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The problem of synchronizing an automata chain, as posed by J. Myhill 
[1, 2, 3, 4, 5] provides us with a number of models which seem to be meaningful. 
We modify the statement of the problem as follows. Does there exist a finite 
automaton A such that a chain of n automata A would be synchronized at time 
t = T after being "switched on" at time t = 0 by an initiating signal supplied to 
an arbitrarily chosen automaton? 1 

Each automaton is assumed to be connected with its two immediate neighbors, 
and the complexity of each automaton is assumed to be independent of the number 
n of automata in the chain. By synchronization we mean the simultaneous 
transition of all automata of the chain into the state called synchronized (terminal) 
provided each automaton enters this state only at time T. 

We also consider Moore automata for which the output signal is the internal 
state. First we present a general idea of the solution of the problem as originally 
stated [3]. Basically an algorithm consists of organizing successive bisections of 
segments of the automata chain. Consider Figure 1. The first bisection of the chain 
is carried out as follows. The initiating signal puts the end automaton into the 
preterminal state and two signals Pl and Pa start to propagate down the chain 
from this automaton. 

The first signal has unit velocity of propagation and the second one has 
velocity 1/3 (a signal propagates with velocity 1/m if it passes to a neighboring 
automaton after having stayed in the preceding one for m time units). The signal 
P 1 reaches the end of the chain, takes the other end automaton into the preterminal 
state and goes back with the same velocity. The meeting of the reflected signal 
with the signal P3 occurs at the center of the chain, and the corresponding auto- 
maton (or two automata if the number of automata in the chain is even) passes 
to the preterminal state. If  the reflected signal continues propagating down the 
chain with velocity 1 and if at the initial moment the first automaton emits a signal 
with propagation velocity I/7 (signal P7), these signals will meet at a distance of 
1/4 from the beginning of the chain. Further, if every automaton on entering 
the preterminal state emits a sequence of signals which propagate with velocities 

1 In Myhill's problem the initating signal is supplied to an end automaton of the chain. 
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1/(2 " + 1 -  1) and if automata at the meeting points of the signals enter the pre- 
terminal state, then the process of successive bisections of the resulting segments 
of the chain will take place, as shown in Figure 1. 

Now suppose that the initating signal is supplied to any one of the automata 
of the chain. The general picture of the propagation of signals is shown in Figure 2. 
After the initiating signal is sent, two signals pl andp~ begin to propagate in both 
directions from the initial automaton. Both signals have velocity 1. (The initial 
automaton does not pass into the preterminal state unless it is an end automaton.) 
When the signalspl andp~ reach the ends of the chain they take the end automata 
into the preterminal state and give rise to reflected signals which propagate with 
the same velocity. As stated above, an automaton which has passed into the 
preterminal state begins to generate a sequence of signals with propagation 
velocities 1/(2 m+ 1 -- 1). 

If the initiating signal had been supplied to the automaton 0 situated at the 
end of the chain closest to the initial automaton, the picture of the propagation of 
signals would have been the same as in Figure 1 with initial point 0'. Then the 
signalp~, moving from the point 0' with velocity 1/3, would have met the reflected 
signalp~' at the point A1 (the center of the chain). It is not difficult to see that the 
propagation line of the signal p~ intersects the propagation line of the p~ at the 
point A which corresponds to the position of the initial automaton. Hence in 
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order to effect the first bisection of the chain it is necessary to change the velocity 
of the reflected signal p~ from 1 to 1/3 at the point A. The propagation line of the 
reflected signal moving from the point 0' with velocity 1/(2 re+l-  1) intersects 
the propagation line of the signal moving from the point 01 with velocity 
1/(2 m- 1); this intersection occurs at a point lying on the line A C  which is the 
line of velocity switching. In order to achieve the correct succession of bisections, 
it is necessary that the velocity of every signal moving from the point 01 with 
velocity 1/(2 m-  1) be changed to 1/(2 re+l-  1). The slope of the switching line 
corresponds to a velocity of propagation equal to 1. Otherwise the picture of 
signal propagation in Figure 2 is identical to that in Figure 1. In order to set up 
the state transition table of an automaton, we introduce, as in Levenstein [3], 
the relation of contraposition of internal states and of transition functions of 

automata in the chain. Internal states D and D, C and C are assumed to be 
opposite. All other states are opposite to themselves• Opposite values of the 

• * * * ". .  x*), where x, transition functions are F ( x  1, x2," ", x , )  and F (x,, x,_ 1, , 
and x* are opposite states of automaton. For thej th automaton of the chain we 
have the following relation: 

• * 1)" (1) f j (xy_ x, x j, x j+ 1) = Fj (x~+ 1, x*, x j_* 

The transition functions are defined in Table 1 for only half of the sets, because 
the values of transition functions for the remaining sets can be obtained from (1). 

In Figure 3 we give an example of synchronization of a chain of 28 automata 
where the initiating signal is supplied to the tenth automaton. 

Comparison of Figures 1 and 2 shows that in Figure 2 synchronization 
required an amount of time which is smaller by exactly the amount of time 
needed for a signal with velocity 1 to cover the distance from the point 0 to the 
point H. Thus in the case where the initiating signal is supplied to an arbitrary 
automaton the synchronization process requires T = 2 n - 2 - a m i ,  time units, 
where ami, is the distance from the initial automaton to the automaton at the 
nearest end. 

From the point of view of practical applications of the synchronization 
problem, the following statement of the problem seems to be more natural. 2 

Suppose we have a chain of objects (devices) which have different starting 
times (latent periods), i.e., the ith object starts functioning ~'i time units after an 
initiating signal is applied. Time is assumed to be discrete, so that the ~-~ are 
integers. The question arises whether automata which satisfy the following 
requirements exist: 

1. Each object is associated with one automaton. 
2. The automata form a chain in which every automaton is connected only 

with its two neighbors (except for end automata which are connected with only 
one neighbor). 

3. The complexity of the automata depends only on the starting times of 
their associated objects and does not depend on the length of the chain or the 
starting times of the other objects. 

2 In practical cases it is not very difficult to realize simultaneous transmission of signals to 
a number of objects, using, for example, common communication lines. 
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TABLE 1 (continued) 
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4. When the initiating signal is supplied to some automaton in the chain 
at time t = 0 the objects start operating simultaneously at time T. 

It is not our intention to present a solution which would be optimal with 
respect to the time required for synchronization or to the number of  internal 
states. We shall show the possibility of  existence of a solution. In order for the 
chain of automata to perform the given task, it is necessary that ith automaton 
generate an activating signal for the ith object -r~ time units before the moment of  
synchronization, 

Suppose we have a chain of automata of the type considered above which 
enters the terminal state simultaneously with the chain of objects. Any three 
adjacent automata in the chain can be in the preterminal state only at the moment 
which precedes the moment of  transition into the terminal state by three time 
units. The states of these automata at this moment depend on their states and on 
the states of their right-hand and left-hand neighbors at the previous moment, 
i.e., on the states of five adjacent automata. Generally the states of any 2k+  1 
adjacent automata at time t are determined by the states of 2k+  3 automata at 
the moment t -  1. Hence the state of any automaton at time t is determined by its 
own state and by the states of ~i of its right-hand and left-hand neighbors at the 
moment t-~-~. Thus we can determine the moment which precedes the moment 
of synchronization by r~ time units by observing the states of 2~-~+ 1 adjacent 
automata. 

Consider a chain of 2 ~7 = 1 ~~ + n automata which solves the synchronization 
problem. Decompose it into subchains of length 2~ + 1. Every such subchain will 
be considered as a single automaton with the operating conditions of each auto- 
maton preserved. Further, an original automaton will be called a subautomaton 
and a subchain of 2-q + 1 subautomata will be called an automaton. By an input 
to an automaton we mean the states of nearest end subautomaton of neighboring 
automata. By combining 2~-~ + 1 subautomata into one automaton, we can observe 
the states of all 2"ri+ 1 subautomata simultaneously. Thus we see that if we 
observe the state of the automaton formed by 2~-~ + 1 subautomata, we can deter- 
mine the moment which precedes the moment of synchronization of the whole 
chain of 2 ~7 = 1 ~'i + n subautomata by ~'i time units. Detection of the states of 
automata which occur ~-~ time units before the moment of synchronization of the 
whole chain can be realized by a logical network whose inputs are the states of  
the subautomata. Thus there exists a solution of the problem of  synchronization 
of the system of objects with different starting times by means of the chain of  
automata. The method of solution can be summarized as follows. We consider 
a chain of 2~ + 1 subautomata as the automaton associated with the ith object. 
These subautomata solve the problem of synchronization of  the chain. This 
general chain of length 2 ~7= 1 ri-[-n is formed by subautomata of all the auto- 
mata. A starting signal for an object is generated by the logical network whose 
inputs are the states of the subautomata of the given automaton. Note that 
automata continue to operate after supplying the starting signal to the object 
and all subautomata enter the synchronized state at the same time that objects 
start to operate. The proposed construction of automata satisfies the conditions 
of the problem. 

Suppose that the initiating signal, supplied to the ith automaton, is received 
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by its middle subautomaton. Then the time interval between transmission of the 
initiating signal and the beginning of operation of all the objects is equal to 

{E'-' ]t 4 - r i + 2 n - 2 - ~ i - m i n  2 ~ T j + ( i - 1 )  , 2 " r j + ( n - i - 1  ) . 
i = l  j = l  j = i + l  

At ~-, = 0 for all 1 < i < n, T = 2 n - 2 - a m i  n. 
Now we examine the requirements for the states of the automata at the 

moment which precedes the moment of synchronization by ~-~ time units. 
1. At the moment which precedes the moment of synchronization by r i time 

units, at least one subautomaton of the subautomata chain of length 2~-i+ 1 
will be in the preterminal state (state R: see Table 1). 

At the kth division of the subautomata chain, which is accomplished 
[ (n-  1)/2 2] time units before the moment of synchronization, the distance between 
two non-adjacent automata in state R is equal to [(n-  1)/2k]. We can choose k 
such that 

( 2 )  _ ~ _< . 

Let n - 1  = ~2k+3, where 3<22. Then [(n-  1)/2 k] = ~, and 

*L j -< 2 +I, 
i.e., 

n - 1  _< 2 +1 

o r  

[ ~ k l l  1 n--1 1 

It is seen from (2) and (3) that 

1Fn-1] 1 I n - l ]  
~' >- ~ L _l- ~ and 2% + 1 > ~ . 

From this it follows that there is at least one automaton in a segment of length 
2~',+ 1 which will enter state R at the moment which precedes the moment of 
synchronization by [(n-1)/2*-1] > r, time units. Hence, it is always possible to 
select a chain of subautomata of length r ,+ 1 from the chain of length 2~', + 1 
such that the first one has at least one end subautomaton in state R. If two adjacent 
subautomata are in state R, then only one of them is included in the chain of 
length ~'i + 1. Further, only such chains will be considered. 

2. If both end automata are in the preterminal state R and neither of these 
...> ,<-. 

is in state C, C, or R, the moment of synchronization will occur in 7~ time units. 
If  the left [right] end subautomaton is in the preterminal state and the other 

---> 

end subautomaton is in state C [C] and none of the subautomata are in states 
<--- 

C, C, R, then the synchronization moment will occur in ~-, time units. 
These two statements can be seen directly from Figure 3. 
3. If  a subautomata chain of length -q + 1 does not satisfy the conditions of 
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Section 2 and the left [right] end subautomaton is in state R, then there is a sub- 

automaton in this chain which is in state C [C] and a subautomaton in state E1 

or E2 among the subautomata which are in state C [C] and the right [left] end 
subautomaton. 

This can be proved by considering Figure 4. The left end subautomaton, 

in state R, generates a signal C which travels to the right with velocity 1. Since 

~ > [(n- 1)/2k], the signal C meets the signal Ex or the signal E2 moving in the 

r i + l  

[ //~ 

i 

hr 

.-/1 2k-IJ 
outomol'o' ---..~ 

Figure 4 

opposite direction. The subautomaton situated at the meeting point enters state 
R. At the moment preceding the moment of synchronization by z~ time units, the 
signal E1 or Ez is in a chain of length ~-~ + 1, since it was moving toward the meeting 
point with velocity less than 1. Therefore, there must be a fictitious signal to the 
left which moves from the point A to the meeting point with velocity 1. The 
number of subautomata by which the signal E1 or E2 is shifted before meeting 

the signal C is equal to the number of signals D moving toward E 1 or E 2 and 

situated between E 1 or E 2 and the approaching C. 
Thus the distance from the meeting point B to a left end subautomaton is 

8 = d(E 1 v E2, R)-riD, 

where d(E 1 v E2, R) is the distance between the subautomaton in the state E1 
or E2 and the left end subautomaton, and n D is the number of subautomata in 
state D. 

The time interval before synchronization consists of the time interval ~ and 
the interval of time required for the signal C to reach the meeting point, i.e., 

a+[a -d (R ,  C)] = 2a-d(R, C) = 2d(E~ v E  2, R)-2n~-d(R,-C),  

where d(R, C) is the distance between the subautomata in state R and a sub- 
automaton in state C. 
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The condition for transmitting the starting signal to an object can now be 
written as 

-q = 2d(E  1 v E2, R)  - 2n o -  d(R,  C) .  

We now consider a version of the synchronization problem for the case in 
which transmission of a signal from one automaton to another requires ~- time 
units, i.e., communication lines between automata all have delay ~r. We are 
interested in a solution in which the complexity of the automata does not depend 
on -r. The general idea of the solution is the following. Each automaton is a 
combination of a pair of subautomata (Figure 5). 

Figure 5 

The subautomata C have to generate gating signals with time interval ~-+ 1 
and the subautomata A solve the synchronization problem in the way presented 
above in the rhythm of the gating signals, i.e., the subautomata C are supplying 
signals for state changes to the subautomata A. In order to solve the synchroniza- 
tion problem, it is sufficient to solve the problem of organizing co-phased periodic 
operation of the subautomata C. The solution is trivial for the period 2(~-+ 1). 
In order to put the subautomata C into periodic operation with period ~-+ l, we 
use an algorithm of sequential approach of signals. Consider two automata C. 
After an initiating signal is sent to the automaton C1 at time t = 0, it sends 
three signals a, b, c to the automaton 6'2 at three consecutive moments of time. 
The automaton C 2 sends these signals back, delaying the signal a by 1 time unit, 
the signal b by 2 time units and the signal c by 3 time units~ The automaton C1 
takes analogous actions with these signals. As a result, in (~+ 1) (~-+ 2) time units 
one of the automata will emit a pair of signals {a, c} which is identified with the 
signal b. An automaton emits the first synchronized signal when it receives the 
signal b at its input after having emitted it. This occurs simultaneously for both 
automata at time (~-+2) 2. From this moment on, an automaton which receives 
a signal turns it back. Thus, signals with period ~'+ 1 start circulating in the 
system. 

The given algorithm can be explained by the picture of synchronization of 
two automata with delay ~- = 5 in the communication line (see Figure 6). Each 
automaton has 12 internal states and its complexity does not depend on the value 
of r. The rules for changing internal states and formation of output signals for 
automata are given in Table 2. 

We now return to the original problem. The process of synchronization begins 
after transmission of the initiating signal to an arbitrary automaton and results 
in synchronization of this automaton with its right-hand and left-hand neighbors 
according to the above algorithm. At the moment of synchronization of this 
chain of three automata, the initial automaton passes into a state which corre- 
sponds to the starting state in the problem of synchronization of a chain without 
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TABLE 2 

$3 $4 Ss $6 $7 $8 $9 Slo Sis 

$2 $ 2  - - S o  $4 $4 

$4 So 

- -  $4 

• __ , a S 

$10 S~1 

So S0 

$5 Ss $6 $5 --  

- -  S l 0  Sl0 S7 S10 m 

- -  $ 4  

S10 Sll ~ S10 S10 $7 S10 

. . . .  So So 

delays in the communication lines. Further changes of state occur only at gated 
time moments. Thus every automaton in the chain can change state only once 
during T+ 1 time units, and the synchronization problem is solved with this 
gating in the same way as in the synchronization problem for a chain without 
delays. 

In the solution of the above problems a constant rigid structure was essential 
for the connections between automata. It is of interest to examine the possibility 
of synchronization of  a collection of automata in the case of random pair inter- 
action. 

Consider a collection of N identical automata. Random pair interaction 
comes about as follows. At each moment, independent equiprobable partition 
of N automata into N/2 pairs is performed (for simplicity N is assumed to be 
even). In every pair thus formed, an output signal from an automaton is an input 
signal for its partner in the pair. Further, we consider Moore automata for which 
an input signal is the index of an internal state. Let x~(t) denote the internal state 
of an automaton A at time t. Then if the automata A i and A J form a pair at time t, 

xi(t+ 1) = F[xi(t); xi(t)] 

and 

x~(t+ 1) = F[x~(t); xi(t)]. 

If the transition function is symmetric, then x~(t+ 1) = xj(t+ 1). Select the state 
x = 0, called an initial state, and x = n, called a terminal (synchronized) state. 
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Then F[0, 0] = 0, i.e., in an encounter  (pairing) between au tomata  bo th  in the  
initial state, these au toma ta  do not change state. 

Let  rj(t) denote the number  of  au tomata  which are in state j at  t ime t. The  
segment of  au toma ta  pj(t) = rj(t)/N which are in state j at  t ime t will be called 
the filling number .  Let #~(t) denote the mathemat ica l  expectation of  pj(t). For  
sufficiently large N the expectation of  the segment of  au tomata  forming pairs 
with both au toma ta  in state j is/52(0. 3 Similarly, the mathemat ica l  expectat ion 
of  the segment of  the au tomata  forming a pair  with one au toma ton  in state j 
and the other in state i is 2pj(t)pi(t ). 

Now consider the p rob lem of  synchronizat ion of  the collection of  au toma ta  
described above.  A u t o m a t a  collections will be called E-synchronizable if after 
t ransmission of  the initiating signal to any one randomly selected au toma ton  at 
t ime t = 0, 

A#.(t) > 0 for all t > 0 

l im # . ( t )  = 1 
t -~o0  

and there exists T such tha t  

#.(t) _< E with t _< T 

t~,(t) _> 1 - e with t > T +  1. 

Hence c-synchronizability means the existence of  a momen t  at which not less 
than 1 - 2E au toma ta  enter the terminal  state simultaneously. Also of  interest are 
construct ions of  au toma ta  which guarantee E-synchronization and asymptot ic  
behavior  of  the number  of  states of  such au toma ta  as N--> o~ and E-+0. 

We consider two possible constructions of  au tomata .  

(4) 

1. xi(t+ 1) = x j ( t+ 1) = max [xi(t); xi ( t ) ]+  1, 

xi(t+ 1) = x j ( t+ 1) = n 

x i ( t + l )  = x j ( t + l )  = 0 

if  max [xi(t); xj(t)] # O, 

max [xi(t); x.~(t)] # n 

if max [xi(t ); x./(t)] = n 

if max [xi(t); xj(t)] = O. 

a The probability of formation of the pair (j, j) is 

r i r~--1 = r/ . r ! .  N r i 
N N - 1  N N N - I  N(N-1)  

= g + g p~ = g 
N - 1  N--I  

Similarly the probability of  formation of the pair (j, i) is 

2pipi 
2pipi + N-~"  

N Pi 
- P~ N - 1  N - I  

pj(1 -pj) 
N - I  
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The initiating signal transfers an automaton from state 0 into state 1. Consider 
the first time units of  operat ion o f  the system: 

(1) p0(0) = 1, pj(0) = 0 for all j > 0 ;  

1 1 
(2) po (1 )=  1 - ~ . ,  p x ( 1 ) = ~ ,  p j ( 1 ) = 0  

2 2 
(3) po(2) = l - F ,  p1(2) = O, pz(2) = ~ ,  

(4) #0 (3 )=  o o 2 ( 2 ) = ( 1 ,  2 ~ ' \  Iv /  p 1 ( 3 ) = 0 ,  

for all j >  1 ; 

0i(2) = 0 

p2(3)  = o,  

for  a U j > 2 ;  

if min [x~(t); xj(t)l ¢- n, 

max [x~(t); xj(t)l -¢ 0; 

if min [xi(t ); xj(t)] = n, 

if max [x~(t); xj(t)] = 0. 

4 It is evident that this difference equation describes the process only approximately. We will 
use this approxi mate description here and disregard the influence of the variance of the distribu- 
tion of p0(t). 

xi(t+ 1) = xj(t+ 1) = n 

xi(t+ 1) = xj(t+ 1) = 0 

capacity of  automata  increase as N increases. 

2. x~(t + 1) = xj(x+ 1) = min [x~(t); xj(t)] + 1 

p s ( 3 ) =  1 -  1 -  , p j ( 3 ) = 0  f o r a l l j > 3 .  

It is evident that Po(t) is equal to the mathematical expectation of  the number  
of  automata  which are in state 0 at time t -  1 and at this moment  are pairing up 
with an au tomaton  in state 0, i.e., po(t) = po2(t - 1). 4 

The solution of  this difference equation under the above initial conditions is 
#o(t) = ( 1 - 2 I N )  v-2. Taking into account the principles of  state changes, for  
sufficiently large N we may write 

(5:) #o(t) = exp - ; pt(t) = 1 - e x p  - ; 

pj(t) = 0 (0 <j # t). 

Then, obviously, 

{ °l iv / -  fort,  
(5) p.(t) = - e x p  - for  t _> n. 

In order to achieve e-synchronization it is necessary that 

(6) 1 - e x p  - > l - e ,  

i .e . ,  

n > log 2 N+ log2  In 1 + 1. 
E 

Hence, for  the realization of  e-synchronization, it is necessary that the memory  
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The initiating signal transfers an au tomaton  from state 0 into state 1. We intro- 
duce the new variable 7j(t) = ~7=j  Pi(t) • It is not  difficult to see that only those 
au tomata  will be in states with index greater than j -  1 at time t which were in 
states not  less than j - 1  at moment  t - 1 ,  i.e., 

(7) ~j(t) = ~2_1( t -1 )  ( j  _> 2). 

Consider the following initial conditions for the system of  difference equations (7): 

1 2 
Yo = 1, ~q(0) = 0, yl(1) = ~ ,  r1(2) = ~ ;  

as in the previous case ~'l(t) = 1 - e x p  ( -  2 t -  I/N).  Note that y2(l) = 0, ya(2) = 0 
and generally y~. ( j -1)  = 0. The solution o f  the system (7) under the above 
initial conditions is 

t t [TJ ( t - J+  1)] 2 . - '  for t _< j +  1 0 ~ f o r t  > j + l .  yj(t) 

Note  that  ),,(t) = pn(t) and 

/E for, nl 
(8) ~,,(t) = 1 - exp - for t > n + 1. 

It  should be emphasized that in this construction the au tomata  are allowed to 
leave the terminal state. Despite this it is easy to see that y,(t) is a monotonical ly  
increasing function o f  t, and limt..~ y,(t) = 1. We introduce the added notat ion 
exp ( - 2 t - " / N )  = x and 2 "-1 = l/a,  and consider the system of  inequalities 

"~,(t) = l - x )  ~/" <_ E 
(9) 

~ , ( t + l )  = ( l - x 2 )  TM _> 1 - E .  

We determine the domain o f  existence o f  solutions o f  system (9): 

l - - x _ <  E ~, x_> 1 - - ~ ;  
(10) 

1 - x  2 _> ( 1 - 0  ~, x 2 _< 1 - ( 1 - 0  ~. 

System (10) is equivalent to (9). For  ~ < l, 

( 1 - E)" = 1 - ~E - (1 - ~) ~E 2 _ (1 - ~) (2 - ~) ~ea . . . . .  1 - ~E - R(E), 
2 2"3 

where R(~) > 0, and consequently 1 ~ (1 - ~) '> ~e. Expanding (1 - : )  into a Taylor  
series in ~, we obtain 

I ct 2 In 2 1/E ~t a In s 1/~ 
( 1 - : )  = a l n  - -  + . . . . .  

E 2 2"3 

and therefore (1 - ~ ) <  ~ In l/a for ~ < l/(ln 1/~). Then the doman  o f  existence o f  
solutions o f  the system 

x > In 1/~ 

x < v~-E 
( l l )  

1 

In I/E 
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Figure 7 

] 

t7 
> 

is already the domain of existence of solutions of the system (10), so that solutions 
of the system (11) are solutions of the system (10). The functions x = ~ In 1/E and 
x = ~/~,  and the domain of existence of solutions of the system (11) formed by 
these curves, are shown in Figure 7. Obviously a solution exists only when 

E 

< In 2 1/e " 

a e n ~  

(12) 
1 1 

n > log 2 : + 2  log 2 In =+ 1. 
E E 

Now let h = log2 1/8+2 log2 In 1/8+ 1 > log2 l / e+2  log2 In l /e+  1, i.e., 8 < e. 
Consider the moment 

~ -- log2 N +  ~ + log~ In ~ + In In . 

Then 

Consequently, 

exp - In 1/~ and 

( ,)1( 1)2 
?~(t) = 1 ln] /e  ~ ln~ . 

Taking into account the fact that E/0n 1/8) is small, we may assume that 

On the other hand, 

~?,([ + 1) = (1 
\ 

)1(ln )2 
(ln~$)2 ~ ~ e x p ( - $ ) ~  1 - 8 >  1 • 
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Thus we can assert that there exists n0(E) such that for all n > n0(c) we have 
simultaneous passage into the synchronized state of  more than 1-2e automata 
at the moment ~(N, n) independently of N and for arbitrarily small E > 0. Since 
~,n(t) is a monotonically increasing function of time and 7n(t) < 1, this moment is 
unique. 

Our solution of this problem was based on the following two assumptions: 
(1) For large Ni t  is possible to set up the equations for mean values only, ignoring 
the variance, and (2) terms of order 1/N can be neglected. The validity of these 
assumptions is not obvious. Therefore, in order to examine the correctness of  
the results obtained, we simulated the behavior of a collection of 1024 automata 
on the computer. For  each n (n = 3, 4 , . - . ,  16), 200 experiments were made. 
The results of  the experiments are shown in Figure 8. The upper unbroken curve 
represents the mean value of the maximal number of automata operating simul- 
taneously (Apmax). The lower unbroken curve represents the root-mean-square 
deviation [~(Apmax)] and the dashed curve represents 1-2E(n). It is not difficult to 
see that the experiment does not contradict the results obtained. 

Thus, for the above models we were able to satisfy the requirements of 
synchronization: all automata to within ~ enter the synchronized state in exactly 
one time unit. In the second version of the problem We were able to preserve the 
important feature of the determined synchronization problem--independence 
of the required complexity of each automaton from the total number of  automata. 

The problems considered here naturally do not exhaust all possible methods 
of organization of interaction, but the authors hope that the results presented 
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above make it possible to a certain extent to appraise possibilities and general 
features of organizing interaction in automata collections. 

In conclusion the authors take this opportunity to express their sincere 
gratitude to B. L. Ovsievich for his help with this work. 
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