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Abstract. We define an algebraic structure for the set of finite graphs, a 
notion of graph expression for defining them, and a complete set of  equational 
rules for manipulating graph expressions. (By a graph we mean an oriented 
hypergraph, the hyperedges of which are labeled with symbols from a fixed 
finite ranked alphabet and that is equipped with a finite sequence of distin- 
guished vertices). The notion of  a context-free graph grammar is introduced 
(based on the substitution of  a graph for a hyperedge in a graph). The notion 
of an equational set of graphs follows in a standard way from the algebraic 
structure. As in the case of  context-free languages, a set of  graphs is context- 
free itI it is equational. By working at the level of expressions, we derive 
from the algebraic formalism a notion of graph rewriting which is as powerful 
as the usual one (based on a categorical approach) introduced by Ehrig, 
Pfender, and Schneider. 

O. Introduction 

We define an algebraic structure on the set of finite graphs (actually on the set 
of  finite oriented labeled hypergraphs with a sequence of distinguished vertices). 
The (hyper)edges play the role of  elementary objects with which graphs are built 
exactly as words are built with letters. This means that we shall consider a graph 
as a set of  (hyper)edges "glued" by means of  vertices and not as a set of vertices 
linked by means of edges. 

* This work has been supported by the PRC "Mathrmatiques et Informatique". Reprints can 
be requested from B. Courcelle by electronic mail at the following address (UUCP network): 
mcvax !inria !geocub !courcell. 
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The main definitions and results are the following: 

1. Graph expressions• Since every graph can be built from basic graphs (the 
edges) by application of three graph operations (disjoint sum of two 
graphs, fusion of  two vertices, and redefinition of the distinguished ver- 
tices), graphs can be defined by graph expressions. 

2. A complete set of algebraic laws. The graph operations satisfy some laws 
that we state as equations. This set is complete in the sense that two 
expressions define the same graph (up to isomorphism) iff they can be 
transformed into each other by the equations. 

3. An algebraic theory of context-free sets of graphs. Context-free graph gram- 
mars based on the substitution of a graph for an edge in a graph (generaliz- 
ing the substitution of a word for a letter in a word) can be defined and 
investigated in the algebraic style of Mezei and Wright [29], Goguen et 
al. [19], or Courcelle [5]. The expected theorem saying that context-free 
sets of graphs are least fixed points of systems of equations associated 
with context-free graph grammars can be established. A similar theorem 
for a slightly different notion of context-free graph grammar has been 
established by Habel and Kreowski [21]. 

4. Graph rewritings associated with rewritings of graph expressions. Every 
ground rewriting system on graph expressions defines a rewriting relation 
on graphs. We prove that these rewritings have the same power as the 
graph rewritings defined by double pushouts (along the lines of  [10]-[12], 
[14], and [33]) with edge-injective homomorphisms. This result together 
with the definition of a complete set of equations shows that the theory 
of graph rewritings (or at least a portion of it) can be done in the framework 
of term rewriting systems. There is hope of applying, in a fruitful way, 
the recent results on term rewriting systems (see, for instance, the RTA 
colloquiums [25], [26]) to graph rewritings. 

Let us now explain why we use hypergraphs instead of classical oriented 
labeled graphs. In the case of words, the definition of context-free grammars is 
based on the substitution of a word for a letter in a word. We want to define 
context-free graph grammars in a similar way, with labeled edges playing the 
role of occurrences of letters. Hence we need graphs having the same "type" as 
the elementary objects they are built with. We want to be able to substitute an 
ordinary binary edge with a graph that has two distinguished vertices. The 
orientation of edges is useful in avoiding ambiguity: in the absence of orientation, 
a graph could be substituted for an edge in two different ways (clearly, the two 
distinguished vertices must be distinguished from each other; there is somehow 
an "entry" and an "exit" vertex). But using a pair of vertices as an "interface" 
(see [10]) between a graph and a context where to put it is insufficient. Hence 
we need graphs equipped with a sequence of distinguished vertices. Accordingly, 
we use hypergraphs, i.e., graphs with edges having a sequence of adjacent vertices 
the length of which is any nonnegative integer. 

Let us finally mention that our algebraic theory is many-sorted with infinitely 
many sorts• Each integer n >-0 is a sort and the associated carrier is the set of 
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all graphs with a sequence of  n distinguished vertices. There are infinitely many 
graph operations described by three "schemes of  operations" (i.e., by three 
operation symbols allowing an infinite overloading). The complete set describing 
the properties of  the graph operations consists of an infinite set of equations, 
generated from 11 "equation schemes." (From the overloading of the operation 
symbols, these equation schemes generate infinitely many equations). But for 
dealing with a given context-free graph grammar or a given graph rewriting 
system finitely many of  these sorts, operations, and equations suffice. 

The paper is organized as follows. Section 1 reviews basic algebraic 
definitions. Section 2 introduces hypergraphs. Section 3 defines the algebraic 
structure on the set of  hypergraphs, the notion of  a graph expression, and exhibits 
a complete set of  equational rules for manipulating graph expressions. Section 
4 deals with context-free graph grammars. Section 5 investigates graph rewritings 
defined on graph expressions (it can be read independently of Section 4). Section 
6 is a conclusion presenting further research. 

1. Definitions and Notations 

We review some notations and some basic definitions concerning many-sorted 
algebras and grammars on many-sorted algebras. They are as in Courcelle [4], 
[5] and, as in these works, the term magma is used for algebra. 

We denote by N the set of nonnegative integers and by N+ the set of positive 
ones. We denote by [n] the interval {1, 2, 3 , . . . ,  n} for n->0 (with [0] =Q) .  

For sets A and B we denote by A - B  the set { a ~ A / a ~ B } .  
The domain of a partial mapping f :  A--> B is denoted by Dora(f).  The 

restriction o f f  to a subset A' of A is denoted b y f I A ' .  
The partial mapping with an empty domain is denoted by ~ ,  as the empty 

set. If two partial mappings f :  A --> B andf ' :  A'--> B coincide on Dora(f)  c~ Dom(f ' )  
we denote by f u f '  their common extension into a partial mapping: A u A'--> B 
with domain Dora(f)  u Dom(f ' ) .  

The cardinality of a set A is denoted by Card(A). The powerset of A is 
denoted by ~(A) .  

The set of equivalence relations on A is denoted by Eq(A). 
The set of  words written over an alphabet A is denoted by A*. The empty 

word is denoted by e. The length of a word u is denoted by lu]. 
def  

The symbol = means "equal by definition" and is used to introduce new 
notations. 

We now review some definitions on many-sorted algebras that we call magmas. 
(The terms "algebra" and "algebraic" are used in so many contexts with so many 
different meanings that we want to avoid them as much as possible.) A complete 
set of definitions can be found in Goguen et al. [19] or Ehrig and Mahr [i3]. 

Let SO be a set called the set of sorts. An S°-signature F is a set of  symbols 
given with two mappings a:  F--> SO* (the arity mapping) and tT: F--> SO (the sort 
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mapping).  We say that the profile o f f  in F is the pair ( a ( f ) ,  or(f)) written as 
usual c~(f )~  o-(f). The rank o f f  is the integer [c~(f)[. 

A many-sorted F-magma is an object M =  ( (Ms) s~ ,  (fM)fcF) where M~ is a 
nonempty set for each s andfM is a total mapping: M~, ×.  • • x Msk ~ Ms for each 
f of  profile s l , . . . ,  sk -> s. 

I f  U is a set of  5~-sorted variables (every u in U has a sort o'(u) in 5 ~) we 
denote by M(F,  U) the set of  terms written with F and U that are well formed 
with respect to sorts and arities. We denote by M(F,  U)s the set of terms of sort 
s (i.e., with leading symbol of  sort s). I f  t ~ M(F ,  { u l , . . . ,  Uk})s then tM denotes 
classically a mapping Ms, x -  • • x Ms~ ~ Ms also called a derived operator of M 
(where si = o-(ui) for i = 1 . . . .  , k). 

def 
If  t c M ( F )  = M(F,  Q) then tM C M~(t). 
The mapping t~-> tM is the unique F-homomorphism of M ( F )  (the initial 

F-magma)  into M. 

Let us augment F into F+ by adding, for every sort s in 5 ~, a new symbol 
+ ~ of profile ss ~ s and a new constant f/s of  sort s. With M as above we associate 
its power-set magma ~ ( M ) = ( ( ~ ( M s ) ) ~ ,  (f~(M))feF+) where, for A l , . . . ,  Ak C 

Ms,,...,Ms~, 
AI +s~(M)A2 = AI u A2 (if s = sl = s2), 

f ~ M ) ( A 1 ,  • • • , A k )  = { f M ( a l ,  • • • , ak)/al  c A1, • • •, ak ~ Ak} 

(where ~ ( f ) =  s l , . . . ,  Sk) and f ~ M ) =  Q. Hence ~ ( M )  is an F+-magma.  
A polynomial system over F is a sequence of equations S =  

( u ~ = p ~ , . . . ,  u, = p , )  where U = { u l  . . . .  , u,} is the 5e-sorted set of  unknowns. 
Each p~ is a polynomial of sort cr(u~). A polynomial of  sort s is a term of the 
form ~ or 

II + s  t2 + s  " " " + s i r e ,  

where the t /s  belong to M ( F u  U)~. The subscript s is usually omitted in +s or 

~'~s. 
A grammar is a pair (S, M) where S is a polynomial system as above and 

M is an F-magma.  
A mapping S~M) of ~(M~(.,))  × • • • x ~(M~(.,,)) into itself is associated with 

S and M as follows: for A~ c_ M ~ . ~ ) , . . . ,  A.  c M=~.,,) 

S ~ ( M ) ( A 1 , . . .  , A,) = ( A ; , . . . ,  a ' ) ,  

where 

A i = p i e , ¢ ~ l ( A i , . . . , A , )  for i = l , . . . , n .  

A solution of S in ~ ( M )  is an n-tuple ( A ~ , . . . ,  A,)  such that ( A 1 , . . . ,  A,)  = 

S~oa)(A1, . . . , A , ) .  
The system S has a least solution in ~ ( M )  with respect to set inclusion, 

denoted by (L((S, M), u O , . . . ,  L((S, M), u,)). It also has a least solution in 
~ ( M ( F ) ) ,  the powerset magma of the initial F-magma M(F) .  Then, for each i, 
L((S, M), ui) = h~(M~ (L((S, M(F)) ,  u~)) where h~(M) is the canonical extension 
to sets of  the unique homomorphism hM: M ( F ) ~  M. 
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The sets L((S, M(F ) ) ,  u~), also denoted by L(S, ui), i ~ [n], can also be defined 
by rewriting as follows. Let Di(S)  be the set of  rewriting rules 

ui --> tl 

Ui -> tk 

associated with the equation u~ = tl +" • • + tk of S. Let 

D ( S )  = U { D , ( S ) / 1  <- i < -- n}. 

Let 

L ( D ( S ) , u , ) = { t c M ( F ) / u i  ) t}, 
D ( S )  

where ) is the rewriting relation on M ( F w  U) associated with D ( S )  con- 
D ( S )  

sidered as a ground rewriting system (where the ui's are considered as constants 
and not as free, substitutable variables). Then, a classical result states that 
L(S,  ui) = L ( D ( S ) ,  u~) for all i. This allows us to define L((S,  M), ui) as the set 
of  elements m of M~(~,) such that 

:g 
ui ) t ,  ) m (with m = hM(t)) 

D ( S )  h M 

for some t s  M ( F ) .  
To summarize, the same set L((S, M), u~) can be characterized in the following 

ways: 

(1) As the ith component  of  the least solution of S in ~ ( M ) .  
(2) As the image under h~(M) of the ith component  of  the least solution of 

S in ~ ( M ( F ) ) .  

(3) As the set { h M ( t ) / t ~  M ( F ) ,  ui D(S~ t}. 

2. Hypergraphs with Sources 

There are numerous notions of  graphs. We have chosen to deal with labeled, 
directed hypergraphs with a sequence of distinguished vertices called the sources. 
The labels are chosen in a ranked alphabet, i.e., in a set A each element of  which 
has an associated integer (in f~) that we call its type. The type is defined by a 
mapping ~-: A-> N. The type of the label of  a hyperedge must be equal to the 
number  of  vertices of  that hyperedge (a same vertex may occur several times on 
a hyperedge). In order to shorten the statements we shall simply call graphs these 
hypergraphs and edges their hyperedges. 

(2.1) Definition (Concrete Graphs).  Let A be a ranked alphabet with type 
function ~" as above. A concrete graph is a quintuple: 

G = ( V c ,  E ~ ,  l abc ,  vert~,  srcc) ,  
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where V6 is a set (the set of  vertices of  G), EG is a set (the set of  edges of G),  
labG: E6 ~ A assigns to each edge of G a label in the alphabet A, and vertG is 
a mapping associating, with every edge e of  G, a sequence of k vertices where 
k = r(labG(e)) .  By letting vertG(e, i) denote the ith element of  this sequence we 
have vertG(e)=(vertG(e, 1 ) , . . . , v e r t c ( e , k ) ) .  One may have vertG(e,i)= 
ver tc (e , j )  for i # j  (in particular in the case of  a loop with k = 2). One may also 
have k = 0: this corresponds to an edge with no vertex. SrCG is a finite sequence 
in VG also used as a mapping: [ n ] ~ V G  for some n-->0. Hence SrcG(i) denotes 
the ith element of  the sequence SrCG. It is called a source. ( I f  n = 0 then G has 
no source.) 

We shall say that an edge e links the vertices vertG(e, 1 ) , . . . ,  verta(e, k), and 
that verta(e, i) belongs to e. I f  we need to specify the alphabet A, we shall say 
that G is a concrete graph over A. I f  we need to specify the length n of  sreG we 
shall refer to G as a concrete n-graph. The integer n is also called the type of G. 

With every graph G a 0-graph G O is associated by forgetting its sources. We 
call it the 0-graph underlying G. A graph G is finite if V~ and EG are both finite. 

We denote by CG, (or CG(A) ,  if we wish to specify A) the collection of all 
finite concrete n-graphs over A, and by CG (or CG(A))  the collection of  all finite 
concrete graphs of all types. 

A vertex is isolated if it belongs to no edge. An internal vertex of G is a 
vertex that does not appear  in the sequence sre~. The ones appearing in sreG are 
called external. 

Similar definitions have been given in Habel  and Kreowski [21]. The major 
difference with theirs is that, here, the sequence src~ may have repetitions. Hence 
a vertex may be simultaneously considered as the ith and j th  source for i # j .  

(2.2) Examples. The following very simple graphs will be useful in building 
nontrivial graphs: 

(1) The discrete graph n for n ~ 0 is the graph G such that VG = In],  EG = 0 ,  
iabG = 0 ,  vertG = ~ ,  and sreG is the sequence (1, 2 , . . . ,  n). In particular 
we have the empty graph 0 which is (necessarily) of  type 0. 

(2) I f  a is an element of  A of type n, then a is the graph G with a single 
edge labeled a and defined by V G = [ n ] ,  EG={1}, l abG(1 )=a ,  and 
vert6(1) =SrCG = (1, 2 , . . . ,  n). Note the special case where n =0.  

(3) A less trivial example is the 3-graph G such that VG = {t, U, V, W, X, y, Z} 
and Ec  consists of  12 edges labeled a, a', b, b', c, d, such that 

• ( a )  = ~ ( a ' )  = 1, 

r(b) = r(b') = 2, 

r(c) = 3, 

r(d)  =0.  

In the drawing of this graph (Figure 1) we have used the following conven- 
tions: 

(i) Binary edges are represented as usual. 
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i a  C 

1,3 b" b" c 

• ® O 
Fig. 1 

(ii) Unary edges are labels attached to vertices (a same vertex may be tagged 
with several labels or several occurrences of  the same label). 

(iii) Edges of  rank greater than 2 are represented as binary edges with 
intermediate vertices. In Figure 1 there is one edge e such that ver tc(e)  = 
wxy and another edge e' with ver tG(e ' )=yzz.  

(iv) Nullary edges are represented as floating circles. 

The sequence srcc is tyt. On the drawing the positions of  the source vertices 
in srcG are indicated by the integers 1, 2, and 3. The same conventions will be 
used in the sequel for representing all graphs. 

(2.3) Example (Words as Graphs)• We show that words over an alphabet A 
can be considered as 2-graphs. This example will help us to compare context-free 
grammars and context-free graph grammars in Section 4. Let A be a finite alphabet• 
By letting ¢(a) = 2 for all a in A we make it into a ranked alphabet• With every 
word w = a l a 2 , . . . ,  ak in A* we associate a 2-graph G better pictured by 

a 1 a 2 a k 

• ~ • ) 0  • • • • ) 0  

1 2 

than defined formally. Note that the empty word corresponds to a graph with 
no edge and a single vertex which is, simultaneously, the first and the second 
source. 

(2.4) Example (Terms and Terms with Shared Subterms). Terms over a fixed 
signature are usually considered as ordered trees; an implementat ion of  such 
trees which uses a sharing of  identical subtrees can be represented by a graph. 
Let A be a one-sort signature, i.e., an alphabet given with a rank function p: A -~ N. 
The corresponding graphs can be formally defined as 4-tuples of  the form 

G = (N ,  suce, lab, Vo), 

where N is the finite set of  vertices, Vo ~ N is the root, lab: N .~  A defines the 
label of  each vertex, and such::. N ~ N *  assigns to each vertex the sequence of 
its successors. One requires that Isuee(v)l = p( lab(v))  for all v ~ N. These graphs 
are considered, in particular, in Raoult [32]. 

Translation into a graph in our sense is easy. We first redefine the rank 
function. We let ~-(f) = p ( f )  + 1 for a l l f  in A. Then with the above graph (3, we 
associate the 1-graph 

H = (N, N, i abm vertH, srcH), 
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Graph G 
Fig. 2 

*l 

• • 

Graph H 

where 

labn(v)  = lab(v) for all v~N,  

vertn (v) = (v, v l , . . . ,  vk) where 

s r c .  = (V0). 

( D I , ' ' ' ,  Dk) : s u c e ( v ) ,  

Figure 2 illustrates this construction. 
The transformation of  G into H is clearly one-to-one. Note that the ordering 

on the set of  successors of  any vertex of G is expressed in a natural way in H. 

The specific sets V~ and Ec  chosen to define precisely a graph G are actually 
irrelevant. We shall not distinguish between two isomorphic graphs. Hence the 
following definition of an abstract graph. 

(2.5) Definition (Abstract Graphs).  Let G be a concrete n-graph, G '  be a 
concrete n ' -graph (both over A). They are isomorphic if n'= n and there exist 
two bijective mappings hv and hE: 

hv: Vc -> V~, 

hE: E~ --> E~, 

such that 

labc o hE = labc,, 

hv(vertc(e, i ) )=vertc , (hE(e) ,  i) for all i~ [~'(labc(e))],  all e in E~, 

hv(srea(i))=sre~,(i) for all i~ [n]. 

This means that G and G '  are the same up to the specific sets VG (Vc,) and 
E~ (E6,) chosen to define them. 

We say that h = (hv, hE) is an isomorphism of G onto G '  and we then write 
G'= h(G). I f  G ' =  G we say that h is an automorphism of G. 

In most cases we shall consider two isomorphic graphs as identical. More 
precisely we define an abstract graph (resp. abstract n-graph over A) as the 
equivalence class of  a concrete graph (resp. of  a concrete n-graph over A) with 
respect to isomorphism. And we shall say, in a loose way, "let G be the abstract 
graph (Vc, Ea ,  iaba,  vertc,  sreo),"  which means the isomorphism class of  the 
concrete graph G = (Vc, Ec ,  lab~, vertc, sre~). 
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We denote by G(A) (resp. by G(A) , )  the set of all finite abstract graphs 
(resp. of  all finite abstract n-graphs) over A. 

In a concrete graph G the elements of VG and E~ can be considered as 
names given to vertices and edges. These names can be used to distinguish similar 
items, for instance two edges having the same label and the same sequence of  
vertices. In the abstract graph associated with G, two such edges cannot be 
distinguished. 

Since we shall mainly be interested In abstract graphs we shall simply call 
them graphs except when it is necessary to emphasize that they are defined "up 
to an isomorphism." 

3. Operations on Graphs 

We shall define three operations on graphs that will allow us to build all finite 
graphs over A starting from the basic graphs 1 and a (for a in A) defined in 
Example (2.2), hence to define them by algebraic expressions. 

We first define these operations on concrete graphs, and then we verify that 
they are well defined for abstract graphs. One of our operations is a disjoint 
union, needing, for some graphs, the construction of an isomorphic copy, disjoint 
from some given graph. 

Formally, we need a mapping copy on concrete graphs such that, for any 
two concrete graphs G and G', the concrete graph G"=eopy(G,  G') is well 
defined and satisfies the following conditions: 

(1) G" is isomorphic to G. 
(2) E~,, c~ EG, = •, VG,, n Vc, = Q. 
(3) If EG n E~, = ~ and VG n VG, = Q then G "=  G. 

There are many ways to define such a mapping copy formally but we shall not 
need any specific construction. 

(3.1) Definition (Sum of  Two Graphs). Let G'  and G" be two concrete graphs 
of  respective types n' and n". The sum G'O G" of these two concrete graphs is 
the concrete (n '+  n")-graph G defined as follows; 

First case. Vc, c~ VG,, = O and Eo, c~ E~,, = Q: we say that G'  and G" are disjoint. 
Then VG = VG' U Vc,,, EG = Ec, u EG°, labG = labc, u lab~,, vertG = vertc, u vertc,, 
(see Section 1 for the notation u for functions), and s rcG=srec , - s rcG-=  
(SrCG,( 1 ) , . . . ,  sreG,(n '), srea,,( 1 ) , . . . ,  srcc,,(n")). 

Second case. G' and G" are not disjoint. The sum of G' and G" is defined 
def  

as G ' ~  G"= G'@eopy(G", G'). 
if  G'j is isomorphic to G'  and G~' is isomorphic to G" it is clear that G ~  G~' 

is isomorphic to G '0)G".  Hence the sum of  two abstract graphs is well defined. 
This operation is associative on abstract graphs (see Definition (3.7) below) 

but not commutative since the sequence of sources of the sum is the concatenation 
of  the sequences of sources of the two graphs. If G'  and G" are abstract graphs, 
at least one of  which is of  type 0, then G'ff) G"= G"OG' .  
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(3.2) Definition (Redefinition of Sources). For any map a from [p]  to In],  we 
define a source-redefini t ion map o'4 associating a graph of type p with a graph 
of type n as follows. For any concrete graph G of type n, we let 

cr~ (G)  = (Vo, Ec ,  labG, vertc,  SrCG o a). 

I f  p = 0 then a is necessarily the empty map (always denoted by Q) and ~r~(G) 
is the 0-graph G O obtained from G by "forgetting" its sources. Since the mappings 
o-~ commute with isomorphisms, the redefinition of sources is well defined for 
abstract graphs. 

(3.3) Definition (Source Fusion). For every equivalence relation 6 on [n], we 
define a mapping 0~ on concrete graphs of type n as follows. For G, of  type n, 
we let 08(G)  be the concrete graph G '  such that: 

(i) VG' is the quotient of  VG by the equivalence relation: v -~ v'¢:> v = v' or 
v = s r e 6 ( i )  and V'=SrCG( j )  for ( i , j ) ~ 6  (with canonical mapping 

f :  VG oVG,=VG/~) .  
(ii) Ec'= EG- 

(iii) v e r t 6 , = f o  vertG (i.e., vertc,(e, i) =f (ver t~(e ,  i)) for e ~ EG, i 
[~'(labG(e))]). 

(iv) labG, = labG. 
(v) srcc, = f °  srcc. 

I f  8 is the equivalence relation generated by a single pair ( i , j )  then we denote 

08 by O~j. 
Let A, be the trivial equivalence {(i, i ) / i  ~ [n]}. Then Oa,, is the identity. (This 

also holds when n = O: then Ao = Q is considered as an equivalence relation on 

[0] =03  
It is clear that if 6 is the equivalence relation generated by a set of  pairs 

{ ( i~ , j l ) , . . . ,  (ik,jk)} then 

08 = Oi~j, ° . . . .  Oik,jk 

I f  6 and 8' are two equivalence relations on [n], then we denote by 6 w 6' the 
smallest equivalence relation which contains 6 and 6'. From the above remark, 
it is clear that 08.~, = 08 o 0~,. 

As before, this definition also applies to abstract graphs. 
It is clear that these operations transform finite graphs into finite graphs. In 

this paper  we consider finite graphs. The case of  infinite graphs is considered in 
Bauderon [2] and Courcelle [9]. From now on "graph"  means "finite graph." 

(3.4) Definition (Graph Expressions). Let t~ be considered as a set of  sorts. We 
define an N-signature HA consisting of the following symbols: 

,,,, of  profile nm ~ n + m for all n, rn c I~. 
08,, of  profile n ~ n for all n ~ •, all equivalence relations 6 on [n]. 
o-~,p,, of  profile n - * p  for all n, p c ~ ,  all mappings a :  [ p ] ~ [ n ] .  
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a a constant of sort ~'(a) for all a in A. 
0 a constant of sort 0. 
1 a constant of sort 1. 

We shall also use ~-sorted sets of variables. If U is such a set, z(u) denotes 
def 

the sort of  u in U. We let E(A, U) = M(HA, U) be the set of well-formed finite 
expressions written with the variables of U, the constants 0, 1, and a (for all a 
in A), and the operation symbols introduced above. We call them graph 
expressions. Each of them has a sort in t~ and E(A, U), denotes the set of 
expressions of sort n. We shall use the notations E(A) and E(A),  when U = •. 

An example of a graph expression is 

g = O'a,6,9(08,7(a (~3,4 (/-'/ (~3,1 1)) @7,2 (b @1,1 v)), 

where we assume that 

a, bcA ,  r (a )  =3 ,  z ( b ) =  1, 

u, vcU,  r(u)=3, r(v)= 1, 

6EEq([7])  and a : [ 6 ] ~ [ 9 ] .  

It follows that the sort of  g is 6. 
When writing expressions we shall omit the subscripts n, m, in the operators 

@ . . . .  O'~,p,n, and 0~,,. Provided the sorts of the variables appearing in an expression 
are known, its sort can be computed and its well-formedness can be checked. 
For example, the above expression g will be written 

o'~( O~(a@(u@ l))@(b@v)). 

When p is "small", it is convenient to replace o's,p,, (or ~ )  by the symbol 
cr~l~ ...... ~p) (see Example (3.5) below). 

From Definitions (2.2) and (3.1)-(3.3) we have two many-sorted Ha-magmas, 
the magma of  concrete graphs CG(A) and the magma of (abstract) graphs G(A). 
It follows (from the basic facts recalled in Section 1) that every graph expression 
g in E(A)n defines simultaneously 

a concrete graph gcc of  type n, and 
a graph gc of type n 

(we use the subscripts CG and G instead of CG(A) and G(A)). Clearly, gc is 
the isomorphism class of gcc.  We shall also use the notation val(g) for gG when 
g e E ( A )  and we shall say that val(g) is the value of  g and that g defines or 
denotes val(g). 

Similarly, if g c E(A, {Ul, . . . ,  u,,}), and G 1 , . . . ,  G,, are concrete (abstract) 
graphs of respective types r ( u l ) , . . . ,  r(u, ,)  then gcc(Gl . . . .  , Gin) is a concrete 
n-graph (resp. gG(G1,...,  Gin) is an abstract n-graph). Let us observe that there 
is no difference between A and U. Both of  them are ranked alphabets. Hence 
gc E(A, U) also belongs to E(A~, U) and hence denotes a graph val(g) in 
G(A u U). 
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In Section 4 we define an operation of substitution on graphs (denoted by 
[ . . . ] )  such that if g e E ( A , U ) ,  where U={Ul, . . . ,um},  then, for all G~ in 
G(A),~, , ) , . . . ,  all G,, in G(A),~,,,,I, 

gG(A)(  G I , .  . .  , G m ) =  g G ( A w u ) [  G I / U l ,  . . . , G m / u m ] .  

In this formula if G6 G ( A u  U) then G[G, /u~ , . . . ,  G,,/u,,] denotes the result 
of  the simultaneous substitution in G of G~ for each edge labeled u~ for each 
i = 1 . . . .  , m. See Definition (4.1) and Proposition (4.7). 

Two expressions g and g'~ E(A) are equivalent (we write this g---g') if they 
denote the same abstract graph, i.e., 

g-= g' ¢:> val(g) = val(g'). 

(3.5) Example. Let a, b be of type 1, let c, d be of type 2, and e be of type 3. 
A graph H (with five vertices and six edges) is shown in Figure 3(a). It can be 
represented by the expression 

h = trl,s,s(O~(aOcO) b G d O e O d ~ ) l ) ) ,  

where 6 is the equivalence relation on [12] generated by 

{(1, 2), (3, 4), (4, 5), (5, 6), (7, 1), (9, 4), (10, 11)}. 

This expression is formed by source fusion and source redefinition applied to 

h ' = a G c t ~ b O d q ) e O d O ) l  

that represents the graph H '  shown in Figure 3(b). 
Another expression for H is 

h"= O'l.2.2( O~,,( eOo',.3( Os,( aO cO b@ d) ) ) )Go'~( Ol,z( d) )Go-~(1), 

where 6' is generated by {(1, 2), (3, 4), (4, 5), (5, 6)} and 6" is generated by 
{(1, 4), (3, 5)}. 
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(3.6) Proposition. For every finite graph G there exists an expression h such that 
G = v a l ( h ) .  

Proof. (An extension of  the construction of  h in Example (3.5).) If G is the 
empty graph then h =0.  Otherwise let G be an n-graph, with a set of  vertices 
VG = {vl, .  • •, vr} and a set of edges E~ = { e l , . . . ,  ep}. Without loss of  generality, 
we Can assume that the set of isolated vertices of G is {Vr-m+l . . . . .  Vr}. 

Let a; be the label of  the edge e~ for 1 -< i <- p (these labels are not necessarily 
distinct for distinct i's). For each i, 1 - < i - p + l ,  we set /x( i )= 

{z (a j ) /1 -< j -< i -1} .  Then hi = al~)"  "0 ap is an expression of s o r t / z ( p +  1). 
Let 8 be the equivalence relation on [ / z ( p + l ) ]  defined by the "gluing of 

edges in the n-graph G":  

f i=lz(il)+i2, 
~ j  = tx(j,) +J2, 

(i,j)~ ~ ¢~ [ vertc(ei,, i2)=vertc(ej,,j2) for some il,jl in [p]  
l and i2z [r(ai,)], j2z  [z(aj,)], 

and let h2=O~(hl)Om, where m stands for 1 @ 1 0 . .  "O1 (m times). This 
expression defines a ( / z ( p + l ) + m ) - g r a p h  whose underlying graph is G O but 
which has too many sources. 

We deftne a mapping a:  [ n ] ~ [~ (p + 1) + m ] such that tr~ (h2) defines G by 
setting 

a ( i ) = t z ( p + l ) + k  if srcc(i)=Vr-m+k ( i .e . , i s thekth iso la tedver tex)  

= tz( j)+k if srcc(i)  =vertG(ej, k). [] 

(3.7) Definitions (Algebraic Properties of Graph Operations). The algebraic 
properties of  the above-defined operations on graphs will be characterized by an 
infinite set of equations. Actually, these equations are generated by 11 equation 
schemes listed below and numbered (R1)-(R11). 

Since the set A of  labels does not play any role in these equations we need 
not recall it explicitly and we use the notations CG and G for the magmas CG(A) 
and G(A). 

The first equation scheme expresses the associativity of O:  

u@(v®w)=(u@v)@w. (R1) 

For each triple of integers (n, m, p) assigning sorts to the variables u, v, w this 
equation scheme yields the equation 

u @.,,.÷. (v ®m,. w) = (u @.,p v) @.+,-,e w. 

It is clear from the definitions that this equation is valid in (3. 
The subsequent equation schemes concern variables u, v, equivalences 8, 8', 

and total mappings a,/3, a ' , /3 '  on finite initial segments of N+, related by some 
conditions. To simplify these conditions we shall always assume that n = ~'(u) 
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and m = r(v).  The integers n, m, p, q can be chosen arbitrarily and independently 
in N to generate equations from equation schemes. 

o-~(~o(u)) = ~oe(U), (R2) 

where a: [ p ] ~ [ n ] , / 3 :  [ q ] ~ [ p ]  (one may have q = 0 o r p  = q  = 0 o r  n = p =  q =0). 

o-~(u) = u, (R3) 

where a is the identity [n] ~ [n] (note that a = Q if n = 0). 

O~( 08,(u) ) = O~, (u ) ,  (R4) 

where 6, S 'e  Eq([n]). 

0a(u) = u, (R5) 

where A is the trivial equivalence {(i, i) / i  ~ [n]}. 

o'~(u)Go',,( v) = o't3( vO u), (R6) 

where a:  [ p ] ~ [ n ] ,  a ' :  [ p ' ] ~ [ m ] ,  and/3:  [ p + p ' ] ~ [ m + n ]  is such that 

/ 3 ( i ) = m + a ( i )  for l<-i<-p, 

/3(i+p)=o~'(i) for l<-i<-p '. 

O~( u )G O~,( v) = O~+~,( uO v), (R7) 

where 6 c Eq([n]),  8'~ Eq([m]),  and 6 + ~' is the equivalence on [n + m] generated 
by 6 u { ( n + i ,  n+j ) / ( i , j )~6 ' } .  

0~(uO 1) = cr~(O~,(u)), (R8) 

where 6 in E q ( [ n + l ] )  is such that (i, n + 1 ) 6 6  for some i<-n and where 6 '=  
6I[n] ,  c~: [n+l ] - -~[n] ,  a ( j ) = j  i f j<-n,  c ~ ( n + l ) = i .  (By 6I[n ] we denote the 
equivalence relation 6 c~ ([n] × [n]) on [n].) 

O~(o',~(u)) = o'~(O~,~)(u)), (R9) 

where 6 ~ Eq([n]),  a: [ n ] ~  [n], and a (6)  denotes the equivalence relation on 
[n] generated by {(a(i) ,  a ( j ) ) / ( i , j ) c  6}. 

,7o( O~(u) ) = o-~( o~(u) ), (R10) 

where a,/3: [ p ] ~ [ n ]  and (a( i ) , /3( i ) )~6 for all i t [ p ] .  

uOO=u.  (R l l )  

(3.8) Proposition. The equation schemes (R1) - (R l l )  are valid in G. 

In each case, the validity of the equations can be checked from the definitions. 
We omit the verifications because they are tedious. 

(3.9) Remarks. (1) The equation schemes (R1), (R6), (R7), and (R8) are not 
valid in CG. This is due to the use of the mapping copy in the definition of the 
sum of two concrete graphs. 
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(2) Graph expressions can be transformed by means of the equations derived 
from the equation schemes (R1)-(R11) considered as forming a term rewriting 
system. We shall write this as g ~ g'. (Examples will be given in the proof of 
Theorem (3.10).) Hence it follows from Proposition (3.8) that if g, g '~  E ( A )  and 
g ~ g' then g =- g'. Moreover, if g, g '~  E ( A ,  { U l , . . .  , Urn}) and g ~ g' then, for 
all G , , . . . ,  Gm ~ G of appropriate types, 

g6( G~, . . . , Gm)= g'c( G1, . . . , Gin). 

Our next aim will be to establish the converse implications. 
(3) Since G is associative in G(A) (by the validity of (R1)) and is infixed, 

one can omit the parentheses, but only if the graph expressions are intended to 
denote abstract graphs (see the first remark). For example, the expression g of 
Definition (3.4) can be written 

cr,(Os(aO) u G  1)• bO v) 

without any ambiguity provided we use it in G. With this convention the use of 
(R1) (the associativity scheme) becomes implicit in the manipulation of 
expressions by ~R" 

(4) We do not know whether the equation schemes (R1)- (Rl l )  form a 
minimal set. It might be the case that one of them is a consequence of the others. 

(5) Here are some derived schemes that will be useful in some forthcoming 
proofs. A special case of scheme (R6) is 

u@ v = (r~(v@ u) (R6') 

with 

~ : [ n + m ] + [ m + n ] ,  

i~-+i+m if i c [ n ]  

i ~ i - n otherwise. 

By combining (R6), (R6'), and (R2) we get 

o-~(u)@o-~,(v) = tr~(uO v) (R6") 

for a certain r definable in terms of a and a' .  A special case of (R6') is 

u @ v = v G u  i f n  or n' equals 0. (R6") 

Note that we could replace (R6) by (R6') and (R6"). By using (R6) we can use 
one scheme less than with (R6') and (R6"). 

If instead of the operators 08 we choose to use the more elementary 0io then 
the scheme (R4) can be replaced by the following three schemes: 

Oi.j(Ok.l(~i)) = Ok.l(Oi.j(U)) saying that 0io commutes with Ok.I, (R4') 

O0( O,.k(U)) = Oio( Oj.k(U) ), (R4") 

Oi.j( u ) = Oj.i( u ), (R4") 

(for all i,£ k, l). 
Letting j = k in (R4") we obtain the idempotence of 0~j since 0j,j coincides 

with the identity (by scheme (RS)). 
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Given n, n', and an equivalence 6 on [ n + l + n ' ]  such that (i, n + l ) ~ 6  for 
i ¢ n + 1, we can find a and 6' such that, for u and u' of  sort n and n', respectively, 
we have 

O~(uO 1G u') = tr~(O~,(uG u')). (R8') 

The computation proceeds as follows (with ~ for ~ ) :  

O~(u@l@v) , - ,  O~(o-~(v®u®l)) 

o't3( Ot3(~)( v@ u@ l ) ) 

o'eo',08,,( v ®  u ) 

o't3o'~O~,,o~,( u ® v) 

o'~O~,(u ® v) 

(by (R6')) 

(by (R9)) 

(by (R8)) 

(by (R6')) 

(by (R9) and (R2)) 

for some well-chosen/3, 8", % r', 8', and a. 
From (R6"') and (R l l )  we obtain 

00)u = u. (Rl l ' )  

Our next purpose is to establish the main theorem of  this section. 

(3.10) Theorem. Two expressions g and g' of  the same sort are equivalent if and 
only if g <~R g'" 

If follows then from Proposition (3.6): 

(3.11) Corollary. The HA-magmas G(A) and E ( A ) /  ~ are isomorphic. 

Concretely, one can consider a graph as a canonical representative of an 
equivalence class of E(A)  with respect to the congruence <~R" 

Here is another consequence of Theorem (3.10). Let U = {Ul , . . . ,  urn} be an 
N-sorted set of symbols with sort mapping ~'. Every graph expression g in 
E(A,  U) = E ( A u  U) defines a graph vai(g) = gG(Auu) in G ( A u  U) and a map- 
ping gG(A): G(A),,  X" • • X G(A)~,,, -~ G(A)k (k = r(g) ,  n, = z(ui)). It is easy to 
prove that gc.(a~(u~,. . . ,u, ,)=gc(a~u)=val(g).  Hence, for any g and g' in 
E(A,  U), 

_ t gG(A)=gtG(A) iff gG~AuU)--gG(AwU1 il~ g <~R g'. 

The proof  of Theorem (3.10) will use expressions of a special type. 

(3.12) Definition (Expressions in Canonical Form). An expression g is in canoni- 
cal form if it is of the form g =0  or 

g = tr~(O~(a~G" • "Gak)Om)  

with a ~  A for i=  1 , . . . ,  k, m ~N, m standing for I G ' .  "O1 (m times). Hence 
Dora(a)  = [n] where n is the sort the expression g. 
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Note  that k is the number  o f  edges o f  val(g) and m is the number  of  its 
isolated vertices. 

The expressions constructed in the p roo f  o f  Proposi t ion (3.6) are in canonical  
form. Two equivalent expressions in canonical  form are not necessarily identical 
(unfor tunately)  but they are "very close" as we shall see when proving Lemma 
(3.14) below. 

We need two lemmas. 

(3.13) Lemma. Let  n l , . . .  , n k be a sequence o f  integers. Let  rr be a permutation 
o f  [k].  There exists a permutat ion ce o f  [ nl +" • • + n k ]  such that, f o r  all expressions 
el ,  • . . ,  ek o f  respective sorts n~ , . . . , rig, we have 

<-~ % ( e , @ .  . "@ek),  e~ (1 )@' ' '@e#(k )  n' 

where R ' =  {(R1), (R2), (R3), (R6)}. 

P m , f  We first consider  the special case where rr is the transposi t ion o f  two 
consecutive elements, say i a n d / +  1. Let us write e~(1)@.  • • @ e~(k) as  e ' @  e~+~ @ 
e~@ e" where e ' =  e l @ ' " - @ e ~ _ l  and e"= e~+~@.. "@ek. Then 

e'@ ei+l ® e, @ e" <z~ e '@ o'~,( ei @ ei+l)  @ e" 

<~> o'lz2( e '@ ei@ ei+l)@ e" 

~ ,  o'e3( e ' O  ei @ ei+m @ e") 

(by (R6')) 

(by (R6")) 

(by (R6")) 

for  some appropr ia te  mappings  i l l ,  f12, f13 that  are actually permutat ions  (easy 
to verify). Hence,  since rr can be decomposed  into a sequence of, say, q such 
transposit ions,  

e,~(l)@ • • • @ e#(k)(e-) o-v~(o-v2(... %,,(el 0 .  • • @ ek) . . . ) )  

for some permutat ions  7 1 - . .  7q, the result follows by (R2) with a =  
'~q O ")/0--1 . . . . .  ~/1" [ ]  

R e m a r k s .  (1) The permutat ions  i l l ,  J~2 ,  • • • , ") / l ,  " " • , ")/q c a n  b e  c o n s t r u c t e d  f r o m  

the integers nl,  . . . ,  nk. 
(2) There is at most  one permutat ion a such that 

e=( I)@ e~(2)@ • • • @ e=(k) ------ 0"6 (e, ® .  • • @ ek) (*) 

for all el . . . .  , ek. TO see this, let a be such a permutat ion and consider  the special 
case ei = 0 if r(ei)  = 0 and e; = ui with r(u , )  = r(ei)  if r(ei)  -> 1. Then (*) defines 
the equality o f  two graphs with edges labeled u l , . . . ,  Ug and such that no two 
edges have the same label. They have no internal vertices. It follows easily f rom 
the considerat ion o f  the external vertices that 

a(Y. { n # u ) / l  <--j < i}+ i ' )=  n, + .  . .+  n~u)_, + i' 

for all i =  1 , . . . ,  k and all i '=  1 , . . . ,  ni. This defines a in a unique way. 
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(3.14) Lemma. Theorem (3.10) holds for expressions g and g' in canonical form. 

Proof Let g = o - ~ ( 0 ~ ( f ) O m )  and g'=o'~,(O~,(f ')Gm') be two expressions in 
canonical  form and of  sort n where 

f = a l G a 2 ~ "  " "~at ,  

f ' =  blOb2G" • "Obk. 

We let'n~ = r(a~) for i =  1 , . . . ,  I. Let us assume that g---g' .  Let G = vai(g) = val(g'). 
We wish to prove that  g~Rg'" We can first observe that l = C a r d ( E c ) ,  k =  
Card(Ec,) .  Hence k = I. 

Firstcase. m = m ' = O , f = f ' , a n d a ~ # a j f o r a l l l < - i < j < - k .  I f n l + n 2  + . . . +  
nk = 0 it is clear that a = a ' =  Q, 6 = 6 ' =  Q hence g = g'. So assume that nl + n2+ 
• • " + n k  # O. 

Let i, j c [ n l + ' . . + n k ] .  There is a unique pair  ( i ' , i")  such that i =  
n 1 -k-" • • q- ni,,-I + i' with i' 6 [nr,]. We let j ' ,  j "  be associated similarly with j, This 
corresponds to saying that  i is the i'th vertex of  the unique edge in va l ( f )  labeled 
ar,, and similarly for j, j ' ,  and j". Hence ( i , j ) c 6  if  and only if in the graph 
G = val(g) we have vertG(e, i') = ver tG(e ' , j ' )  where e (resp. e') is the unique edge 
labeled a~° (resp. bj,,). Since G is also the value of  g'  the same characterizat ion 
holds for 6'. Hence 6 ' =  6. It is then clear that,  for  all i in In] ,  we have 
(c~(i), a ' ( i ) )  E 6. Hence (RI0)  is applicable and gives 

g = o'~(O~(f)) ~ ~%,(O~,(f')) = g'. 
R 

Second case (generalizing the first case), m = m' = 0, at # aj for all 1 -< i < j -<  
k and ( b ~ , . . . ,  bk) is a permuta t ion  of  ( a ~ , . . . ,  ak). 

By Lemma (3.13) we can find/3 such that f '  ~R tre(f) .  Hence 

g'= o%,( Os,(f'))<~R cr~,(0~,(o-~(f))) 

o',~,,(O~,,(f)) = g" 

for some a"  and 6" depending on a ' ,  6 ' , /3 and by (R2) and (R9). Hence g'-= g" 
and g-= g". The first case is applicable to g and g" and we have g<~R g"- Hence 
g'~R g '. 

General case. Let us consider  g = o'~(O~(f)Gm) and let H be a concrete 
graph isomorphic  to val(g). There exist two mappings 

hv: [ n l + "  • "+nk+m]- ->VH,  

hr: [ k ] ~ E ,  ={e l ,  e 2 , . . . ,  ek} 

satisfying the following properties:  

(1) hE is a bijection. 
(2) l a b n ( h E ( i ) ) =  a~ for all i =  1 , . . . ,  k. 
(3) vert~(hE(i) , j )  = hv(n~+" • "+ n , - t+ j )  for  all i =  1 , . . . ,  k, a l l j  = 1 . . . .  , n~ 
(4) hv is onto. 
(5) For  all i , j ~ [ n l + ' '  " + n k + m ] ,  h v ( i ) = h v ( j )  iff ( i , j )~6 .  
(6) For  all i =  1 , . . . ,  n, s r e , ( i )  = hv(a( i ) ) .  
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Since H is isomorphic to vai(g') similar mappings h~, and h~ exist, associated 
with g'. Their analogous properties are numbered (1')-(6').  

We transform H into a graph t~ as follows. We define two new alphabets 
U = { u l , . . . , u , , . . . }  and W = { W l , W 2 , . . . , w  . . . . .  }. We l e t V o = V n  and E o =  
E ,  u IH where IH is the set of  isolated vertices of  H that we assume to be disjoint 
from E ,  (without loss of  generality). Then we assume that I ,  = {v~ , . . . ,  vm} and 
we let 

l a b o ( e i )  = ui,  1 <-- i <-- k, 

labo( vi) = wi, l <- i <~ m, 

v e r t o ( e i )  = ver tH ( e i ) ,  1 <-- i <-- k, 

verto(vi) = ( vi), 1 <- i < - m, 

src<3 : SrCH. 

In words we relabel the edges of  G and we attach a unary edge with a label 
from W, to each isolated vertex of  G in such a way that no two edges in ¢~ have 
the same label. 

Consider the expression 

g = o - ~ ( O ~ ( u , , ® .  • .@ u,~)@ wj,@. • .@ w,.), 

where i, is such that hE(t)=ei, for all t~[k]  and j, is such that hv(t)=vj,  
for all t in [m]. We claim that val(~) is isomorphic to fir and that 
~[labn(el ) /U~, . . . , labH(ek) /Uk,  1 / W l , . . . , 1 / W m ]  is equal to g. A graph 
expression g '  can be similarly obtained from g'. It is equivalent to ~ since both 
of them define t~. 

We now have 

g = , ~ ( O ~ ( u , , ® .  • • ® u, k )® w j l ® -  • • @ w,, , )  

<~cr~(O,+a(u , .@'"Ou,kOwjiO" "Owj,,,)) (by (R7) and (RS)) 
R 

• ~>cr~,(Oa,+~(u~iO'"Ou~,~GwjI®" " 'Ow: , ) )  (by the second case above) 
R 

"~> o'~,(0~,(ud O" • "O ui'k)G wji@" • "0  Wk,') = ¢'  (by (R7) and (R5)). 
R 

Since g = ¢ [ l a b ,  ( e l ) /u l ,  • • •, l a b ,  (ek)/Uk, 1/Wl, • • •, 1/W,, ] and g '  = ¢'[labH (el) /  
u b . . . ,  labn(ek)/Uk, l / w l , . . . ,  1/W~] from ~ '  we obtain g~R g'" [] 

Theorem (3.10) is an immediate consequence of Lemma (3.14) and the following 
lemma. 

(3.15) Lemma. For every expression g there exists an expression go in canonical 
form such that g~g go. 

Proof B y f  f '  we shall denote expressions of  the form al G a2O)" • • • ak for some 
k _> 0, some a~, . . . ,  ak E A. The proof  is by induction on the structure of  g. 

(1) I f g - - m  or a we take go=g. 
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(2) If g = cr~(g') we take a canonical form g; = o'~,(0~,(f')@m) of g' (such 
that g'~gg'o) and go=~r~,o,(0~,(f')~m). Then g may be rewritten into go (in 
canonical form) by (R2). 

(3) If g = 0~(g') we again take a canonical form g~ = o-~,(0~,(f')Om) of g' 
and then 

g,~ O~(o'~,(O~,(f')Gm)) (by the choice of g~) 

,~, cr~,(O~,(~)(O~,(f')Om)) = g" (by (R9)). 

If the vertex fusions defined by a ' (6)  do not concern m then g" rewrites into 
o'~,(O~,,(O~,(f'))Om) for some 6" by (R7) and (RS) and then into a canonical 
expression by (R4). Otherwise we write g" as 

cr~,( O~,~a)( O~,(f')®m~O 10:)m2)), 

and, by the derived scheme (R8'), we transform it into 

o'~,( o'~( O~,,( O~,(f')Om~Om2) ) ) 

for some fl and 6". This use of (R8') is repeated at most m times, and finally 
gives an expression in canonical form. 

(4) Let us now assume that g = g 'Og"  and that the expressions g' and g" 
have canonical forms 

g~= cr~,(0a,(f')0)m') and g~ = ~,,(0~,,(F)Om"). 

So we need to compute a canonical form for 

g~ = o-~,(0~,(f)e m') O cr~,,(Oa,,(f")Om"). 

Then 

g~<~->tr~,(O~,(f')Om'OO~,,(f")Om") (by (R6")) 

• ~r~,(cr~(0~,(f ' )O0~, , ( f")Gm'Om"))  (by Lemma (3.13)) 

~o'~,(cr~(O~(f'Of")~)m'O)m")) (by (R7)) 

~r~(O~(f 'Of")Om'~m") (by (R2)) 

and this expression is the desired canonical form. 
In each case the necessary a~, a2, 6, and a are appropriately chosen to 

satisfy the corresponding scheme or derived scheme. [] 

(3.16) Definition (Widths of Graphs and of Graph-Expressions). We define the 
width of an expression g as the maximum number n such that g has a sub- 
expression of sort n, and we denote it by wd(g). Our convention that gl ® g2® g3 
stands for either gl@,,m+v (g2 ® ,,,pg3) o r  ( g l  ~n,mg2)~n+rn, p g3 where g~, g2, g3 are 
expressions of  respective sorts n, m, p does not raise any difficulty. In both cases 
wd(gl @ g2@ g3) = Max{n + m +p,  wd(gp, wd(g2), wd(g3)}. 

def 
We define the width of a graph G E G(A) as wd(G) = Min{wd(g)/g c E(A),  

val(g) = G}. It is clear that wd(G) cannot be less than the type of G and the type 
of any a in A labeling an edge in G. 
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The expressions produced by the proof of Proposition (3.6) are clearly not 
of minimal width. 

(3.17) Proposition. I f  A contains at least one element of type larger than 1, there 
exist graphs in G(A)o of arbitrarily large width. 

Proof. Let n be an integer, n -> 1. Let K be a graph in G(A)o having n vertices 
and such that any two vertices are linked by at least one edge. Let e be a graph 
expression denoting K. 

Our aim is to prove that wd(e) ~ n. Let M be the set of nodes of the syntax 
tree t of  e. For every m in M, the subtree of t issued from m is the syntax tree 
of a subexpression of  e denoted by e/m. (It is clearer not to identify e and t.) 
Let K / m  be the graph defined by e/m. There exists an embedding hm = 
(hmv, hmE): K / m  ~ K (see Definition (5.2) and Proposition (5.6) below). 

We denote by IIm II the cardinality of hmv(VK/m), i.e., the number of vertices 
of the subgraph of K that is the image of K / m  in K. If  m is in the scope of an 
operator 0~ some sources of VK/m may become equal by h~v. Hence ]lmll -< 
Card(VK/m). On the other hand, hmv is one-to-one on the set of internaI vertices 
of K / m  and hmr is one-to-one on EK/m. 

Our proof  is based on the following observation. Let m ~ M be such that 
elm = (e/mOO)(e/m2) where ml and m2 are the two successor nodes of m. 

Fact 1. At least one of  K / m l  and K/m2 has no internal vertex. 
(Otherwise, if K/m~ has an internal vertex v and K/m2 has an internal vertex 

v', then hm,v(V) and hm2v(v') are two distinct vertices w and w' of K that cannot 
be linked by any edge, contradiction.) Without loss of generality we can assume 
that K / m l  has no internal vertex. Then 

Fact 2. If  v is a vertex of  K/m~ and if K/m2 has internal vertices, then 
h,,,v(V) = hm2v(V') for some external vertex v' of  K/m2. 

(Otherwise, if v" is an internal vertex of K/m2, then no edge in K can link 
h,,,v(V) and hm2v(V").) 

Claim. For every me M, Ilmll<-wd(e/m). 
The proof  uses a bottom-up induction on the tree t. If  m is a leaf, then e /m 

is either 0, 1, or a for some a in A and the result holds in all cases. If  m is such 
that e/m = o',~(e/mO, where ml is the successor of m in t, then we can assume 
that Ilm, II <-wd(e/ml) and then 

Ilmll--Ilmll[, wd(e/m) =Max{wd(e/mO, r(e/m)}>-wd(e/mO. 

Hence 

Ilmll =IIm, ll <-wd(e/mO<-wd(e/m). 

If  m is such that e/m = O~(e/ml), then similarly we have 

IIm[I = IIm,II <-wd(e/ml)=wd(e/m). 

Let us finally consider the case where e/m = (e/mt)@(e/m2) as in Fact 1. 
Let ki = "r(e/mi) for i = 1, 2. 
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First case. K/m~ and K/m2 have no internal vertex. Hence Ilmi][---k~ for 
i = 1 , 2 .  

I lml [ -  II m, 11 + Ilm2ll 

<- k~ + k2 

-< Max{k1 + k2 , wd( e / m O, wtl(e/m=)} = wa( e / m ). 

Second case. One and only one of K / m l  and K / m 2  has internal vertices. 
Let K / m e  be that graph. By Fact 2, hm,v(K/mO c hm2v(K/rn2), hence 

Ilmll-< II m~[I- 

By induction 1! mall -< wd(e/m2). Hence 

lira 1[ - Max{wd(e/m2), wd(e /m0,  k~ + k2} = wd(e/m) .  

This completes the proof  of the claim. 
Letting m be the root of t we get Ilml[ = n <-wd(e/m)=wd(e) .  Since n was 

chosen arbitrarily large the proof is complete. [] 

(3.18) Applications (Derived Theories). Let us go back to the example of words 
already considered in Example (2.3). We keep the same notations. 

We have exhibited a mapping h: A * ~  G(A)2. This mapping can be defined 
in terms of expressions as follows, by letting 

t7(~) = o'1,,(1), 

/7(a) = a, 

/~(a- u ) =  cone(a,/~(u)), 

where, for any two expressions e and e' in E(A)2,  cone(e, e') = Oh ,a (02 ,3 (eO e ' ) ) .  

Hence h(u)=val(/~(u)) for all u in A*. 
It follows that the algebraic structure (A*, e, (a)aEA , O) is isomorphic to 

(G'(A)2, oq.l(1), ( a )~A,  cone) where G'(A)2 is a certain subset of G(A)2. Actually 
G'(A)2={va l (g ) /gc  M({conc}, {crl.l(1)}W A)}. It is not difficult to verify the 
associativity of eonc, namely that 

cone(e, cone(#, e"))',~R cone(cone(e, e'), e") 

for all e, e', and e" in E(A)2.  
Going back to Example (2.4) we now consider the case of trees. 
The mapping k: M ( A ) ~  G(A)I can be defined as val o/~ where /~: M ( A ) ~  

E(A)I  is such that 

/~ (a )=a  if a ~ A ,  p(a )=O,  

k ( a ( t , , . . . , t , ) ) = C o n s t , ( k ( h ) , . . . , k ( t , ) )  if a ~ A ,  p ( a ) = n ,  

tl . . . .  , tn ~ M ( A ) .  

In this definition, for each n >- 1, a as above, e~, . . . ,  en ~ E(A)~ we let 

Consta(el . . . . .  en) = cq(O~(aOel®e2" • • 0 e,)), 
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where the equivalence relation 8 e Eq([2n + 1]) is generated by the set of pairs 
{(i+ 1, 2 i+  1)/i = 1 , . . . ,  n}. Hence, dealing with trees corresponds to working in 
a certain subset of  G(A)~ together with the derived operators Consta for a in A. 

Other examples can be found in Courcelle [6], [8]. 

4. Context-Free Graph Grammars 

Context-free languages are usually defined arid manipulated in terms of derivation 
sequences, i.e., by considering grammars as rewriting systems. By a theorem of 
Ginsburg and Rice [18], they can also be characterized as least solutions of 
certain systems of  equations canonically obtained from the grammars. This 
characterization motivates the alternative terminology of  algebraic for context-free 
languages and grammars. Mezei and Wright have shown in [29] that this notion 
of  an equational (or algebraic [15]) set can be defined in any magma and not 
only in the free monoid as in the case of context-free languages. This theory has 
been recently developed in Courcelle [5]. Since we have defined an algebraic 
structure on the set of graphs we immediately obtain the notion of an equational 
set of  graphs from the general results of [29] and [5]. 

We define a notion of context-free graph grammar. It is based on the substitu- 
tion of  a graph for an edge (of the same type) in a graph. Our two main results 
are: 

(1) The characterization of  a context-free set of graphs as a component of 
the least solution of a system of  equations in ~ (G(A) )  canonically 
associated with the grammar generating it (this is an extension of  the 
theorem of Ginsburg and Rice). 

(2) A set of  graphs is context-free iff it is equational with respect to G(A). 

The first result can be stated independently of  the algebraic structure on 
G(A) defined in Section 3, whereas the second explicitly refers to it. Result (1) 
could be proved "directly." Actually it will follow more easily from the second. 

The basic lemma allowing this proof  states that the above-mentioned substitu- 
tion can be done at the level of graph expressions. 

(4.1) Definition (Graph Substitutions (for Concrete Graphs)). Let G be a con- 
crete graph, let e be an edge of  G of  type p-> 0. Let G'  be a concrete p-graph. 
We denote by GIG'~el the concrete graph G" defined as follows, with H =  
eopy(G', G) ( H  is a copy of  G'  disjoint from G): 

Ec- = EG u E ,  - {e}, 

labc,, = (labc u labH) I Ec,,, 

Vc,,= V~ 

d e f  

where ~ is the equivalence, relation on V =  V c u V ,  generated by {(srcH(i), 
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vertc(e, i ) ) / i  e [p]} and letting f be the canonical surjection 

V--> Vc,,, 

vertc,,(e', i ) = f ( v e r t c ( e ' ,  i)) if e ' e  E c - { e } ,  

= f ( v e r t u ( e ' ,  i)) if e ' e  E~ 

(for all. i e [~-(e')] in both cases), 

srec,,(i)=f(src~(i)) for i e [~-(G)]. 

This definition also applies when p = 0. In this case e is an edge with no vertex. 

I f  there is in G a single edge e labeled a we can write G[G' /a]  for GIG'~e]. 
We can also extend this notation to the case where there is no edge in G labeled 
a: in that case G[G' /a]  = G. 

Let now e l , . . . ,  ek be edges of  G of respective types n l , . . . ,  nk. Let 
G'l, • • •, G~ be concrete graphs of respective types nl, •. •, nk. Then the result of 
the simultaneous substitution of G'~ for e l , . . . ,  G~ for ek in G is the concrete 
graph G[G' l / e l ] [G~/e2] ' "  [Grk/ek] also denoted by G [ G ~ / e l , . . . ,  G~/ek]. If, 
for all i = 1 , . . . ,  k, ei is the only edge of G labeled ai we shall use the notation 
G [ G ~ / a l , . . . ,  G'k/ak] for G [ G ~ / e l , . . . ,  G'k/ek], and, as above, it can also be 
extended to the case where there is no edge labeled a~ for some i = 1 , . . . ,  k. 

With the above notations: 

(4.2) Lemma. 

(1) For every permutation 7r of  [k] the concrete graphs G[ G'1/ el, . . . ,  G'k/ ek] 
and G[G'~l) /e~(l)] . . .  [G'~k)/e,(k)] are isomorphic. 

(2) I f  G is isomorphic to G by h and if  G I is isomorphic to GI for all i = 1 , . . . ,  k 
then G[G'I/e 1 . . . . .  G'k/ek] and G [ G ~ / h ( e l ) , . . . ,  G'k/h(ek)] are 
isomorphic. 

We omit the proof  which is a straightforward verification. Part (1) of this 
lemma justifies the qualification of "simultaneous" for the substitution 
G[ G~/ el , . . . , G'k/ ek]. 

(4,3) Definition (Graph Substitutions (for Abstract Graphs)).  Lemma (4.2(2)) 
shows that, in some sense, substitutions can be defined for abstract graphs. But 
the notation G[G'~/el . . . . .  G'k/ek] cannot be used for abstract graphs 
G, G ~ , . . . ,  G~ since there is no way to designate specific edges (i.e., e ~ , . . . ,  ek) 
in abstract graphs. Of  course, if, for every i = 1 , . . . ,  k, there is at most one edge 
labeled ai the notation G[G' I /a~ , . . . ,  G'k/ak] can be used for abstract graphs 
(provided the type of G'i is equal to the type of ai for all i in [k]). 

(4.4) Definition (Context-Free Graph Grammars) .  A context-freegraph grammar 
is a quadruple F = (A, U, P, Z)  consisting of two finite ranked alphabets A and 
U (the terminal and the nonterminal one: the rank function is r: A ~ U -  N) and 



Graph Expressions and Graph Rewritings 107 

a finite set P of  pairs of  the form (u, G)  with G s G ( A w  U)~(,~ and u s  U (the 
set of  productions). The term Z is a graph in G(A w U) called the axiom. 

A binary relation on CG(A w U) is associated with F as follows: H -~ H '  if 

there exists a production (u, G)  in P and an edge e of  H labeled u such that 
H ' =  H[G/e]. This relation is well defined for abstract graphs and will be used 
for them in the sequel. We write H ~ H '  if we wish to specify the production 

used in this rewriting step. Intuitively, H ~ H '  means that G has been sub- 
stituted in H for some edge labeled u. I f  H has exactly one edge labeled u we 
can write more simply H'= H[G/u]. Note that if  H ~ H', H and H '  are of  

" (u,G) 
the same type. 

Let G s G(A u U). The set of  graphs generated by F from G is then 

d e f  

L(r, G) = { H  s G(A)/ G Z->H}, 
F 

and 

d e f  

L(F) = L(F, z ) .  

Such a set is called a context-free set of  graphs. 
We shall frequently omit the axiom in the definition of the grammar.  This 

means that any graph in G(A u U) can be taken as a possible axiom. In such a 
case the notation L(F) is meaningless. In all cases L(F, u) for u s U denotes the 
set of  graphs generated from the graph u (reduced to. a single hyperedge labeled 
u) taken as the axiom. 

(4.5) Example. Consider the grammar  of Figure 4. In this example, a, b, c, and 

p l  : 

p2  : 

Fig. 4 

e l  e l  

e 2  e 2  

e l  

e 2  

p 3  : e l  

1=4 : e l  

c 

b 
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., ( 
°2  

Fig. 5. 

ol  

d label "terminal edges" (with q-(a) = z(b) = z(c) = 2, ~'(d) = 3) and u and v label 
"nonterminal  edges." The symbol u is of  type 2 hence it generates a set of  
2-graphs. The distinguished vertices are marked 1 and 2. The symbol v has rank 
1 hence generates a set of  1-graphs (see Figure 4). 

Examples of  graphs generated by F from u are shown in Figure 5 

(4.6) Definition (Associating a Polynomial System with a Context-Free Graph 
Grammar) .  Let F = (A, U, P) be a context-free graph grammar  without axiom. 
Let U = {ul . . . .  , urn}. For every right-hand side G of a production rule of  P let 
exp(G) be a graph expression denoting G. Let S be the ground rewriting system 
on E ( A u  U) 

d e f  

s = { (u ,  exp(G))/(u, G) c P}. 

_ d e f  

Let S be the polynomial system S = (u i=pi ;  i 6 [ m ] )  where P i=  
Y. {exp(G)/(ui ,  G) c P}. It follows that D(~q) = S where D is the mapping recalled 
in Section 1. Then (~q, G(A))  is a grammar  on the magma of graphs G(A). 

We shall prove that L(F, u) = L((S, G(A)),  u) for all u ~ U. For this purpose 
we shall prove that graph rewritings can be performed on graph expressions. 
This will build a bridge between the notion of a context-free graph grammar  and 
the notion of a grammar  over the magma of graphs. 

We first recall that, for g ~ E ( A , { u ~ , . . . ,  urn}) and gl . . . .  ,gin 
E(A, U)~(,,~),..., E(A,  U)~(u,,,), we denote by g[g~/ul . . . .  , gin~Urn] the result of 
the simultaneous substitution of g~ for ui for all i - -  1 , . . . ,  m. We say that g is 
linear in U if every element of  U has at most one occurrence in g. 

(4.7) Proposition. Let g c  E ( A , { u l , . . . ,  urn}), let g l , . . . , g m  ~ E ( A )  be of 
respective types ~'(u~),. . . ,  r(um). Let us assume that g is linear with respect to 
{ u l , . . . ,  Ur,}. Then 

v a l ( g [ g , / u , , . . . ,  g, , /u, ,  ]) = val(g)[val(gl) /u,  . . . .  , val(g~)/u, , ] .  
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Sketch o f  the Proof. It suffices to perform the proof for m = 1. The general result 
follows from Definitions (4.3) and (4.1) and from the fact that 

g[gl /  ul , . . . , gin~ um ] = gig1~ Ul][g2/ u2] . . . [gm/ Um ]" 

For m = 1, the proof can be done easily by an induction on the structure 
of g. [] 

• In the following corollary we use the notations of Definition (4.6). 

(4.8) Corollary. Let ( u , G ) ~ P  and g=exp(G) .  Let h s E ( A u U )  and H =  
val(h). 

(1) I f  h-----~ h' then H ~ v a l ( h ' ) .  (u,g) 
(2) I f  H ' ( ' ~  H '  then there exists h' c E ( A  u U) such that h ~g) h' and H ' =  

val(h'). 

Proof. (1) Let h I c E ( A  u U w {w}) where w is a new variable of sort z(u)  such 
that h = hl[u/w] ,  w has exactly one occurrence in hi and h ' =  h~[g/w]. Let H t 
be the concrete graph defined by hi. It is clear that H is isomorphic to H~[u/w],  
and H~[u/w]-(-~-~H~[G/w]. By Proposition (4.7) H~[G/w]  is isomorphic to 
val(hl[g/w])  = val(h'). Hence H~-~-~ val(h'). 

(2) The proof is similar. [] 

Let us recall that by the notations of Section 1 if g e E ( A ,  U), U =  
{Ul urn}, then L(S, g) denotes {g ~ E ( A ) / g  s g }" We denote by L((S, G), ui) 
the ith component of the least solution of the system S in ~(G)  (and G is a 

d e f  
simplified notation for G(A)). Finally, if L___ E (A) then vai(L) = {val(g)/g ~ L}. 

(4.9) Theorem. Let F = ( A ,  U, P, Z )  be a context-free 
and S be associated with (A, U, P) as in (4.6). 

Then: 

(1) L(F, u)=val(L(S,  u)) 

= L((S, G), u) for all u ~ U. 

(2) L(F) = val(L(S, exp(Z))) 

= Z ~ ( ~ ) ( L I , . . . ,  Lm) 

(where U = {ul . . . .  , urn} and Li = L((S, G), ui) for i ~ [m]). 

graph grammar, let S 

Hence every context-free set o f  graphs over A is equational with respect to G(A). 

Intuitively this proposition says that every context-free set L(F) of graphs 
can also be defined: 

(1) By context-free rewritings of graph expressions followed by evaluations 
of the "terminal" graph expressions thus generated, i.e., as 
val(L(S, exp(Z))). 
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(2) Or as a component of  the least solution in ~ (G )  of a polynomial system 
over HA (namely, the system S u  (Uo = exp(Z)) where Uo is a new unknown 
of type ~-(Z)), and hence is equational. 

Proof. By Corollary (4.8) L(F, u) =vai(L(S,  u)) and L(F) =val(L(S,  Z)).  By the 
results on polynomial systems recalled in Section 1, we have 

val(.L(S, u)) = L ( (L  G), u) 

and 

val(L(S, Z))  = Z ~ l c ) ( L , , . . .  , Lm) 

where ( L ~ , . . . ,  L,,) is the least solution of S in ~(G) .  [] 

(4.10) Remark. Note that ,~ is not associated in a unique way with F since there 
exist several expressions denoting the same graph. But, for any alternative system 
,~' associated with F, the functions -' S ~ c )  and S~<c) are the same. Hence the two 
systems S' and S have the same solutions in ~(G) .  

(4.11) Theorem. A subset of  G(A),  (for some A and n) is context-free iff it is 
equational. 

Proof. The "only i f"  direction has been obtained in Theorem (4.9). Let 
us conversely consider a polynomial system K=(u i=p~ ,  i c[n])  over G(A), 
and L = L ( ( K , G ) ,  ul). (Again G stands for G(A).) Consider P =  
{(ui, val(ti,]))/i ~ [m], j  ~ [n,]} where each Pi is a sum of the form ti, l + ti,2+ • • • + 
ti,,,. Then F = (A, U, P) is a context-free graph grammar (without axiom). It is 
clear that the functions K~<c) and S~<c) (where S is associated with F as in 
Definition (4.6)) are the same. It follows from Theorem (4.9) that 

L = L((K,  G), u,) = L ( (L  G), u,) = L(F, u,) 

hence that L is context-free. 

To perform this proof  it is necessary to allow ul to be of type 0 (for the case 
where L___ G(A)o). Since in a context-free graph grammar every nonterminal is 
considered as an edge of the same type we had to introduce edges of type 0, i.e., 
edges having no vertex in order to have Theorem (4.11). 

We shall complete the picture by giving a concrete interpretation of S~c)  in 
terms of substitutions of sets of graphs. This will give us a theorem for context-free 
graph grammars analogous to the one of Ginsburg and Rice [18] for context-free 
(word) grammars. But we first develop Example (4.5). 

(4.12) Example (continuation of Example (4.5)). The system S associated with 
the grammar F of Example (4.5) is the following one: 

ql :  u ~ a ,  

S =  q2: u ~ o - ~ ( O ~ ( a @ b O c @ d @ v ) ) ,  
q3: v~r~ , (O~ , (aOuGb) ) ,  
q4: v-->cr,~,,(Oa,,(cGbGv)) 
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(for appropriate a, 6, a ' ,  8', a", S" such that for each rule qi: x ~ g  of S then 
x ~ val(g) is the rule pi  of  P). 

The three example graphs displayed in Example (4.5) are the values of the 
following expressions of L(S ,  u): 

a~ 

o ' , ~ ( O ~ ( a G b O c G d O o ' ~ , ( O ~ , ( a O a O b ) ) ) ) ,  and 

o' ,~(O~(a®bO) c O ) d O o , ~ , , ( O ~ , , ( c O b G o ' , ~ , ( O ~ , ( a O a e b ) ) ) ) ) ) .  

They are defined by the following derivations: 

ql  for the first one, 

q2; q3; ql  for the second one, and 

q2; q3; q4; q3; ql for the third. 

(4.13) Definition (Substitution of Sets of  Graphs in a Graph). Let U =  
{ U l , . . . ,  u,,}. Let W be an auxiliary ~/-sorted set of  variables disjoint from U. 
(The sort mapping is z and z ( u )  is the type of  u.) Let G ~ G ( A u  U) .  Let 
(~ ~ G(A u W) satisfy the following: 

(1) Each w in W labels at most one edge in t~. 
(2) G =  G [ u J w l , . . . ,  U j W k ]  where {Wl , . . . ,  Wk} is the set of elements of 

W occurring in G and i l , . . . ,  ik~ [m]. 

There exist several graphs satisfying (1) and (2) but we assume that some 
uniform way is used to construct 0 from G. Then for graphs G ~ , . . . ,  Gk of 
respective types r(w~) ( = z (uq) )  . . . .  , r (Wk)  ( = r(Uik)) the graph 
G I G 1 / w l , . . . ,  Gk /Wk]  is well defined. For sets  of graphs ~dl c G(A),~w,), . . . ,  ~dk 
G(A),~wk) we let 

G[[ ~dl/ wl , . . . , ~3k/ Wk]l = { G [  G l /  w l ,  . . . , G k /  Wk]/ Gl  e ~d, , . . . , Gk ~ ~k}. 

We define finally, for ~dl __q G(A),~u,) , . . . ,  cg,, ~ G(A)~,), , ,  

GI~,/u~, . . . ,  ~,,lu,,~ = ~ , , I w , , . . . ,  ~,~/w~. 

It is easy to verify that the value of  G[[. • "l] does not depend on the specific choice 
of G (provided (1) and (2) above hold). 

Intuitively, GI[ ~dl/ul, • • . ,  ~d,,/u,,1] is the set of  graphs we obtain by substitut- 
ing in G arbitrary graphs in ~dl, . . . ,  ~d,, for the edges labeled u~ . . . .  , u,,. Note 
that distinct elements of ~di can be substituted for distinct edges both labeled ui. 
(This is analogous to the OI-substitution in trees, see Engelfriet and Schmidt 
[17] or Courcelle [5]). 

In the special case where ~ = {G~} for all i = 1 , . . . ,  rn, G [ [ ~ l / u l , . . . ,  c'3,,/u,,] 

is reduced to a single element that we denote by G [ G 1 / u l  . . . . .  G , , / u , , ] .  Hence 
this is a new (and actually the last) extension of the notation introduced in 
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Definition (4.3). With a context-free graph grammar F = (A, U, P) we associate 
the system F consisting of the following equations: 

c ~ i = U { G ~ J u l , . . . , q ~ m / u m ] ] / ( u i ,  G )  E P } ,  l < - i < - m .  

In this system ~i denotes a subset of G(A)~I~,). This system is fully analogous 
to the system of equations on languages that are classically associated 
with a context-free grammar. Solving F consists in finding in E =  
3~(G(A)~(~,)) x . . .  x ~(G(A)~,, ,))  the least fixed-point of a certain mapping: 
E --> E, also denoted by F. It is clear from Lemma (4.15) below that this mapping 
is the same as the mapping S~c). Hence, we have, by Theorem (4.9), 

(4.14) Theorem. (L(F, ux ) , . . . ,  L(F, Urn)) is the least solution in ~(G)  o f  the 

sys tem ['. 

(4.15) Lemma. Le t  g ~ E ( A  u { u l , . . . ,  u,,}), let G = val(g). Then, f o r  every q31 c 

G ( A ) ~ , ) , . . . ,  qdm ~ G(A)~, , ) ,  

G[[ qd,/ u , ,  . . . , q3m/ Um~ = g ~ c ) (  ~3,, . . . , ~3,,). 

Proo f  If  g is U-linear then by Lemma 10.5 of [5] (p. 58) 

g~(G)(C~l, - . .  , ~m)= {gc(G~ . . . . .  G m ) / G I  C ( ~ 1 , " " " ,  Gm E ~m} 

and 

go(G1, • • •, Gin) = G [ G 1 / u l  . . . . .  Gin~Urn] 

by Proposition (4.7) since, for g l , . . . , g m  in E ( A )  defining respectively 
G 1 , . . . ,  Gin, one has 

g c ( G , , . . . ,  Gin) = gc(val(g~), . . . ,  val(gm)) 

= v a l ( g [ g , /  u~, . . . , g , , /  u, ,]) .  

If g is not U-linear, one can find h in E ( A ,  W )  (where W is as in Definition 
(4.13)) which is W-linear and such that g = h [ u i , / w ~ , . .  . ,  u U w k ]  for some 
i~ , . . . ,  ik in [m]. Then by Definition (4.13) 

G ~ f ~ l / / U l , . . . ,  ~m// Um~ = val( h )[ ~ , J  w l ,  . . . , ~ , f f  w J  

= h~c)(cg, , , . . . ,  cgi~) 

(by the first part of the proof). On the other hand, 

g ~ g ) (  ~31,. . . , ~ m ) =  ( h [ u J w l , .  . . , U,k/WR])~C)( ~1 . . . .  , ~Jm) 

= h.~c)(gi,, • • •, ~di k) 

by general properties of substitutions. Hence the desired equality holds. [] 

(4.16) Comparison with Context-Free Word Grammars. We have shown in 
Example (2.3) that a word in A* can be considered as a graph in G(A)2. By 
extending this construction it is easy to transform a context-free grammar generat- 
ing L __q A* into a context-free graph grammar generating the corresponding subset 
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of G(A)2. Hence every context-free language "is" a context-free set of  graphs. 
But the set of graphs corresponding to the noncontext-free language 
{a"b"c"/n >-0} is a context-free set of graphs. (A construction is given in Habel 
and Kreowski [2], Example 5.5].) 

From the first remark follows the undecidability of  many problems like 
deciding whether L(F):~ L (F ' )=  O for two context-free graph grammars F and 
F'. Some decidability results (like deciding whether L ( F ) = 0 )  follow from 
Theorem (4.9(2)) and the decidability of the corresponding problems for the set 
of trees L(S, exp(Z)).  

(4.17) Proposition. I f  L c G(A) is context free then Max{wd( G) /  G c L} is finite. 

Proof. Let L=L(F) .  By Theorem (4.9) there exists g c E ( A u  U) such that 
L = val(L(S, g)) (we use the notations of  Theorem (4.9)). The symbols occurring 
in the elements of L(S, g) are the finitely many ones occurring in S and in g. It 
follows that their sorts are bounded by an integer K. Hence wd(G)-< K for all 
GEL. [] 

(4.18) Corollary, If n >-0 and A contains at least one symbol of type larger than 
1 then G(A)n is not context free. 

Proof Immediate consequence of  Propositions (3.17) and (4.17). [] 

(4.19) Comparison with the Work of Habel and Kreowski [21]. A very similar 
notion of context-free graph grammar based on the substitution of hyperedges 
in labeled hypergraphs has been introduced independently by Habel and 
Kreowski in [21]. 

We now discuss two differences: 

(1) Instead of one sequence of sources they use two sequences of distin- 
guished vertices called the begin and the end sequences. An hypergraph 
having a begin sequence of length k and an end sequence of length l is 
called a (k, /)-hypergraph.  The hyperedges also have two distinguished 
sequences of vertices, a sequence of sources and a sequence of  targets. 
An hyperedge with k sources and l targets is called a (k, /)-edge. And 
a (k, l)-hypergraph can be substituted for a (k ' , / ' ) -edge in an hypergraph 
provided k = k' and l = l'. 

(2) The vertices occurring in the begin and end sequences of  an hypergraph 
must be distinct. 

For point (1) we think that introducing two sequences of distinguished vertices 
instead of one as we do, does not provide any real increase of power. Every 
grammar in the sense of  [21] can be simulated by a grammar in our sense. It 
suffices to concatenate the begin and end sequences of graphs and the source 
and target sequences of the hyperedges, by remembering the lengths of  the begin 
and end sequences in order to avoid illegal substitutions. 

Point (2) limits the class of grammars dealt with in [21] to a proper subclass 
of ours. 
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5. Graph Rewriting Systems 

Since every graph expression defines a graph, every binary relation on graph 
expressions defines a binary relation on graphs. The binary relation on graphs 
associated with a ground rewriting system on graph expressions will be called a 
graph rewriting. 

Th¢ purpose of this section is to compare these graph rewritings with the 
classical ones defined in terms of double pushouts by Ehrig and co-workers 
[10]-[12], [14] and Rosen [33]. These pushouts are defined with respect to certain 
categories q¢ of graphs. The associated relation on graphs is called a ~¢-rewriting. 

We shall establish that our rewritings coincide with the ~-rewritings that, 
roughly speaking, preserve the edges (two distinct edges cannot be fused during 
the rewriting whereas two distinct vertices can be). This limitation comes from 
the fact that our basic graph operations also preserve the edges in a certain sense. 

(5.1) Definition (Graph Rewriting Rules). A graph rewriting rule is a pair of  
graphs p = (G, G')  where G, G'  are of  the same type. 

A graph rewriting system is a finite set of  graph rewriting rules S = { p ~ , . . . ,  Pk}. 
The elementary rewriting relation on graphs associated with p = (G, G')  is 

defined as follows: 

H ~ H '  iff there exists H1 ~ G(A w {u}) 
p 

where u is a new symbol of type z(u) = z (G)  = ~'(G') having a unique occurrence 
in Hi such that H = Hl[G/u] and H ' =  H~[G'/u]. By Proposition (4.7) this is 
equivalent to the following: 

H-~H'  iff H = v a l ( h ) ,  H ' = v a l ( h ' )  
P 

for some expressions h, h' such that h ~ h '  where 
p 

h ~ h '  iff h = h l [ g / u ] ,  h'=h~[g'/u] 
p 

for some hi ~ E(A ~ {u}) having a unique occurrence of u, some g and g'  such 
that G = val(g) and G '  = val(g'). The context-free rewritings defined in Definition 
(4.4) form a special case of  these ones. 

The semithuian relation on graphs associated with S = { p l , . . . , p k }  is the 
reflexive and transitive closure of  the relation ~ defined by H ~ H '  iff H ~ H '  

S S Pi 

for some i = l , . . . , k .  

It is important to have a characterization of the fact that H = Hl[G/u] for 
some Hi and u since this means that " G  appears in H "  and that a production 
of the form p = (G, G')  is applicable to H. 

(5.2) Definitions (Embeddings,  Factors, Occurrences). Let G, H ~ CG(A) ,  for 
some n. 
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A homomorphism h: G ~  H is a pair of  mappings (hv, hE) such that: 

(H1) hv: Vc-* VH. 

(H2) hE: E ~ E H .  

(H3) hv(vertc(e, i))=vertH(hr.(e) ,  i) for all e~ Ec  all i6 [~'(e)]. 

(H4) labH(hE(e)) = labc(e)  for all e ~ Ec.  

(H5) hv(srec(i))  =s rco ( i )  for all i6 [n]. 

Hence the isomorphisms introduced in Definition (2.5) are the homomorphisms 
such that hv and hE are two bijections. 

Let now G ~ CG(A),  and H ~ CG(A)m with m not necessarily equal to n. 
0def 

Let us recall that G = o-~(G), i.e., is obtained from G by forgetting its sources. 
An embedding of G into H is a homomorphism h: G ° ~  H ° satisfying the 

following additional conditions: 

(El)  hE is one-to-one (we shall say that h is edge-injective; see also Definition 
(5.9) below). 

(E2) For all v, v ' ~  v in Vc if hv(v) = hv(v') then v and v' are external in G. 
(E3) For all v c V c  if hv(v) belongs to some edge in E /4 -hE(E~)  or is 

external in H then v is external in G. 

These conditions say that the set Ec  of edges of G is- injectively embedded into 
EH, that the set of  internal vertices of G is injectively embedded into the set of 
internal vertices of H, and that the vertices of  H common to the image h(G) of 
G in H and to the edges of H that are not in h(G) are images of the external 
vertices of (3. 

• If  h is an embedding of G into H we say that G is a factor of H and that 
h is an occurrence of this factor in H. Note that a graph may have several distinct 
occurrences in a graph. 

We say that an abstract graph G is a factor of an abstract graph H if it is 
the isomorphism class of  some concrete graph which is a factor of some concrete 
graph isomorphic to I-/. 

The notion of an embedding is closely related with the gluing condition 
introduced in [10]-[12], [14], and [33]. We recall it from [10, p. 24] in order to 
make a precise comparison, by formulating it for our graphs. (The reader can 
skip Definition (5.3) and Lemma (5.4) on first reading.) 

(5.3) Definition (Gluing Condition). Let B, C, D be 0-graphs in CG(A). Let 
(b, c) be a pair of graph homomorphisms b: B ~ C and c: C-* D. It satisfies the 
gluing condition if the following conditions hold: 

(GC1) For any two distinct edges e and e' of  C, if CE(e ) = cr.(e') then e and 
e' belong both to bE(EB). 

(GC2) For any two distinct vertices v and v' of  C, if Cv(V)= Cv(V') then 
v, v'~ bv(VB). 
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(GC3) If v ~ V c  and Cv(V) belongs to some edge in ED--cE(Ec) then v~ 
bv(VB). 

If G is an n-graph then the mapping srcG: [ n ] ~ V ~  can be considered as a 
homomorphism of the discrete 0-graph n o into G °. 

We shall use it in this way in the following lemma: 

(5.4) Lemma. Let G be an n-graph, n>-O, let H be a O-graph and h be a 
homomorphism G° ~ H. Then h is an embedding, G ~ H iff (srcG, h) satisfies the 
gluing condition. 

Proof Let h be an embedding. Then (GC1) holds by (El)  and the fact that n o 
has no edge. Condition (GC2) holds by (E2). Condition (GC3) holds by (E3) 
and the fact that H has no external vertex. Hence (sre~, h) satisfies the gluing 
condition. The opposite implication can be established similarly. [] 

This lemma holds even if n = 0. In this case srcG = ~ ,  and h is an embedding 
itt (~ ,  h) satisfies the gluing condition, iff h is an injective homomorphism such 
that h(G) is a union of connected components of H. 

We now go back to the characterization of G as a factor of H in terms of 
embeddings. Let us recall from Definition (4.1) that if G and K are disjoint 
concrete graphs the graph H = K[G/e]  can be defined as follows: 

En = E r  u EG-{e} ,  

V ,  = V / - ,  

where - is the equivalence relation on V=VK wV~ generated by the set of 
pairs {(srcG(i), vertK(e, i )) / i  ~ [¢(e)]} and letting f be the canonical surjection 
V-> VH, 

vertH (e', i) =f(vertK (e', i)) if e ' c  EK - {e} 

=f(vertG(e' ,  i)) if e '~ EG 

(for all i e  [r(e ' ) ]  in both cases), 

sreu(i)  =f(srer( i ) )  for all i c  [~-(K)], 

labH = (labK u IabG)IEH. 

(5.5) Remark. The triple ( f t V K , f t V c ,  Vn) is the pushout in the category of 
sets of the pair of mappings sre~: [ n ] ~ V c  and vertK(e, .): [ n ]~VK.  If srcG is 
injective then so is f lVK.  This is proved in Ehrig [10] but can also be verified 
directly from the above definition. 

Let then / = ( i v ,  iE) be such that 

iv = f i V e ,  

iE is the inclusion map, Ec  ~ E . .  

Anticipating the next proposition we shall call i the embedding of G into K[G/e] .  
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With these notat ions  
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(5.6) Proposition. 

(1) I f  K and G are disjoint concrete graphs if  H = K [ G / e ]  for some edge e 
of  K of  type "r(G), then the pair of  maps i= (iv,  iE) defined above is an 
occurrence of  G in H. 

(2) Conversely, if  G and H are concrete graphs such that G has an occurrence 
h in H there exists a concrete graph K, disjoint from G, with an edge e 
such that H is isomorphic (by k) to K [ G / e ] and such that the embedding 
i of  G into K [ G / e ] is equal to k o h ( where h : G ~ H and k : H ~ K [ G / e ] ). 

Proof. (1) It is easy to verify that  i is an embedding .  For  condi t ions (E2) and  
(E3) it suffices to note that  if  v ~ V ~ ,  v ' ~  V, v is internal i n G ,  and  v ' - v  then 
v ' =  v. This follows immedia te ly  f rom the definit ion of  - .  

(2) Let h = (hv,  hE) be an embedd ing  of  G into H. Without  loss of  general i ty 
we can assume that  G and H are disjoint. Let n = T(G). Let K be defined as 
follows: 

VK = ( V ,  - hv(VG)) w (hv(srcG(1)) ,  •. •, hv(sreG(n))},  

EK = (EH - hE(EG)) u {e} 

(where e is a new edge of  type n), 

SrCK ----- SrCH 

(srcK is well defined by (E3) of  Definit ion (5.2)), 

l abK(e)  = any e lement  of  A of  type n, 

l a b K ( e ' ) = i a b H ( e ' )  for  all e ' ~ E H - h E ( E c ) ,  

vertK (e, i) = hv(srcG(i))  for  all i = 1 , . . . ,  n, 

vertK(e ' ,  i )=vertn(e ' ,  i) for  all e ' ~ E n - h e ( E o ) ,  

(vertH(e ' ,  i )~  VK (by (E3) of  Definit ion (5.2)). 

It is clear that  G and K are disjoint. The  remaining  
easy. 

verifications are 
[] 

Remark.  In (2) the graph  K can be written cr~(Os(K'O u)) (up to i somorph i sm)  
where u is a new symbol  of  type n and K '  is a g raph  (essentially K minus the 
edge e) of  type n + p  where p =  ~'(K), c~ is the inclusion map ,  [ p ] o [ p + 2 n ] ,  
and 6 is the equivalence relation on [ p + 2 n ]  genera ted  by { ( p + l ,  
p + n + 1) . . . .  , (p  + n, p +2n)} .  Hence  H = K [ G / e ]  can be writ ten in the special 
form o',~(O~(K'@ G)). 
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(5.7) Examples. Consider the graphs shown in Figure 6. It is easy to verify the 
following equalities (of abstract graphs): 

HI = K , [ G , / e ] ,  HE = K2[G1/e] ,  

H~ = K~[G2/e]  = K2[G2/e]  = K3[O2/e] .  

It is clear that G2 has no occurrence in Ha. Although G2 has exactly one occurrence 
in H 1 three different "context" graphs Ki, i = 1, 2, 3, can be defined such that 
H1 = Ki[GE/e] .  This is due to the fact that the sequence of sources of G2 has a 
repetition (srcc2(1)=src62(2)). In the case of G1 there is a unique "context" 
graph K such that H~ = K [ G ~ / e ] .  This is precisely shown in the following 
proposition. 

(5.8) Proposition. Let G, H, and h be as in Proposition (5.6(2)). Let us assume 
that G has pairwise distinct sources. Let (K, e, k, i) and (K',  e', k', i') be two 
quadruples satisfying Proposition (5.6(2)). There exists an isomorphism j: K -~ K '  
such that jE( e ) = e'. 

The proof is a straightforward verification that we omit. 
The following proposition shows that the notions of embeddings and factors 

(and by Lemma (5.4), the gluing condition) can be expressed at the level of graph 
expressions. 

(5.9) Proposition. For abstract graphs H and G the following conditions are 
equivalent: 

(1) G is a factor o f  14. 
(2) There exist graph expressions g and h such that g is a subexpression o f  h, 

val(g) = G, and val(h) = H. 
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(3) There exist K ~ G ( A u  {u}) where u has a unique occurrence in K such that 
H = K [ G / u ] .  

If, furthermore, H is o f  type 0 then these conditions are equivalent to: 

(4) There is a homomorphism j: G° ~ H such that (srea, h) satisfies the gluing 
condition. 

Proof. (2)¢:>(3) by Proposition (4.7). 
(3)¢~(1) by Proposition (5.6). 
(1)¢:>(4) by Lemma (5.4). [] 

The following proposition states what is called the embedding of derivations 
in [10], [11], and [33]. 

(5.10) Proposition. Let ( G, G') be a graph rewriting rule and let H ~Tc, ) H'.  Let 

H be a factor of  some other graph K say K = K I [ H / u ] .  Then one has, with 
K ' = K , [ H ' / u ] ,  

K ~7~,) K '  and K tn,--~,) K' .  

Proof. 
such that, for some h~ ~ E (A ,  {w}) and k~ ~ E (A ,  {u}), 

h = h ,[g /w] ,  

h '= hl[g ' /w],  

k = k l [h /u]  = (k , [h l /W])[g /w] ,  

by the associativity of substitution. For the same reason 
(k l[hl /W])[g ' /w] .  Hence the result holds with K ' =  val(k'). 

We let g, g', h, h', k be graph expressions denoting G, G', H, H', K and 

k'=kl[h'/u]= 
[] 

We now compare these graph rewritings with the classical ones formalized 
in terms of push-out diagrams first by Ehrig et al. [14] and later by Rosen [33], 
Ehrig [10], and Ehrig et al. [12]. A complete bibliography can be found in 
Nagl [30]. 

We assume that the reader knows the few definitions in category theory used 
in the above-cited works, see Manes [28] or McLane [27]. We begin with a very 
general definition. 

(5.11) Definition (Rewriting Rules in a Category). Let ~ be a category. A 
R-rewriting rule is a pair of morphisms having the same domain. Actually, it is 

b t b 2 
convenient to write such a pair as a quintuple p =  (B~ , K ) B2) by 
also indicating the domain K and the codomains BI and B2 of b~ 
and b 2 . 
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If G and G' are objects in ~ we say that G rewrites into G '  via p iff there 
exists a commutative diagram 

n I ( 

G.  ( 

b 1 b 2 
K ) B 2 

D ~G' 

where both squares are push-outs. We write this G ~ G ' .  
p 

Definition 3.1 of Ehrig [10, p. 18] is the instance of this notion associated 
with the category ~ of finite oriented graphs (not hypergraphs), the vertices and 
the edges of which are "colored,"  i.e., labeled in a finite fixed set. The homomorph- 
isms are the natural ones (defined by (H1)-(H4)) .  In Ehrig et al. [14], the extra 
condition that d is injective is also imposed. See Rosen [33] for a review of these 
slightly different definitions. 

In what follows we shall use this definition for a category of graphs with 
edge-injective homomorphisms. It is concretely used in the following way: given 

b! b 2 
G, p = (B1 ~ K ~ B J ,  and g: B1 ~ G one must construct G'  such that 
G ~ G ' .  It is  proved in Ehrig [10] that there exist D and d such that (K, B1, D, G) 

P 
forms a push-out iff ( b l , g )  satisfies the gluing condition. Since a push-out 
(K, D, B2, G') can always be constructed (from K, b:, d) the gluing condition is 
necessary and sufficient for the existence of G'  such that G ~ G ' .  

P 
In our approach, G ~ G '  iff there exists an embedding B~-* G. This is 

P 
equivalent to the gluing condition by Proposition (5.9). If bl is injective then D 
is uniquely defined and so is G' [10, p. 25, Lemma 3.7]. This fact corresponds to 
the unicity result of Proposition (5.8). The efficiency of an algorithm for construct- 
ing G'  from p and g: B~-~ G is considered in [12] and [33]. 

In order to compare the two notions of graph rewritings precisely, we 
introduce some notations for manipulating square diagrams. A diagram A of the 
form 

b 
A , B 

C ~ D 
d2 

is linearly denoted by 

b d! c d 2 
A = ( A  ) B ' D , A  ' C ~ D ) .  

The object A is called the pivot  of A. Two diagrams A and A' where A is as above 
and 

b, B' d'~ A' ~' C'  d" A '= (A '  ) ' D', , :-~ D') 
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are isomorphic if there exist four isomorphisms hx : X o X '  (for X = A, B, C, D) 
such that all diagrams analogous to 

(A h a '  A' c' c h C ) C ' , A  , C  , C ' )  

commute. We say that h = (hA, h•, hc, ho) is an isomorphism A o  a'. 
In the double square diagram of Definition (5.11) the homomorphism g 

formalizes the fact that B~ "appears in G "  and that B2 can be substituted for it. 
To make this precise we must choose the category c¢. We take for ~ the category 
CG(A)0 of  concrete 0-graphs over A with edge-injective homomorphisms (they 
have been defined in Definition (5.2)). We call it ~ in the sequel by assuming 
that A is known from the context. 

Note that an embedding h: G o  G' where G is an n-graph and G'  is an 
n'-graph is an edge-injective homomorphism G ° o  G '°. We comment on the 
restriction to edge-injective homomorphisms as follows. 

We consider a graph as a set of edges "glued" together by means of vertices 
(and not as a set of vertices connected by edges). Hence we consider that G 
"appears in G" '  if the edges of G can be mapped injectively into EG,. Of course, 
the "gluings" of the edges and their labels must be preserved in this mapping. 
This is ensured by conditions (El)  and (E2) of  the definition of an embedding. 
New gluings can occur in the embedding of G into G' so that we do not require 
that hv is injective too. 

Our next aim is to establish that the g'-rewritings and the rewritings of 
Definition (5.1) have the same power (up to the isomorphism of  graphs). A few 
technical lemmas are needed. 

Let H, K s CG(A)0, let G e CG(A), ,  let e be an edge of type n in K, and 
let Ke denote the graph K minus the edge e (formally EKe =EK --{e}, VKe =VK, 
labKe = lab~ [EK,, vertK, = vertr  IEK,). Let us assume that H = K [ G / e ] ,  and let 
us consider the following diagram in g': 

s r c  G 

k i 

Ke , H = K [ G / e ]  
J 

where [n] is the discrete 0-graph n o (=  o-~(n)) (we may have n = 0 ) ,  i is the 
embedding of G into H = K [ G / e ]  (see Lemma (5.4)), srea also denotes the 
homomorphism (sreo, 0 ) ,  k = (kv, 0 )  where kv ( i )=ve r t r  (e, i) tor i e [n], and 
j ---( jv , jE)  where JE is the inclusion map E ~ - { e } o E ,  and i v = f  I rK.  (Here f 
is the mapping VKwVG o V H  used to define H = K [ G / e ] ,  as in Remark (5.5).) 
We denote this diagram by A(G, K, e). 

(5.12) Lemma. 

(1) A(G, K, e) is a push-out in ~. 
(2) Every push-out diagram in ~ with a discrete pivot is isomorphic to some 

A(G,K,e ) .  
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Proof (1) We have pointed out in Remark (5.5) that 

( In ]  s,o  'v Jv , v o  - - - ,  v . , [ n ]  , v . )  

forms a push-out in the category of sets. Since iE(Eo) UjE(EK.) = E ,  the diagram 
JE O i E 

(Q ' EK, " E , , ~  ~ Eo ' E , )  

is also a push-out in the category of sets. Together with some verifications 
concerning lab and vert, this suffices to prove that A(G, K, e) is a push-out in 
the category ~. It is also one in the category of concrete 0-graphs over A with 
arbitrary (not necessarily edge-injective) homomorphisms. The proof  of a similar 
result can be found in [33, Lemma 2.3, p. 339]. 

(2) Given a push-out diagram in ~ with a discrete (possibly empty) pivot, 
it is easy to construct G, K, and e. The isomorphism of A(G, K, e) and the given 
diagram follow from the universality property (i.e., the unicity up to isomorph- 
isms) of push-outs. [] 

Remark. We have defined ~ as a category of concrete graphs and an ~-rewriting 

rule as a quintuple p - (B~ bl *------ I bz ~ B2). Since push-outs are defined up to 
isomorphism, applying p to some concrete graph H produces a graph H '  that 
is defined up to isomorphism, hence is actually an abstract graph. Hence H o H '  
is defined for abstract graphs. P 

In rule p the graphs B~, I, and B 2 c a n  also be considered as abstract graphs. 
However, for proofs involving constructions on graphs, it is frequently convenient 
to assume that B1, I, and B 2 a r e  concrete graphs. 

(5.13) Proposition. Every graph rewriting rule is equivalent to an R-rewriting rule. 

Proof. Let p = (G, G') be a graph rewriting rule where G and G '~  G(A), .  Let 

~ o  ~ o ,  G,O) H '  p be the R-production (G O ~ In] . Let /-/, ~ G(A)o be such 
that H ~ H'.  This means that, for some K ~ G(A w {U})o with a unique occurrence 
of u, w~ have 

H = K [ G / u ] ,  

H ' = K [ G ' / u ] ,  

hence by Lemma (5.12) a double push-out as follows: 

K [ G / u ] = H  , K,, , H ' = K [ G ' / u ]  

In this diagram by Ku we mean the graph Ke where e is the unique edge in K 
labeled u. Hence H rewrites into H '  via p. Let us conversely assume that H 
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rewrites into H '  via/5 by means of a double push-out diagram of the form below 
(where all graphs are concrete): 

i°, -° i° 
H ~ D ~ H '  

We can build K, e such that D = Ke and by part 2 of Lemma (5.12) this double 
square is isomorphic to the one constructed in the first part of  the proof  (over 
G °, G '°, K ) [] 

b I b 2 
It is clear that every ~-rewriting rule of the form p = (B1 ~ I ~ B2) 

where I is discrete (we shall say that p is discrete) can be considered (up to 
isomorphism) as associated with a graph rewriting rule (G1, G2). It suffices to 
take a bijection i: [ n ] - V t  and to define Gj as the 0-graph Bj enriched with a 
source mapping srec j (s )= bj(i(s)) for s c  In], j = 1, 2. Hence in order to prove 
that the graph rewriting rules are as powerful as the ~-rewriting rules we need 
only prove that the interface graph in each rule may be restricted to the discrete 
underlying graph without changing the power of  the rule. 

This result is actually proved in Ehrig et al. [14, Proposition 3.3, p. 173] and 
mentioned in Ehrig [10, p. 18]. (The existence of edges in interface graphs is 
important for Church-Rosser  properties: see pp. 28-37 of [10]). We reestablish 
it since our category is not exactly the same. 

For this purpose we introduce some notations: 

(1) For every graph G we denote by t~ the discrete graph obtained by 
deleting all its edges. 

(2) If  b = ( b v ,  br) is a homomorphism G - G '  then we denote by 6 the 
homomorphism (bv, 0 ) :  G ~  G'. 

(3) If  A is a diagram in ~ of the form 

b 
I , B 

K ~ H 
k 

we denote by A the diagram 

6 
f , B  

1 
K ' - - - ~  H 

k' 

where K '  is K minus the edges in i~(EI) and k' is the restriction of' k 
to K'. 



124 M. Bauderon and B. Courcelle 

It is clear that ~ is commutative if A is commutative. 

(5.14) Lemma. Let A be a commutative diagram. Then ~ is a push-out in ~ iff 
is a push.out in ~. 

Proof. Let us assume that A is a push-out. Consider a pair of  morphisms 
m~: B ~ M  and m~: K ' - ~ M  for some M such that m~ o b=m'2o L There is a 
unique way to extend m~ into mE: K -~ M such that m~ o b = m2 ° i; for e in iE(Et), 
say Of the form iE(e~), we take m2E(e) = m~E(bE(e~)). Since iF is injective, m2E is 
well defined. Then, since A is a push-out, there is a unique morphism j:  H ~ M 
such that j o h = m~ and j o k = m2, and j is the required morphism establishing 
that A is a push-out. 

We omit the remaining technical details. [] 

(5.15) Remark. This lemma is not valid in the category of graphs with arbitrary 
homomorphisms.  It suffices to consider the example below (see Figure 7). The 
diagram A is not a push-out. The graph resulting from the push-out has two 
edges labeled a instead of one: 

a b 

b| b 2 
I f  p = (B1 ~ I , B2) is an ~-rewriting rule, we define 

/~---(B, ~ f ~ B2). 

(5.16) Lemma. For all graphs H~ and H2, H~ rewrites into H2 via p iff H~ rewrites 
into H2 via ~. 

a a 

kz b kz b 
. • . 

Diagram A Diagram /~ 
Fig. 7 
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Proof. Let us consider a double push-out A~A2: 

b, b 2 
B1 ~ I ~ B2 

hi I 1 i I h2 
HI ~ K ) H2 

kt k2 

It follows from Lemma (5.12) that the associated diagram ml~ 2 

B1 ~ [ ' B2 

n I < K '  ' H 2 
k( k~ 
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(5.18) Remark. Lemma (5.16) holds if one requires in the double push-out 
defining the rewriting of  H1 into 1-12 via p that i is edge injective. In Ehrig et al. 
[ 14] such a restriction is imposed and they obtain Proposition 3.3 which is nothing 
else than our Lemma (5.16). 

(5.17) Theorem. 
power. 

is also a double push-out. This proves the "only- i f"  part of the lemma. Conversely, 
let us assume that a diagram of  the form A~A2 above is a double push-out. We 
first define K, i, k~, and k2. Consider an edge e in I with a sequence of  vertices 
v ~ , . . . ,  vm. We make it into an edge Y in K having the label e and the sequence 
of  vertices iv(Va) , . . . ,  i-v(Vm). We do this for all e in El. Hence, formally: 

Vr  = Vr,, 

EK =EK,w {~/e~ El}, 

iv= Fv, 

iE(e) = $ for all e in El, 

kjv = k~v for j =  1,2, 

kjE(e)=k~E(e)  if e~EK,  j = l , 2 ,  

ksE(~) = hj(bs(e)) if e ~ E,, j = 1, 2. 

This defines a commutative double-square A~A 2. Hence it follows from 
Lemma (5.14) that A~A 2 is a double push-out. This proves the " i f "  part of 
the lemma. [] 

The following theorem follows from Lemma (5.16) and Proposition (5.13). 

The graph rewriting rules and the ~-rewriting rules have the same 
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6. Conclusions 

This paper presents the first steps of a truly algebraic theory of graphs. The main 
directions for future research are the following: 

(1) Constructing derived operations allowing the interpretation of the theory 
of magmoids [1], the theory of flowcharts ~ la Elgot and others [3], [16], 
br Schmeck [34] as subtheories (or derived theories) of the present one. 

(2) Investigating the recognizable sets of graphs (following the terminology 
of Mezei and Wright [29]). This is done in Courcelle [6] where the 
relations between the recognizability and the monadic second-order 
definability of a set of graphs are investigated. 

(3) Constructing an algebraic theory ofinfinite graphs, in particular of regular 
infinite graphs extending the theory of infinite trees developed in [4]. 
This is done in [2] and [9]. 

(4) Using the powerful existing tools [22], [23], [25], [26] on term rewriting 
systems modulo equivalence (namely ~ )  in order to obtain confluence 
properties for graph rewriting systems (as investigated by Ehrig ['10] and 
also by Raoult [32] but in a different way). 

(5) NLC graph grammars (Janssens and Rozenberg [24]) do not fit in the 
present formalism, but a similar algebraic theory can be developed for 
them. Some progress has been made in this direction in [7] where the 
notion of a context-free NLC graph grammar is introduced. 
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