields 

[an(t2, 7"2) -an(q ,  7"01 

< (~o2-7 '1 )+  [min {~(7"l(r), II(~-)): ~- ~ lit2]} 

- m i n  {~(7'1(~-), II(~-)): ~- ~ I[tl]}[, 

from which the assertion follows by virtue of  the continuity of  ~(7"1('), fI(-)). 
We may associate with an a function t n: I x  ~" ( I )  ~ I defined by 

(12) tn(t, 7') = min {~- ~ I[t]: ~(7"(~-), fI(~-)) = an(t , 7')}. 

As the inverse image of  a closed set under a cont inuous map the set appearing 
in the r ight-hand member of  (12) is closed; it is obviously bounded so that 
t n is well defined by (12). 

L E M M A  5.2. tn( ' ,  ") is lower semicontinuous on I x  cg"(l). 
Proof. For fixed (t o, ~Oo) ~ I x c~"(l) let r be the lim inf of  tn(t, ~o) as 7" ~ 7"0, 

t ~ to; then there exists {(tin, %,)} c IX ~" ( I )  satisfying lim,,_,~ (tin, %,) = 
(to, q~o), (t", ~o,,) ~ (to, q~o) and lim,,_,~ tn(t,,, 7',.) = ~'- Since we have, for all 
(t, cp) e I x cE"(I), 

~(7"(tn(t, ~o)), II(tn(t, ~))) = 3n(t, q~), 

it follows from the foregoing that ~(7"o(r), I/(r)} = ~n(to, ~Oo) by virtue of  the 
continuity of  the functions involved. From this and (12) we conclude that 
~- > tn(t o, ~0o) since certainly r e/[ to] .  

By virtue of  Theorem 5.1 and Lemma 5.1 a function v n :  I x J ~ " ( 1 )  -+ E 1 
is well defined by 
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(13) vn(t, H) = min {Sn(t, ~): fl(% H) = 0}. 

Associated with vn(t,  H) is the following subset of H: 

Ln(t, H ) =  {~0 e H: 8n(t, ~o)= vn(t,  H)}, 

for which we have the following result. 

LEMMA 5.3. For each (t, H) ~ I x ~n( I ) ,  Ln(t, H) ~ ;g~n(I). 
Proof. By definition Ln(t, H) is nonvoid and the lemma is trivially true 

when Ln(t, H) has only finitely many elements. Suppose then that Ln(t, H) 
has infinitely many elements and let c? be a point of the closure of Ln(t, H) ; 
then ~ ~ H. Let {~m} c Ln(t, H) satisfy limm_~ ~ ~ m  = 9; then by the con- 
tinuity of ~n and the definition of Ln(t, H) we have ~n(t, (o) = vn(t, H) so that 
(~ ~ Ln(t, H). Thus as a closed subset of a compact set Ln(t, H) is compact. 

As a consequence of Theorem 5.1 and Lemmas 5.2 and 5.3 we may define 
a function Tn:  I x ~ n ( I )  --~ I by 

(14) Tn(t, H) = min {tn(t, ~): ~0 eLn(t, H)}. 

Associated with Tn(t, H) is the following subset of Ln(t, H): 

nL(t, H) = {~ ~ Ln(t, H): tn(t, ~) = Tn(t, H)); 

an obvious variation of the proof of Lemma 5.3, based on Lemma 5.2, permits 
the following assertion. 

LEMMA 5.4. For each (t, H) ~ I × ~ " ( I ) ,  nL(t, H) ~ ~'~(1). 
Having defined V n and T n, we next proceed to obtain useful characterizations 

of these functions alternative to (13) and (14). We may define a function 
A n : l x  ~ " ( I )  ~ E 1 by 

(15) An(t, H ) =  ~,(G(t; H), II(t)), 

where y(.,  .) is the gap function defined in Lemma 1.2. 

LEMMA 5.5. (i) Given HI, H2 ~ ~ " ( I ) ,  An(t, H I ) -  An(t,//2) < b(H2, H1) 
for all t ~ I. (ii) An( -, ") is continuous on I x ~ " ( I ) .  

Proof. (i) is a direct consequence of Lemma 1.9, (15) and the proof of 
Lemma 1.2. To show (ii), we observe that by virtue of Lemma 1.2 and Theorem 
1.5, An( ", H) is continuous on I for each H ~ ~n( I ) .  Since by (i) the family 
{ An(t, .): t E I} is equicontinuous, the assertion follows via the triangle law. 

THEOREM 5.2. For all (t, H ) ~  I x ~ " ( I ) ,  

(16) vn(t, H) = rain { An(A, H):  h s I[t]}; 

(17) Tn(t, H) = min {h el[t]:  An(A, H) = vn(t, H)}. 

Proof. That the right-hand sides of (16) and (17), to be denoted respectively 
as V*(t, H) and T*(t, H), are well defined is a consequence of Lemma 5.5. 
Now there exists tx ~ I[t] such that V*(t, H) = y(G(tl; H), II(tt) ) and then 
there exists ~o e H such that V*(t, H ) =  ~(~o(tl), II(tl)). Clearly ~(~0o(Z), 
rI(~-)) __> ~(~o(tl), II(tl)) for ~-s I[t] so that V*(t, H) = 8n(t , Cpo ) > vn(t, H). 
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On the other hand there exists qo t E H such that vn(t, H) = 3n(cpt ) and then 

there exists t o ~ l[t] such that 

3n(t, ~ol) = ~(gh(to), H(to)) > An(to, H) > V*(t, H). 

Hence vn(t,  H ) =  V*(t, H) and this proves (16). 
If one interprets t 1 above as T*(t, H), then by virtue of (16) it follows that 

T*(t, H) >= Tn(t, H) since ~o c Ln(t, H). On the other hand we may replace 
to above by Tn(to, H), with ~o 1 c Ln(t, H), and then 

An(Tn(t, H),  H)  = ~(cpl(Tn(t, H)), II(Tn(t, H))) = Vn(t, H), 

so that Tn(t, H) > T*(t, H). This proves (17). 

T H E O R E M  5.3. (i) Given H1, H2 E ~ " ( I ) ;  then vn(t,  H O -  vn(t,/-/2) < 
6(112, HO for  all t e l .  (ii) gn(  ., .) is continuous on IxJt°"(I) .  

Proof. (i) Well known estimates based on (16) together with Lemma 5.5 (i) 
suffice to establish this result. (ii) follows from (i) and (16) by means of an 
argument like that for Lemma 5.1. 

Making use of (17), the proof of  the following corollary of Theorem 5.3 
is like that of  Lemma 5.2. 

COROLLARY 5.1. TrI( ", ") is lower semicontinuous on I x ~ " ( I ) .  
Comment. In Corollary 5.1 lower semicontinuity is to be construed not 

in the sense of Definition 1.1 but in the usual sense. 
Henceforth we concern ourselves with the class g of  functions H: I x  ~" ---> 

A:"(I) having the following properties: 

(18a) G(to; H(to, Go)) = Go for all (to, Go)EI×~)";  

(18b) 6(R(t o, Go), H(t, G(t; H(t o, Go))) ) = 0 for all (t, t o, Go) s I x I x ~";  

(18c) 
:(G, Go) = 0 implies 8(H(to, G), H(to, Go)) = 0 for all (to, Go, G) ~ I × ~" × ~". 

To see that ~ is non-empty, observe that the existence of H: I x  ~" ~ " ( I )  
satisfying (18a) is guaranteed by Theorem 2.5, and that the H of that theorem 
satisfies (18b); (18c) is subject to trivial verification. Indeed, we have used 
(18c) repeatedly in previous sections. 

For fixed B e d ~, we define functions Vn: I x ~ "  ---~E 1 and Tn: I x ~ "  ---~I 
by means of 
(19) Vn(t, G)=  vn(t,  H(t, G)); 

(20) Tn(t, G) = TrI(t, H(t, G)). 

The next theorem is a direct consequence of (19), (20), Theorem 5.3 and its 
corollary. 

T H E O R E M  5.4. (i) I f  for N e f2" the family {H(-, G): :(G, N) = 0} is 
equicontinuous, then the family {Vn(', G): #(G, N ) =  0} is equicontinuous. 
(ii) I f  H(' ,  ") is continuous on Ixf2", then Vrl(', ") is continuous on Ixf2".  
(iii) I f  H(. ,  .) is upper semicontinuous on I x  E", then Vn(-, ") is lower semi- 
continuous on I x  E". (iv) I f  H(. ,  .) is continuous on I x  E", then Tn(-, ") is lower 
semicontinuous on I x  E ~. 
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It is easy to see that the restrictions to H(t, G) of  3 n and t n are generalizations 
of the concepts "miss distance" and "first time of closest approach", res- 
pectively, defined in [9]. With this interpretation, Vn(t, G) and Tn(t , G) are 
respectively the minimum miss distance and minimum time to attain minimum 
miss distance. 

Our next result is a trivial consequence of (19), (20) and Theorem 5.2. 

T H E O R E M  5.5. For all (t, G) e I x  f~", Vn(t , G) <= ~(G, II(t)) with equality 
holding if  and only if  Tn(t, G) = t. 

Put in other words, Theorem 5.5 states that the problem of determining 
e H(t, G) which minimizes 3n(t, ~0) is trivial if Tn(t, G) = t on I x  f~" since 

then any ~0 will do. I.e., in this case Ln(t, H(t, G)) = ~ff(t, G). This problem 
only becomes nontrivial when the set 

(21a) Coo(II) = {(t, G ) e l x f 2 " :  Tn(t , G)>t} 

is non-empty. 
The problem of determining conditions sufficient to ensure the non- 

emptiness of Coo(I/) is called the problem of weak controllability (cf.[20]). 
Shortly we shall confine our attention to the problem of weak controllability 
as restricted to the image of E" imbedded in f2" by the map x--> {x}. In this 
case we prefer to study the following set rather than Coo(H): 

(21b) Boo(n) = {(t, x) e l x E " :  Tn(t , x)>t}.  

Associated with Boo(I-l) are the sets 

B.(II) = {(t, x) e Boo(H): Vn(t , x) < 7}; 

(21c) B°(II) = ('] {B.(1-I): ~/>0}; 

Bo(n) = {(t, x) e Boo(n): Vn(t , x) = 0}. 

Remark 5.I. Sets C,(I/), C°(H), Co(H ) associated with Coo(i/) may be 
defined in a manner like that of  (21c). In the remaining theorems of this 
section, results which are valid when B is replaced by C and E by f~ are 
designated by an asterisk. In each such case, only minor modifications are 
required in the proofs. 

*LEMMA 5.6. (i) Boo(H) = U {B,(II): ~ > 0}; (ii) Bo(II ) = B°(I]). 
Proof. Only the proof that B°(II) c Bo(II) is not obvious. Let (t, x) e B°(II); 

then there exists {~0,,} c Ln(t, H(t, x)) satisfying 3n(t, %,)< m-*. Any accumu- 
lation point ~ of {~om} satisfies ~ e Ln(t, H(t, x)) by virtue of  Lemma 5.3. With 
this, continuity of  8n(t, ") yields 3n(t, ¢?) = 0, so that (t, x) e Bo(II). 

We next state useful representations of Boo(H), B,(II) and Bo(H ) which 
are equivalent to those of (21); we omit the easy proof. In the sequel, I(t] 
denotes I n (t, oo). 

*LEMMA 5.7. 

(a) Boo(H) = {(to, Xo) e I ×  E": 3t, e/(to] s An(t,, H(to, Xo)) < •(Xo, II(to))}; 

(a') Boo(I]) = {(to, xo) e I x E": 9~o e H(to, Xo) ~ 3n(to, q%) < ~(Xo, II(to))}; 

(b) B.(II) = {(to, Xo) e Boo(H): 9tl e/(to] ~ An(q, H(to, xo)) <V}; 
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(b') B~(FI) = {(to, Xo) e Boo(H): 3~0o e Kt(to, Xo) ~ 3n(to, ~o)<~7}; 

(c) Bo(H) = {(to, xo) e Boo(H): 3tl e/(to] ~ An(q, l~(to, Xo) ) = 0}; 

(c') Bo(H) = {(to, Xo) e Boo(H): 3~o o e H(to, Xo) ~ 8n(to, %) = 0}. 

In view of the representations (a') and (c') of Lemma 5.7 we are justified in 
referring to Boo(H), and Bo(H) as the "domain of weak controllability" and 
the "domain of  controllability", respectively. 

We are now in a position to prove a result which is essential to the approxi- 
m a t i o n  methods developed in [11] and in Section 7. 

*THEOREM 5.6. I f  H( ' ,  ") is continuous on I x  E", then B~(II), ~ E (0, c~], 
is relatively open in I x  E". 

Proof. The theorem is trivial if Boo(H) is empty. For the rest we have 

~,(x, n ( t ) ) -  vn(t, x) = [~,(x, rI(t)) -~,(Xo, n(to))] + [~,(Xo, n( to) ) -  Vn(to, Xo)] 
+ [Vn(to, Xo) - Vn(t, x)]. 

If (to, Xo) ~ Boo(H), then the second term on the right-hand side of this equation 
is a positive number; by virtue of the continuity of ~(., H(.)) and of Vn(', ") 
(Theorem 5.4 (ii)), the entire right-hand side is positive provided I t - to l  and 
llX-Xoll are sufficiently small. This proves that Boo(H) is relatively open in 
I x  E". If  (to, Xo)~ B~(H) for some ~/~ (0, oo), then the first part of the proof 
shows that (t, x ) c  Boo(H) for sufficiently small It-to],  IIX-Xoll. Taking these 
quantities still smaller if necessary yields (t, x) c B,(H) by virtue of (21) and 
the continuity of Vn(', "). 

T H E O R E M  5.7. I f  H( ' ,  ") is upper semicontinuous on I x  E", then Bo(H ) 
is relatively closed in I × E". 

Proof. This is trivial if Bo(II) is empty. Otherwise the assertion is a con- 
sequence of Theorem 5.4 (iii) and the fact that the set of zeros of a non-negative, 
lower semicontinuous function is closed (cf. [l l, Remark 5]). 

T H E O R E M  5.8. I f  for each G e f2", H( ' ,  G) is continuous on I, then B~(H) 
is bounded for  each ~ e [0, ~) .  

Proof. If the assertion is true for r/~ (0, ~) ,  it is true for ~7 = 0 since 
Bo(H ) c B~(H). Hence, let -q e (0, ~ )  be fixed and let 0-, ~:) ~ B,(H). Then 
there exist q~ e R(~-, ~) and t * e  I(~-] such that ~(~(t*), II(t*))<~7. Since H is 
continuous, there exists G* ~f2" such that (H(t))" c G* for all t e L  By 
hypothesis and by Theorem 1.5, G(" ; H ( ' ,  G*)) is continuous on I x  I so that 
there exists q~ E ~2" such that G(t; H(t o, G*)) ~ W for all (t, to) e I x  L Now 
by (18), ~: e G0-; H(t*, G*)) so that ~: e ~F. Since 0-, 0 was arbitrary, the 
assertion follows. 

Now let us define, for (t, x) ~ I × E", a set 

(25) K(t, x ) =  {q~ e H(t, x): (tn(t, cp), ~(tn(t , (p)))¢ Boo(H)); 

for this set we have the following theorem and corollary. 

T H E O R E M  5.9. (i) On I x  E", Ln(t, x) ~ K(t, x), where Lu(t , x) =- L n 
(t, IT(t, x)). (ii) I f  H( ' ,  ") is continuous on I x  E" and if for each (t, x) ~ B~o(II), 
tn(t, .) is continuous on K(t, x), then for all (t, x) ~ I × E ' ,  K(t, x) ~ ~ " ( I ) .  
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COROLLARY 5;2. Under the hypothesis of  Theorem 5.9 (ii), 

(26) Vn(t, x) = min{3n(t, ~0): /3(% K(t, x)) = 0}, (t, x) e l x E " .  

Proof. A simple proof by contradiction suffices to establish (i). For (ii), 
we observe first of all that by (i), K(t, x) is non-empty on I x E". Since H(-, .) 
is continuous, it follows from Theorem 5.6 that the complement of Boo(rI) is 
relatively closed in I x  E n. For (t, x) e B~(II) the assertion of (ii) then follows 
from this closure property together with (25) and the continuity of tn(t, "). 
For (t, x)¢  Bo~(II) the assertion of (ii) is trivially true. Corollary 5.2 is an 
obvious consequence of Theorem 5.9. 

6. Optimal Control: Approximation Theory. I 

In this section we assume II: I - +  f2" and H: I x  ~-2,-_~5/g'n(I) given, the 
former being continuous and the latter being an element of d ~. We also assume 
the existence of a one-parameter family {],: 0 < V < 1} of functions in d ~ 
having the property that aft = Jo. The sets Co~([/), etc., of Section 5 are those 
defined relative to the given H. For each V s [0, 1 ] we define 

V~(t. G) = Vrl(t. Y,(t. G)); 

T~i(t, G) = Tn(t, ],(t,  G)). 

Our first result is an immediate consequence of this definition together with 
Theorem 5.3 and its corollary. 

THEOREM 6.1. (i) / f  7/---> ],(t, G) is continuous at 71 = 0 for  f ixed  
(t, G) s I x f2", then V ---> V~(t, G) is continuous at ~/ = 0 and ~7 ---> T~a(t, G) is 
lower semicontinuous at ~7 = O. (ii) I f  the family  {~7 -+ J,(t, G): (t, G) e l x f 2  n} 
is equicontinuous at 71 = O, then the family  {~7 ---> V~(t, G): (t, G) e I x f2"} is 
equicontinuous at ~7 = O. 

Now for each ~ s [0, 1] let us define 

(27) ]n(t .  G ) =  {~o s Y,(t. G): 3n(q0 = V~a(t. G)}; 

by virtue of Lemma 5.3, ]n(t ,  G) s ~ " ( I )  for all ~ s [0, 1] and all (t, G) s i x  ~n. 
We shall prove 

COROLLARY 6.1. I f  for  f ixed  (t, G) s I x  f2", 71 ---> ].(t, G) is continuous 
at ~ = O, and if  for  sufficiently small ~ s (0, 1], #(g(t ,  G), Y,(t, G)) = O, then 
the mapping ~7 ---> ]~(t ,  G) is upper semicontinuous at ~7 = O. 

Proof. Now there exists y " e  ]n( t ,  G) such that, with Ln(t, G ) -  
Ln(t, H(t, G)), 

b(Y~(t, G), Ln(t, G)) = fl(y", Ln(t, G)) - /3" ,  

and it is easy to see that {/3": 0 < ~7 < l} is bounded. Let {V,,} be a positive 
null sequence and let/3 be an accumulation point of {/37"}; we denote by the 
same indices a subsequence of {/37"} converging to/3. Corresponding to {/37,.} 
there is a sequence {y'"} having an accumulation point y and again we denote 
by the same indices a subsequence of {y"'} converging to Y. Selecting a further 
subsequence of {/37,.} if necessary we find by continuity of/3(. ,  .) that/3(2 , 
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Ln(t, G)) =/~. But now ~ e H(t, G) and the continuity of ~7 -~ J~(t, G) together 
with (27), Theorem 6.1 (i) and the continuity of ~ri permits the conclusion that 
fl(~, Ln(t, G)) = 0 so that/~ = 0. This establishes the corollary. 

Before proceeding further along these lines we introduce the concept of a 
monotone one-parameter family. 

Definition 6.1. A one parameter family {M,: 0 < ,/ < 1} of functions 
M.:  I x ~ - + ~ " ( I )  is said to be monotone if and only if O(M,,(t, G), 
M,~(t, G)) = 0 on I x ~ "  for all ~1, 7/2 satisfying 0 < ~ < na < 1. 

The following lemma is a trivial consequence of the definitions. 

LEMMA 6.1. f f  {J,: 0 _-< V _-< 1) is a monotone family, then for  each 
(t, G) e I x ~  ~ the function ~ --> V~l(t, G) is nonincreasing on [0, :]. 

The hypothesis of monotonicity permits us to define an a)proximation 
alternative to (27). This assertion is made precise in Theorem 6.2 below. We 
need 

LEMMA 6.2. f f  {J,: 0 =< n < 1} is a monotone family, then the family  
{pn: 0 _-< V _-< 1} defined by 

(28) e". (t, G) = J.(t, 6): V:i(t, 6) <=  n(t, <= Vn(t, G)} 

is a monotone family. 
Proof. That pn(t,  G) ~ ~'ffn(I) is the consequence of an argument like that 

for Lemma 5.3. Monotonicity follows easily from Lemma 6.1. 
By means of a proof so like that of Corollary 6.1 that we omit it, one may 

establish 

THEOREM 6.2. I f { J , :  0 < ~ <= 1} is a monotone family  and if ~ -+ Y,(t, G) 
is continuous at ~ = O, then ~ -+ Pn~(t, G) is continuous at ~ = O. 

The next result follows easily from Lemma 6.2. 

LEMMA 6.3. I f  {J,: 0 =-< ~ < 1} is a monotone family, then for  each 
(t, G) e l x ~  n the function ~7 --->r~(t, G) defined by 

(29) ~-~(t, G) = min {tn(t, ~0): ~0 ~ Pn(t, G)} 

is noninereasing on [0, 1]. 

THEOREM 6.3. I f { J r :  0 <= ~ < 1} is a monotone family  and if, for  f i xed  
(t, G) ~ I x  ~n, ~ _~ Y,(t, G) is continuous at ~ = O, then the function ~ -+ -r71(t , G) 
defined by (29) is continuous at ~ = O. 

Proof. Lemma 6.3 implies that the function under discussion is upper 
semicontinuous at ,/ = 0. By means of an argument which is by now standard, 
based on Lemma 5.2 and Theorem 6.2, it follows that the function is lower 
semicontinuous at n = 0. 

Comment. The significance of Theorems 6.2 and 6.3 is apparent when one 
observes that Pno(t, G) = Hn(t, G) and T°(t, G) = Tn(t, G). Also, it is easily 
concluded from (28) and (29) that since 6(yn(t, G), pn(t,  G ) ) =  0 we have 
7~(t, G) <= TrT(t, G) for ~ ~ [0, 1]. 

Now let us define 
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(30) Q~(t, G) = {9 • Pn, (t, G): *~(t, G) < tn(t, 9) < Tn(t, G)}; 

we may state 

THEOREM 6.4. / f  {J,: 0 < 7] < 1} is a monotone family, then the family 
{Qn: 0 < .7 < 1} defined by (30) is a monotone family. If, in addition, .7 ~ J, 
(t, G) is continuous at .7 = 0 for f ixed (t, G) • I x f2", then .7 ~ Q~(t, G) is 
continuous at *7 = O. 

Proof. The first assertion is a consequence of (30) and Lemma 6.2 together 
with an argument like that suggested for Lemma 5.4. The second assertion 
follows from Theorems 6.2, 6.3 and an argument differing only in minor 
details from that of Corollary 6.1. 

Comment. The significance of Theorem 6.4 becomes apparent upon 
observing that Q~(t, G) = nL(t, H(t, G)). 

7. Optimal Control: Approximation Theory. II 

For the theory to be developed in this section we assume, as in the preceding 
section, that we are given II: Ixf2"  and H: I x ~  ~ P " ( I ) ,  both being 
continuous and the latter being an element of o ~. We also assume the existence 
of a monotone one-parameter family {J,: 0 < ~7 < l} of functions in ~ having 
the properties that H = Jo and .7 ~ J,(to, Xo) is continuous at ~7 = 0 for 
each (to, Xo) • I x  E". The set B®(H) with which we shall be concerned is that 
defined relative to .H; throughout this section we shall assume that Boo(II) is 
nonvoid. It will prove to be convenient--and no loss of generality--to assume 
that I = [0, 1]. 

By virtue of the assumptions made in the preceding paragraph, Theorem 
5.6 implies that Boo(H) is relatively open in I x  E"; hence, the complement of 
Bo0(II), which will be denoted by boo, is relatively closed in I x  E". The set 
b~o(l-l) is certainly nonvoid since {(1, x): x • E"} c boo(H). In view of these 
facts, the number 

(31) r*(to, Xo, ~o) = min {r • [to, 1]: (r, 9(r))e boo(H)} 

is well defined for each (to, X o ) e l x E "  and all 9 • ]1(to, Xo). Moreover, 
to < t*(to, Xo, 9), with equality holding if and only if (to, Xo) e boo(H). It is 
not difficult to establish that 9 ~ ~--*(to, Xo, 9) is lower semicontinuous on 
Jx(t o, Xo); however, we shall require the stronger condition: 

(7.0) for each (to, Xo) • I x E " ,  ":*(to, Xo, ") is continuous on Jl(t0, x0). 

Throughout the remainder of this section (7.0) will be a standard hypothesis. 
Let us now define, for each (to, x0) e l x E "  and all 9 eJi(to,  Xo), 

(32) /~(to, Xo, 9) = ct(9(r*(to, Xo, 9)), n(¢*(to, Xo, 9))); 

by virtue of (7.0), /z(to, xo, ") is continuous on ix(to, Xo) for each (to, Xo) e 
I x  E". Hence a number wn(to, Xo) is well defined by 

(33) Wn(to, Xo) = min 0z(to, Xo, 9): fl(9, ],(to, Xo)) = 0} 

for all (to, Xo) • I x E" and all .7 • [0, 1]. From (33) and the monotonicity of 
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{J~: 0 < ~ < 1} it follows readily that the function ~7 --> wn(to, Xo) is non- 
increasing on [0, 1]. An easy argument based on (33) and Corollary 5.2 supports 
the conclusion that Won(to, xo) = Vn(to, Xo). One needs only to observe that 
by virtue of (11), (12), (25), (31), and (32) one may write (26) as 

(34) Vn(t, x) = min {/~(t, x, ~): fl(% K(t, x)) = 0}; 

an assumption that the right-hand side of  (34) is greater than the right-hand 
side of  (33) then leads to a contradiction of  Theorem 5.8 (i). A standard 
argument from (33) utilizing the continuity of/z(to, x o, ") and of ~7 ~ J,(to, Xo) 
establishes the fact that ~7--> W~n(to, Xo) is lower semicontinuous at r/ = 0. 
Combined with the monotonicity cited in the .preceding paragraph, this last 
result implies that 7/---> wn(to, Xo) is continuous at T/ = 0. 

Developments thus far permit a nonvoid set K~n(to, xo) c J,(to, xo) to 
be defined by 

(35) Kff(to, Xo) = {q~ ~ J,(to, Xo): W~(to, Xo) < ~(to, Xo, q~) < Vn(to, Xo)}. 

A repetition, with minor variations, of  the arguments of the preceding section 
completes the proof of the following central result of  this section. 

T H E O R E M  7.1. The assumptions of the first paragraph of this section 
together with (7.0) imply: (i) the function ~-+ wn(to,  Xo) defined by (33) is 
nonincreasing on [0, 1] and continuous at ~ = O, where Won(to, Xo) = Vn(to, Xo); 
(ii) the family {K~n: 0 < r; < 1} defined by (35) is monotone and for  each 
(to, Xo)e I x  E" {he function ~ ~ Kn(to, Xo) is continuous at 77 = O, where 
Kon(to, Xo) = Ln(to, Xo). 

8. Generalized Differential Equations and Optimal Control 

In this section we examine the ramifications of the preceding three sections 
in the case in which the members of  do to be examined are solution families 
of (1) or (3) corresponding to particular choices of the right-hand members 
of  these equations. Throughout this section we assume given a continuous 
(target) function H: I - +  ~2" and a function R: E ~ x E"-+ P". 

T H E O R E M  8.1. I f  R: E l x E" --~ F" satisfies (*) and (f H: I x  f2" --~Jt°"(l) 
is the restriction to I of the solution family of (3), then (i) Bo(l-I ) is relatively 
closed in I x  E"; (ii) for  each ~ • [0, ~) ,  B~(1-I) is bounded; (iii) the conclusions 
of (i), (iii) of Theorem 5.4 hold. I f  R satisfies (**) or if R satisfies the hypotheses 
of Theorem 3.3, then in addition to (i), (ii), (iii) there follow: (iv) the conclusions 
of (ii), (iv) of Theorem 5.4 hold," (v) for each r/e (0, oo), Bq(II) is relatively open 
in l x E " ,  as is Boo(I/). 

Proof. (i) Theorems 3.2, 5.7; (ii) Theorems 3.1, 5.8; (iii) Theorems 3.1, 
3.2, 5.4; (iv) Theorems 3.3, 3.4, 5.4; (v) Theorems 3.3, 3.4, 5.6. 

Comment. Theorem 8.1, together with the remaining results of Section 5 
which obtain by virtue of  the fact that H • d °, is the promised generalization 
of all but the last section of  [9]. Indeed, the hypotheses of  that paper are 
precisely those of the present Theorem 3.3. A comparison of Theorem 8.1 
with [9, Theorem 4] makes evident the advantages accruing to the formulation 



Contributions to the Theory of Generalized Differential Equations 47 

of  optimal control theory given in Section 5. For  whereas in the latter theorem 
an hypothesis is required to the effect that Boo(H) is nonvoid, no such 
"controllability" hypothesis appears in Theorem 8.1. 

In order to investigate the implications of Sections 6, 7 for generalized 
differential equations we must introduce the following definition. 

Definition 8.1. A family {Sn: 0 _-< 7] < 1} of functions S.: E 1 ×E"--> F" is 
said to be a monotone approximation to a function R: E 1 x  En--> F n if and 
only if the following conditions are satisfied: 

(i) for 711, 7]2 satisfying 0 < 711 < 7]2 ----< I, A(S, ,( t ,  x), St t2( t  , x ) )  = 0 on 
E l x E "  and R = So; 

(ii) the family {7] ~ S,(t,  x): (t, x) ~ E 1 x E ~} is equicontinuous at V = 0. 

From this and Definition 4.1, it follows that a monotone approximation is a 
uniform approximation. Moreover, it is easy to see that the family {J~: 
0 < 7] < 1} of solution families corresponding to the equations of Theorem 
4.3 is monotone in the sense of Definition 6.1. 

The following two theorems are immediate consequences of Definition 8.1, 
Theorem 4.3 and the corresponding results of Section 6 and 7. 

T H E O R E M  8.2. I f  {S~: 0 < 7] < 1} is a monotone approximation to R: 
E 1 x E" -+ F ~ and if for  each ~7 e [0, 1], S~ satisfies (*), then for  each (t, G) E 
I x f2" the following conclusions are valid: (i) the function 7] ~ Pn(t, G) defined 
by (28) is continuous at 7] = O; (ii) the function 7] ~ Qn(t, G) defined by (30) 
is continuous at ~7 = O. 

T H E O R E M  8.3. I f  {S,: 0 < 7] < 1} is a monotone approximation to R: 
E l × E n -+ I TM, if S~ satisfies (*) for  7] ~ (0, I], if  R satisfies either (**) or the 
hypotheses of  Theorem 4.2 and if  condition (7.0) is satisfied, then for  each 
(t, x) E I × E" the function 7] ~ Kn(to,  Xo) is continuous at 7] = O. 

Comment. Theorems 8.2 and 8.3 are the promised generalizations of [I0, 
Theorem 5] and [11, Theorem 3], respectively. 

Remark 8.1. The following device is, in essence, what is used in [10] and 
[11], and may be extended to apply in our present, more general, context. 
With R assumed to be continuous on E 1 x E" an approximation {S~: 0 < 7] < 1} 
to R is determined on a compact set ~ c E l ×  E" in such a way that the 
following conditions are satisfied: 

(a) condition (i) of Definition 8.1 holds; 
(b) for each 7] e (0, I], S, is continuous on ~ ;  
(c) for each (t, x) ~ ~ ,  7] -+ S,(t ,  x) is continuous at 7] = 0. 

Conditions (a), (b), (c), together with Dini's theorem on monotone convergence, 
imply that 

(d) the family {v ~ S,(t ,  x): (t, x) e ~}  is equicontinuous at ~7 = 0. 
With ~ being either a cylinder (as in [10], [11]) or a sphere (as in Theorem 
1.3), the functions of  the family {S,: 0 < ~7 < 1} may be extended, by means 
of the device used in the proof of Theorem 1.3, to E 1 x E" in such a way that 
conditions (i) and (ii) of Definition 8.1 hold, and the extended S~ is continuous 
o n  E 1 x E "  for all ~7 ~ [0, 1]. 
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In connection with [11, Theorem 3] and Theorem 8.3 above it is of great 
importance to determine conditions under which the function ",*(to, Xo, ") 
defined by (31) satisfies (7.0). We state such a condition in Theorem 8.4 below; 
first we restrict the set Boo(H). Set ~ / =  B~(II) c~ b~(II), where the superior 
bar denotes closure, and let (Ao, ~:o) ~ ~ / .  We assume without loss of generality 
that I = [0, 1] and that 

(8.0) there exists ~b: En-+ (0, 1] of class C 1 and a neighborhood ~U of (Ao, (o) 
such that 

n J r  = {(t, x )  ~ ~ :  t = ~(x)}  
and 

{(t, x) ~ ~/ ' :  t < ¢(x)} c Boo(H). 

THEOREM 8.4. Let Boo(H) satisfy (8.0); given (to, Xo) ~ I x  E", if for all 
(t, x) E F(H(to, Xo)) and all ~ ~ R(t, x), 

(8 .1)  o < 4,x(x) o ~ =< 114,x(x)ll 11~11<1, 

where H is the restriction to I of the solution family of (1), then r*(to, Xo, .) is 
continuous on H(t o, Xo). 

Proof. Let ~o o ~ H(to, Xo) be fixed and set A o = ¢*(to, Xo, ~Oo) , ~:o = ~°o 
(~'*(to, Xo, ~0o)); then (A o, ~:o) ~ J / a n d  (8.0) applies. Define 0: [Ao, 1] -+ (0, 1] 
by O(t) = ~b(g%(t)); it follows readily that for h,  tz ~ [Ao, 1] 

(36) 0(t2)- O(q) = (,z ~bx(q~0(r) ) o ~o(r ) dr. 
I i  

From (36) and (8.1) follow the easy consequences 

[O(t2)-O(tO] < K[ t2 - t l l  for some K~ [0, I) and all tl, t2 ~ [ho, 1] 

and 
h o < O(t) < t for all t e [A o, 1]. 

Hence 0 is a contraction mapping on [Ao, 1] and from Banach's fixed-point 
theorem it follows that h o is the unique fixed point of 0 in [A0, 1]. Now let 
? be an arbitrary accumulation point of the sequence {r*(to, Xo, q~m)}, where 
limm-oo ~m = ~00" Then by continuity and the definition of r*, ÷ satisfies 
? = 0(-~), from which we conclude, by virtue of the fixed-point property and 
the definition of h o, that ~ = h o. 

Comment. It is noteworthy that (8.1) is an only slightly strengthened form 
of [11, (vii)]. 

9. Final Remarks 

Recently, Castaing [21] has formulated an existence theory for a class of 
generalized differential equations in which the "contingent" R: El  x E" -+  P" 
is required to satisfy conditions weaker than those assumed in the present 
article. Filippov [13] had already stated, without proof, results related to 
those of Castaing. The Castaing-Filippov theory bears a relationship to the 
existence theory expounded in Section 2 which is the analogue of the relation- 
ship, in ordinary differential equations, which the Carath6odory existence 
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theory bears to the Cauchy-Peano theory. Castaing emphasizes, as Filippov 
does not, the properties of the solution family, so that his main theorem 
[21, Theorem 2] is very close to being a generalization of the content of the 
present Theorems 2.3 and 3.2. One thus necessarily anticipates that the bulk 
of the theory developed in this article may be generalized by adopting the 
Castaing-Filippov hypotheses. 

A theory of generalized dynamical systems, initially formulated by Barbashin 
[22] and expanded by Roxin [23], has stemmed from an abstraction of the 
properties of the attainability function of a generalized differential equation 
(or contingent equation). With [23] as a starting point, Varaiya [24] (cf. [25]) 
has recently shown the value of examining the properties of the family of 
"motions" (Roxin [23] calls them "trajectories") corresponding to a given 
generalized dynamical system. In particular, Varaiya obtains a result [24, 
Theorem 3.1], similar to  the present Theorem 2.3, which he applies to an 
optimization problem in a manner analogous to that of  Section 5. In the light 
of these developments and of the theory expounded in this paper, one is led 
to conjecture that a fruitful theory of generalized dynamical systems-- 
alternative to the Barbashin-Roxin theory--may be based on the postulated 
existence of a mapping H: I x  f2 n - - -~n(1)  possessing properties such as (18) 
together with other suitable abstractions of the properties of solution families 
of generalized differential equations. 
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