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A numerical method of solution of the Peierls-Nabarro integro-differential eqation for a given 
force law z(f) is proposed. The solution, i.e., the disregistry f (x)  or the dislocation density 
a(x) = df/dx is found in a form which describes the splitting of a dislocation into the chosen 
number of partial dislocations. The method is applied to the study of planar cores of �89 
dislocation in b.c.c, metals on {112} and on {110} planes. The force laws T(f) are derived from 
the dependence of the stacking fault energy V on disregistry f; the ~(f) curves calculated by 
Vi t ek  (1969) for g-Fe for two different interatomic potentials are used. In all cases, the solution 
is well represented by splitting into three partials. 

1. INTRODUCTION 

1.1. P e i e r l s - N a b a r r o  m o d e l  

The Pe ie r l s -Nabaf ro  model  [1, 2] can be considered as an elastic mode l  of  the 

d is locat ion  core, assumed to be p l ana r  a long the slip plane.  The per iod ic  s tructure o f  

the crystal  a long the slip p lane  is t aken  into  account  as a per iod ic  force in terac t ion  

between the surfaces o f  two elastic ha l f  spaces A, B (Fig.  1). 
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Fig. 1. a) Peierls-Nabarro model of an edge dislocation; b) schematic course of the force law 
z(f), disregistry f (x)  and dislocation density e(x) for one dislocation with complete Burgers 

vector b. 
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Assume an edge dislocation parallel to the z axis with the Burgers vector b parallel 
to the x axis. The force (shear traction) z in the x direction which the half space A 
exerts on a unit area of the surface of B at the place where the relative displacement 
of the two surfaces in the x direction is f (x) ,  is taken as a periodic function o f f  with 
the period b, 

(1) z = z( f ) .  

This relation is called the force law and f the disregistry. Note that f is introduced as 
the local displacement of the B half space with respect to the A half space, f ( x )  = 
= uB(x) - ua(x) (this definition of disregistry slightly differs from that of the rela- 
tive displacement q~ used e.g. in I-1, 2]). 

The disregistry for one dislocation must fulfil the boundary conditions at x = +_ oo, 

(2) lim f ( x )  = 0 ,  lira f ( x )  = b 
x--+ - oo x--* + oo 

and z the conditions 

(3) z = 0 for f = 0 ,  f =  b.  

The condition of equilibrium leads to a relation between z(f) and f ( x )  called the 
Peierls-Nabarro (P.N.) integro-differential equation 1-1, 2], 

/* ) foo 1 dr(t) dt = z ( f ) ,  
(4) 2 = ( i  5 v _~ x - , dt 

where # is the shear modulus and v the Poisson ratio (isotropic continuum in A, B is 
assumed); the integral should be understood as the Cauchy principal value. 

1.2. S o l u t i o n s  f ( x )  fo r  g iven  fo rce  laws z(f)  

In the original papers [1, 2], the force law z( f)  was assumed to be given and was 
chosen in a very special form 

(5) z -- sin f 
2red 

called the sine force law; d is the distance between the neighbouring slip planes. In 
this special ease, the solution of (4) was easily found as 

(6) f ( x )  = b tan_  1 x + b .  
rt ~ 2 

The parameter 

(7) ~ = d/J2(1 - v)] 

characterizes the dislocation width. The solution of the P.N. model can be completed 
if f ( x )  is known (for a review see e.g. [3, 4, 5]). 
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A numerical method of solution of the P.N. equation (4) for more complicated 
force laws was given in [6, 7]. The force laws were derived from the stacking fault 
energies ?(f) (calculated in [8] for b.c.c, metals from an atomic model) with the help 
of the relation [5] 

(8) = -d (S)14r . 

The solutions f(x) corresponding to z(f) were found by a numerical iterative method. 

1.3. D i s l o c a t i o n  d e n s i t y  Q(x) and  d i s l o c a t i o n  s p l i t t i n g  

Another interpretation can be given to the P.N. model [9]. The cut along the slip 
plane can be taken as an equilibrium continuous distribution of infinitesimal disloca- 
tions with the Burgers vector density 0, 

(9) Q(x) = df/dx, 

so that the Burgers vector of dislocations between x and x + dx is db = Q(x) dx and 

While the solution (6) corresponding to the sine force law leads to one maximum on 
the O(x) curve, the numerical solutions in [6, 7] for more realistic force laws in b.c.c. 
metals lead to a higher number of maxima or at least to subsidiary humps on the 
O(x) curves. This result can be interpreted as dislocation splitting. Its quantative de- 
scription requires the determination of the positions and of the Burgers vectors of the 
partial dislocations; one way will be proposed in this paper. 

1.4. F o r c e  laws z(f) c o r r e s p o n d i n g  to c h o s e n  d i s r e g i s t r y  f(x) 

A pair of functions, f(x) and z(f), which is a solution of equation (4) can also be 
obtained in the following way: if f(x) is chosen then the left side of eq. (4) gives, 
after integration, a function of x, T(x), which can be expressed as T(g(f)) = z(f) if 
the inverse function x = g(f) exists. 

This method was used in [10, 11, 12] where the dislocation splitting was studied. 
The function f(x)  was taken as a sum of two solutions of type (6) corresponding to the 
sine force law. However, the force law c(f) corresponding to the total disregistry f 
differs from the sine law because the P.N. equation (4) is not linear. 

Another function f(x) was chosen in [13] to describe one non-split dislocation 
with a wider core, 

-= bE1-(c-1)~c]tan-i---x (11) f(x) -~ cr 
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and the corresponding z(f)  was found. The influence of the parameter c on the form 
of the "c(f) curves and on the dislocation width was studied in [13]; the case c = 1 
corresponds to the sine force law. 

Note that the functions t/(t) = -# [2 (1  -- v)] -1 df(t)/dt and T(x) are connected 
by the Hilbert transform, T(x) = (l/n)j'-~oo tl(t)/(t - x)dt,  so that the tables and 
some properties of the Hilbert transform can be helpful in finding the pair f (x)  and 
r(~). 

This method of determination of the pair of functions f and z is rather formal: 
the force law z(f)  corresponding to the chosen disregistryf(x) need not have physical 
significance. 

1.5. D i s l o c a t i o n  s p l i t t i n g  c o r r e s p o n d i n g  to  a g iv en  f o r c e  law z(f)  

In this paper, a method will be proposed which enables to find, to the given force 
law z(f),  the corresponding disregistry f (x)  (or the dislocation density Q(x)) in the 
form which directly determines the dislocation splitting, i.e., the positions and Burgers 
vectors of the partial dislocations. The sought disregistry f (x)  will be assumed in the 
form of a sum of terms of type (11) describing the individual partials, with a sufficient 
number of free constants. These constants will be determined from the P.N. equation 
(4) even for complicated given force laws z(f). 

The numerical results will be given for b.c.c, metals for which the solution of the 
P.N. equation has already been studied in [6, 7] using another numerical method so 
that a comparison of the results of both methods will be possible. 

The results will be compared with the previous ideas on the splitting of dislocations 
in b.c.c, metals, especially with the so called generalized splitting [14] as well as with 
some recent atomic models of the dislocation cores. 

2. APPROXIMATE SOLUTION OF THE PEIERLS-NABARRO EQUATION 
FOR A GIVEN FORCE LAW 

2.1. S o l u t i o n  c o r r e s p o n d i n g  to  a c o m b i n a t i o n  o f  p a r t i a l  d i s l o c a t i o n s  

Assume that the force law z = zo(f) is given. An approximate solution f (x)  of the 
P.N. equation (4) for one dislocation having the complete Burgers vector b can be 
obtained in the following way. 

Let us choose the disregistry in the form 

(12) f (x)  = i~=/,(x ) = 1 - ( c , -  1 t a n - '  x - x_____!i + = 
"= i = 1  Ci~ 

b ~ It x - x ,  X- -X,  -I b = -  ai a n - l - -  + ( c  i -  1)~ 2 , , : ,  - x,) 2 + (c, )2j + - '  
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where ~ is given by eq. (7), N, ai, el, xi are free constants, N is an integer and 

N 

(13) 0<~i <1,  Z~ e i> l  
i = 1  

The corresponding dislocation distribution O(x) follows from eq. (9), 

(14) Q(x) = b E (x - 
, = ,  E(x - �9 

The disregistry f ( x ) i s  chosen as a sum of elementary solutions fl(x) of the type 
given by eq. (11)introduced first by F o r e m a n ,  J a s w o n  and W o o d  [13]. These 
elementary solutions describe here the individual partials which are placed at xl, have 
the Burgers vectors b~ = aib and dislocation widths characterized by parameters 

r =eir 
The functions f (x )  and Q(x) fulfil the conditions (2) and (10), respectively. The dis- 

registry f (x)  in (12) is an increasing function of x, projecting the interval - ~ _< x _< 
< + co on the interval 0 =< f < b so that the inverse function 

(15) x = g(f)  

exists and is given uniquely. As the chosen form of f (x)  in (12) is rather complicated, 
the inverse g(f)  has to be calculated numerically. 

The function 

, l df(t) d t 
(16) T(x) = "2n(i-- v) ~ x - t dt 

can be found by integration using df(t)/dt = Q(t) given by eq. (14), 

lab ~ oh(x_ xi) r (x - xi) 2 + c i (3e l -  2)r 
(17) T(x) = ~ i=1 [ ( x -  xi) 2 + (cir 2 

The corresponding force law z(f) follows from eqs. (17) and (15) as 

(lS) z(f) = T(g(f)) .  

It depends on f ,  on the given constants la, v (through ~), b, d and on the free constants 
N, oh, ci, xi. 

It fulfils the Hooke's law for the disregistryf close to 0 or b. We have, for x ~ - oo, 
from eq. (12) 

N 

f_  = (b/n) E cq[-n/2 - cir + (ci - 1) r + b/2 = -br  
i = 1  

and from eq. (17) 7"_ = z_ = labr In a similar way, for x --* + oe, it is 
N 

f +  = (b/n)  E oq[nl2 - c i r  + (el - 1) i / x ]  + b12 = b - br 
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and z+ = pbr The Hooke ' s  law follows f rom these relations, 

z_ = - # f _ / d ,  z+ = lt(b - f+)]d .  

The pair of  functions, z( f )  and f ( x ) ,  represents an exact solution o f  the P.N. equa- 
tion (4). The solution for the given force law Zo(X) can be obtained f rom the equation 

(19) T(x,  N,  ~,, c,, xi) = zo(f(x,  N,  oh, c,, xJ)  . 

I f  the constants N, e~, % x~ can be found  in such a way that  eq. (19) is fulfilled 
exactly for all x then f ( x )  given by eq. (12) represents an exact solution o f  the P.N. 

equation corresponding to zo(f).  However,  for complicated force laws %(f)  given 
e.g. numerically, the equat ion (19) can only be solved approximately.  Then, the dis- 

registry f ( x )  for fixed values N, e,, c,, x, is only an approximate  solution for Zo(f). 
It  also can be interpreted as an exact solution of  the P.N. equation for another  force 

law z ( f )  given by eqs. (18), (17) and (15) which slightly differs f rom the given force 

law Zo(f). 
The found f ( x )  can be taken as a good approximat ion if the differences between 

zo(f)  and z ( f )  are within the range of  errors of  determination of  zo(f).  

A comment on computation will be added. The number N of partials can be best chosen equal 
to the number of the local minima and humps on the %(f) curve (a useful property was shown in 
[6]: a maximum (minimum) on the O(X) curve appears for such x where z(f(x)) has inflexion, i.e., 
where  d2r(f(x))/df 2 = 0, if d~/df > 0 (if  dz/df< 0)). The method of the least squares has been 
chosen for the numerical calculation of the free constants. The expression 

/12 = IT(x, ~i, cl, xi) -- zo(f(x, ~i, ci, xi))l 2 

has been minimized by an iteration method for fixed N and the 3Nconstants oq, cl, x i found from 
the condition A2(x) -+ 0. 

2.2. P l a n a r  c o r e s  o f  �89 d i s l o c a t i o n s  in  u-Ve on  {112} a n d  {110} 

p l a n e s  

An example will be given for a-Fe for which the ~ surfaces, i.e., the dependences 
o f  the stacking-fault energy 7 on the vector o f  disregistry f were calculated in [8]. 
Only  a cut of  the 7 surface parallel to the Burgers vector, i.e., a ~ curve is necessary 

for the P.N. model and the force law Zo = - d y / d f  can be calculated numerically. 
As the interatomic forces in iron are not  known with sufficient accuracy, the results 

based on two different interatomic potentials Jo and Jz  (see [8]) will be used. Figs. 
2a, 3a, 4a, 5a give the force laws zo(f)  corresponding to the potentials Jo and J2 on 
{112} and {110} planes, respectively. 

A comment should be added on the sign conventions for the ~, surfaces and for dislocations. 
The normal to the plane xz of the stacking fault (or of dislocation splitting) is chosen in the q-y 
direction and the disregistry f is the relative displacement of the negative (lower) half space with 
respect to the positive (upper) one (the opposite convention was used for ~, surfaces in [8]). The 
dislocation line is oriented in the + z  direction and the FS/RH convention for the sign of the 
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Burgers vector (see e.g. [5]) is used. Then, an edge dislocation with the Burgers vector in the + x  
direction has the extra half plane in the upper half space (as shown in Fig. 1) and a screw disloca- 
tion with the Burgers vector in the q-z direction is right-handed. 

Table 1 

Orientation of coordinate axes in a b.c.c, crystal for edge or screw dislocation split on (112} 
or {110} plane, 

~ y p e  cali~ 
odqe,  b.  -~E~IJ  screw, b - ~ -c~IJ  

of splittinf ~ 

[1122 y [1123 y 
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Fig. 2. a) Force law r0(f); b) dislocation density 0(x) for edge (ED) 
and screw (SD) dislocation in ct-Fe on {112} plane (potential 2"0). 
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An example of the corresponding choice of the coordinate axis in a b.c.c, crystal is shown in 
Table 1 for four cases which will be studied: �89 edge and screw dislocations split on {112} 
and {110} planes. 

The  shapes of  the %(/ ' )  curves suggest tha t  satisfactory results can be obtained for  
N = 3 in all four  cases. The  results o f  computa t ion  are shown in Table  2 and in 
Figs. 2b, 3b, 4b, 5b for  the values of  the constants  b = 2-476 x 10-8 cm, /t = 
= 5.767 x 1011 dyn/cm z, v = 0.333, d = 1.167 x 10 -8  cm for the {112} planes 
and d = 2.022 x 10 .8  cm for  the {110} planes. 

5x10 fO 
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[ dyn/cm2J 

0 

5x1010 

-~Co =dd-~/ 

r, dyn/cm~ 

0 

-s. ~o ~ o ds j ib ~io 

0 

o,l 
ED -6 -4 -2 0 2 4x/b ' 6 

0 2 x /b 4 
b 

Fig. 3. a) Force law zo(f); b) dislocation density O(x) for ED and SD in ct-Fe on {112} plane 
(potential J2). 
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Eo-s, -4, .-22 , o ,2 ,  4, ,6~b 
SD -4 0 2 4 x/b 

Fig. 4. a) Force law zo(f); b) dislocation density O(x) for ED and SD in ct-Fe on {I10} plane 
(potential Jo). 

The  Q(x) curves are shown in the figures instead of  the f ( x )  curves; their posit ions 
have been fixed so that  the absolute max ima  on 0(x) appear  at x = 0. Beside the 
resulting ~(x) curves showing the total  cont inuous distr ibution of  dislocations, also 
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N 

the p,(x) curves corresponding to the three partial dislocations (it is ~(x) = ~ Q,(x)) 
i=1 

are given. The positions xz, Burgers vectors b~ (b~ = 7~b) and characteristic widths 

c ~  of  these partials follow from Table 2. 

2x1010 
-'Co"~__ 

lx 1010 

[dyn/crn21 
0 

-1~,1010 

-2x 101 0 o15 t/b 1:o 

~075 
q 

0.050 
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& 0 2 5 ~  
, /  \ x . / " ' %  

Eo-ls, -lo , 5  q 5 lo 15x/b 
SD-10 -5 0 5 10 x/b 

Fig. 5. a) Force law to(f); b) dislocation density Q(x) for ED and SD in ct-Fe on {110} plane 
(potential "/2)" 

Table 2 

Splitting of �89 dislocation in the P,N. model in ~-Fe (E. . .  edge dislocation, S ... screw 
dislocation). 

Plane Poten- cq E S xE S 
tial xl/b xl/b ca c~2 x3/b c3 

{112} 
{112} 
{11o} 
{110} 

/o 
Jz 
1o 
J2 

0'201 -- 1'12--0"75 
0.252 I -  6'36/--4"24 

1 '00 
7 "00 
1 "92 
7'98 

0"637 0"00 
0"539 [ 0"00 
0"9861 0'00 
0-640 0"00 

S E 
xJb  c2 % x3/b 

I 

0.00 2'0810"162 0'64 
0,00 6"2010'209 3"61 

i 

0.00 5.2110'007 1"01 
0.00 11"3010-180 11"06 

0.43 1'00 I 
2'41 5"84 I 
0.67 1'92 
7.38 7'98 

The splittings on the {110) planes are symmetrical,  those on the {112} planes are 

asymmetrical:  a more pronounced  local max imum on the Q(x) curve appears on the 
"twinning side" o f  the dislocation. 

The term "twinning side" is connected with a simplified splitting proposed originally on {112} 
planes, �89 ) = -~(111 ) + -~(111 ) (see e.g. [3]). If the stacking fault between the two partials 
has to correspond to an elementary twin, the sequence of the partials is uniquely given and cannot 
be interchanged. The side of the dislocation with the ~(111)  partial can be called the twinning 
side. The dislocation moves in the "twinning direction" if the twinning partial ~(111)  moves 
first and an elementary twin is formed (which is then cancelled by motion of the second, -~(111 ) 
partial). This motion of a dislocation can be expected to take place at lower stresses than the 
motion in the opposite, "antitwinning direction". 
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The left side of the dislocation in Fig. 2b and 3b can be called the twinning side because the 
disregistry f = -~[i'fl ] forms an elementary twin. This can be checked from the following crystallo- 
graphic rule for twinning on {112} planes: if n ---- (a, a', c),  where a = 4-I, a '  = t l ,  c = d:2 
is, for a given sequence of a, a', c, the normal to the {a, a', c} plane then the disregistry frw = 
= -~(a, a', --c/2) with the same sequence of a, a', c (defined as relative displacement of the nega- 
tive with respect to the positive part) forms an elementary twin. We have, for n = [TI-~I, indeed 
frw ---- ~[Til]. 

Therefore, the twinning disregistry (for the sign convention used) is in the +x  direction, how- 
ever, the twinning direction of dislocation motion is in the - -x  direction, in which the twinning 
partial leads. 

The value of the Burgers vector of the partial on the left side in Fig. 2b is b 1 = ~lb = 0-201b < 
&b in Fig. 3b it is b 1 = 0.252b < ~b. The analogy of this partial and -~[i1"1] twinning partial <7 3 , 

dislocation is not complete, nevertheless, the motion in the twinning direction can be expected 
to be easier than motion in the antitwinning direction. 

The results for  edge dislocations are denoted by index E. The solution for screw 
dislocation can be obtained, as shown by E s h e l b y  [9], f rom that  for edge dislocation 
if x is replaced by x'  = (1 - v) x (screw dislocations are narrower than edge disloca- 
tions). The results for screw dislocations are denoted by index S in Table 2 and by 

changed scale on the x axis in Figs. 2 b -  5b. Note  that  the displacements of  the screw 
dislocation and also the disregistry f (x)  are in the z direction. 

The total curves O(x) are in good agreement with the corresponding 0(x) curves 
obtained by another  numerical method in papers [6, 7] where, however, the decompo-  
sition into the partials has not  been studied. 

The obtained solution, f (x)  or 0(x), can be taken as an exact solution (within the 

accuracy of  the numerical calculation) o f  the P.N. equation for the changed force laws 
z(f) .  These force laws have been calculated f rom eq. (18) as a final verification of  the 
results and it has been shown that  they differ only slightly f rom the given force laws 

zo(f)  shown in Figs. 2 a - 5 a .  

3. DISCUSSION 

3.1. M e t h o d  o f  s o l u t i o n  

Our  t reatment  is fully based on the classical P.N. model and has, therefore, all its 
disadvantages (a cont inuum model  of  a dislocation with an artificially added periodic 

interaction across the planar  core) and advantages (a model  mathematically simpler 
than the three-dimensional a tomic models). The main contr ibution is in the numerical  
method of  finding a solution f (x )  for a given, arbitrarily complicated force law 
%(f) .  The method is based on generalization and combinat ion of  two previous ap- 

proaches:  

(i) individual partials are characterized by functions f ,(x) of  type proposed in [13] 
for single dislocations ("F.J .W.  funct ions");  

(ii) the disregistry f (x)  of  the complete dislocation is taken as a sum of  functions 

fi(x) characterizing the individual partials, as done previously in [11, 12, 10] for two 
partials and for simpler forms of f i (x)  (tan -1 type functions). 
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The principle of the method is to express f(x) as a function of a number of free 
parameters and to find the values of these parameters so that the P.N. equation is 
approximately fulfilled for the given force law zo(f). The main advantage of the meth- 
od is a direct physical interpretation: the found parameters characterize the N partials 
into which the dislocation is split: ctlb is the Burgers vector, ci~ the width and xi the 
position of the/-partial. The comparison with another method of numerical solution 
[6, 7] has shown a good accuracy of the method used. 

3.2. F o r c e  law 

The force law zo(f) cannot be obtained from experiments. The only direct experi- 
mental values available are for small f and for f close to b where To(f) has to fulfil 
the Hooke's law. 

The only way which has been used for estimation of zo(f) is based on the knowledge 
of energies ? of the generalized stacking faults [8]. The derived values of z o cannot, 
however, be taken for definitive for two main reasons: 

(i) the interatomic potentials necessary for calculation of ~(i e) are not known with 
sufficient accuracy, especially for b.c.c, metals. Therefore, different model inter- 
atomic potentials were used in [8] and it was shown that they lead to different 
numerical values of ?(it), however, to approximately the same shapes of the ? surface. 
Analogously, also the calculated force laws zo(f) can be expected to have correct 
shapes, however, inaccurate numerical values; 

(ii) the used values zo = -dv/df correspond to the forces per unit area between 
two half crystals displaced relatively in the b direction by constant f ,  with relaxation 
only in the direction perpendicular to the stacking fault plane. However, the disregistry 
f varies in the slip plane of a dislocation in the P.N. model. While the above definition 
of Zo can be taken as a good approximation at places wherefvaries slowly, it can only 
give a rough estimation of the force law at places where f varies quickly, i.e., espe- 
cially in the core of narrow dislocations (see also discussion in [7]). 

Therefore, the shapes of the theoretical force laws zo(f) should be taken as more 
reliable than their numerical values. From this point of view and in spite of the fact 
that the P.N. equation has been solved with a good accuracy, the calculated f(x) de- 
pendences have to be taken only as an approximation for the studied crystal. Again, 
the shapes of they(x) and O(x) curves can be taken as more reliable than their numeri- 
cal values. These shapes are sufficiently described by the number, positions and Bur- 
gers vectors of the partial dislocations. 

3.3. P l a n a r  d i s l o c a t i o n  s p l i t t i n g  in ct-Fe 

The stacking fault energies in b.c.c, metals seem to be very high so that, if the dis- 
locations are split, the width of splitting is small "and the partial dislocations overlap. 
In this case, the dislocation splitting can only be taken as a rough description of the 
dislocation core. 
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Different splittings of dislocations in b.c.c, metals have been proposed (for a review 
see e.g. [15]) based on the classical concept of singular partial dislocations connected 
by ribbons of stable stacking faults. However, stable stacking faults do not  seem to 
exist in b.c.c, metals [8, 16]. This led to the proposal of the so called generalized 
splitting of dislocations in b.c.c, metals in [14]. The dislocation is assumed to be split 
into N singular partials generally with irrational Burgers vectors connected by ribbons 
of generalized, i.e., in general case instable stacking faults with constant disregistries. 
This model leads to the P.N. model for N ~ oo [17]. 

N 
-3 -2 

[q (x) 

I 
-7 

r 
2 3 x /b  

Fig. 6. Schematic generalized splitting of �89  edge dislocation on {112} plane into 3 singular 
partials for 7 surface based on potential Jo (according to [14]) -- an analogy of Fig. 2b. 

The distribution of  the dislocation density O(x) corresponding to the generalized 
splitting of an edge dislocation in ~-Fe on { 112] plane from [ 14] is shown schematical- 
ly in Fig. 6. It was proposed for the 7 surface based on the J0 potential and can be 
compared with O(x) in Fig. 2. Both splittings propose the same number of partials, 
N = 3, and approximately the same Burgers vectors ( ~  = 0.20, ~2 = 0.64, ~3 = 0.16 
in Fig. 2, ~ = 0-26, ct 2 = 0.60, ~3 = 0.14 in Fig. 6), however, the widths of splitting 
in Fig. 6 are larger than in Fig. 2. If relaxation is allowed in Fig. 6, e.g., as further 
splitting of the partial dislocations then for N ~ ~ the O(x) curve should approach 
to that in Fig. 2. 

It is seen from the comparison with the P.N. model that the concept of generalized 
splitting in [14] represents a better description of  the dislocation core in b.c.c, metals 
than the classical splitting. However, its main simplification is in the assumption of 
constant disregistry between the singular partials. The above treatment of the P.N. 
model can be considered as a further step in generalization of the concept of disloca- 
tion splitting: the individual partials are taken as non singular dislocations of finite 
widths which mutually overlap. 
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The resulting ~(x) curves are in good agreement with the planar cores calculated 
for edge dislocations in ~-Fe from a three-dimensional atomic model using the same 
interatomic potentials Jo and J2, as discussed already in [7]. The present treatment 
can be, therefore, used to give an interpretation of the atomic model in terms of dis- 
location splitting. 

The minimum energy splitting of �89 screw dislocation should have the three- 
fold symmetry. The proposed planar cores of screw dislocation correspond to a 
metastable splitting with a higher energy which can be stabilized in an external stress 
field, transforming the dislocation from the sessile splitting into a glissile one. 

The comparison of results obtained with different interatomic potentials, Jo and J2, 
i.e., with different force laws, on {112} plane (Fig. 2, 3) and on {110} plane (Fig. 
4, 5) shows general similarities in the shape of the dislocation densities and in splitting 
into three partials, however, differences between the Burgers vectors of corresponding 
partials and differences in the distances between the partials, i.e., in the widths of  
splitting. These differences show the sensitivity of the results to the changes in the 
force law. A further improvement of the P.N. model for specific crystals depends 
mainly on the development of reliable interatomic potentials. 

The authors are indebted to Dr. J. Moudr3~ for his help in programming for the computer 
Minsk 22. 

Received 23. 3. 1972. 
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