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The concept of state is studied in a new set-theoretic formalism for systems
theory. Starting with the notion of a time system as a set of ordered pairs of abstract
time functions, the concepts of (i) non-anticipation and (ii) causality are introduced.
It is proved that the class of causal systems (those possessing a set of states and func-
tional state transitions) is precisely the class of non-anticipatory systems. It is shown
that every causal system has a series decomposition consisting of a transition system
followed by a static system. It is proved that a state set for a causal system is always
constructible using a class of “natural” partitions of the system input set. This latter
construction generalizes the result known for certain functional discrete systems to a
much mere general situation.

1. Introduction. Recently, there have been significant efforts made to
clarify the concept of state in systems theory. For example, Zadeh [1] has
explicitly discussed this question for systems which are non-probabilistic
and non-anticipatory. Nerode [2] has given a construction in automata
theory which indicates that the states of a sequential machine are essen-
tially a set of “natural” equivalences classes of input sequences. Kalman [3]
made a similar construction for the case of linear discrete-time systems and
has shown there are “natural” equivalence classes of input sequences to
serve as states in this case. It is important in these latter two cases that a
“system” is taken to be a certain kind of map on sequences.

Apparently, to define the concept of state for systems in a more general
situation, one first has to arrive at an appropriately general concept of
system. Mesarovi¢ [4] has dealt with the notion of a (general) system as an
n-ary relation. In his development, the state of a system is identified with
the “connecting set” which arises in the general decomposition (reticula-
tion) of n-ary relations. This concept would appear to be unrelated to the
others mentioned; however, the concept of system employed is very much
more general than that referred to by the other investigators.
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Nonr 1141(12)).

279

MATHEMATICAL SYSTEMS THEORY, Vol. 1, No. 4.
Published by Springer-Verlag New York Inc.



280 T. G. WINDEKNECHT

The purpose of this paper is to consider again the concept of state and,
in particular, to show the interrelation of the several previously mentioned
points of view. To do this, we set up a more restrictive concept of system
than that in [4]; however, it is consistent with that given and it includes the
“systems” of [2] and [3] as special cases. Qur formalism is similar to that
proposed by Mesarovi¢ [5]. Our principal findings are: (i) a state set of
a (time) system exists if and only if the system is non-anticipatory; (ii) a
state set is constructible from “natural” partitions of the system input set
(even in the non-functional, non-discrete-time case); (iii) every system
with a state set may be decomposed into the series interconnection of a
transition system followed by a static system; and (iv) (which follows from
(iil)) the set of “state trajectories” associated with a state set for a system
is in fact a “connecting set” for this basic decomposition of the system.

Our set-theoretic notation is relatively standard and by and large con-
sistent with [6, 7].

2. Non-Anticipatory Time Systems. We begin by introducing a formal-
ism for general time systems. The formal concept of system employed
(Definition 2.2 below) is Mesarovi€’s general system specialized in two
ways: (i) the system is taken to be a 2-ary rather than an n-ary relation, and
(i) the two systems objects are taken to be sets of (generalized) time
functions rather than arbitrary sets. The concepts of non-anticipation and
initial states are introduced in Definitions 2.4 and 2.8, respectively. The
question of the existence of sets of initial states for time systems is treated
(Theorem 2.9) and shown to be inherently related to the property of non-
anticipation of the system.

Remark 2.1. In the following, all sets denoted by single capital letters
are assumed to be nonempty. A set G is said to be (strictly) R-simply ordered
if the relation R C (G X G) satisfies: (i) —(tRt); (ii) tRt’ & t'Rt" = tRt"; and
(iii) t # ¢ =tRt' V 'Rt (t, ', t"e G). If G is R-simply ordered and te G, then
the set U(t) = {t'| tRt'} is the t-section of G. If tRt', then the set (¢, ¢'] =
{'| tRt" & t'Rt'} U {t'} is the (¢, t')-interval of G. Evidently, if tRt' then
{@t, ¢'], U(t')} is a partition of the set U(?).

Definition 2.2. A time object is any set V C A" = {v| v: T — A4} such that
A and T are sets and T = U(t,) in some R-simply ordered set G (toe G). If V
is a time object and ve V, then v is a time function. If v: T — A is a time
function and e T, then the restriction /e, ] = {(¢', v(¥ )] £ & (L, £]} is the
t-initial segment of v. If ¢, ¢ € T and tRt', then the restriction v/{t, t'] is the
(¢, t')-segment of v. A (2-ary) time system is any relation § C (4" X BT) such that
A, B, and T are sets and T = U(t,) in some R-simply ordered set G. The time
objects 28 = {x| (3y): xSy} and &S = {y| (3x): xSy} are, respectively, the
input set (or domain) and the output set (or range) of S. 4, B, and T are the
input space, the output space, and the time set of S, respectively. If te T="U(ty),
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. t
then the relation (7) C (28 X 28) such that
0

t , ’
x = x o (o, t] = x'/(to, t]
0

is t-equivalence on 8.

Remark 2.3. ({v) is an equivalence relation. If xe 2§ and te U(t), then
0

x mod (fv) is the x-equivalence class in Z$ under ({v) Also,
0 0

.@S/(':;) = {x mod (f;)l xe .@S}

is a partition of Z8. We define

#= U as/(%)
tel(ty) 0
Definition 2.4. Henceforth, let T = U(t,) be a nonempty subset of the
R-simply ordered set G (t, € G). A time system S C (47 X BT) is functional if
and only if §: 28 — %S. If S is functional, then § is non-anticipatory if and
only if for allx, x' € 2§ and allte T,

x t{; x' =»S(x)(t) = Sx')¢).
If § is not functional, then S is non-anticipatory if and only if there exists a
set F C %5 of (into) functional non-anticipatory systems such that
S=UF={x1y)| @) feF &y=fx)}
Remark 2.5. Definition 2.4 is simply a formalization of the usual idea
of non-anticipation, i.e., the present value of any output of the system is
independent of future values of the system input.

THEOREM 2.6. A time system S is non-anticipatory if and only if S = U F¥,
where

F¥={f|f: 98 = %S & f C S & fis non-anticipatory}.

Proof. The sufficiency is obvious. Let S be non-anticipatory. If § is func-
tional, then F¥ = {S} and hence § = U F#. If § is not functional, then
S = U F, where F C #5?° contains only non-anticipatory elements.
Clearly, F C F§. Also, U F} C S. Hence

S=UFCUF¥CS,

lLe.,,S= U F¥.

Remark 2.7. We next formalize the concept of initial states for a time
system. Intuitively, a set of initial states for a time system is an auxiliary set
used so that the system may be described as a function. With such a
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functional representation, the system becomes “predictable™ if the initial
state is known.

~ Definition 2.8. A set Z is a set of initial states for the time system § C
(AT X BT if and only if there exists a map r: Z X 9§ X T — B such that (i) for
allxe 2§ and all ye #8,

xSy & (I2)(Vi): y(t) = 71(z, x, t) (ze Z;te T),
and (ii) forallx, x' € S and all te T,

t
x> x' = (Vz): r(z, x, ) = r(z, x', £) (ze Z).
o

THEOREM 2.9. If S is a time system, then there exists a set of initial states for
S if and only if S is non-anticipatory.

Proof. If S C (A" X BT) is non-anticipatory, then § = U F, where F C
AS?S contains only non-anticipatory elements. Then, for the map r: F X
28 X T — B such that r(f, x, t) = f(x)(t) we have

xSy @ (I ): y = flx) &= A )we): y(&) = f()@)
@ (I )ve): y&) = r(f, %, 1)

and
x % x' = () fE)E) = f)E) = 0f): 7(f, %, £) = 7 (f; &', £),

which proves F is a set of initial states for S. Conversely, given r: Z X 9§ X
T — B such that Z is a set of initial states for S, if we associate the map r,:
28 — ZS with each z € Z such that

y = 1:(x) &= (v2): y(t) = (2, %, 1),

we have

x —tt; x' = (y2): r(z, x, 1) = 1z, x', t) = (¥z2): 7)) = r.lx")().

Moreover, if F = {r,| ze Z}, then

xSy & (Az)(wt): y() = 7(z, x, t) &> (I2): y = r,(x),

i.e., $ = U F. Therefore, § is non-anticipatory.

3. Causal Time Systems. In this section, we introduce the concept of
a causal time system and present our basic results. Causality is a term most
often used to assert the existence of a “state set”, a “state transition func-
tion”, and an “output function” for the system. In terms of these auxiliary
sets and functions, the behavior in an input-output sense of a system is
revealed to be sequential or inductive. It is generally recognized that non-



Mathematical Systems Theory: Causality 283

anticipation is a necessary condition for causality. Our finding (Theorem
3.6 below) is that it is also sufficient.

Definition 3.1. A time system S C (47 X B7) is causal if and only if there
exists a 4-tuple of sets (Q, Qo, 7, 8) such that

(i) Qe CQ

(i) : Qo X DS X (T U {ta) > Q
(iii) : Q > B

(iv) for all xe 98 and all g€ Q,, T(g, x, b)) = ¢

(v) for allx,x" € @8, all¢,q' € Qp,and all £, '€ (T U {1,}) such that¢R¢',

g x ) =7, x', 1) &x/t, '] =x'/@, ']
=7 x t') =7, %", t').

(vi) for allxe 2§ and all y e %8,

x5y e (39)(wi): y¢t) = 0(1(g, x, 1)) (ge Qo te 1)

The sets Q, 7, and 0 are called a stale set, a state transition function, and an

output function for S, respectively. The condition (v) is called the state
property of 1.

Definition 3.2. If § is causal with respect to (Q,Q ¢, 7, 8) and if ge Q o and

xe IS, then the map 7,): T — Q which takes t = 7(g, x, t) is a state trajectory
of S. We define

K. = {rqol g€ Qo & x= DS},
Evidently, K, C QT and hence K, is a time object.

Definition 3.3. Let § C (47 X BT) be a time system. S is a transition system
if and only if § is causal with respect to some 4-tuple (B, B,, 7, ), where B is
the output space of § and where I = {(b, b)| be B} is the identity map on B.
S is a static system if and only if there exists a map ¢: 4 = B such that for all
xe 9§ and all ye 48,

xSy @b (wi): y(t) = c(x(t)).
If§ C (AT X BT) and S’ C (CT X D7) are time systems and ZS C 2§’, then
the series interconnection of § and §' is the (composition) time system
(S" 2 8)={(x, u)| (y): xSy & yS'u}.
The time object ZS is called a reticulation set of (§' ° S); the motivation here
is given by Mesarovi¢ [4].

THEOREM 3.4. 4 time system S is causal if and only if S is the series inter-
connection of some transition system S’ and some static system S”.

Proof. If §' C (AT X BT) is causal with respect to the 4-tuple (B, By, 7, 1)
and §" C (CT X D7) is static with respect to the map ¢: C = D and £S5’ C
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28", then § = (§" ° §') is causal with respect to the 4-tuple (B, B, 7, ¢).
Conversely, let § C (A" X B”) be causal with respect to the 4-tuple (Q, Qo,
7, 8). Define the time system §’ C (47 X Q7) such that for all xe ZS and all

ue Q7,
xS'u @ (3g)(vi): u(t) = 7(g, x, £) (ge Qo;teT).
§' is clearly causal with respect to (Q, Q,, 7, I), where I is the identity map

on Q. Therefore, §' is a transition system. Define the time system §” C
(QT X BT) such that for all u e QT and all y e B,

uS"y &= (vt): y(t) = 6(u(t) teT).
§” is clearly static. Moreover, Z8' C Q7= 28§". Finally, S = (§" < §').

COROLLARY 3.5. If the time system S is causal with respect to (Q, Qo, 7, 0),
then the set of state irajectories K, is a reticulation set of S.

THEOREM 3.6. 4 time system is causal if and only if it is non-anticipatory.

Proof. Let S C (AT X B”) be causal with respect to the 4-tuple (Q, Qo, 7, 0).
Then Q, is a set of initial states for S. In fact, consider the composition
(@°1). Forallxe &§ and all y e %8S,

xSy & (Ag)w)): 3(t) = 0(1(g, x, 1)) = (Ag)(wt): y(&) = (6 ° 7)(g, x, 1).
Moreover, for allx, x' € 2§ and allte T,

t :

XX -b(vq):q=q&x't~0~x

= (vq): 7(q, x, to) = 7(q, %', to) & x/(to, t] = x'/(to, t]

= (Vq): (g, x, t) = 7(q, %', t) = (¥q): 6(7(q, x, 1)) = O(7(q, ¥, 1))

= (vq): (6 °7)(g, x, 1) = (0 ° 7)(g, %', 1),
i.e., Q, is a set of initial states for S. Therefore, § is non-anticipatory (by

Theorem 2.9). Conversely, let § C (47 X BT) be non-anticipatory. Then,

by Theorem 2.9, there exists a map r: Z X IS X T — B such that Z is a set

of initial states for S. Let &= |J 25/ (Zt.,)’ let @ be the empty set, and con-
(4

teT

sider the 4-tuple (Q, Qo, 7, 6) such that
i) Q=Z X & U {ghHX(T U {6}
(i) Qo=Z X {&} X {to}
(i) 7: Qo X DS X (T U {&}) = Q is such that

(Z,Q, to) lft =1
T (29, ty), x, t) = ¢
(z, x mod (7)’ t) otherwise
o
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(iv) 8: Q = B is such that

_[bif E=@ or t = ¢, or both
0 E 1) = {r(z, p(E), t) otherwise,
where b is any representative of B and where p, is any choice function on
98/(%—) into 8, i.e., any map such that p(E)e E forall Ee 98/(5«). The
0 0

existence of p, is guaranteed by the axiom of choice. Properties (i)~(iv) of
Definition 3.1 are satisfied by definition. Consider (v): If ¢ = ¢, then

’T((Z,@, to),‘x; to) = T((z',@, 30)’ xl’ tO) & JC/(to, t’] = xl/(tﬁﬁ t,]
’ ! t,
S(2=2)&x L x' =>(z, x mod (L), t’) = (z’, x' mod (~), t')
t() to tO
=21((z,9, ), x, 'Y =7((z', D, &), X', t').

Otherwise, if ¢t # £, then
(z,D, to), x, ) = 7((z', D, to), x', ) & x/(t, '] = x'/(t, ']
=>(z, x mod (fv), t) = (z', x' mod (fv), t) &xit,t']=x"/(t ¢']
0 0
2(z=z2)& x/(;o, t]=x"1(to, £] & x/(t, ] =x"/(t, ']
S(z=1z)&x/(ts, '] =x"{(t, t']

=>(z, x mod (L), t') = (z’, x' mod (L), t')
t P
=27((2,3, ly), x, t') = 1((z',D, &), x', ').

Hence, (v) is satisfied. Finally, for all x € 2§ and all y e %S, we have
xSy & (3z)(v1): y(£) = 1(z, x, t)

> (3z)(ve): y(O) = r(z, p,(x mod (f;)) t)

= (Iz)(Ve): W)= O(z, x mod ('tt;), t)

« (32)(v1): ¥() = 6(1((2.2, k), %, 1)),
i.e., (vi) is satisfied. This proves § is causal and hence the theorem is proved.
COROLLARY 3.7. If S is a time system, then the following statements are
equivalent:
(1) S is non-anticipatory;
(ii) S is causal;

(iit) S is the series interconnection of some transition system S' and some static
system S”.
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COROLLARY 3.8. If the time system S is causal with respect to the 4-tuple
@Q, Qq, 7, 0), then Q ¢ 1s a set of initial states for S.

4. Time System Appearances and State Transitions. In this final sec-
tion, we introduce the concept of “appearances” (at different times and
under different input histories) of time systems. We use this concept to
verify formally the intuitive idea of state transitions; namely, we prove that
the image of the set of initial states under the state transition function (at
any given time and initial input segment) is a set of initial states for the
subsequent “appearance” of the system.

Definition 4.1. Let § C (4" X B”) be a time system. If xe S and te T,
then the appearance of S at t under x is the relation S7 C (4Y" X BY®) such
that

§7= {(x'/U(t), HWUE)| 'Sy & ' ’ttZ "}'

Also, we define S = S for all x e 8.
Remark 4.2. S§ is a time system. That is, U(?) is a time set. In general,

0 25t = {IUE)] x' & 5] « # 10

X t 13
(i) xgx’=>S;’“=Sf.

THEOREM 4.3. Let S C (A" X BT) be a causal time system. If 71 Qp X
28 X (T U {t,}) = Q is a state transition function for S, then for all x e 2§
and all t e (T U {to}) the set QF = 1(Qo X {x} X {t}) is a set of initial states for
S?.

Proof. For any x € 28, 7(Qo X {x} X {to}) = Q,, which is evidently a set
of initial states for S (= S). Choose xe 2§ and te T. Consider the relation

ri={(r(g, x, t), x' /U@, t', 8(r(g, ¥, t')))l ge Qo & x’ é x & i' e Ut)}.

rf is a function on Q7 X 287 X U(t) into B. To see this, let ¢, 4 € Qo, x', x" €

x mod (;v) and ¢/, "  U(t) be such that (i) 7(g, x, ) = 7(q', x, 1), (ii) '/ U(t) =
0

x"1U(Y), (i) ¢ =¢". Since x’, x" e x mod (f;)’ we have by property (v) of Defini-
tion 3.1,
(g, x', t) = 1(g, %, y =g , x, ) = 7(¢’, X", V).
Moreover,
(g, x', )y = 7(q’, x", t) & x" /Uty = x"/U(t)

2t 17(q, x', ) =1lg, x', ) & %'/, '] = x"/(t, V']

=>W): g x, )y=17(¢, x",. t")

= (vt'): 0(r(g, ', t')) = 6(v(g", =", )}
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which proves rf: QF X 98F X U(t) = B. Now for all u € 4Y” and all v e BY®,

uSFv & (Ag)(VE'): o(t’) = ri(r(g, x, 1), u, t') (ge Qo t' € UQ)
In fact, if for some ge Q,,
u(t') = 1E(1(g, %, 1), u, ')
for all ¢’ € U(t), then
o(t') = b(v(g, ', t')),

-where x' e x mod ({v) is the unique element such that u = x'/U(t). Now
0

clearly there exists some y € #S such that for all te T,

&) = 8(r(q, x', ).
Moreover, x'Sy, where u = x'/U(t) and v = y/U(t). This proves uSfv. Con-
versely, if uSFv, then there exists some x’ & x mod ({;) and some ye ZS such
that (1) x'Sy, (ii) » = x'/U(t) and (iii) v = y/U(t). Moreover, since § is causal
with respect to (Q, Q,, 7, 8), the condition (i) implies there exists some ge Q,
such that for all t e T, y(¢) = 6(r(g, x', t)). Then, for all ¢' e U(¥),
v(t") = yt') = O(r(g, x', t")) = 1¥(7(g, %, t), u, t').
Thus, it is proved that
uSfv & (3q)wt'): v(t') =rf(r(g, %, t), u, t').

’

. t
Finally, let u', u" € 2S5} be such that for some ' € U(t), v’ T u. Letx', x"e

x mod ( {,) be the unique elements such that v’ = x'/U(t) and u" = x"/U (¢).
\ 40

Clearly, x’ ';:— «". Therefore, for all qe Qo,
0

O(r(g, x', t')) = 0(z(g, x", t")),
which implies that

r¥(r(g, x, 1), x'/U(2), t') = r¥(7(g, x, 1), "IU ), t').

Therefore, for all ', u"e 28 and all ¢’ € U(}),
u ‘7 u” = (9q): TF((q, %, 0), u', ') = rE(a(g, %, 1), u", 1),

and this proves that Qf is a set of initial states for S7.

COROLLARY 4.4. 4 time system is causal (non-anticipatory) if and only if
all of its appearances are causal (non-anticipatory), i.e., S C (A" X BT) is causal if
and only if for all xe DS and all te (T U {to}), ST is causal.
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COROLLARY 4.5. If Q is a state set of the time system S C (A7 X BT), then
Sfor every x e DS and every t e (T U {ty}), there exists a subset Q% C Q whichis a
set of initial states for ST.
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