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ABSTRACT 

Using the concept of test functions, we develop a general framework within which 
many recent approaches to the definition of random sequences can be described. 
Using this concept we give some definitions of random sequences that are narrower 
than those proposed in the literature. We formulate an objection to some of these 
concepts of randomness. Using the notion of effective test function, we formulate a 
thesis on the "true" concept of randomness. 

1. The Concept of Test Function. Let X °° [X*] be the set o f  all infinite [finite] 
binary sequences. A e X* denotes the empty sequence. Ixl denotes the length 
o f  x s X*. The concatenation of  sequences x and y is described as the product  
xy.  This in an obvious way defines a product  A B c  X *  u X ~ of  sets A c X* 
and B c X* u X ~. For  a sequence x ~ X* u X ~° we denote by x(n) the initial 
segment o f  length n (x(n) = x if Ixl < n). The map ~: 2 x* -+ 2 x~ is defined by 
~(A) = A X  ~ (A c X*).  Throughout  the paper ~ will be the product  measure 
on X ® relative to the probabili ty ½ for I and 0. 

Let us first explain the intuitive idea o f  r andom sequences, which will be 
discussed here. An  infinite sequence is considered a r andom sequence if it 
withstands all constructive stochasticity tests. Our  main assumption is that  any 
stochasticity test can be expressed by a function F:  X * - +  R, where F(x)  
indicates the extent to which the sequence x is susceptible to the stochasticity 
test F (R is the set o f  all reals). I t  seems natural to think that  F(x)  is high 
when x is susceptible to the test and low otherwise. However, this is not  in- 
evitable. Let us give some examples. 

Consider a function V: X* --~ R + that indicates the capital of  a gambler 
when playing on binary sequences (R ÷ is the set o f  all non-negative reals). 
V(x)  denotes the capital after the Ixlst trial when the sequence of  the gambling 
system has the initial segment x. In a fair gambling system the player's gain has 
to satisfy the relation V(x)  = 2 - l ( V ( x l ) +  l~(x0)). It is natural to think that  
lira sup, V(z(n)) < ~ if z is a r andom sequence. Consequently high values 
V(z(n)) mean that  the sequences z(n) are susceptible to test V. Gambling systems 
of  this kind were introduced by J. Ville [15]. Ville proved that  for every function 
V: X * - +  R + satisfying V(x)  = 2 -1 (V(xO)+ V(xl)) the set {z e X°~[lim sup. 
V(z(n)) = m } is a null set. 
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To give another example, we define a set U c N x  X* to be a sequential test 
if Ui =aef {x ~ X* [(i, x) ~ U} satisfies 

(1) U, = U,X*; 
(:2) U~+~ = U~; 
(3) ~ ( w , )  <__ 2-' .  

Then for every null set 9l c X ~° there is a sequential test U such that 9l c ~i~N 
~o(U,). Relative to the sequential test U the critical level function mu: X*--->N 
is defined by my(x) = max {mix ~ Urn). Consequently z withstands the sequen- 
tial test U if and only if 

lim sup mv(z(n)) < oo. 
n 

Hence m v reflects our intuition of a test function. A sequential test U is called 
recursive if U c N x  X* is recursively enumerable (r.e.). These tests were 
introduced by Martin-L6f [6]. A sequence z e X ® is random in the sense of  
Martin-L6f if z ¢ Ni~N p(Ui) for every recursive sequential test. 

In order to generalize the above mentioned examples, we define a function 
F: X*--> R to be a constructive test if F satisfies the following properties, 
which will be stated in an informal way. 

(T1) F has to be constructive, i.e., F is to be given by algorithms. 
(T2) There is a rule which assigns to F a null set gtF C X °°, the set of 

infinite sequences which do not withstand the test F. Whether z s ~ e  
has to depend only on the sequence (F(z(n))ln e N). 

The different definitions of random sequences we shall discuss here are 
merely distinguished by specifying the above mentioned axioms more precisely. 
We shall essentially consider two different rules according to (T2), namely: 

(a) 9lF = {Z ~ X ~° llim sup F(z(n)) = oe }, 
n 

(b) 91F = {Z ~ X~°liim infF(z(n)) = oo}. 
n 

Because of (T1) the set of test functions of any fixed concept of test functions 
can be enumerated. This implies that relative to any concept of test functions 
satisfying the above mentioned axioms the following theorem is true. 

T H E O R E M  1.1. The set of random sequences has measure 1. 
Given a fixed concept of test functions, a test F is called universal if 91e D 

gte, for any other test F~. 

2. Martin-Liif Random Sequences Described by Martingales. Let Q be the 
set of all rational numbers. 

Definition 2.1. A (total) function F: X* --> R is called weakly computable 
if there is a recursive function g: N x  X* ~ Q such that 

g(i, x) <_ g(i+ 1, x) (i e N, x e X*) 

lim g(i, x) = r (x )  (x ~ X*). 
i 
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A function F: X* -+ R is computable in the usual sense if F and - F  are weakly 
computable. 

A function F: X* -+ R is said to have the martingale property relative to 
the probabilities ½ for 0 and I if it satisfies the condition 

(2.2) F(x)  = ½F(xO) + ½F(xl) (x e X*). 

These functions are called martingales. In the actual case this means that the 
extent to which x withstands the test F is the weighted average of the extent 
to which x0 and xl  withstand the same test. 

The following lemma was proved by J. Ville [15]. 

LEMMA 2.3. I f  F: X*  -+ R + satisfies (2.2), then the set 91 = {z e X~[  
lim sup. F(z(n)) = oo} is a null set. 

Proo f  We define for k s N: 

F k = {x e X ' I F ( x )  > k }  

F k = {x e r k Ix ¢ FkXX*  }. 

This implies F k n l rkXX * = o.  Ir k consists of all those sequences in F k which 
have no initial segment in Fk. We have /z~0(F~)=/z~o(Irk) = ~x~r~ 2-1xl. It 
follows from (2.2) that 

F(A) > ~ r ( x ) 2  -Ixl > k Z 2-1xl > ktzg(rk) • 
x~lek x~Fk 

Consequently, 

(2.4) ~(rk)  <- r(A)k -1 

Since 9l c (~k~Nq~(Fk), this proves that 9l is a null set. 
We are now able to present our first example of a concept of a test function. 

Definition 2.5. A total function F: X* -+ R + is a (1)-test if it is weakly 
computable and satisfies (2.2). The set of infinite sequences which do not with- 
stand the (1)-test F is defined to be 

91r = {z e X~°llim sup F(z(n)) = oo}. 

Definition (2.5) is justified by the following theorem. 

T H E O R E M  2.6. An infinite sequence withstands all (1)-tests i f  and only i f  

it is random in the sense o f  Martin-L6fi 
First we will prove a lemma. 

LEMMA 2.7. For every r.e. set A c X*  one can effectively construct a recursive 
set B c X*  such that A X *  = B X *  and B n B X X *  = ~, i.e. B is prefix-free. 

Proof. Let A be given by a recursive function h: N--> X* u {I} such that 
A = h(N)  n X*.  (The symbol I has to be used if A is empty.) We denote A, = 
Ui<,h(i)  (~ x * .  r(n) is to be the maximal length of sequences in A,, r(n) = 0 
if A, = ~. The indicator function I , :  X* --> {0, 1 } of the set B is defined as 
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follows: IB(x) = 0 for all xE X* such that Ix I ~ r(n)+n for all n ~ N .  IB(x) 
with Ixl = r(n)+n is defined recursively. For [xl = r(0) :  

/~(x) = {10 x = h(O) 
otherwise, 

and for Ixl = r(n)+n, n > 1: 

{10 x s h ( n ) X * - A " - l X *  
l~(x) otherwise. 

The construction implies that B is prefix-free. In addition we have A n X *  = 

(B n {x I Ixj < r(n)+n})X*. Hence AX* = BX*, as desired. 
In the following proof of (2.6) we shall assume that a recursive sequential 

test U is given by an r.e. set V c  N x X *  such that V i n  ViXX* = o and 
V,X* = U, (i ~ N). 

Proof of(2.6). (1) Let a recursive sequential test U be given an r.e. set V c 
N×  X* as above. We define the (1)-test F: X* ~ R + as follows: 

r (x )  = 2 i[ Z 2-Iwl + Z 1 
i~lq ~xy~V~ x(n)~vt I 

n<lxl / 

It is easy to verify that F satisfies the relation (2.2). One has only to consider 
the contributions to F(x), F(xO), F(xl )  which result from y ~ Vi. Since Vi is 
prefix-free, we have F ( A ) =  ~Ntzq~(Vi). Therefore F(A) is bounded. Hence 
F is a function F: X* -+ R ÷. From the definition of F it follows immediately 
that F is weakly computable. Let us suppose now that z ~ q~(Vi). Hence there is 
an n such that z(n) ~ V i. This implies F(z(n)) > i. It follows that ("]i~N~o(V~) 
C ~ '~F"  

(2) Let z be random in the sense of Martin-L6f and let F: X* ~ R ÷ be a 
(1)-test. Choose k > F(A) and define V = N x  X* as follows: 

V, = {x ~ X ' IF(x)  > 2'k}. 

Since F is weakly computable, V is r.e. Because of (2.4) we have/~o(Vi) _< 2-i .  
Hence a recursive sequential test U can be defined by U~ = V~X*. From 
z ¢ N~u~(U~) it follows that z withstands the test F. 

Perhaps it is interesting to note that the existence of a universal (1)-test 
follows from a simple argument. Let (F~ li ~ N) be a recursive enumeration of all 
(1)-tests with Fi(A) _< 1. Hence F = ~i~u2-iFi is a universal (1)-test. 

It should be noted that we can use lim inf as well as lira sup in the definition 
of 92v for a (0-test F. 

LEMMA 2.8. Let F be a universal (1)-test. Then the following equivalence holds 
for all z ~ X~°: 

lira inf F(z(n)) = ~ <=~ lira sup F(z(n)) = co. 
tl ¢1 

Proof Let U c N x X* be a universal recursive sequential test that is given 
by a r.e. set V c  N x  X* as in part (1) of the proof of (2.6). Consider the (1)-test 
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F as defined in part (1) of the proof of (2.6). It will suffice to show that 
z ~ Ai~N~o(Vi) implies lim, F(z(n)) = oo. 

Suppose z ~ A i~N~(Vi). Then to i ~ N there exists n E N such that z(n) ~ Vi. 
This implies F(z(m)) >_ i for all m _> n. Since this holds for every i ~ N, (2.8) is 
proved. 

3. An Objection to Randomness in the Sense of Martin-Liif. The algorithmic 
structure of a (1)-test F is not symmetrical. There is no reason why a martingale 
F should be weakly computable and - F  should not be so. Taking this into 
consideration we make the following definition. 

Definition 3.1. A function F: X* ~ R ÷ is a (2)-test if it satisfies (2.2) and 
if - F  is weakly computable. The set of sequences that do not withstand the 
test F is defined to be 

9~F = {z e X°° 1 lim sup F(z(n)) = oo }. 
i1 

We consider the question whether (1)-randomness is equivalent to (2)- 
randomness. There seems to be an objection to either of these concepts of 
randomness because this is not true. 

T H E O R E M  3.2. There exist sequences which are (2)-random and which are 
not (1)-random. 

We will first prove a lemma. 

LEMMA 3.3. Let F be a (2)-test and a > 0 a rational number. Then there 
exists a recursive z ~ X ~ such that F(z(n)) < F ( A ) + a  (n E N). This means that 
z ¢  ~ .  

Proof. Let the (2)-test F be given by a recursive g: N x  X* ~ Q such that 
g(i, x) >_ g( i+ 1, x) and lim sup, g(i, x) = F(x).  Let b be rational with F(A) 
- a / 2  < b < F(A). The sequence z will be constructed recursively as follows. 
Assume that z(n) has been constructed such that 

F(z(n))  <_ b + a 2 -  i -  1 (i <_ n). 
j = 0  

(Note that this assumption is trivial for n = 0.) Consequently, there exists an 
x e X with 

F(z(n)x) <_ b + a ~ 2 -  j -  1. 
j = 0  

Hence we can effectively determine i and x such that 

n + l  

g(i ,z(n)x)  <_ b + a  ~, 2 -J -1 .  
j = 0  

Define z (n+ 1) = z(n)x. From the construction it follows that 

F(z(n)) < b + a  <_ F ( A ) + a  (n ~ N). 

Proof  of(3.2). Let (F~ [i ~ N) be an enumeration of all (2)-tests with F~(A) < I. 
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It will suffice to define a sequence z which is not (1)-random and satisfies 
lira sup, Fi(z(n)) < ~ for all i ~ N. 

Let F be a universal (1)-test, i.e. X °° - ~F consists precisely of all (1)-random 
sequences, z s X °~ will be defined inductively. Assume that Z(nk) with nk ~ N 
is already defined such that F(z(nk)) > k, and that 

k k 

2-"'- 'F,(z(j)) < ~ 2-'+1 (j < nk). 
i = 0  i = 0  

(Note that the induction hypothesis is trivial for k = 0, no = 0 and Fo(A ) < 1.) 
To perform the induction step, we consider Fk+l. We obviously have 

2-"k-kFk+l(z(nk)) < 2 -k. This follows from Fk+I(A) < 1 and the martingale 
property. Consequently there is a recursive y~ X °° such that y(nk) = z(n~ 
satisfying for every nk+ 1 >- nk the relation 

k + l  k + l  

2-" '- 'Fi(y(j)  ) <_ ~ 2 -`+1 ( j ~ N ) .  
f=0  f=O 

This essentially follows from the construction used in the proof of (3.3). 
Since y is recursive there is a nk+ 1 > n k such that F(y(nk+l) ) > k + l .  

Define z(nk+ 1) = Y(nk+ 1). 
The definition of z implies that z ~ 9~F. On the other hand we have 

lim sup ~ 2-  " '-  fFi(z(j)) < 4 (i ~ N). 
j / = 0  

Consequently z ¢ ~e~ (i ~ N). 
We remark that it is not difficult to prove that every (1)-random sequence 

is also (2)-random. (1)-randomness is a narrower concept of random sequences 
than (2)-randomness. It seems surprising that for a martingale F it is important 
whether we choose F or - F  to be weakly computable. 

Now we aim at developing a concept of randomness based on martingales 
whose algorithmic structure is symmetrical. 

Definition 3.4. A martingale F: X* ~ R + is a (3)-test if there is a recursive 
function g: N x  X* ---> Q such that limi g(i, x) = F(x) (x ~ X*). The set of 
sequences that do not withstand a (3)-test F is defined to be 

~R~, = {z ~ X~°llim F(z(n)) = 00}. 

We will prove that (3)-randomness is considerably narrower than (1)- 
randomness. Obviously every (1)-test is also a (3)-test. Therefore every (3)- 
random sequence is a (1)-random sequence. To prove that the converse does not 
hold, we consider the Kleene hierarchy of  sets. 

The Kleene hierarchy of predicates classifies the "arithmetical" sets in 
classes Z., 17. (n = 0, 1,. • .) defined as follows. ~.  is the class of  all sets A of 
the form A = {al(Qaxa) (Q2x2). . . (Q.x.)P(a,  x . x z , . ' . , x . ) } ,  where P is a 
recursive predicate, the Q2k+l are existential quantifiers and the Q2k are 
universal quantifiers. II. is the class of all sets as above, except that the Q2k+ 1 



252 C.P. Scn~oP, a 

are universal quantifiers and the Q2k are existential quantifiers. The following 
facts are known (see Davis [17]). 

(1) X o = rl o = z 1 c~ 1-I 1 is the collection of  all recursive sets. 
(2) A e E.  ~ A c ~ l-I,, (A c is the complement  o f  A.) 
(3) Z,  u I I ,  c Z .+ l  ~ II,+~ for all n > 0 and containment  is proper for n > 0. 
(4) A E Y~.+ 1 ~" A is recursively enumerable relative to a set B s II.. 
(5) A e Z.+ 1 c~ II ,+1 ¢~ A is a recursive relative to a set B s II,.  

The class I-I. n Z,  is usually denoted by A .  A sequence zE X ~ is to be in Z.  
[1-I,] if {n[z n = 1} is in Z,  [I-I,]. 

L E M M A  3.5. There exist sequences in A 2 which are (1)-random. 
Proof Let F:  X* -+ R + be a universal (1)-test that  is given by a recursive 

function g:  N x  X * - +  Q. We suppose that F(A) < 1. Then the following 
predicate P :  X* ~ { 0 ,  1} is in Ha: P(x) = 1 ~ Vi~Ng(i, x) < 1. Given P one 
can construct  z s X ~° recursively as follows: zi+ 1 = 1 ~:.P(z( i) l )= 1. Hence 
it follows f rom the above property (5) that  z is in A z. The construction implies 
that  z ¢ 9~F. 

To complete the p roof  of  our  assertion that  (3)-randomness is considerably 
narrower than (1)-randomness, we establish the following theorem. 

T H E O R E M  3.6. There do not exist sequences in Z 2 u II 2 which are (3)- 
random. 

Proof (I) Let z be a sequence in Z 2. According to the definition this means 
that  {nlz . = 1 } is in ~2. Then there exists a recursive predicate P :  N 3 -+ {0, 1 } 
such that, for all n e N, z, = 1 ~ 3j~NVi~NP(j, i, n) = 1. We define a (3)-test F 
satisfying z e 92v by specifying a recursive function g: N x  X* ~ Q. We denote 

f(i ,  n) = {j[ V P ( L  r, n) = 1 ; j  < i}. 
r < i  

The finite set f(i ,  x) can be effectively determined. Then we compute  g(i, x) 
recursively as follows: g(i, A) = 1 ( i eN) .  I f  (f(i ,  n) ¢ ~ A y, = 1) v ( f ( i ,  n) 
= ~ A y,  = 0) we define g(i, y(n)) = 2g(i, y ( n -  1)) (y e X°°). I f  (f(i,  n) # ~ A 
y , = O )  V (f(i,  n) = e A y . =  1) we define g(i, y(n)) = 0  (yeX°~).  This 
implies that  

2 lim g(i, y ( n -  1)) z,  = y,. 

lira g(i, y(n)) = i 0 z, ~ y,. 

Hence F is a (3)-test and it follows that  

F(y(n))={20" y (n )=z (n )  

y(n) # z(n). 

(II) Let z be an element o f  112. This means that  {nlz ~ = 0)  is in Z v Hence 
the above argument  also implies that  z is not  (3)-random. 

4. Random Sequences and the Concept of Minimal Program Complexity. We 
shall prove that  the concept of  randomness that has been proposed by Loveland 
[5] is narrower than the definition o f  r andom sequences by Martin-L6f.  
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Let A : X* × N ~ X* be a partial recursive function satisfying A(x, n) ~ X" 
for all (x, n) in the domain of A. Kolmogoroff  [4] defined the conditional 
complexity Ka(xln) of a sequence x with length n relative to the algorithm A: 

' ~  if A(y, n) ~ x for all ~ X*, Y 
Ka(x[n) = ~min { [y] IA(y, n) = x} otherwise. 

I f  A(y, n) = x: then y is called a program to compute the sequence x by the 
algorithm A. 

Definition 4.1. A function F: X--~ Q is called a (4)-test if there is a p.r. 
function A: X * × N - - + X *  as above, such that F ( x ) =  n - K a ( x ] n )  for all 
sequences x of  length n. T t v =  {z~ X°~llim inf, F(z(n)) > ~ }  is the set of  
sequences that do not withstand the (4)-test F. 

This definition of randomness has been explicitly proposed by Loveland 
in terms of the uniform complexity [5]. (4)-randomness means that for every 
algorithm A there exist infinitely many initial segments with high program 
complexity. The original idea was that every random sequence z would satisfy 
lim SUpn (n--KA(z(n)ln)) < ~ for every algorithm A. However it was shown by 
Martin-L6f [7] that there exist no sequences that satisfy this property. 

Mart in-L6f [7] proved that ~Re is a null set for every (4)-test F. Hence, 
Definition 4.1 satisfies our axioms (T1) and (T2)of  a test function. Moreover, 
it is known from [7] that every (4)-random sequence is random in the sense of  
Martin-L6f. We shall prove that the converse of  this theorem does not hold. 

T H E O R E M  4.2. There ex&ts a sequence z ~ X °° and a p.r. function A : 
X*  x N --> X*  such that lim, ( n -  Ka(z(n)ln)) = oo and z is a Mart in-L6f  random 
sequence. 

Proof  Let F: X* --> R + be a universal (1)-test with F(A) < 1 that is given 
by the recursive function g: N x X* -+ Q. We consider the (1)-random sequence 
z E A 2 defined as in the proof  of  Lemma 3.5. P: X* ~ {0, 1 } is the following 
predicate in 17 a : P(x) = 1 .~> Vi~Ng(i, x) < 1. Given P we define z recursively 
as follows: zi+l = m i n { j ~  X l P ( z ( i ) j )  = 1}. z is (1)-random and we construct 
a p.r. function A: X*xN-- -> X*  such that lim, (n-Ka(z(n)]n))  = oo. 

Let h: N ---> N x X* x Q be the recursive function defined by h(N) = {(i, x, 
q)[g(i, x) = q}. There exists a p.r. function A: X* x N - +  X* such that, for all 
x ~ X*,  A(x,  i+ Ix[) = r(i, x) x. Hereby we define r(i, x) ~ X i recursively as 
follows: 

r(O, x) = A (x ~ x*) ,  

with 
r(i+ 1, x) = r(i, x)s(i,  x) 

andrn _< Ix[ =~q _< 1 " 

Hereby we suppose that min ~ = 1. 
Using this construction it can easily be proved that for every i ~ N there 

exists an n, ~ N such that, for all x ~ X* with [x[ >_ n,, A(x, i+ [x]) = z(i)x. 
Consequently lim, ( n -  Ka(z(n ) ]n)) = oo. 
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It is obvious that there is an inconceivable multiplicity of possibilities to 
define test functions satisfying conditions (T1), (T2). Therefore one problem 
still remains unsolved, which we shall discuss later. It deals with the question 
which concept among all possible concepts of test functions is the really " t rue" 
one and if such a distinguished concept exists at all. 

5. An Objection to the Concept of (4)-Randomness. We shall formulate an 
objection to the concept of (4)-randomness, although (4)-random sequences 
possess all standard statistical properties of randomness such as the law of 
large numbers and the law of the iterated logarithm. Our main objection shall 
be discussed later. It concerns our feeling that properties of randomness are 
imposed on (4)-random sequences that have no physical meaning. 

Another difficulty arises from the fact that there is no analogue to the 
martingale property (2.2) regarding (4)-tests. 

This lack of an analogue to (2.2) has the consequence that a (4)-random 
sequence z has infinitely many initial sequences z(n) with high values F(z(n)) rel- 
ative to a universal (4)-test F (high values F(z(n)) mean low complexity of z(n)). 
This follows from an argument by Martin-L6f [7] which, when applied to (4)- 
randomness, shows that there exists no infinite sequence z such that lira supn 
F(z(n)) < oo. Because of Lemma 2.8 this effect is excluded as regards (1)- 
randomness. 

It seems natural to define a hierarchy of complexity for infinite sequences 
as follows (in a similar manner this has been done by Loveland who used the 
uniform complexity measure [5]). Let F be a universal (4)-test. Its existence is 
proved in [4] and [14]. For every non-decreasing function f we denote 

(5.1) Cs =da  {Z ~ X ~ [lim in f (F(z(n)) - f (n) )  < oo}. 
n 

I f f  is bounded, then Cy is exactly the set of all (4)-random sequences. For a 
slowly increasing unbounded function f the sequences in Cy are expected to be 
approximately random. This, however, is by no means true. On the contrary, 
we can prove the following theorem which also holds relative to (4)-random 
sequences and for the concepts of randomness derived from the unconditional 
(cf. [4]) and also for uniform complexity measures. 

THEOR EM 5.2. Let f :  N--+ N be a non-decreasing unbounded function. 
Then there exists a sequence in Cf that does not satisfy the law of large numbers. 

From the statistical point of view the law of large numbers is one of the 
most basic laws of randomness. There are very simple statistical tests which 
reject sequences not satisfying this law. Therefore the sequences in Cf, even 
with a very slowly increasing unbounded f ,  cannot be viewed as approximately 
random. And this is an objection to (4)-randomness. 

We remark that Theorem 5.2 solves the question of Loveland [5] whether 
there exists a non-decreasing unbounded f such that C; is precisely the set of 
all random sequences. Because of Theorem 5.2 such a function cannot exist. 

Proof. Let f :  N - +  N be an unbounded non-decreasing function and let 
F be a universal (4)-test. We define z = z l z 2 . . . z i . . .  G X °~ by induction. 
Suppose that z(ni) is already defined. Then we set Zk = 1 for n i < k <_ 2n i. 
It is obvious that there exists a (4)-random sequence x such that the initial 
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sequence x(2ni) is equal to z(2ni). Then there is an m > 2hi such that F(x(m)) < 
f(m), since otherwise x would be not (4)-random. We define z(m)= x(m). 
Now take m for n~+ 1 and proceed by induction. The construction obviously 
implies that z E C:, and on the other hand the relation lim, (l /n)~7=xzi = ½ 
cannot be satisfied. 

Remark. Theorem 5.2 also holds in this form for the concept of (1)-random- 
ness, that is, if F in (5.1) is a universal (1)-test. However, this is no longer an 
argument against this concept of random sequences. Since we have used lim sup 
in the definition of (1)-tests, the appropriate hierarchy of sequences relative to 
the concept of (1)-randomness has to be defined as follows, where F is a uni- 
versal (1)-test and f :  N ~ N is a non-decreasing function: 

(5.3) K: = {z ~ X°~llim sup (F(z(n))-f(n)) < oo). 
n 

From a theorem in Schnorr [11] it follows that all sequences in K: satisfy the 
law of large numbers if f(n) increases less than any exponential function 
a"(a > 1). On the other hand, Theorem 5.2 is not a suitable definition relative 
to a universal (4)-test F. It follows from an argument by Martin-L6f that in 
this case K: is empty for all slowly increasing functions f For instance, the 
relation ~,%1 2-:(") = m implies that K: = ~ [7]. 

6. On the True Concept of Randomness. The deficiency residing in the 
previous concepts of randomness is, in our opinion, that properties of random 
sequences are postulated which are of no significance to statistics. Many 
insufficient approaches have been made until a definition of random sequences 
was proposed by Martin-L6f which for the first time included all standard 
statistical properties of randomness. However, the inverse postulate now seems 
to have been violated. 

The acceptable definition of random sequences cannot be any formulation 
of recursive function theory which contains all relevant statistical properties 
of randomness, but it has to be precisely a characterization of all those properties 
of randomness that have a physical meaning. These are intuitively those 
properties that can be established by statistical experience. This means that a 
sequence fails to be random in this sense if and only if there is an effective 
process in which this failure becomes evident. On the other hand, it is clear 
that if there is no effective process in which the failure of the sequence to be 
random appears, then the sequence behaves like a random sequence. Therefore 
the definition of random sequence has to be made in such a way that this 
sequence is random by definition. 

In a series of papers [9, 10, 11, 12] we tried to render clear this intuitive 
notion of randomness. It turns out that there are rather different approaches 
to this concept of which all lead to equivalent definitions. This paper has been 
written to give a comprehensive approach by test functions. 

From the point of view of test functions one would consider a sequence to 
be random if it stands all effective tests. But how are the effective tests to be 
defined ? It is natural to postulate that an effective test F: X* ~ R is computable 
in the ordinary sense instead of being merely constructive. 
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Definition 6.1. A function F: X* ~ R is computable if there is a recursive 
function g: N x  X* -+ Q such that [g(n, x ) - F ( x ) [  < 2 - "  (x ~ X*,  n ~ N).  

Our considerations in Section 5 should have made clear that a reasonable 
concept of test function has to include the martingale property (2.2). Com- 
putability and the martingale property suffice to characterize effective tests. 
But which sequences are refused by an effective test? In analogy to (2.3) one 
would define that a sequence z does not withstand the test F if and only if 
lim sup, F(z(n)) = ~ .  However, if the sequence F(z(n)) increases so slowly that 
no one working with effective methods only would observe its growth, then 
the sequence z behaves as if it withstands the test F. The definition of ~RF has 
to reflect this fact. That is, we have to make constructive the notion lim sup, 
F(z(n)) = oo. 

Definition 6.2. Let f :  N -+ N be a function. We write k lim sup, f (n)  = 0% 
if and only if there exists a recursive, monotone and unbounded function 
g: N ~ N such that lim sup, ( f ( n ) - g ( n ) )  > O. 

Now we present our concept of effective tests [10]. 

Definition 6.3. A function F: X* ~ R + is an effective test if it is computable 
and satisfies the martingale property. The set of sequences that do not with- 
stand the test F is defined to be ~llr = {z e X°°]k lim sup, F(z(n)) = oo}. 

A sequence is called (0)-random if it withstands all effective tests. It is our 
thesis that (0)-randomness characterizes all relevant statistical properties of 
random sequences. To confirm this thesis we shall restate some results from 
earlier papers. 

In [11] we established two interesting classifications of the properties of 
random sequences. A law of stochasticity is called of order ] ( f :  N ~  N is a 
non-decreasing function) if there is an effective test F: X* ~ R + such that 

(6.4) lim sup (r(z(n))/f(n)) > 0 

for all z e X °~ that do not satisfy this law. 
The growth of the function f indicates the importance of the law under 

consideration. It is shown in [11] that the law of large numbers has a rapidly 
growing order function. This is in harmony with the fact that the law of large 
numbers is certainly one of the most basic laws of probability. It is also shown 
in [11] that the class of laws having the same order as the law of large numbers 
is a very reasonable class. As is the case with some other concepts of randomness, 
the set of recursive sequences can be characterized in terms of test functions. 
A sequence is recursive if and only if it does not satisfy some law of order 
f (n )  = 2" (as will be proved in [16]). 

The above results relative to the order of a law hold for effective tests, as 
well as for (1)-tests, if a suitable formulation is chosen. However, the second 
classification of tests which is based on the complexity of test functions (regard- 
ing the amount of time and space to compute them [3]) is meaningful for 
effective tests only. 

There is no universal effective test. To every effective test F a recursive 
sequence not in Tt~ can be constructed. To every effective test F there exists 
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an equivalent effective test F" ,¥* ~ Z(2) that is recursive (Z(2) is the set of 
all finite dual fractions in R+). Let us consider a fixed complexity class (accord- 
ing the amount of time or space) of effective test functions F: Y * ~  Z(2). 
One can construct recursive sequences which will stand every effective test of 
a fixed complexity class [11]. 

An infinite sequence z has a certain degree of (0)-randomness if it stands all 
tests of a corresponding complexity class. The degree of (0)-randomness yields 
a classification of recursive sequences. Sequences that have a certain degree of 
(0)-randomness have very interesting properties ([11], [12]). 

It is the opinion of the author that this classification of recursive sequences 
relative to their degree of (0)-randomness is an important argument for the 
concept of effective tests. The existence of (1)-random sequences as well as that 
of (0)-random sequences can be proved by non-constructive methods only. 
These sequences exist only by virtue of the axiom of choice. However, we can 
approximate the behaviour of (0)-random sequences by constructive methods. 
This does not hold for (I)-random sequences. Because of Theorem 3.2, (1)- 
randomness is not equivalent to (0)-randomness (see also [9]). 

Another important argument for our thesis which proposes (0)-randomness 
as the "really true" concept of randomness is that some different approaches 
lead to an equivalent definition. It is proved in [10, Part I] that a sequence is 
(0)-random if and only if it is not contained in any null set in the sense of 
Brouwer. This concept of null set is current in constructive analysis (see, for 
instance, [1]) and dates back to an intuitionistic formulation of L. E. J. Brouwer 
[2], A reasonable characterization of (0)-random sequences by their program 
complexity can be found in [16]. But what is most surprising is that the original 
ideas on which von Mises based his concept of collective can be modified to 
characterize exactly the (0)-random sequences. It is shown in [10] that a sequence 
z is (0)-random if and only if every sequence y which is an image of z under a 
constructive measure-preserving map H: X °Q ~ X °~ satisfies the law of large 
numbers. This means that the concept of Stellenauswahl in [8] has to be replaced 
by the notion of constructive measure-preserving map. All these and some 
additional results will be included in [16]. 
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