
M E C H A N I S M  OF S H E A R - I N D U C E D  METALLIZATION*)  

JOHN J. GILMAN 

Department o[ Materials Sc/ence and Engineering, 
University o[ Cali[ornia at  Los Angeles, Los Angeles, California, 90024, USA 

Received 14 July 1995 

It is well-known that volumetric compression converts insulators into metals (the 
Herzfeld-Mott transition). Not so well-known is the fact that finite shear strains have 
a similar effect. For example, uniaxial compression of Si and Ge causes them to become 
metallic. A simple band-structure model for this is presented in this paper. Shear induced 
metallization has several important consequences, including: mechanically induced phase 
transformations, other mechanochemistry; the hardnesses of semiconductors and carbides; 
and ultra-fast reactions at detonation fronts. 

1 I n t r o d u c t i o n  

It  has been a great pleasure for me to have been asked to contribute to this 
volume in honor of Frank Kroupa. My only direct contact with him occurred when 
I was at the University of Illinois. In his adventurous way, he had bought a "bargain" 
bus ticket (for $99, I think) that  was good for unlimited mileage in the USA, and 
he stopped off in Urbana for a short visit as he made his way across the country. I 
was impressed with his exceptional intelligence and friendly demeanor.  I can only 
hope tha t  he enjoyed the visit as much as I did. 

I want to describe a new phenomenon in the chemistry and physics of solids that  
I discovered a few years ago. Namely, metallization induced by shear; particularly 
by the bending of covalent bonds. By metallization I mean closure of the energy gap 
between bonding and the anti-bonding levels in molecules and solids. In physics this 
is called the valence-conduction band gap, while chemists call it the LUMO-HOMO 
gap (LUMO means lowest unoccupied molecular orbital, and HOMO means highest 
occupied molecular orbital). When the gap closes, the normally localized bonding 
electrons can access the delocalized anti-bonding states so they become "free" to 
move f rom one place to another in a molecule, or a solid. 

It  should be no surprise that  metallization has profound effects on behavior. It  
greatly facilitates chemical reactions; especially athermal  ones. Needless to say, it 
changes t ransport  properties dramatically. It  determines dislocation motion in co- 
valent solids. It enables ultra-fast reactions to occur at detonation fronts. It  changes 
optical properties. 

Metallization caused by isotropically increasing the density of an array of a toms 
has been known for a long time. The effect was originally proposed by Herzfeld in 
1927, and was rediscovered by Mott  in 1949. It has become known as the Mott  tran- 
sition. As the density of a non-conducting solid is increased (or the concentration 
of dopant  a toms in a semiconductor) the wave-functions of the valence electrons 
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eventually overlap enough for the electrons to become delocalized, and therefore 
conductive. In other words, the valence-conduction band-gap closes. 

What  was not recognized until recently is that  shear deformation can also close 
the gap; and in some cases (at least) strains of smaller magnitude are needed. 
Perhaps this effect was overlooked because it is difficult to decouple shear strains 
and dilatations in continua. However, at the level of discrete atoms and/or  molecules 
it is quite apparent whether bond lengths are changing at constant bond angles, 
or bond angles are changing at constant bond lengths. This requires microscopic 
information provided by crystallography, it cannot be deduced from macroscopic 
thermodynamic properties. 
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Fig. 1. Correlation between observed critical transformation pressures and Vickers hard- 
ness numbers for a variety of tetrahedrally bonded crystals. The initial structures are 
diamond and zincblende. The final structures are of the fl-tin and rocksalt types. Initially 

the crystals are semiconductors; finally they are metals. 
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Trefilov and Mil'man [1] had pointed out in 1964 that the indentation hard- 
nesses of Si and Ge at low temperatures (temperatures below their Debye temper- 
atures) seemed to be determined by their transformations from the diamond to 
the /3-tin structure. The most simple evidence is that the hardness numbers are 
numerically equal to the critical transformation pressures (approximately). Since 
the/3-tin phases are metallic, other evidence is provided by measuring the electrical 
conductivity under an insulating indenter as it presses into a specimen. 

I became interested in whether this phenomenon is general, so I collected hard- 
ness data together with critical transformation pressures. Figure 1 shows the results. 
Good correlations exist between the measured values for some 15 substances. There 
are three sets. The line of large dashes for homopolar crystals has slope of one re- 
flecting equality of the two kinds of pressure. The line of short dashes has a slope 
of two, and the data for the III-V compounds follow it. The line of both long and 
short dashes which is followed by the II-VI compounds has slope of ten. Thus, the 
greater the ionicity of the bonding, the more the transformation pressure exceeds 
the hardness number. 

Topologically there is no difference between the/3-tin and diamoond structures. 
As pointed out by Musgrave and Pople [2], if the diamond structure is compressed 
about 50% along its four-fold axis, it becomes the tetragonal/3-tin structure (Fig- 
ure 2). Conversely, if the/3-tin structure is stretched along its tetragonal axis by a 
factor of about two, it becomes the diamond structure. Eight cases from Figure 1 
transform from the diamond to the /3-tin structure under pressure and become 
metallic as a result. 

Fig. 2. Transformation from the cubic diamond structure to the tetragonal/3-tin structure 
by compression along the four-fold axis of the diamond structure. 

The lack of topological change in the eight cases of interest made me wonder 
whether the volume changes (about 20%) result from changes in bond lengths, or 
bond angles, or both. Study of the crystallographic data for the structures before, 
and after, the transformations showed that the bond lengths changed very little 
(average = +4.4%), but the bond angles changes markedly (one increases 37%, 
while the other decreases 14%) [3]. 
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Some texts say that the coordination number in fl-tin is six but this is not true 
because there is a difference of 5.6% between the separations of the nearest neighbor 
atoms and the next nearest neighbors. Thus, since the bond lengths increase slightly, 
the atomic overlaps decrease, so they cannot account for the metallization. 

It might be argued that  the metallization is due to the increase in the average 
electron density resulting from the volume decrease when the diamond structure 
transforms tothe fi-tin structure. This would not account for the fact that  the 
coordination number  remains four after the transformation, suggesting that  the 
valence band remains just  filled with electron pairs. Therefore, it is argued here 
that  closure of the minimum gap between the bonding and the anti-bonding levels 
is the effect that  results in metallization. And, this closure is caused by the shear 
strains (bond bending) associated with the transformation. 

2 S h e a r - i n d u c e d  e n e r g y - g a p  c lo su re  

Numerical calculations based on band theory have shown, in the case of diamond, 
that  hydrostatic compression cyuses the energy gap to increase, but  compression 
plus shear causes it to decrease [4,5]. See Figure 3 which is based on a figure given 
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Fig. 3. Calculated band gaps for diamond as a function of applied pressure for the case 
of zero shear strain (hydrostatic); and for compression along the four fold axis of diamong 

(combined shear and hydrostatic strains) 

in Reference [4]. Note that  the effect of shear plus hydrostatic strain is of much 
greater magnitude than that  of hydrostatic compression. Unfortunately, there are 
neither measurements nor calculations for pure shear strains. Also the quantitative 
aspects of Figure 3 are in some doubt because the indicated metallization pressure 
for the [001] compression is about 290 GPa, but experiments indicate that the gap 
has not yet closed at 440 GPa  [6]. 

My purpose here is to present a simple model that  gives some insight to the effect 
of shear on electronic structure. It is intended to suggest that  the effect is general. 
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It  is not intended to yield numbers that  can be compared with measurements.  The 
essential feature of the model is that  hydrodynamic compression shortens M1 three 
principal axes, while shear shortens one axis, and lengthens another  one; leaving 
the third principal axis unchanged. Figure 4 illustrates the idea, assuming: a square 
two-dimensional lattice; and the nearly free-electron approximation (the argument  
is similar for the tight-binding (LCAO) approximation).  
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Fig. 4. Schematic diagram of energy vs. wavevector for the states of nearly-free-electrons 
in a square atomic lattice of spacing a. The undeformed square lattice is shown on the 
left. Simple shear converts it into a rectangle with axes = a + 8 where 8 is smM1 but finite. 
To a first approximation this does not change the gap, but it shifts it on the energy scale 

thereby decreasing the minimum gap. 

A schematic energy vs. wave number sketch is shown in Figure 4. The lattice 
spacing of the square array is a, so the wave vector at the zone boundary is 27r/a, and 
the energy of the electronic states is E = 52k2/2m, where 2~rh is Planck's constant, 
m is electron effective mass, and 2~rk is the electron wavelength, A. On the left, the 
energy states are shown with an energy gap at k = 7r/a. At the mid-point  of the 
gap, the energy level is Eo = ( h / a ) 2 / 8 m .  The gap is given by Eg = 2[Y[, where V 
is the periodic potential  energy with period, a. The same E vs.k dependence occurs 
in the two directions perpendicular to the sides of the square lattice. Since a shear 
deformation is inherently two-dimensional, there is no need for a simple model to 
be three-dimensionM. 

Suppose that  a hydrostatic strain is applied to the square lattice. Then, in both 
directions, the atomic spacings, a, will decrease and the E vs. k plot will shift as 
shown on the far right in Figure 4. The lattice spacings will become a(1 - c), where 
c is the strain. To a first approximation,  Eg will remain the same, but the position 
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of the gap relative to E0 will increase. The value of k at the zone boundary will 
become ~r/a(1 - e). Since the shifts of the band-gap mid-points will be the same in 
the two orthogonal directions of the square lattice, the minimum band gap will be 
unchanged (first approximation). This is consistent with the relatively small change 
shown in Figure 3 for diamond. 

The case of an applied shear strain is very different. Shear will cause one axis 
to increase, and the other to decrease. Therefore, the zone boundaries will become: 
k = r /a (1  =l= ~), and theband-gap mid-points shift in opposite directions. Thus 
the minimum gap becomes, E~ as indicated in Figure 4. Note that the effect is 
relatively large because of the parabolic dependence of E on k. When the strain 
becomes large enough to close the gap, the bonding electrons can delocalize into 
the anti-bonding states. In other words the activation energy for the reaction, or 
transformation, becomes zero, and it can proceed athermally. In intermediate cases, 
the electronic process may be assisted by phonons. 

A similar mechanism is expected to operate on the LUMO-HOMO gaps in sym- 
metric molecules when shear deformation is applied to them. 

The strain needed to close the gap can be estimated from inspection of Figure 4. 
It is approximately 2mEga~/h  2. Then, if m is electron mass, Eg = 2 eV, a = 2.5 A, 
and h = 6.6 x 10-34J s, the critical strain is about 8%. This is the right order of 
magnitude within a factor of 2-3. 

3 S o m e  c o n s e q u e n c e s  

Observations of shear-induced metallization, together with the simple rationale 
of the phenomenon presented above indicate that shear strains can effect reactivity 
in solids profoundly. It seems to me that this has not been appreciated in the past. 
One reason is the historical emphasis on gases and liquids in the study of chemical 
reactions. A corollary of this has been the emphasis on pressure as a state variable in 
thermodynamics. Another reason is the focus in mechanical engineering on tensile 
stresses, and uniaxial strains, both of which entangle shear and dilatation. Studies 
in which these two modes of deformation are clearly separated are rare. 

If one takes the viewpoint that crystals are giant molecules, then the chemists' 
view that chemical stability is determined by the magnitude of the LUMO-HOMO 
gap applies (the reader is reminded that metals have little intrinsic stability; they 
are all passivated by surface films). Thus shear strains induce instability by closing 
the gaps. It seems likely that they play a key role in the whole field of what has 
becoome known as mechanochemistry. That is, athermal chemical reactions that 
can proceed at low temperatures. Low temperatures are those below the Debye 
temperature in solids; and below the temperaturees needed to excite appropriate 
vibrational modes in molecules. Also, it has been suggested that shear is the key to 
understanding ultrafast reactions such as those at supersonic detonation fronts [7]. 
By closing the electronic gaps, she~r gives direct access of the bonding electrons to 
the antibonding states so they become delocalized, and can rearrange at electronic 
frequencies, instead of being limited to atomic vibrational frequencies. 
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Shear strains are also the key to the embedded atomic scale reactions that de- 
termine dislocation mobilities in covalent crystals [8], and reactions that  occur at 
the tips of cracks. 

Although the details are unknown, bond-bending with the resultant reduction 
in chemical stability is important  in friction, wear, cutting processes, and related 
phenomena. 

Finally, a multi tude of biochemical processes are strongly affected by shear 
strains. A simple demonstration of this can be had by closing an eye and pressing 
againt it with a forefinger.Through shear strains this induces electronic processes 
that are manifested by an illusion of light flashes. Shear-induced chemistry is also 
important  in muscular contraction, and many other biochemical phenomena. 
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