
Math. Systems Theory 20, 13-29 (1987) Mathematical
Systems Theory
©1987 Springer-Verlag New York Inc

Relativized NC

Christopher B. Wilson

Department of Computer and Information Science, University of Oregon,
Eugene, OR 97403, USA

Abstract. This paper introduces a notion of relativized depth for circuit
families and discusses issues regarding uniform families of relativized circuits.
This allows us to define a version of relativized N C and compare it under
various oracles with relativized L, NL, and P. We see that NC1 is properly
contained in L if and only if there exists an oracle A such that N C A is
properly contained in L A. There is an oracle A where the hierarchy collapses,
NCA1 = NC A, and another where N c A c N C ~ c . • • c N C A c pA. We then
construct an A so that, for any k, N C A contains a set not in
N S P A C E A (O (n k)) , suggesting that the notion of relativized space is too
weak or that of relativized depth is too strong.

I. Introduction

As with the notion of sequential computation, the study of parallel .computation
naturally leads to the study of the inherent intractability of problems with respect
to their parallel solutions. In this paper we will look at complexity classes defined
in terms of the classical measures on both sequential and parallel models of
computation. By examining the structure of these classes, we can gain some
insight regarding the nature of these types of computation.

Our parallel model is uniform Boolean circuit families, and in requiring fast
parallel time we restrict the circuits to have poly-log depth. In addition, to ensure
that the circuits in a family do not get too large, we restrict them to polynomial
size. These restrictions yield the well-known complexity class N C (see [14] and
[9]). The following containments are known:

NC~ c_ L c_ N L c_ NC2 c_ N C c_ p.

None of these containments is known to be strict. A goal of this paper is to use

14 C.B. Wilson

the method of relativization to see what relationships are possible. Also, we will
investigate what one could prove with a relativizable proof technique. For
example, a proof of L = NL will relativize, but L ~ NL and several other relation-
ships cannot be exhibited with relativizable proof techniques. In Section 2 we
provide the reader with more complete definitions. There we will define formally
relativized parallel computation, where the circuits have access to an arbitrary
oracle set. The notion of relativized depth introduced is an interesting and natural
complement to that of relativized size, found in [23]. Sections 3 and 4 discuss
uniformity and what it means for a circuit family to be uniform in the presence
of an oracle.

Section 5 shows to what extent known results will relativize. For example,
the NC A hierarchy is seen to be in pA for any oracle A. Also, nondeterministic
log-space relative to A, NL A, is contained in NC~ for any A. We show that NC~
is properly contained in log-space, L, if and only if there exists an oracle A such
that NC A is properly contained in L A.

The results of Section 6 are mainly concerned with questions of circuit depth.
There is an oracle A so that the NC A hierarchy collapses--all levels are equal.
On the other hand, there is an A so that NC A is properly contained in NC~+I
for all k. As a corollary, one obtains that NC A is properly in pA. Surprisingly,
we can construct an oracle so that, for any k, NCa~ contains a set not in
NSPACEA(O(nk)). A corollary of this, clearly, is an A where NL A is properly
in NC a.

In summary, the main results to be covered are as follows:

(i) NC1c L iff there is an A such that N C ~ c L A.
(ii) 3A, NC¢--- NC~ NC a = pa.

(iii) 3A, NC~ac N C ~ c . . .= N C a c pa
(iv) 3A, Vk, NC a, - NSPACEA(O(nk)) ~ 0 .

2. Circuts and Oracles

Our model of parallel computation will be the Boolean (or logical) circuit. We
can think of a Boolean circuit as being an acyclic directed graph with labeled
nodes representing gates of the type and, or, and not, computing the appropriate
unary or binary function of the inputs. These gates have fan-in at most two. As
the circuits will be used to accept sets, rather than to compute functions, they
may have some n inputs, but only one output. The output will indicate whether
the circuit accepts the given input string of n characters over {0, 1}.

The size of a circuit is the number of gates it contains. Alternatively, one
may wish to count the number of edges, as we do later. This would at most
double the size measure. The depth of a circuit is the length of the longest directed
path from an input edge to the output. In general, we view the size as a measure
of the hardware required and the depth as the parallel time needed for the answer
to trickle out. One will agree that a circuit having depth which is a fixed power
of the logarithm of the length of the input string is indeed very fast.

Relativized NC 15

A set L is defined to be in SIZE(s(n)) if and only if there exists a circuit
family {as} such that for all n, as accepts only those strings in L of length n and
the size of as is bounded above by s(n). Similarly, L is in DEPTH(d(n)) if and
only if there is a circuit family as above, but the size restriction becomes a depth
restriction, limiting each a , to have depth bounded above by d(n).

The way we compare complexity classes is through the use of oracles. Let
A be some subset of {0, 1}*. A computation is relative to the oracle A if we allow
it to be determined in a single step whether an arbitrary string x is a member of
the set A. This is referred to as querying the oracle. (Think of having a black box
which can answer any oracle question.) In a sense, these oracles provide a sort
of generalized computational setting. If one can show that a particular relationship
between two complexity classes holds relative to some oracle, then one gains
intuition as to the structure of those classes. Furthermore, a proof that the negation
of that relationship is in fact the case without oracles must satisfy certain special
properties. In particular, that proof must not relativize, that is, hold in the presence
of an arbitrary oracle.

Thus, we will want to allow the circuits access to an oracle set. To accomplish
this, we use the notion of an oracle gate or node. An oracle gate is a k-input,
one-output gate which, on an input x of length k, will produce the value 1 on
its output edge if and only if x is in the specified oracle set. The contribution of
this node to the depth of the path on which it lies is [log2 k]. (A similar notion
can be found, see [9], in an NC~ reduction.) The size of the relativized circuit
is the number of edges in the circuit. A motivation for these measures derives
from a comparison with Turing machines. Consider a Turing machine writing
down a string of length k. It takes k steps do so so and, if the machine is to keep
track of its tape head, requires [log2 k] workspace. This allows the correspondence
of size with time and depth with space [8] to be valid for an oracle query as well.
Some relativized comparisons of circuit size to sequential (Turing machine) time
have been covered in [23]. Another type of relativized parallel computation will
be found in [11]. Given the discussion above, it now makes sense to define the
relativized classes SIZEA(s(n)) and DEPTHA(d(n)). SIZE-DEPTH~(s(n),
d(n)) is also clear, as in [14].

The sequential classes TIMEA(t(n)) and NTIMEA(t(n)) have been used
many places, and are well established. (see especially [3]). For these, a Turing
machine has a separate write-only query tape upon which it writes the string to
be queried to the oracle. After the query, the tape contents are erased. Measuring
space is somewhat trickier. One can require the query tape to be subject to the
space bound or allow it to be excluded. In both cases, undesirable things occur:
in the former we can have a set not be accepted in log-space relative to itself
(see also [2]); in the latter we might have nondeterministic log-space not contained
in P [10]. Therefore we adopt the convention introduced in [17]. The oracle tape
is not subject to the space bound, but a nondeterministic Turing machine must
act deterministically while there is anything on the query tape. This eliminates
the mentioned anomalies. We refer to this restriction as the RST restriction. We
define SPACEA(s(n)) and NSPACEA(S(n)) as relativized space under the RST
restriction.

16 C.B. Wilson

The following can be shown, where L is SPACE(Iogn) and NL is
NSPACE (log n).

Fact. L = NL if and only if, for all oracles A, L A = NL A.

This result, from [22], is a slight generalization of a result appearing in [20]
and later in [15].

In some proofs to follow, we let (x, y) denote an encoding of the strings x
and y so that x and y are easily recoverable. Also, I(x, y) I should be polynomial
in ix l a n d l Y I. In fact, it is easy to see that it can be linear in Ix I and l Y I. g
simple example would be to encode the bit 0 as 00, the bit 1 as 01, and the mark
as 11. Then let (x, y) = x # y. Hence, encoding and decoding are in NCo. The
encoding can be generalized to handle more than two strings, for example,
(x, y, z)= ((x, y), z). The symbol c_ will denote set containment, while c will
denote proper set containment.

An instantaneous description, or id, of a Turing machine is a tuple giving the
current state of the machine, the locations of the input and worktape heads, and
the contents of the worktapes. When a Turing machine needs to make a query
of an oracle, it enters a query-id. In a single step, it then enters an answer-id
depending on what had been on the query tape. Thus, there can be two reachable
answer-ids for each query-id. In any computation, the point at which the machine
writes a character on an empty query tape is described by an id referred to as a
beg-write-id. Under the RST restriction, the computation is deterministic until an
answer-id is reached, at which point the query tape will again be empty.

3. Uniformity

As defined so far, there are no constraints on the complexity of building the
circuit families. If the nth circuit in a family takes exponential time to construct,
one really has not gained much. Furthermore, the fact that the nth circuit may
be independent of the (n - 1)th circuit would allow a linear size log-depth family
to accept a nonrecursive set. It was this nonuniformity that was exploited in [23]
to allow such a family to accept any set in A2 e'A relative to A.

In order to avoid the uniformity issues from being decisive, we choose to
make the classes we compare essentially equally uniform. One approach would
be to make the Turing machine classes nonuniform [19], [14]. The approach we
use is to make the circuit classes uniform [8], [14], [16]. The standard method
to force this is to require that the transformation 1" ~ ~ be easy to compute on
a Turing machine, where ~ is an encoding over {0, 1} of the circuit o~,. A
reasonable encoding of a circuit a can be found in [16]. If a has k gates, including
inputs, then t~ is the k concatenated tuples (g, t, gL, gR), where gate number g
is of type t and has left input from gate gL and right input from gate gR.

Definition. A circuit family {a.} is s(n)-uniform if the transformation 1"->~-.-.
(where -~. is a string describing the circuit) can be performed in space O(s(n))
on a deterministic Turing machine.

A U(s(n)) preceding the name of a class indicates that the circuit families
involved in defining that class must be s(n)-uniform.

Relati vized. NC 17

A widely studied hierarchy of classes of uniform circuits, N C [14], involves
simultaneous resource bounds, measuring the size and depth at the same time.
This hierarchy is especially interesting not only because it contains a wide class
of natural and interesting problems [9] but because it characterizes that which
can be computed on fast, feasibly sized, constructible parallel models. It is most
simply defined in terms of circuits for our applications here, but can just as well
be defined on several other formal versions of parallel computation, such as
alternating Turing machines [16].

Definition.

NCk = U U(log n) -S IZE-DEPTH(O(n ') , O((log n)k)),
i ~ O

N C = U NCk.
k>_o

(Note: There is a slight unorthodoxy in our notation here. We will write N C k

rather than the more commonly used N C k to leave room for an oracle superscript.)

Often, these classes are defined as classes of functions rather than of sets, as
is done here.

4. Uniformity with Oracles

If we wish to examine what can happen to N C under relativization, we must
decide on what uniformity means in the presence of an oracle. This superficially
seems a bit unusual as the introduction of relativization generally makes com-
plexity measures nonuniform, since the oracle can be possible nonrecursive. But
the issue is how the computational devices attain access to the oracle. Relativized
Turing machines access the oracle in a uniform manner. Relativized circuits are
still a nonuniform measure with respect to the oracle.

In computing the transformation In _>-ff~, there are two obvious choices. We
can allow the use of the oracle in the computation or forbid such use. From one
point of view, we might want to exclude the use of the oracle. Uniformity is a
notion independent of any oracle set. It is a property of the description of the
circuits, not having anything to do with the set to which they are relative. On the
other hand, though, we like to think of an oracle as providing a generalized
computational setting. In this sense, any computation should have access to the
oracle.

We will define uniformity both ways, preferring the exclusion of oracle calls
in the computation of the transformation. We will refer to the allowance such
use as being weakly uniform. It turns out that here the distinction does not really
seem to matter. We generally choose the type of uniformity that will phrase the
results in the strongest form.

Definition. A relativized circuit family {an} is s(n).uniform, U(s(n)) , if the
transformation 1 n-~-~ can be done in O(s(n))-space by a deterministic Turing
machine without the use of the oracle.

18 c.B. Wilson

The family {a,} is weakly c(n)-uniform, wU(c(n)), if the transformation
1 n - - a , can be done by a deterministic Turing machine relative to the oracle with
at most O(c(n)) calls to the oracle.

Notice that this weak version of uniformity is indeed not very uniform. There
are no restrictions on the time or space required. Weak uniformity is also needed
to allow certain step-by-step arguments to succeed. Here, it is not so much the
uniformity of the circuit families that is required, but some limitation on how
many of them there are. Typically, our oracles are constructed in a countable
number of stages. Without any uniformity on the families, there would be
uncountably many of them, ruling out a diagonalization. Moreover, the Turing
machine constructor gives us an index to the family it constructs. Let us now
define a relativized version of NC.

Definition. Let A be an oracle set.

wNC a = U wU(n')-SIZE-DEPTHA(O(nJ), O((log n)g)),
i,j~--O

NC A = U U(log n)-SIZE-DEPTHA(O(n') , O((log n)k)),
i ~ O

wNC A= U w S C A, NC A= ~.J NC A.
k~_O k~_O

Notice that wNC A stands for the weakly uniform version of NC A. The
polynomial query bound in the definition of wNC'~ arises, intuitively, from the
fact that if an O(log n) space bounded constructor were allowed to query an
oracle, then it could ask polynomially many questions. Otherwise, no time or
space bounds apply. Importantly, this means that there is not necessarily an
effective enumeration of these machines and therefore of the weakly uniform
circuit families. The enumeration could be made effective, however, by the
addition of a recursive time or space bound to the constructors. This would allow
the oracle constructed in the proof of Theorem 7 to be recursive, with only a
slight weakening of the result.

5. Space Versus Depth

Now we are able to generalize a result by Borodin [8]. This is a straightforward
adaptation of the earlier result.

Lemma 1. Let s(n), s: N ~ N , be a constructible monotonic function satisfying
s(n) >- log n. Then for any oracle A,

SPACEA(s(n))c_ NSPACEA(s(n))

c_ U(s(n)).SIZE_DEPTHA(2 °c~")), O(s(n)2)).

Proof. The first inclusion follows directly from the definitions. The second
follows from an adaptation of the proof by Borodin [8].

Relativized NC 19

Think of the id's o f a nondeterministic computation as the nodes of a directed
graph and the state transition function as inducing edges. Unrelativized, there
would be N = 2 °(s(n)) id's. The transitive closure could then be computed in
uniform depth log 2 N in polynomial in N size.

Under the RST restriction, the segment from any beg-write-id to the unique
query-if following it is deterministic, and thus can be viewed as an s(n)-space
computable function. Since the s(n)-space deterministic functions are already
known to be in U(s (n)) -S IZE-DEFTH(2 °(s(")), O(s2(n))) by [8], we can pre-
compute this segment. That is, for each beg-write-id, we can compute with an
appropriately sized circuit the next query-id and the query, make the query,
giving us the appropriate answer-id. Now the situation is as in the unrelativized
case. The possible computation can be viewed as a directed graph. And we have
precomputed the single edge from each possible beg-write-id to the appropriate
answer-id. []

Hence, we have a generalization of a result mentioned in [9].

Corollary 2. For any oracle A, N L a c N C a.

It is not necessarily true that U(s (n)) -DE P THA (s (n)) is contained in
SPACEA(s (n)) as is known to be true in the unrelativized case. Theorem 8 will
illustrate how this can occur. For this model, the best one can do is bound a
circuit family's size by Turing machine time, independent of the family's depth.

Lemma 3. Let t(n), t: N ~ N, be a constructible monotonic function satisfying
t(n) >- n. Then for all oracles A,

U(log t (n)) -S IZEa(t (n)) c_ TIMEa(t (n)° (l)) .

The proof of this is straightforward after [8], depending on the fact that the
circuit value problem is in P, and remains so in the presence of an oracle. The
result looks weak given what we know of the unrelativized case, but it cannot
be stated any more favorably. We cannot improve the space bound below t (n) o(1),
as a generalization of Theorem 8 would show. This is because one query may
depend on t(n) °(~) other queries in the circuit: for example, if a query is
constructed by concatenating the answer" bits of t (n) other queries. These out-
comes must be written down on a worktape before finally being transferred to
the query tape, thus forcing the bound.

This does at least show that the N C hierarchy cannot be too powerful.

Corollary 4. For all k >- 1 and oracles A,
A NCk ~ U(log n)-SIZEA(n k) ~_ pA.

What we would like to do now is exhibit the relativized separation of various
complexity classes. For some, this is not very likely, as an oracle separating two
classes might prove that they are indeed not equal. We can get such a result for
NC1 and L. Unfortunately, the fact that NCI ~_ L does not relativize, as we shall
see in Theorem 8. But we can show the following.

20 C.B. Wilson

Theorem 5. NC1 = L if and only if, for all oracles A, L A c_ NC A.

Proof One direction is trivial if we let A be the empty oracle. So assume that
NCI = L and let A be an arbitrary oracle. We let S be a set in L g and will show
that S ~ NC~.

Since S e L a, it is accepted by some deterministic Turing machine M which
operates in space O(log n). If we were to run M on an input x of length n,
because M operates in log-space, there could be at most O(n k) answer-id's,
where an answer-id is an id of the machine after a query has been made and the
response received. Note that in an answer-id, the oracle tape is empty and the
machine is in a yes or no state. Any i d a may spawn a next query Q. We also
known, again due to the O(log n) space restriction, that there is a polynomial
p(n) which bounds the length of the longest query on any input of length n. Our
representation of Q will be padded out to 2p(n) bits. So the languages

{(x, ct, i): the length of the query caused by a on input x is ->i}

and

{(x, t~, i, d): the length of the query caused by a on input x is ->i and
the ith bit is d}

are in L, and, by assumption, in NC~. So we could hook up p(n) circuits to get
an NCI circuit/3 computing the mapping (x, t~)~ Q. As a technical point, each
bit of Q will be represented by two bits in the circuit: the first bit indicates
whether the second is part of the query. For example, Q = 010 would be represen-
ted by 0 . • • 0101110.

Now consider the O(n k) answer-id's no, a l , a 2 , . . . , ac, ~ (no is the initial
id, which generates the first query). For each of these ai, we can construct an
NC~ circuit which, with x, will output the next query Q; that will be made after
the answer-id a~. This we do by fixing the appropriate inputs x and ai to/3.

Let us define a nonrelativized version of S, S = {(x, y)[M accepts x using y
as an oracle string--if answer-id a leads to a query Q, then the answer to Q ~ A
is interpreted as the a th bit of y(lyl=c[x[k)}. Since S is in L, it is also, by
assumption, in NCI. So there is an NCt circuit y accepting it. If the string y is
appropriately fixed, then y can be used to accept S.

To construct an NC A circuit for S, we describe three levels. The first level
is c n k copies of/3, each with one of the answer-id's a l , . . . , ac,~ fixed as input
and all having x as an argument. This level has depth O(log n) as/3 is an NCt
circuit.

Intuitively, the second level simply consists of queries to the oracle of each
of the outputs of /3 from the first level. As each of those has length at most
polynomial in n, the depth of this level is O(log n). However, the query does not
have a fixed length, so there will have to be p(n) query nodes set up in parallel.
The rightmost k second bits get sent to the query node of size k. The first bits
of the pairs tell us the length and, thus, from which query node to take the
answer. This extra processing takes only log n depth. For the sake of convenience,
we may assume that the query nodes have the ability to handle queries of varying
length.

Relativized NC 21

The third and bottom level is the circuit 3' with input x and y restricted to
the outputs of the queries made at the second level. That is, the a th bit of y is
restricted to be the answer to the a th query at the second level, which in turn is
the answer to the next query M would make when in answer-id a on input x.
And as we know that 3' is an NC1 circuit, we have that this level has depth O(log n).

[]

The circuit layout is as shown in Figure 1.
The total depth of this circuit accepting S is O(log n), and it also has

polynomial size. Uniformity is seen in the fact that to construct it, all one must
do is generate fl and 3'--both can be done uniformly--generate all possible
answer-id's or1 , . . . , acn k, and describe some fairly trivial connections.

Corollary 5.1. NC1 c L i f and only i f there exists an oracle A such that
L A _ N C A ~ ~ .

x

. l . l : . : : . J .

X 0 / 1 X 0 / 2 X 0 / e n k

I i - ! l l . l I i l II l il-..I l l . - .I

[il.-. i I] Ill.. l,,b
I

° ° . I f !

s . ° o . : °

Fig. 1

22 C.B. Wilson

Corollary 5.2. NCI c L i f and only if there exists an oracle A such that N C A c L A.

The second corollary is in a more pleasing form. The first points out an
interesting approach to separating NC~ from L. If we could construct a single
oracle A for which L A contains one set not in N C A, then we have a proof that
NC~ c L. This situation is similar to that mentioned earlier regarding L and NL.
There we saw that if one had an oracle A such that L A c N L A, then one had a
proof that L c NL. In both these cases, NC1 versus L and L versus NL, a proof
of equality can relativize, because in that case no oracle witnessing inequality
can exist. Notice that these results are similar to the approach of positive
relativization taken in [6] and [7].

A natural oracle one would want to build is an A such that N c A c N L A.
This, however, would be a proof that NC~ c L or L c NL, due to Theorem 5 and
the similar relationship of L and NL.

6. Depth

The N C hierarchy is not known either to collapse or to have full structure. In
this section we will examine what relationships are possible and see what we
could hope to prove with standard techniques. We can, for example, show a
relativized collapse of this hierarchy, implying that any proof of separation must
be unrelativizable.

Theorem 6. There is an oracle A such that N C A = L A = N P A.

Proof The proof of this is straightforward. Let M~, M 2 , . . . be an enumeration
of the nondeterministic Turing machines with polynomial time bounds. We define
a complete set for NP:

K (A) = {(i, x, 0"): M a accepts x in at most n steps}.

As in [3], A can be constructed so that

y e K (A) <:~ y0LylaA.

For this A, then, S ~ N P A implies that both S c L a and S ~ NC'~. Let us briefly
argue the latter conclusion. A string x is in S if and only if (i, x, 0P, clxt))0 m e A,
m = I(i, x, 0P,<lxl))l, where M~ accepts S in polynomial p~(n) time. The evaluation
of the polynomial p~(n) will only need to be done in O(log n) space by the
machine which constructs the circuit an. The circuit a , consists of the single
query (i, x, 0p, clxl))0 m as above, and has both polynomial size and log n depth.

[]

We can also exhibit full structure in the N C hierarchy, as has recently been
shown for the polynomial hierarchy [24].

Theorem 7. There exists an oracle A such that

NcA+~ - wNC:~ ~ f~, Vk >- 1.

Relativized NC 23

Proof First we describe a language Lk+t(A) which for all A is in NcA+t. What
follows is an algorithm to accept it, after which we can convince ourselves that
a circuit family of the appropriate size and depth will accept it as well.

Input x, I x l = n
K ~ [log k+l n]

d o i ~ l t o K - 1
if xO"-ilb~_l • • " b~ e A then b~ ~ 1

else bi ~ 0
end

if x0"-KlbK_I • • "b1EA
then accept
else reject

If we build the obvious (but wrong) circuit which copies the given sequential
algorithm, we would find that each of the [log k÷~ n] queries would incur log(2n)
depth, resulting in an O(log k÷2 n) depth circuit. But a circuit could determine
[log n] bits. bi at a time by testing all, polynomial in number, possibilities in
O(log n) depth. Only O(log k n) such levels would be required. The construction
of the circuit is both uniform and independent of the oracle.

As usual, the oracle will be constructed in stages. A stage will be indicated
by a pair (k, i). At stage (k, i) we will ensure that the ith wNC~ circuit family
cannot accept Lk+1(A). The ith wNC A circuit family will be the one described

a
by the deterministic Turing machine M<k.i> (the enumeration of which, we recall,
is not necessarily effective without some sort of additional constraint). Let us
consider the circuit t~ constructed by M~k,~> on an arbitrary l" - - reca l l that it
makes at most n c oracle calls, for some integer c.

We need to partition a into levels. For some string x, fixed later, let us
consider only those queries made by a of the form xz, where I z I = n. The circuit
a is partitioned into independent query levels as follows: queries at the first level
are all queries that depend on no other queries, queries at the second level each
depend on some query at the first level, and so on. In general, then, any query
at level m will depend on some query at level m - 1 (and possibly lower numbered
levels as well), but it will not depend on any query at levels numbered m or higher.

Notice that each query node in level m can be affected by a node in level
m - 1, for otherwise it would be in level m - 1 by definition. So there is a path
to each m level node from some m - 1 level node. Hence, a can have at most
O(log k- ~ n) levels. Otherwise there would be a path containing to (log k-l n) query
nodes, each of which incurs depth [log n]. The depth of a would then be
to(log k n), contradicting the fact that it is a wNC~ circuit. So, for some d, a can
have at most d log k-1 n levels.

During the construction, we assume that if a string is queried which has not
been specifically assigned to either A or ,4, it will be assumed to be in fi~. We
need not go to the effort of assigning these strings to ,4 since any subsequent
stage will only add to A strings which are longer than anything queried at the
current stage. We should also note that in the level decomposition of a circuit
a, strings can be queried between levels, before level 1, and after level m. But

24 C.B. Wilson

we are concerned with strings only of a particular form, xz , so these other strings
queried will be assumed to be in A. They will never be added to A.

Now we can describe the construction. Make n large enough so that it is
larger than the length of any string queried at any earlier stage and 2 ~°g2"/a is
larger than the sum of the size of a and nO, the largest number of strings queried
in the construction of ~. Also ensure that 2" is larger than n c. Finally, let us
assume that n is of the form 2 dl for some /.

Choose an x of length n such that for no z of length n was x z queried during
the construction of a. This is possible since 2 " > n c. In the construction, no string
relevant to the membership of x in L k ÷ 1 (A) was queried. So establishing whether
x is to be in Lk+~(A) by adding strings of the form x z to A will not affect the
behavior of the machine constructing a. Therefore, a will be unaffected by any
later decision that may put x into Lk+l(A).

At this point we proceed in steps. Set the input to a to be x. At each of the
d log k-t n steps, one step for each level, we will fix

log k+l n log 2 n

d log k-I n d

bits of the final string put in A. Step m proceeds as follows:

Let i = (m - 1) log 2 n / d .

(Note: In the construction we will have ensured that no string of the form
xzbi" • • b l ,]z l= n - i, is queried at any level 1 through m - 1.)
There are 2 I°g2"/d strings x O " - I y l - i y b i . . , b~, where l y l = l o g 2 n/ .d . For some
choice of y, the string is not queried at this or any previous level. Furthermore,
it can have the property that no string of the form x z y b , . • • b~, [z I = n -ly[- i,

is queried at this or any previous level. Pick such a y and f o r j = 1 to log 2 n / d ,

where y = y ~ o g 2 , / d • • • y~, put x O n - J - i l y j _ ~ • • • ylb~" • • b~ into A if and only if
y j = l .

Consider the strings placed into A at step m. By the note, which forms an
inductive invariant, none of these strings will have been queries at any earlier
level. We already know that the machine which constructed a will not have
queried any of them. Possibly some of these strings will be queried at this level,
but placing these strings into A here will affect only later levels, not other queries
made at this level. The step of the construction proceed as described up through
the last bit, at which point xO ~-K l b K _ ~ • • • b l , K = log k+l n, is put into A if and
only if a with the oracle A rejects x.

It remains to show that placing this last string into A will have no effect on
the construction of A so far. This we do by showing that it could not have been
queried earlier. Suppose it was queried at level j. Where i~_~ = (j - 1) l o g 2 n / d

and i j = j l o g 2 n / d , let y = b ~ , . . , b~j_,+~ and z = O " - K l b K _ ~ . . . b i j ÷ t . Then the
string xzyb~j_~ • • • b~ is queried at level j. This contradicts the way in which y was
chosen at step j. No string of this form is queried at this level, for any z.

So at stage (k, i) we have ensured that the ith w N C ' ~ family will not accept
L k + l (A) c N C ~ + ~ . Hence, the diagonalization is complete. []

Relativized NC 25

Notice the strong use of uniformity here. There is a set in each uniform level
not in the next lower weakly uniform level. Hence, both the uniform and weakly
uniform hierarchies can have full structure. This allows us to change the definition
of uniformity and know that there can still be full structure.

We could almost change Theorem 7 to separate NcA÷~ from nonuniform
N C a. The uniformity of the lower level was hardly used. The problem is one of
countability--there is an uncountable number of nonuniform polynomial-sized
poly-log depth circuit families. So in a countable number of steps we would not
be able to ensure that each family does not accept a particular language. The
weak uniformity was used here only to guarantee that there would be a countable
number of circuit families of concern.

L e m m a 7.1. Let A be the oracle constructed in the proof o f Theorem 7. Then
p a _ w N C A ~ ~ .

Proof. Suppose that P A C _ w N C A for the A from the previous proof. In that
proof, recall the series of sets Lk(A) having the property that for all k, Lk+I(A)

w N C A. Each LR(A) was seen to be in N C A, so there exists a series of circuit
families {ak}, the kth one being an N C A family accepting Lk(A) . Let us define
the language

k S = {(k, x): Otlx f accepts x relative to A}.

There is a polynomial time algorithm for S given in the proof of Theorem 7.
However, the running time of this algorithm is O(Ixllogklxl), which is not
necessarily polynomial in the length of (k, x). It is, however, polynomial if
k = c loglx I/log loglxl, for then O(Ix Ilog k Ixl) is O(IxlC+~). So let

S= {(k,x)lk< loglxl (k,x)sS}.
- log log Ix I '

The fact that S e P follows. By our initial supposition, S e w N C A, so there exists
a k such that S~ w N C ~ . But, by using a w N C A circuit family for S, one can
construct a w N C A circuit family for Lk+I(A) almost everywhere. This in turn,
by means of building in a finite table, yields a w N C A circuit family for Lk+I(A),

which we have seen to be impossible. Hence, S cannot be in w N C A for any k.
[]

C o r o l l a r y 7.2 . There is an oracle A such that

N C A c N C A c . • • c N C a C p a .

This follows from Theorem 7 and Lemma 7.1 taken with Corollary 4.

Corollary 7.3. There is an oracle A such that

w N C A c w N C A c . • • c w N C A.

26 C, B. Wilson

There is a version of N C whose uniformity restriction is intermediate between
O(log n)-space and weakly uniform: polynomial time uniform NC, or PUNC
(this notation was introduced by Allender [1]; see also [4]). The definition of
PUN C and PUNC A can be taken as the same as for N C and NC A with the
modification that a description of the nth circuit a , be constructible from 1 n in
time polynomial in n. Theorem 7 and Corollary 7.1 apply to the PU NC hierarchy
as well.

C o r o l l a r y 7.4. There is an oracle A such that

PUNCA c P U I Q C A c . . . c P U N C A c pA.

As mentioned earlier, the fact that NC~ ~ L is not always true in the presence
of an oracle.

T h e o r e m 8. There is an oracle A such that for all k > 1,

N C A - NSPACEA(O(nk)) ~ 0 .

Proof. First we described a series of languages Sk(A) which for all A are in
NC~. To determine if x ~ Sk(A), Ix[= n, and we will assume that n = 2 i, look at
all strings of the form 0"y of length n where l Y [= (k + 1) log n = (k + 1) i. Query
all 2 (k+~);= n k+t such strings and let z,] z l= n k+t, be the bit string of answers.
At the second level of the circuit, query z. If this string is in A, output 1 (accept),
otherwise output 0 (reject). The size of the circuit is n k+2+ n k+~+ 1 and its depth
is (k + 2) l o g n. That the uniformity condition is satisfied is clear.

Figure 2 shows an outline of a circuit accepting Sk(A).

j = n - (k + l) log n
O" 0 "-I 1 0"-:10 0 j 1 (k+l)log.

ill [i l l f i l l i i,[I f

~ A ? I

Fig. 2

Relativized NC 27

We will construct an A so that Sk(A) is not contained in N S P A C E A (O (n k))
for each k. This is done is stages. Let {Mi} be an enumeration of the nondeterminis-
tic Turing machines which operate under the RST restriction. Now at stage (i, c, k)
of the construction, we ensure that M a does not accept Sk(A) within cn k space.
Without loss of generality, we may assume that M<i,c.k> is the machine Mi restricted
to cn k space. In fact, we could choose that as the definition of the encoding (i, c, k).

. . . . k b Let us examine a machine M~ operating in space cn . Now there can e only
k • k .

2 °<n) id's. So, in pamcular , there are at most 2 dn , for some d depending on i
and c, beg-write-id's, id's where the machine begins to write on the query tape,
and thus starts to act deterministically. This is true for all oracles. Each beg-write-
id uniquely determines a query. So we can say, and this is a key point, that for
a fixed x of length n there is some d such that

{Y] M~,c.k> queries y on -

Thus, there are only 2 dnk possible queries over all oracles.

Construction of A
Stage 0: A ~- 0 .
Stage (i, c, k): Let d be the constant such that on an input of length n there

are at most 2 rink possible queries by M<i.c.k>. Choose n of the form 2 ~ large
enough so that it is larger than the length of any string earlier queried and
2nk+~> 2 dnk. So there must exist a string z,]zJ= nk+l, which is not queried
by Mi on 0 n for any oracle. Choose such a z. Put 0'~y of length n,
[y[= (k + 1)log n, into A if and only if the yth bit of z is 1. Now run M~
on 0 n within space cn k. Put z into A if and only if it rejects.

end construction.

Since M~ could not have queried z for any A, placing it into A cannot change
the behavior of M~ on 0 n. Thus we have shown, for all i, c, and k, that there is an
n such that 0 n ~ Sk(A) if and only if M~ rejects 0 n within space cn k. Notice that
not only have we shown that N C ~ - N S P A C E A (O (n k)) can be nonempty, but that
it can contain a tally set, which is a set of words over a single character. []

This implies that our model is not quite as natural as we had hoped. An
open issue would be to devise a nfitural relativized model for which NC~ ~ L
holds. However, Theorem 8 together with Corollary 2 does give us the following.

Corollary 8.1. There is an oracle A such that NLA c N C A.

7. Concluding Remarks

We have exhibited a number of new relativized relationships which involve circuit
depth. These results imply specific properties about proofs which would purport
to show their negation. In particular, we now see that questions involving parallel
time may be difficult to answer in the same way that the classic complexity classes
are difficult: both may require proofs which do not relativize.

28 C.B. Wilson

A general open issue is a characterization of proof techniques and their
ability to relativize. For example, allowing a particular type of access to the oracle
may allow one to relativize some relationships but not others. The access allowed
may allow a certain class of proof techniques to generalize to all oracles. Then
we would know that this class of proof techniques would be insufficient to show
the negation of the relativized relationships. A general theory would give some
intuition into the techniques that might be required to prove interesting things,
and would help us apply the many relativized results in a formal manner.

Fortunately, we do know that not all our proof techniques relativize. Well-
known examples of this are found in [12], [5], and [13].

A fai thful relativization can be considered a method of oracle access under
which known results will generalize to all oracles. We know that using the RST
restriction is faithful when considering relativized space alone, but saw that we
encounter problems when comparing space with depth. In particular, the depth
restricted devices were noticeably more powerful than their corresponding space
restricted devices. To overcome this, we might either weaken the power of circuit
depth, or probably easier, allow slightly more power to relativized space. One
possibility might be to use an oracle stack, mentioned in [22], to store partially
constructed queries.

An open question is whether we can, for example, get a partial collapse of
the N C hierarchy. Does there exist an oracle A such that N C A # N C a = N c A ?

Other oracles we would like to see are ones witnessing any of the following:

NC1 c NCk = N C for some k > 1;

N C I # N C k # N C # P # P S P A C E for all k > l ;

N C = P # NP;

N C # P = NP.

References

[1] E. Allender, The complexity of sparse sets in P, Proceedings of the Structure in Complexity
Theory Conference, Springer-Vertag, New York, 1986, pp. 1-11.

[2] D. Angluin, On relativizing auxiliary pushdown machines, Math. Systems Theory, 13 (1980),
283-299,

[3] T. Baker, J. Gill, and R. Solovay, Relativizations of the P = ?NP question, SIAM J. Compur,
4 (1975), 431-452.

[4] P. Beame, S. Cook, and J. Hoover, Log depth circuits for division and related problems,
Proceedings of the 25th Symposium on Foundations of Computer Science, 1984, pp. 1-6.

[5] N. Blum, A Boolean function requiring 3n network size, Theorer Compur Sci., 28 (1984),
337-345.

[6] R.V. Book, T. J. Long, and A. Selman, Quantitative relativizations of complexity classes, SIAM
J. Compur, 13 (1984), 461-486.

[7] R.V. Book, T. J. Long, and A, Selman, Qualitative relativizations of complexity classes, J.
Comput. System Sci., 30 (1985), 395-413.

[8] A. Borodin, On relating time and space to size and depth, SIAM £ Compur, 6 (1977), 733-744.
[9] S. Cook, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64 (1985),

2-22.

Relativized NC 29

[10] R, Lander and N. Lynch, Relativizations of questions about log-space reducibility, Math.
Systems Theory, 10 (1976), 19-32.

[11] P. Orponen, General nonrelativizability results for parallel models of computation, Proceedings
of the Winter School on Theoretical Computer Science, 1984, pp. 194-205.

[12] W. Paul, A 2.5n lower bound on the combinatorial complexity of Boolean functions, SIAM
J. Comput., 6 (1977), 427-443.

[13] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter, On nondeterminism versus determinism
and related problems, Proceedings of the 24th Symposium on Foundations of Computer Science,
1983, pp. 429-438.

[14] N. Pippenger, On simultaneous resource bounds (prelinary version), Proceedings of the 20th
Symposium on Foundations of Computer Science, (1979), pp. 307-311.

[15] C.W. Rackoff and J. I. Seiferas, Limitations on separating nondeterministic complexity classes,
SIAM J. Comput., 10 (1981), 742-745.

[16] W.L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), 365-383.
[17] W.L. Ruzzo, J. Simon, and M. Tompa, Space-bounded hierarchies and probabilistic computa-

tions, J. Comput. System Sci., 28 (1984), 216-230.
[18] W. Savitch, Relationships between nondeterministic and deterministic tape complexities, J.

Comput. System Sci., 4 (1970), 177-192.
[19] C.P. Schnorr, The network complexity and the Turing machine complexity of finite functions,

Acta .Inform., 7 (1976), 95-107.
[20] I. Simon, On some subrecursive reducibilities, Ph.D. dissertation, Stanford University, 1977.
[21] L. Stockmeyer, The polynomial time hierarchy, Theoret. Comput. Sci., 3 (1977), 1-22.
[22] C. Wilson, Relativized circuit size and depth, Technical Report 4# 179/85, Department of

Computer Science, University of Toronto, 1985.
[23] C. Wilson, Relativized circuit complexity, J. Comput. System Sci., 31 (1985), 169-181.
[24] A. Yao, Separating the polynomial-time hierarchy by oracles, Proceedings of the 26th Symposium

on Foundations of Computer Science, 1985, pp. 1-10.

Received August 14, 1985, and in revised form September I, 1986, and February 9, 1987, and in final
form March 11, 1987.

