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The concept of state is studied in a new set-theoretic formalism for systems 
theory. Starting with the notion of a time system as a set of ordered pairs of abstract 
time functions, the concepts of (i) non-anticipation and (ii) causality are introduced. 
It is proved that the class of causal systems (those possessing a set of states and func- 
tional state transitions) is precisely the class of non-anticipatory systems. It is shown 
that every causal system has a series decomposition consisting of a transition system 
followed by a static system. It is proved that a state set for a causal system is always 
constructible using a class of "natural" partitions of the system input set. This latter 
construction generalizes the result known for certain functional discrete systems to a 
much more general situation. 

1. I n t r o d u c t i o n .  Recent ly ,  t he re  have  been  signif icant  efforts  m a d e  to 
clarify the  c o n c e p t  o f  state in systems theory .  For  example ,  Zadeh  [ 1 ] has 
explicitly d iscussed this ques t ion  fo r  systems which  a re  non-probabi l i s t ic  
a n d  non-an t i c ipa to ry .  N e r o d e  [2]  has  g iven a cons t ruc t i on  in a u t o m a t a  
t h e o r y  which indicates  tha t  the  states o f  a sequent ia l  m a c h i n e  a re  essen- 
tially a set o f  "na tu ra l "  equivalences  classes o f  i npu t  sequences .  Ka lman  [3]  
m a d e  a s imilar  cons t ruc t i on  fo r  the  case o f  l inear  d iscre te- t ime systems a n d  
has shown  the re  a re  "na tu ra l "  equiva lence  classes o f  i n p u t  sequences  to 
serve as states in this case. I t  is i m p o r t a n t  in these lat ter  two cases tha t  a 
"sys tem" is taken  to be a cer ta in  k ind o f  m a p  o n  sequences .  

A p p a r e n t l y ,  to  def ine  the  c o n c e p t  o f  state fo r  systems in a m o r e  gene ra l  
s i tuat ion,  o n e  first has t o  a r r ive  at an  a p p r o p r i a t e l y  gene ra l  c o n c e p t  o f  
system. Mesarovi~ [4]  has deal t  with the  no t ion  o f  a (general)  sys tem as an  
n -a ry  relat ion.  I n  his d e v e l o p m e n t ,  the  state o f  a sys tem is ident i f ied  with 
the  " c o n n e c t i n g  set" which  arises in the  gene ra l  d e c o m p o s i t i o n  (reticula- 
t ion) o f  n -a ry  relat ions.  Th i s  c o n c e p t  wou ld  a p p e a r  to be u n r e l a t e d  to the  
o the r s  m e n t i o n e d ;  however ,  t he  c o n c e p t  o f  sys tem e m p l o y e d  is very  m u c h  
m o r e  gene ra l  t han  tha t  r e f e r r e d  to by the  o t h e r  invest igators .  

*The author gratefully acknowledges the contribution of M. D. Mesarovi~ to this paper. 
The research has been supported in part by the Office of Naval Research (Contract No. 
Nonr 1141(12)). 
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The  purpose of  this paper  is to consider again the concept o f  state and,  
in particular, to show the interrelation of  the several previously ment ioned 
points o f  view. To do this, we set up a more restrictive concept of  system 
than that in [4]; however, it is consistent with that  given and it includes the 
"systems" Of [2] and [3] as special cases. Our  formalism is similar to that 
proposed by Mesarovi~ [5]. Our  principal findings are: (i) a state set of  
a (time) system exists if and only if  the system is non-anticipatory; (ii) a 
state set is constructible f rom "natural" partitions of  the system input  set 
(even in the non-functional,  non-discrete-time case); (iii) every system 
with a state set may be decomposed into the series interconnection of  a 
transition system followed by a static system; and (iv) (which follows f rom 
(iii)) the set of  "state trajectories" associated with a state set for a system 
is in fact a "connecting set" for this basic decomposit ion of  the system. 

Our  set-theoretic notation is relatively s tandard and by and large con- 
sistent with [6, 7]. 

2. Non-Anticipatory Time Systems. We begin by int roducing a formal- 
ism for general time systems. The  formal concept o f  system employed 
(Definition 2.2 below) is MesaroviCs general  system specialized in two 
ways: (i) the system is taken to be a 2-ary rather  than an n-ary relation, and  
(ii) the two systems objects are taken to be sets of  (generalized) time 
functions rather  than arbitrary sets. The  concepts of  non-anticipation and 
initial states are int roduced in Definitions 2.4 and 2.8, respectively. The  
question of  the existence of  sets of  initial states for time systems is treated 
(Theorem 2.9) and shown to be inherently related to the proper ty  of  non- 
anticipation of  the system. 

Remark 2.1. In the following, all sets denoted by single capital letters 
are assumed to be nonempty.  A set G is said to be (strictly) R-simply ordered 
if the relation R C (G × G) satisfies: (i) --(tRt); (ii) tRt' & t'Rt" ,,# tRg'; and 
(iii) t ~ t' ,,~tRt' V t'Rt (t, t', t"z G). I f G  is R-simply ordered  and te  G, then 
the set U(t) = {t'[ tRt'} is the t-section of G. I f  tRt', then the set (t, t'] = 
(t" I tRt" & t"Rt'}-O {t'} is the (t, t')-interval of  G. Evidently, if tRt' then 
{(t, t'], U(t')} is a partit ion of  the set U(t). 

Definition 2.2. A time object is any set V C /'IT= {V I V: T---~ A} such that  
A and  T are sets and T = U(to) in some R-simply ordered  set G (to e G). I f  V 
is a time object and v e  V, then v is a time function. I f  v: T ~ A is a time 
function and te  T, then the restriction v/(to, t] = {(t', v(t'))[ t '~  (to, t] } is the 
t-initial segment of v. I f  t, t' ~ T and tRt', then the restriction v/(t, t'] is the 
(t, t')-segment of  v. A (2-ary) time system is any relation S C (A T × B T) such that 
A, B, and T are sets and T = U(to) in some R-simply ordered  set G. The  time 
objects ~ S  = {x[ (3y): xSy} and AS = {Yl (3x): xSy} are, respectively, the 
input set (or domain) and the output set (or range) of  S. A, B, and T are the 
input space, the output space, and the time set of  S, respectively. I f t e  T = U(to), 
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then the relation (t~) C_ (~S x ~S)  such that 

L x' , . ,  x/(to, t] = x'/(to, t] x to 

is t-equivalence on .~S. 

Remark 2.3. ( ~o) is an equivalence relation. I f  x ~ ~ S  and tE U(to), then 

xmod(~o )  i s thex-equ iva lencec lass in~Sunder(~o) .A lso ,  

is a partit ion of  NS. We define 

leU(lo) \ O / 

Definition 2.4. Hencefor th ,  let T = U(to) be a nonempty  subset o f  the 
R-simply ordered  set G (to e G). A time system S C (//r x B r) fsfunctional if 
and only if S: ~ S  ~ AS. I f  S is functional, then S is non-anticipatory if and  
only if for all x, x' ¢ .~S and all t E T, 

t x' .¢S(x)( t )  = S(x')(t). X?o 
I f S  is not functional,  then S is non-anticipatory if and only if  there exists a 
set F _ ~ S  ~s o f  (into) functional non-anticipatory systems such that 
S = U F = {(x,y)[ ( ] f ) : f e  F &y =f(x)}.  

Remark 2.5. Definition 2.4 is simply a formalization o f  the usual idea 
of  non-anticipation, i.e., the present  value o f  any ou tpu t  o f  the system is 
independent  o f  fu ture  values o f  the system input. 

T H E O R E M  2.6. A time system S is non-anticipatory if  and only if  S = U F~, 
where 

F* = {fl f :  ~S  "-* AS & f C S & f is non-anticipatory}. 

Proof. The  sufficiency is obvious. Let S be non-anticipatory. I fS  is func- 
tional, then F~' = {S} and hence S - U F~'. I f  S is not  functional,  then 
S = U F, where F C ~S  ~s contains only non-anticipatory elements. 
Clearly, F C F~. Also, U F~ C S. Hence 

S = U F C  U F ~ C S ,  

i.e., S = U FJ'. 
Remark 2.7. We next formalize the concept of  initial states for a time 

system. Intuitively, a set o f  initial states for a time system is an auxiliary set 
used so that the system may b e  described as a function. With such a 
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functional  representa t ion ,  the system becomes  "pred ic tab le"  if  ~the initial 
state is known. 

Defini t ion 2.8. A set Z is a set of  initial states for  the t ime system S C_ 
(~r X B T) if  and  only if there  exists a m a p  r: Z × .~S x T "-> B such that  (i) for  
all x e ~ S  and  all y e ~S ,  

xSy 4., (3z)(Vt): y(t) = r(z, x, t) (ze  Z; t e  T),  

and  (ii) for  all x, x '  e ~ S  and  all t e T, 

t 
x ~0 x '  -'~ (Vz): r(z, x, t) = r(z, x' ,  t) (z e Z). 

T H E O R E M  2.9. I f  S is a time system, then there exists a set of  initial states for  
S i f  and only i f  S is non-anticipatory. 

Proof I f  S C (A T × B r) is non-ant ic ipatory,  then  S = t3 F, where  F C 
~ S  ~s contains only non-ant ic ipatory  elements.  T h e n ,  for  the m a p  r: F X 
~ S  × T --* B such that  r(f, x, t) = f (x)( t )  we have 

and  

xSy 4.* ( t f ) :  y = f ( x )  0,~ (3f)(¥t): y(t) =f(x) ( t )  

0,~ (3f)(vt): y(t) = r(f,  x, t) 

t Xp 
x ~o ~ (vf):  f(x)(t)  =f (x ' ) ( t )  ,~ (vf):  r(f,  x, t) = r(f,  x ' ,  t), 

which proves  F is a set o f  initial states for  S. Conversely,  given r: Z X :~S  X 

T ~ B such that  Z is a set o f  initial states for  S, if  we associate the  m a p  r~: 
~ S  ~ ~ S  with each z e Z such that  

y = r,(x) ~.* (Vt): y(t) = r(z, x, t), 

we have 

t x '  ,,~ (Vz): r(z, x, t) = r(z, x ' ,  t) ,,~ (Vz): rz(x)(t) = rz(x')(t). x to 

Moreover ,  i f F  = {rzl z e Z}, then  

xSy *,~ (3z)(qt): y(t) = r(z, x, t) *,~ (:lz): y = rz(x), 

i.e., S = U F. T h e r e f o r e ,  S is non-ant ic ipatory.  

3. Causa l  T i m e  Systems.  In  this section, we in t roduce  the concept  o f  
a causal t ime system and  p resen t  ou r  basic results. Causality is a t e r m  most  
of ten used  to assert  the existence o f  a "state set", a "state transit ion func- 
tion", and  an "ou tpu t  funct ion"  for  the system. In  t e rms  o f  these auxil iary 
sets and  functions,  the behavior  in an inpu t -ou tpu t  sense o f  a system is 
revealed to be sequential  or  inductive. I t  is general ly recognized that  non-  
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anticipation is a necessary condition for causality. Our  finding (Theorem 
3.fi below) is that  it is also sufficient. 

Definition 3.1. A time system S C (A T × B r) is causal if and  only if  there 
exists a 4-tuple o f  sets (Q, Qo, ¢, 0) such that  

(i) Q 0 c Q 

(ii) ¢: Qo x -~s x (T U {,to}) --~ Q 

(iii) 0: Q -* B 

(iv) for all x • .~S a n d  al,1 q E Q0, ~'(q, x, h) = q 

(v) for all x, ~¢'e ~.S, all q, q' • Q0, and  all t, t' ¢ (T 1.3 {to}) such that tRt' ,  

¢(q, z, ~t) = ~'(q', x ' ,  t) & x//(t, t'] = x'l(t, t'] 

,,* ~'(q, x, t ') = ¢(q', x ' ,  t'). 

(vi) for all x • ~ S  a n d  all y • ~S,  

xSy ,,~ (3q)(¥t): y(t) = O(¢(q, x, t)) (q • Q 0; t • T). 

The  sets Q, ¢, and 0 a re  called a state set, a state transition function, and an 
output funct ion for S, respectively. T h e  condit ion (v) is called the state 
property of  ¢. 

Definition 3.2. I f S  is causal with respect to (Q, Q0, ~', o) and  i fqe  Q0 and  
x • -~S, then the map ~'~,,x): T --'> Q which takes t --> ~'(q, x, t) is a state trajectory 
of  S. We define 

K,  = {~'~q.~)l q~ Q0 &x,= ~ s } .  

Evidently, K~ C QT and hence K, is a time object. 

Definition 3.3. Let S _C (`4T × B T) be a time system. S is a transition system 
if  and only if S is ,causal with respect to some 4-tuple (B, B0, ~', I), where B is 
the ou tpu t  space orS  and where I = { (b, b)[ b • B } is the identity map on B. 
S is a static system if;and only if  there exists a map c:zl ---'B such that for all 
x • -~S and  all y • ~S,  

xSy *,~ (Vt): y(t) = c(x(t)). 

I f S  _C (.4 T x B e) and S' _C (CT×D r) are time systems a n d e S  C ~ S ' ,  then 
the series interconnection of  S and  S' is the (composition) time system 

(S' .o S) = {(x, u)l (3y): xSy & y S ' u } .  

The  time object ~ S  is called a reticulation set of  (S' o S); the motivation here 
is given by Mesarovid [4]. 

T H E O R E M  3.4..4 time .system S is causal i f  and only i f  S is the series inter- 
connection of  some transition system S '  and some static system S". 

Proof  I f S '  C (AT × B r) is caHgal with respect to the 4-tuple (B, B0, ~', I) 
and S" C (C T × D r) is static with respect to the map c: C ~ D and ~ S '  C 
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~S",  then S = (S" o S') is causal with respect to the 4-tuple (B, B0, ~', c). 
Conversely, let S C (A T x B T) be causal with respect to the 4-tuple (Q, Qo, 
z, 0). Define the time system S' C (A r × QT) such that  for all x e ~S  and all 
U E QT,  

xS'u ~ (~lq)(vt): u(t) = ~'(q, x, t) (q E Q0; t ~ T). 

S' is clearly causal with respect to (Q~ Q0, ~', I), where I is the identity map 
on Q. Therefore ,  S' is a transition system. Define the time system S" C 
(Qr × B r) such that for all u e QT and all y ~ B T, 

uS"y ~,~ (Vt): y(t) = O(u(t)) (t e T). 

S" is clearly static. Moreover, AS'  C_ Qr = ~S" .  Finally, S = (S" ° S'). 

COROLLARY 3.5. I f  the time system S is causal with respect to (Q, Qo, ~, 0), 
then the set of  state trajectories K~ is a reticulation set of S. 

T H E O R E M  3.6. A time system is causal i f  and only i f  it is non-anticipatory. 
Proof Let S C (A T x B T) be causal with respect to the 4-tuple (Q, Q0, r,  0). 

Then  Q0 is a set of  initial states for s. In fact, consider the composition 
(0 o z). For all x e ~ S  and all y E AS, 

xSy *,~ (3q)(vt): y(t) = O0"(q, x, t)) o,~ (3q)(Vt): y(t) = (0 o ~)(q, x, t). 

Moreover, for all x, x' E ~ S  and all t e T, 

I X' t x , , ( v q ) : q = q & x  ~ 
x to to 

(Vq): r(q, x, to) = r(q, x',  to) & x/(to, t] = x'/(to, t] 

(Vq): r(q, x, t) = r(q, x',  t) ~ (vq): O0"(q, x, t)) = O(r(q, x', t)) 

• '* (vq): (0 o 7)(q, x, t) = (0 ° 7)(q, x', t), 

i.e., Q0 is a set of  initial states for S. Therefore ,  S is non-anticipatory (by 
Theorem 2.9). Conversely, let S C_ (.4 r x B r) be non-anticipatory. Then ,  
by Theorem 2.9, there exists a map r: Z x ~ S  x T --* B such that Z is a set 

of  initial states for S. Let $'s = U ~S/ ( t~) ,  let o be the empty set, and con- 
t~T 

sider the 4-tuple (Q, Q0, r,  0) such that 

(i) Q = Z x (~"s U {0})  × (T U {to}) 

(ii) Qo = Z x {0} x {to} 

(iii) r: Qo x .~s × (T U {to}) --> Q is such that 

[ (z,O, to) if  t = to 
• ((z,O, to), x, t ) =  [ 1 (z' x m ° d  ~t~)/~\' t) otherwise 
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(iv) 0:(2 ~ B is such that 

~'b if E = O or t = to, or  both 
O(z, E, t) = Lr(z, pt(E), t) otherwise, 

where  b is any representat ive of  B and where  Pt is any choice function on 

.~S/(~,) into ~S,  i.e., any map such that pt(E)e E for  all E e  ~ s / ( t ) .  The  

existence of  Pt is guaranteed  by the axiom of  choice. Propert ies (i)-(iv) o f  
Definition 3.1 are satisfied by definition. Consider  (v): I f  t = to then 

z((z,~, to), x, to) = r((z',O, to), x', to) & x/(to, t'] = x'/(to, t'] 

' ( ~ ( z = z ' ) & x ~ x ' ~ z ,  x m o d  , t '  = z', mod , t '  

=0¢((z,0, to), x, t') = ¢((z',0, to), x', t'). 

Otherwise,  if t ~ to, then 

r((z,O, to), x, t) = r((z' ,~, to), x', t) & x/(t, t'] = x'/(t, t'] 

~ ( z ,  x mod (~o), t) = (z', x' mod (~o), t) & x/(t, t'] = x'/(t, t'] 

,,,~(z = z') & x/(to, t] = x'/(to, t] & x/(t, t'] =x'/(t, t'] 

-*(z  = z') & x/(to, t '] = x'/(to, t '] 

=*(z, x m o d ( ~ o ) , t ' ) = ( z ' , x ' m o d ( ~ ) , t '  ) 

=~z((z,O, to), x, t') = z((z',O, to), x', t'). 

Hence,  (v) is satisfied. Finally, for  all 

xSy ~,~ (=lz)(Vt): y(t) = 

(3z)(Vt): y ( t )  = 

*'0 (]z)(VO: y(t) = 

Oz)(Vt): y(t) = 

x ~ ~ S  and all y ~ ~S,  we have 

r(z, x, t) 

r ( z ' p t ( x m ° d ( ~ o ) ) , t  ) 

O(z, x m ° d ( ~ o ) , t  ) 

O(r((z,O, to), x, t)), 

i.e., (vi) is satisfied. This proves S is causal and hence the theorem is proved.  

C O R O L L A R Y  3.7. I f  S is a time system, then the following statements are 
equivalent: 

(i) S is non-anticipatory; 
(ii) S is causal; 

(iii) S is the series interconnection of some transition system S' and some static 
system S". 
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COROLLARY 3.8. I f  the time system S is causal with respect to the 4-tuple 
(@ Q o, -r, 0), then Q o is a set of initial states for  S. 

4. Time System Appearances and State Transitions. In this final sec- 
tion, we introduce the concept of  "appearances" (at different times and 
under  different input histories) of  time systems. We use this concept to 
verify formally the intuitive idea of  state transitions; namely, we prove that 
the image of  the set of  initial states under  the state transition function (at 
any given time and initial input segment) is a set of  initial states for the 
subsequent "appearance" of  the system. 

Definition 4.1. Let S C__ (A r x B r) be a time system. I f x E  ~ S  and t~ T, 
then the appearance of  S at t under x is the relation S~[ C (A v~n × B c'~t)) such 
that 

t x). S f  = {(x ' /g( t ) ,  y/U(t)) I x 'Sy & x' 

Also, we define Sf0 = S for all x ~ ~S,. 
Remark 4.2. S f  is a time system. Tha t  is, U(t) is a time set. In general, 

(i) ~ S f  {(x'/U(t))l x ' t } = ~ x (t ~ to) 
to 

t x' 
(ii) x ~0 ~ Sf = Sf'. 

T H E O R E M  4.3. Let S C_ (,4 r x B T) be a causal time system. I f  r: Qo x 
~ s  x (T t.J {to}) -'-> Q is a state transition function for  S, then for  all x e ~ S  
and all t ~ (T U {to}) the set Q f  = r(Qo x {x} x {t}) is a set o f  initial states for  
Sf .  

Proof  For any x E ~ S ,  r(Qo x {x} x {to}) = Q0, which is evidently a set 
of  initial states for S~ (= S). Choose x~ ~ S  and t~ T; Consider the relation 

r f  = {(~'(q, x, t), x ' /U(t) ,  t', O(r(q, x', t')))[ q E Q0 & x' t t' x & e U(t)}. 
to 

rf  is a function on Q f  × ~ s ~  × u(t)  into B. To see this, let q, q' e Q0, x', x" E 

x mod ( t ) ,  and t', t"E U ( t ) b e  such that (i)z(q,x, t ) = r ( q ' ,  x, t), ( i i)x ' /U(t)= 

x " / U ( t ) , ( i i i ) t ' = t " . S i n c e x ' , x " ~ x m o d ( ~ o ) , w e h a v e b y p r o p e r t y ( v ) o f D e f i n i -  

tion 3.1, 

T(q, x ' ,  t) = r(q, x, t) = 1:(q', x, t) =- r(q', x", t). 

Moreover, 

r(q, x' ,  t) = r(q', x", t) & x'/V(t), = x"/U(t) 

-0 (Vt'): r(q, x', t) = ~,¢ ,  x", t ) &  x'/(,t, t'] = x"/(t, t'] 

~(Vt ') :  ~'(q, x', t') = r(q', x", t") 

=*(Vt'): O(r(q, x', t')) --- O(r(q", ~". ~")j)~. 
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which proves rf:  Off x ~ S f  × U(t) ~ B. Now for  all u e/1v.~ and all v e B U~n, 

uS fv  *'* Oq)(Vt'): v(t') = rf(T(q, X, t), U, t') (q • (2o; t' • U(t)). 

In fact, i f  for  some q • Q0, 

v(t') = ~(¢(q, x, t), u, t') 

for  all t' e U(t), then 

v(t') = O(z(q, X', t')), 

w h e r e x ' • x m o d ( ~ o )  i s t h e u n i q u e e l e m e n t s u c h t h a t u = x ' / U ( t ) . N o w  

clearly there  exists some y • ~ S  such that for  all t e T, 

y(t) = O(T(q, X', t)). 

Moreover ,  x'Sy, where  u = x'/U(t) and v --- y/U(t). This  proves uSfv. Con- 

versely, i f  uS"[v, then  there exists some x' • x m o d  ( ~o ) and some  y e ~ S  such 

that (i) x'Sy, (ii) u = x'/U(t) and (iii) v = y/U(t). Moreover ,  since S is causal 
with respect  to (Q, Q0, z, 0), the condit ion (i) implies there  exists some q •  Q0 
such that for  all t ~ T, y(t) = O(T(q, X', t)). T h en ,  for  all t' • U(t), 

v(t') = y(t') = O(¢(q, x',  t')) = rf(T(q, X, t), U, t'). 

Thus ,  it is proved that 

uSfv  ~,~ 0q)(vt ') :  v(t') = rf(T(q, X, t), U, t'). 

t' 
' u "e  .OSf be such that for  some t' U(t), u' u . . . . .  Finally, l e t u ,  e ~- . L e t x , x  e 

x m o d ( ~ o )  b e t h e u n i q u e e l e m e n t s s u c h t h a t u ' = x ' / U ( t ) a n d u " = x " / U ( t ) .  

t' X" Clearly, x' ~0 . The re fo r e ,  for  all q • Q0, 

O(T(q, x',  t')) = O("r(q, x", t')), 

which implies that 

rf(7(q, x, t), x'/U(t), t') = rfO'(q, x, t), x"/U(t), t'). 

u"e  ~ S f  and all t' U(t), T h e r e f o r e ,  for  all u ' ,  e 

t' 
U t t u" ,,,1, (vq): rf(~'(q, x, t), u',  t') = rf(z(q, x, t), u", t'), 

and this proves that Qf  is a set o f  initial states for  Sf.  

C O R O L L A R Y  4.4. .4 time system is causal (non-anticipatory) i f  and only i f  
all o f  its appearances are causal (non-anticipatory), i.e., S C (A T x B T) is causal i f  
and only i f  for  all x e ~ S  and all t e (T U {to}), S f  is causal. 
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C O R O L L A R Y  4,5. I f  Q is a state set o f  the time system S C_ ( A t ×  BT), then 
for  every x ~ ~ S  and every t ~ (T  tO {to}), there exists a subset Q~[ c Q which is a 
set o f  initial states fo r  Sf.  
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