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1. Introduction 

In [4], Hartmanis and Stearns investigated properties of sets of infinite 
sequences which can be defined by finite automata. In this paper we consider 
various definitions for machines of this type, including ones introduced by 
Biichi [1] and McNaughton [6]. For each type of finite automaton we classify 
the complexity of definable sets of sequences. More precisely, let y/o be the 
set of oJ-sequences on the finite set Y.. Consider the Borel hierarchy with 
respect to the product topology on E ~'. The complexity of a subset of E °' is 
given by its position in the Borel hierarchy. It is shown that increasing the 
complexity of requirements for a sequence to be accepted by a finite automaton 
raises the level in the Borel hierarchy at which definable sets are found. 
Furthermore, procedures are given for deciding the complexity of sets defined 
by a large class of machines. 

In [4], ~ is taken to be {0, 1} and the usual topology on the real line is 
considered. We use the product topology because it is more natural when 
dealing with finite-state machines, in that it avoids the necessity of identifying 
infinite sequences (e.g., 100.. .  equals 011. . .  on the real line). Moreover, the 
product space YY' is, in effect, an infinite tree with paths through the tree 
corresponding in a one-to-one fashion with points of y o,. We believe that this 
analogy adds an intuitive flavor to the proofs. 

The second section contains definitions and an outline of related results. 
Section 3 gives the hierarchy results. In Section 4 we give algorithms for 
deciding the complexity of sets defined by arbitrary machines. Relationships 
between the various machine types are also explored. In the last section we 
discuss reducibility relationships existing among various undecidable properties 
of Turing machines which accept infinite sequences. 

2. Notation, Background and Basic Definitions 

Let Y, be a finite set, the input alphabet. We use ~* [y o,] to denote the 
set of all finite [infinite] sequences on ~. If x, y ~ Y~*, x y  is the concatenation 
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of x and y. Let a = a~ o 2 o a . . .  (o~ s Z) be a member of  y o,. Abbreviate 
e~ ~2 . . . o i  by oi and define the partial order -< on Z* w Zo, by oi-< os '< a 
for i<j<to. Let P(S) be the set of  all subsets of  the set S. Set inclusion is 
indicated by __q, proper set inclusion by c ,  and c(A) is the cardinality of  
the set A. 

Definition 2.1. A finite a u t o m a t o n  (f.a.) over Z is a system ..¢¢' = (S, 
So, M> where S is a finite set, the set of states, M is a function M: S x Z -+ S 
and So z S is the initial state. 

In the following, dr '  = (S, So, M> is a fixed but arbitrary f.a. 

Definition 2.2. h~t: S x Z* --~ S is the extension of M given by 2ffl(s, xo) = 
M(~l(s, x), (r) for (r z Z, x z Z*. R~t is a function, R~:  Z * - ~  S, given by 
R~(x) = ~l (so, x), called the response function of ~ .  (To simplify the notation 
we omit the subscript ~ in R.a)  

Definition 2.3. Rla is the function R restricted to {x] x~(azZ'~}.  Let 
In(a) = {sis ~ S, c((R[a)-t(s)) = ~o}. Thus In(a) is the set of  states of  ~¢/ 
which are entered infinitely often while reading a. 

To simplify the proofs we always assume that all states o f . / / / a r e  accessible 
from the initial state. That  is, for all s z S, there is an x ~ Z* such that 

R ( x )  = s.  

We may adjoin to J [  the following conditions for acceptance of sequences 
a = ~1a2. • • of  Y& The conditions are called output conditions or just outputs. 

1. Let D _ S. ~ accepts ~ with respect to D if (Si)R(6i) ~ D. 
1'. Let D ~ S. ~ '  accepts a with respect to D if (Vi)R(6i) E D. 
2. Let D _c S. ,rid accepts a with respect to D if In(a) n D # ;~. 
2'. Let ~@ _c P(S). J {  accepts ~ with respect to ~ if (~D ~ ~ )  In(a) _c D. 
3. Let ~ c P(S). ~ accepts ~ with respect to ~ if (3D ~ ~ )  In(~) = D. 

Definition 2.4. An i-f.a, is a f.a. augmented by an output of  type i. I f  
J / i s  an i-f.a., T(,///I), the set of sequences definedby J[,  is {~[ ~ ~ Z '~, a accepted 
by ~g{}. (Of course the notion of acceptance is with respect to the designated 
set D or set of  sets ~ and the output type. To simplify the text we use just 
"accept"  whenever the meaning is clear.) 

y o~ is i-definable if there is an i-f.a, which defines it. 

i-f.a. ~ ' 1  is equivalent to the j-f.a, d¢'2 if T(d¢'l) = 

Definition 2.5. A 

Definition 2.6. The 

T(J~'2). 
l ' -f .a,  were studied by Hartmanis  and Stearns [4]. 2-f.a. and 3-f.a. were 

introduced by BiJchi [1] and McNaughton [6], respectively. In [1], non- 
deterministic 2-f.a. were used to obtain a decision procedure for the restricted 
second-order theory of the structure (N,  ' ) ,  where N is the set of  natural 
numbers and ' is the successor function on N. In [6], non-deterministic 3-f.a., 
non-deterministic 2-f.a. and deterministic 3-f.a. are shown to define the same 
sets. This theorem can be used to simplify Biichi's decision procedure. In [2], 
a theorem about 3-f.a. is used, together with the results of  [1] and [6], to 
obtain an algorithm for constructing finite automata from specifications given 
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in the restricted second-order language of (N, ' )  (see [7] for a discussion of  
these results). In [3], the hierarchy result below for 3-f.a. is presented and 
used to obtain a classification for decision problems for the restricted second- 
order theory of  structures of  the form (N, ', Q~, where Q is a recursive 
predicate. 

Definition 2.7. For  x e Y,*, let Nx = {~1 ~ ~ Y,*, x-<~}. A _~ Z °' is an open 
set of  the product topology if there is a B ~ E* such that 

A = U N x .  
x E B  

Hence {Nxl x E Z*} is a basis for the product topology on Z% 

Definition 2.8. Let A be an open set. B ~ Z* is a basis for  A i fA = Ux~s Nx. 
B is a minimal basis for A if B is a basis and (Vx, y e B ) [ x ~ y  ~ x = y]. 

Let Fo and Go denote the class of subsets of Z '° which are both open and 
closed. F1 [Gx] is the class of  closed [open] sets. F2 [G2] is the class of sets 
which are denumerable unions [intersections] of  closed [open] sets. F3 [G3] 
contains denumerable intersections [unions] of sets in F2 [G2]. We define 
F3, F4 , ' "  [G3, G4," '] similarly. A c denotes the complement of  A _ Z °'. 

It is well known that for all i, Fi c Fi+a, G~ c G~+I and F i u  G~ c F~+x 
n G~+I. Also, each Ft and G~ is closed under finite unions and intersections, 
and A e Fi if and only if A c ~ Gi. 

Definition 2.9. A _ Z ~ is a Borel set if it belongs to U~Fi = Ui  G~. The 
hierarchies Fo, F I , " "  and Go, G~ , - "  form the Borel hierarchy. 

The complexity of  a subset of  Z °' is given by its position in the Borel 
hierarchy with respect to the product topology on Z °'. 

Intuitively, Z °' is an infinite labelled tree where if c(Z) = n, then each 
vertex has n successor vertices. Points of Z '° correspond to infinite paths of 
the tree. Vertices correspond to members of Z*. Nx (x ~ Z*) is the set of all 
paths through the vertex corresponding to x. An open set is the union of all 
paths through some set of vertices. The reader is urged to use this corres- 
pondence as an aid in motivating the proofs. 

LEMMA 2.1. A is a member of Fo [Go] if and only if there are x l , ' " ,  x ,  
such that 

A = ~ J N ~ , .  
i = I  

Equivalently, A ~ F o if and only if A has a finite minimal basis. 
G2 can be characterized as follows. 

LEMMA 2.2. A e G2 if and only if there is a B c_ y. * such that ~ ~ A if 
and only if 3 x l M x 2 M . . . ,  x i s B and xiMe, i = 1, 2 , . . . .  

Proof. 1. Let A e G2. Then there are open sets A~ ~_ A 2 ___ . . .  such that 
A = ~ i  Ai. Let B~ be a minimal basis for A1. Choose a minimal basis B 2 for 
A2 which satisfies B2 n B~ = e .  This is done by first picking a minimal 
basis B 2 for A 2. I f x  s B 1 c~ B2, replace x in B 2 by {xol, . . . ,  x~,l 2; = {el, "" ", 
c,,}}. B2 is the modified B 2. Similarly, define minimal bases B3, B 4 , " "  for 
Aa, A4, " '"  respectively, where B,+ 1 n U}=I Bj = ~. 
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Let B = ~ B  i. I f ~ A ,  then ~ A i ,  i = 1, 2, . . - .  Hence there are x ~ B ~ ,  
i = 1, 2, . . . ,  such tha t  x i < ~  (Bi is a basis for  Ai) and xi ~ xj for  i # j .  
Choose  a subset {xis} of  {xi} so that  x ~ ' < x i : < ' "  

I f  3 xl"<x2~" " • -<o~, x~ e Bis, then ~ e (~j Ai~. Then ~ e A because the 
A~ are decreasing. 

2. Let  e s A  if  and only if  3 x x < x 2 - < ' " ,  x i e B ,  x:<,,, i =  1, 2, . . . .  
Let  C~ = B and define B~ , i  = 1, 2, . . . ,  as follows: 

e I ~- {x  I x ~ C l ,  (~y)[y  ~ C 1 ^ y - < x  = y = x]}. 

Assume that  B i and  C i have been defined. Let C~+~ = C~-B~ and 

Bi+, = {xlx ~ C~+,, (Vy)[y ~ C~+, ^ y ~ x  = y = x]}. 

Then B = ~ B, and each B~ is a minimal  basis for  an open set A~. I t  is easy 
to show tha t  A = ~ i  A~, so that  A e G2. This completes  the proof.  

Definition 2.10. I f  A e G2 and B is as in L e m m a  2.2, then B is a G2-basis 
for  A. 

3. Hierarchy Results 

We show that  1-definable sets [ l ' -def inable  sets] are in G1 [F1], 2-definable 
[T-definable] Sets are in G2 [F2], and 3-definable sets are in G 3 c~ F 3. 

T H E O R E M  3.1. Every 1-defnable set is in Gx. 
Proof. Let A be 1-definable. There is a 1-f.a. ~ = (S,  So, M, D> such 

that  A = T(,//e'). Let  B = {xlR(x ) ~ D}. Then A = ~)x~B Nx, so that  B is a 
basis for  A and A ~ G~. 

C O R O L L A R Y  3.2. Every l'-definable set is in F 1. 
Proof. I f  A is l ' -definable,  then A c is 1-definable. 
Corol lary  3.2 was proved  in [4] for  the usual topology on the real line. 

T H E O R E M  3.3. Every 2-definable set is in G2. 
Proof. Let A be 2-definable. There is a 2-f.a. ~ ¢ / =  (S,  So, M, D )  such 

that  A = T(.///). Let B = {x]R(x) e D). Then A = {~[In(~) n D ~ ~} and  
this is just  the set o f  ~ for  which there are x~-<x2-<.  • • such tha t  x~ e B, xi-<a,  
i = 1, 2, . . . .  Hence B is a G2-basis for  A, so that  A e G 2. 

T H E O R E M  3.4. Every T-definable set is in F2. 
Proof. Let A = T ( d D  where ~ = (S,  So, M, ~ )  is a 2'-f.a. Assume that  

= {D}. Fo r  each x e Z * ,  let Ax = {~lx-<~, (Vy)[x~y~o~ D R(y)~ D]}. It  
is easy to see that  A~ is closed. Then A = U~ez.A~, so that  A is in F 2. I f  

= {D~, . . . ,  D,}, then A is a finite union o f  members  of  F2, so that  A is 
still in F2. 

The following two theorems were proved in [3]. 

T H E O R E M  3.5. Every 3-definable set is in G3 n F3. 
Proof. Let A = T(u/D, where ~ ¢ / =  (S,  So, M, ~ )  is a 3-f.a. Assume 

that  ~ = {D}. Then,  by Theorem 3.4, A/) = {~1 In(~) _c D} is in F2. For  each 
E c D, Ae. = {~[In(~) _~ E} is also in F 2. Hence A = A o n (~E=O AE) ~ is 
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in the Boolean algebra over F2 and therefore A ~ F3 n G3. I f  ~ = { D 1 , ' " ,  
D,}, then A is a union of members of  F 3 f )  G3, so that A is in F 3 f3 G 3. 

C O R O L L A R Y  3.6. Every 3-definable set is in the Boolean algebra over G 2. 
In the following, assume that Z = {0, 1}. This will simplify the notation. 

Definition 3.1. Let A t consist of  those members of  y,o in which a finite 
number of  l ' s  occur; i.e., A t = {~lc{x[ x eE*,  xl-<~}<oJ}. 

L E M M A  3.1. A t is in F2 but not in G 2. 
Proof. Assume that A t e  G2 with G2-basis B. Obtain a contradiction by 

constructing an ~ ~ E ~' which contains an infinite number of elements of  B 
as initial segments but which is not in A t. 

Choose n 1 such that 0 "x ~ B. We know that n 1 exists because 0'°~ A t. 
Choose n2 such that 0 "~ I0 n2 ~ B. Now n2 exists because 0 nl 10 °' ~ A t. Choose 
n3, n4," "" similarly. Let ~ = 0 "~ 10 "2 10 n~ 1. • .. We have c{x[ x ~ B, x~<~} = co, 
but ~ ¢ A t. Hence B is not a G2-basis for A t and A t ¢ G2 : 

Atc ~ G 2 with G2-basis {xl[ x ~ Z*}. 

L E M M A  3.2. Let A* = ~ eA t} u{~[ 1-<~, ~ ~ Ate}. Then A* is 
in neither G2 nor F2. 

Proof. This is similar to the proof  of  Lemma 3.1. 
It  is easy to show the following theorem. 

T H E O R E M  3.7. A t is T-definable, Atc is 2-definable and A ~ is 3-clefinable. 
Theorem 3.7 demonstrates that Theorems 3.3-3.5 give the best possible 

characterizations of  2-, 2'- and 3-definability. In the next section we show 
that 2-f.a. and 2'-f.a. differ from 3-f.a. only on G 3 n F3. An interesting open 
problem is that of  obtaining "natural"  output conditions which enable finite 
machines to define sets above G3 n F3 in the Borel hierarchy. 

4. Algorithms for Determining Complexity 

In this section we give an effective procedure for determining the complexity 
(with respect to the Borel hierarchy) of  a set defined by an arbitrary 3-f.a. 
The complexity of  sets defined by other types of f.a. can be calculated by first 
constructing an equivalent 3-f.a. and then applying the given decision method. 

In the following, let de' = (S, So, M, ~ be a fixed but arbitrary 3-f.a. 

Definition 4.1. For x, y ~Z*, x ~ y ,  let ~(x ,  y ) =  {R(z)[x-<z~<y}. For 
s ~ S, let Ac(s) = {q[q ~ S, (3x)ffl(s, x) = q). Call Ac(s) the set of states accessible 
from s and ~ ( x ,  y) the state path determined by the interval x, y. 

Definition 4.2. For q e S, let ~Oq = {~(x, y)lR(x) = R(y) = q, x, y ~ Y~*}, 
the set of  realizable cycles. 

i 

Notation. For  z e Y,*, z i = z ^ • • • ^ z. 

T H E O R E M  4.1. T(d¢') is open if and only if every non-empty ~ s  satisfies 
( a ) ~ s n ~ = ~  o r  

(b) for all q ~ Ac(s), ;/t°q c_ ~ .  
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Proof. 1. Assume that T ( ~ )  • G1 and that ~ s  n ~ is non-empty. Then 
there is an x • Z* such that R(x) = s and Nx ~ T(J/~.  Let q • Ac(s) and 
D • ~ q .  Prove that D • ~ .  By the definition of  ~ q ,  Ac, there is a fl of the 
form x y z  °', where R ( x y ) =  q and for all i, ~ ( x y z  i, x y z  ~+l) = D. Since 
Nx _ T(~D,  D • ~ .  

2. Assume that (a) or (b) is true for any non-empty ~¢{s. Let 

B = {x l  ~(R(x)) n ~ ~ ~}. 

Prove that B is a basis for T ( ~ D  so that T(~¢[) • G1. Assume that T(d¢') ~ o 
(the empty set is open). Let ~ e T(~CD so that D = I n ( a ) •  ~ .  Choose a 
y~(a  such that R(y)  • D. Then D • ~ ( R ( y ) )  n ~ ,  and thus 2/~(R(y)) n ~ is 
non-empty and y • B. 

If  a • Ny, y • B, then Z/g'(R(y)) n ~ ~ ~, so that by (b), for all q • Ac(R(y)) ,  
o~q c ~ .  Therefore In(a) • ~ so that a • T ( ~ 0  and B is a basis. This completes  
the proof. 

T H E O R E M  4.2. T(J/[) is in G 2 if  and only if  f o r  all s • S, D • ~ n 2/t°s 
and E • ~ s  implies D u E • ~ .  

Proof. 1. Assume that T ( ~ ' ) •  G2 with Gz-basis B (Definition 2.10). Let 
s • S ,  D e ~  n J t ° s  and E • ~ s .  Prove that D u E e ~ .  This is done by 
defining an a • T(d¢') for which I n ( a ) =  D u E. Choose x, Yl, zl, wl, to 
satisfy R(x)  = R(xyx)  = R(xy~wl )  = s, ~ ( x ,  xy~) = B,  ~ ( xy~ ,  xy~w~) = E, 
and z l  • B, z l -<xy l .  Now Yl, z~ and wl exist because D • ~ s ,  D • ~ and 
B is a Gz-basis for T ( ~ ' )  and E • ~¢t°s. Choose Y2, z2, w2 such that R(xyxw~yz)  = 

R(xy~w~yzw2) = s, ~ ( x y l w x ,  xy~w~y2) = D, ~ (xy~wlY2 ,  xyxwlY2W2) = E and 
z 2 satisfies Zl'~Z2"~XylWlY2, Z 2 • B. Similarly, choose yi, zi, wi, i = 3, 4 , . . . .  
Let a = x y ~ w ~ y z w 2 " " .  We have a e T(~¢') because zi • B, z~-<a, i = 1, 2, . .  • 
and B is a G2-basis for T(~¢[). But In(a) = D u E, so that D w E e ~ .  

2. Assume that for all s e S, D • ~ n J~s, E e ~ s  imply D u E • ~ .  
For  s • S let 

B~ = {x I R(x)  = s, (V y~ (x )  R(y)  ¢ s} 

B~.+I = {x] R(x)  = s, (~ y eBb) [ y - < x ^ ~ ( y ,  x) • ~ ^  

(Vw) [y-<w-<x ~ R(w) -¢ s v  ~ ( y ,  w ) ¢  ~]]}; 

i.e., B~.+ ~ is the set of  shortest extensions of each y • B~ which cause ~g  to 
reach s after traversing a member of ~ .  Let B = ~ s e s U i B ~ .  Show that B 
is a G2-basis for T(~g). 

(a) Assume there are x ~ < x z - < . . ,  such that x i < a ,  x ~ e B ,  for i = 1, 
2 , . . . .  Prove that a • T(~D.  Choose a subset y~-<y2~, • • • of {x~} such that 
{Y~} -~ U~ B~ for some s. Let z ~ < z 2 < " "  be a subset of  the {Yi} such that 
~(z~, Zi+l) = In(a). But by the definition of the B~ sets, ~(z~, z~+~) -- In(a) 
is a union of sets in -@ n ~ s ,  so that I n ( a ) •  ~ by hypothesis and thus 
a • T(Jg) .  

(b) Assume that a • T(d/D and prove that there are x ~ - < x z - < . . ,  such 
that x i < a ,  xi • B, for i = 1, 2,. • .. Let D = In(a) and fix s • D. Then there 
is an x~ • B~, x~<a .  Assume that xi-<a, x~ • U i  B~, has been determined, 
and choose xi+~ as follows: Let z and y be such that x i < y < z ,  R(z)  = R(y)  = s 
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and ~(y ,  z) = D e ~ .  Since ~(x~, y) and ~(y ,  z) are in ~ s ,  the hypothesis 
implies ~(x,  z) e ~ .  Hence by the definition of the B~ sets, some ~,, x i - < ~ z ,  
is in UjB~. Let xi+l be ~'. The proof is finished. 

It is easy to see that the following lemmas obtain. 

LEMMA 4.1. There is an effective procedure for  obtaining the a~s and Ac(s) 
sets from v¢[. 

LEMMA 4.2. I f  ¢[[ = (S,  So, M, ~ ) ,  then T(e/D c = T((S ,  so, M, P(S) 
- ~ > ) .  

LEMMA 4.3. Given a 1-, 1'-, 2- or 2'-f.a., an equivalent 3-f.a. can be 
effectively obtained. 

Theorems 4.1--4.2 and Lemmas 4.1-4.2 imply the following theorem. 

THEOREM 4.3. There is an effective procedure for deciding the complexity 
of T(otD, with respect to the Borel hierarchy, for  any 3-f.a. ~ ;  i.e., we can 
decide whether T ( ~ )  is in G 1, F1, G2, F 2 or G 3 ~ F 3. 

By Theorem 4.3 and Lemma 4.3, we have the following result. 

THEOREM 4.4. There is an effective procedure for deciding the complexity 
of T ( d D  for any i-f.a. 

The next two theorems show that 2- and 2'-f.a. differ from 3-f.a. only on 
G 3 ~ F  3. 

THEOREM 4.5. I f  A e G 2 is 3-definable, then it is 2-definable. 
Proof. Let T(d¢) • G2, where J/¢ = (S,  So, M, ~ )  is a 3-f.a. Now a 2-f.a. 

~ ' *  satisfying T(d¢) = T(~/*) is defined as follows. For each s • S, let ~ 
be an f.a. which for any input sequence a satisfies: 

(a) ~/¢'s enters a designated state ¢ the first time ~ would enter s in 
reading a; 

(b) dC's reenters E each time and only at such times that (1) J£¢ is in state s 
and (2) the set of states entered by ~///in reading a, since the previous time 
~ was in E, is in ~ .  

v//* is ( d g ~ x . . .  x~CC's., D*), where S = { s D ' " ,  s~), x is the usual 
product operation on machines and 

D* = ((d~,. . . ,  d,) ldi  a state of v¢/~,, (3j)(dj = ,)} 

is the output condition. 
Note that d / / i s  built into each ~ .  It is clear that a finite automaton can 

be designed to satisfy (a) and (b). In the following, In(a) and ~¢t:s always 
refer to J//. 

1. T ( J / ' ) _  T(~¢/*). Let a • T(~/') and In(a)e ~ .  Choose s • In(a). ~///~ 
enters E the first time ~ enters s, while reading ~. This occurs because s • In(a). 

Assume ~¢/s enters ~ for the nth time at time t and let E~, E2 , " "  be the 
sets of states which ~ enters between successively entering s after time t 
(Ei ~ o,  i = 1, 2 , . . . ,  since s • In(~)). There is a finite sequence Ej, Ej+ D ' " ,  
Ej+ k such that In(a) = U~=o Ej+t. But then, since Jt°s n ~ ¢ e ,  Theorem 
4.2 implies that IIJ+k E1 E ~ .  Hence ~'~ enters E an (n+ 1)st time. This proves ~.)I= 1 
that if a • .T(dD, then some ~/¢', enters E infinitely often, so that a • T(~*) .  
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2. T(J¢'*) ~ T(~CD. Let ~ E T(,.¢/*), so that there is an s such that ~¢/s 
enters ~ infinitely often while reading ~. Let Ei (i = 1, 2 , . . . )  be the set of 
states entered by J/ /  between the ith and (i+ 1)st times ~-¢fs enters ~. Then 
Ei e J/fs n ~ (i = 1, 2 , . - . )  by the definition of ,.¢/~. In(~) must be equal to 
a finite union of Ei's, but since ~Vls n ~ ~ ~, Theorem 4.2 implies that any 
finite union of Ei's is in .@. Hence ~ ~ T(d¢). 

THEOREM 4.6. A is 2-definable if and only if A ~ is 2'-definable. 
Proof. Let J/¢ = (S, So, M, D) 2-define A. The 2'-f.a. (S, So, M, P ( S -  D)) 

2'-defines A ¢. If  ~¢/ 2'-defines A, first obtain a 3-f.a. ,.¢4'~ which defines A. 
Then modify .///~ to a 3-f.a. J//2 which 3-defines A ~. A ¢ ~ G2, so by Theorem 
4.5 there is a 2-f.a. which defines it. 

COROLLARY 4.7. I f  A ~ F2 is 3-definable, then A is 2'-definable. 
In [6], McNaughton proves (in effect) that non-deterministic 2-f.a. define 

the same sets as 3-f.a. Hence Theorem 4.5 shows that non-deterministic 2-f.a. 
differ from deterministic 2-f.a. only on G3 nF3.  

5. Undecidable Problems 

In this section we consider decision problems for Turing machines which 
define sets of co-sequences. The model employed is the one-tape, on-line 
Turing machine augmented by the various output conditions of Section 2. 

Definition 5.1. A one-tape, on-line Turing machine (T.M.) is a Turing 
machine having (1) a single two-way infinite work tape with a read-write head 
and (2) a one-way infinite input tape, with a read-only head, which is to 
contain members of ~,o. 

An i-T.M, is a Turing machine (as above) augmented by an output of 
type i (as in the definition of an i-f.a.). Definitions 2.4 and 2.5 with T.M. 
replacing f.a. define "Turing machine ~ ' / -def ines  A ~ Eo,,, and "A is/-definable 
by a Turing machine". In [3], it is shown that every 3-T.M. defines a set in 
F3 n G3. In fact the method of proof for Theorems 3.1-3.5 is immediately 
applicable to the class of T.M.'s and indeed to any class of machines augmented 
by the corresponding output type. 

Let ~ (C)  stand for the problem of determining whether an arbitrary 
3-T.M. defines a set in C __q P (~'~). By reducing the emptiness problem for 
ordinary Turing machines to ~(Gi) (i = 0, 1, 2), we obtain 

THEOREM 5.1. ~(Gi) and ~(F~) are undecidable for i = O, 1, 2. 
Hartmanis and Hopcroft [5] have investigated the relationship of un- 

decidable problems for various types of machines with respect to Turing 
reducibility. The following theorems compare problems for 3-T.M.'s with 
problems on ordinary Turing machines. 

Let M be the standard class of one-tape Turing machines which accept 
(J ~ M accepts the set of finite sequences on which it halts) sets of finite 
sequences on ~. M* is the class obtained from M by allowing machines to 
have an oracle which, given an index x for a machine in M, decides whether 
machine x halts on x. 
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Delinition 5.2. -~r, --~z* and -~a are respectively the problems of deciding 
whether an arbitrary J e M accepts a finite set, all of Y.*, or a recursive set. 
If ~ is a problem on M, then ~*  is the corresponding problem on M*. 

Notation. ~1 < ~2 means that the problem ~1 is (Turing) reducible to 
the problem ~2. ~1 = ~2 if ~ < ~2 and ~2 < ~1. ~1 < ~2 if ~1 < ~ 2  
but :~2 5; ~ .  

It is easy to show 

T H E O R E M  5.2. ~ ( F i )  = ~(G~), i = 0, 1, 2. 

T H E O R E M  5.3. @.r < ~ (emptiness problem for 3-T.M.). 
The following theorem is proved by employing the notion of a "valid 

computation of a Turi,ng machine" (see [5] for definition). 

T H E O R E M  5.4. ~ < ~(G~), i = 0, 1. 
It is well known [5, 8] that 

_ ~  (emptiness p r o b l e m  for M )  < _~r -= --~z* < - -~  = --~R. 
Our results show that problems such as ~(Gi) are at least as difficult as --~R. 
A general open problem is that of characterizing the relative degrees of 
unsolvability of problems on 3-T.M. 
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