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A CONTRIBUTION TO THE THEORY OF MULTIVALENT METALS

Emil Antonéik,
Institute of Theoretical Physics, Charles University, Prague.

The paper deals with the extension of the statistical model of metals having one or two
valency electrons as suggested by Gombds to multivalent mefals. On the basis of this model
a number of constants of metallic aluminium were calculated, no use being made of any em-
pirical parameters. The results are in comparatively good agreement with experiment.

The statistical theory of metals was elaborated
mostly by GomsAs [1], [2], who in a number of
papers dealt with the calculation of the funda-
mental constants of most of the univalent and
bivalent metals. This theory, which in its sub-
stance does not take into account the structure of
the BZ (Brillouin zones) and the energy distribu-
tion of the valency electrons in reciprocal space,
achieved its greatest successes for alkali metals,
Cu and others (i. e. for metals having one valency
electron) for which the effect of the BZ on the
physical properties is' mostly very small. The mat-
ter stands quite differently with bivalent metals,
where this etfect on the energetic spectrum of the
valency electrons is considerable. Although for
this case all assumptions of this theory are not
fulfilled to the same degrez as for univalent
metals, where the average contributions of all
valency electrons are concerned (e. g. for the
total energy) good agreement with experiment
can, however, still be expected; calculations
confirmed this without exception. Quite analo-
gous behaviour can, therefore, be expected for
multivalent metals. In the following we shall
first briefly outline the main ideas of the Gombés
theory of metals and propose.an extension of his
equation for the total energy ot the crystal to
metals with several valency electrons. This
equation we shall then use for the calculation
of some physical constants of metallic aluminium.

It is a well-known fact that the grouping to-
gether of the atoms of a metal into a crystal
lattice leaves the closed electron shells of the ion
practically unchanged, while the wave functions
and the energies ot valency electrons are changed
considerably. In the following we shall therefore
assume that the state of the valency electrons
in a metal is described by a wave function of the
Bloch type, i. e. a wave function which is non-zero

practically throughout the whole of the crystal
and the state of the core electrons by a wave
function which is localised in the immediate
vieinity of the atomic nucleus. This latter wave
function is to a first approximation identical to
the wave function of the free ion. We shall further
limit ourselves in our assumptions to the atomic
sphere the radius of which is denoted by R, thus
considerably simplifying the whole problem.

In his theory of metals GoMBAS assumes that
to a first approximation, which without doubt
corresponds to reality better in the case of a uni-
valent than a bivalent metal, the wave functions
of valency electrons are plane waves, i. e. the density
of the valency electrons is uniform. It is, of course,
obvious that the wave function of valency elec-
trons of the type

eikr
in which % denotes the wave vector, are generally
not orthogonal to the functions of the core elec-
trons. As a consequence the energy of the valency
electrons would be lower than corresponds to
reality where due to the validity of the Pauli
principle valency electrons cannot occupy states
already fully occupied by the core electrons.
GomBAis avoided this difficulty in a simple way.
Starting out from the statistical formulation of
the Pauli principle he derived. for this obviously
non-classical repulsion between the valency elec-
trons and the core electrons a potential by which
he supplemented the potential in the Schrédinger
equation. He was therefore not bound by ortho-
gonality conditions between the wave function
of the valency electrons and the wave functions
of the core electrons. He derived two expressions
for this repulsion potential which he denoted
by F; and (. In principle these potentials differ
by the fact that while deriving ¢, the core elec-
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trons were consistently distinguished aecording
to the azimuthal quantum number I, while
in the case of the potential F; this was not con-
sistently adhered to. The potential @, is, moreover,
better suited for metals having several valency
electrons and we shall therefore use it in the
following [3].

The idea from which GomBAs [4] started when
deriving the potential ¢, is briefly this:

1f the volume element is dv and dp, dp, dp, the
element of momentum space, then — as is well
known — the number of electrons in the volume
element dv having momenta {(p,, p, + dp.>, (P,
p, + dpy>, {p,, P, dp,> is given by the formula

7L2—3dp$ d]o,,~ dp, dv . (1)

Let us now divide momentum spaee by coaxial
cylindrical surfaces the axis of which is identical
with the position vector 7 of the volume element
dv so that the individual hollow circular eylinders
contain consecutively the points representing the
states of eleetrons having an azimuthal quantum
number I = 0,1, 2,.... Let us further require that
the radii p, of the individual eylindrical surfaces
should, according to semi-classical quantum theo-
ry, satisfy the following relation

- h
lrlp, = 3'2;-

Let us further agsume that the potential of the
core electrons in a sufficiently small volume
element dv is constant and that the electron
density in: this volume element is so great that
statistical methods can be applied to the solution
of the problem. It is obvious that this assumption
loses validity in the vicinity of the nucleus and
at the boundaries of the ion. As, however, these
regions do not figure in our considerations they
do not have to be specially considered.

Points representing states of the core electrons
having a certain quantum number [ obviously
occupy those places in momentum space which
correspond to the lowest energies up to a certain
maximum. At the same time due to (1) each cell
of phase space having the size A® can at most
contain two such points. It is thus obvious that
each further (in our ca-e valency) electron which
should be placed in the volume element dv must
have an initial energy greater than this maximum
energy of the core electrons. This energy, which
is a basic consequence of the Pauli principle can

be expressed by means of a potential which was
derived by GoMBAs and can be written
m? 11

*ml)? —55") (2)
where D, is the radial density of all core electrons
having an azimuthal quantum number I. By
introducing this potential into the Schrddinger
equation — as mentioned above -— the condition
of orthogonality between the wave functions of
the valency electrons and the wave functions
of the core electrons is automatically fulfilled.

We shall now proceed with the calculation of
the total energy of the valency electrons in the
atomic sphere. As was shown by GowmsAs [1, 2],
it is possible to write the total energy of the
valency electrons in a metal as the sum

U=E,+E,+E,+E, +W,+
W, + W, + Wy + W, + H,

In contradiction to GoMBAS, however, we supple-
mented the individual terms of this equation on
the one hand by new expressions and on the other
hand generalized them forthe case of several valency
electrons having a different azimuthal quantum
number. The derivation of these expressions can
be found in the cited book of GomBAs even though
not always in this econnection. Below there follows
an explanation of the individual terms in equa-
tion (3).

E, is the total kinetic energy of the valency
electrons. As way mentioned above the individual
electron levels in an atom split up into bands when
the atoms group together. The width of these
bands for the filled shells of the ion is negligible
while this is not the case for valency electrons.
We shall therefore assume in the following that
the levels of the valency electrons having a certain
azimuthal quantum number split. up into one
band. If we denote by », the density of the valency
electrons averaged over the angles & and ¢ in the
band formed from the level I, we can write for
the total energy E, the sum

By = Ey + E; + E;. (4)

Gy(r) =

(3)

*) The following units, if not otherwise stated, are
used in this paper: The Bohr radius, i. e. the radius of the
lowest electron orbit

h2
Ay = ——n
07 dntmed

is used as the unit of lenght and Rydberg units
o2
= 3o
are used for the energy.
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ES is the kinetic energy of the electron gas in
the individual bands at the absolute zero of tem-

perature
By =7 2, [vit dv, 2, =2.871, (5)
i

where the integration is carried out throughout
the whole volume of the atomic sphere (which
will not be specially marked by limits of integra-
tion), and the sum is extended over all [ for which
v, == 0.

E% is the contribution to the kinetic energy from
the non-uniform distribution of density.

Bt = Z2xif1—11—(grad1/,)2dv, =13 . (6)
7 :

EY is the average minimum kinetic energy of
the valency electrons in the quantum state !
=3 f Wt D)n g, (7)
1 7
This energy can also be interpreted as a conse-
quence of the orthogonality between wave func-
tions of the /-th state and wave functions of the
valency eleetrons having a different azimuthal
L.+
quantum number, because the term —
corresponds to the angular part of the wave
function of the electron.

E, is the electrostatic energy which also in-
cludes the self energy of the valency electrons
compensated by an identical term in the exchange
energy E, following from the interaction of the
electron with its own self. It can be written in the

form >y
Eoszv—(_,i,ldvdv’, (8)
« ¥ —7|
where » = >,
7

E, is the exchange energy of the valency elec-
trons and is given by the expression
B, = — 2, [+t dv, », = 0,7386. (9)

E, is the correlation energy given to a first
approximation by the expression

B, = — [g(3) v do,
where the function g(z) is defined by

(10)

o
9o) = oo @ = 0.11204, @, = 0.1216.

W, and W, is the contribution of the Coulomb
potential and its deviation from the true ion
potential. If we denote the potential of the ion
by V we can write

Wo+ Wy =— [Vvdo.

(11)

W, is the exchange energy between the core
electrons and the valency electrons. In the first
approximation it can be written

W, = — 2 [ [0 + 7}t — of —»H]dv, (12)
0

where r, is the radius for which the jon density o
equals the limiting ion density of the Thomas-
Fermi-Dirac model g, = 0.002127. It was shown
by GowmBAs that for ¢ < g, equation (12) ceases
to correspond to reality.

W, is the repulsion energy of the valency elec-
trons being a consequence of the Pauli principle.
Due to (2) it is given by the expression

Wy =—>[Gpdo.

1
W, is the correlation energy due to the inter-
action between core electrons and the valency

electrons. This energy is fairly small and GoMBASs
derived for it the approximate expression

W, = 0.130W,.

(13)

H, finally is the energy due to ion-ion inter-
action the electron shells of which overlap. The
expression for this energy will be found in the
already cited book by GoMBAs [1] or in his recent
paper [2].

As was mentioned above, GomMBAS calculated
inter alia the total energy of univalent and bi~
valent metals on the assumption that the density
of the valency electrons in these metals is uniform,
i.e.l = 0, v, = const. After substiting these va-
lues into equation (3) there remains in the ex-
pression for the kinetic energy only the term £2
and it is completely identical to that of GompAs
derived for the total energy of univalent or bi-
valent metals. It is, however, necessary to stress
that this agreement is only formal since Gombés’
assumption does not necessarily correspond in our
case to that state of the crystal for which its total
energy is a minimum. We shall deal with this
question in greater detail in a future paper.

The assumption of uniform density of the va-
lency electrons considerably simplifies numerical
calculations of the individual terms of equation (3).
It is obvious that this assumption which is only
very approximate for univalent metals is without
question much less suited for metals having two
valency electrons, while for the rest of the metals
uniform valency electron distribution hardly cor-
responds to reality. Probably the only exception
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in this group of metals is aluminium some physical
properties of which point to the fact that the
valency electrons are to a great extent ‘‘free’.
We shall therefore retain the assumption that the
three electrons of aluminium which in the free
atom are in the 35*3p state are to a first approxima-
tion uniformly spread over the atomic sphere
with a density
6 3

TR T R

(14)
On the above assumption we can easily evaluate

those terms of equation (3) which contain the

mutual interaction of the valency electrons

g =220 (15)
B = o, (16)
By = 1—?—, (17)
By — “'77;—5':5%’ (18)
B 3.9}250. 19)

For the calculation of further terms of equation
(3) Hartree’s calculations of the radial densities
D, and the potential for Al+++ [5] was used, 7,
being determined from the same calculations.

In the expression for the energy W, the limits of
integration may be extended to infinity, because
from » = 2.2 the integrand is equal to zero. This
energy can therefore be written (for R > 2.2)
in the form
, 38.3034 4.5
Wg = B TR + Vi

The terms W, and W, W, cannot be express-
ed as functions od R in a sufficiently simple and
precise analytical form. Tt can also be easily shown
that the terms W, and H, ¢an be neglected for
aluminium. The error -thereby ommitted does
not exceed the error with which the energy X, is
determined. Substituting into equation (3) we
obtain for the total energy

(20)

6.8350 2.4922 19.7263
U=—p s r ™ @& T
38.3034 27.110 9
+ VT i --R—§f2Zﬂr dr  (21)

Tg A
—18.5630 [ [(0 + »)* — o' 2 dr.
0

The energy U was calculated for various R in the
range (2.4, 3.4> the value 1.898 being substituted
for 7,. The results of these caleulations are given
in table I.

Table I.
R 2.4 2.6 2.8 3.0 3.2 3.4
-U 3.8922 | 4.0545 | 4.1179 | 4.1212; 4.0852 | 4.0234

Knowing the dependence of U on R we can
easily caleculate the radius of the atomic sphere
for equilibrium state R, if we put

vy
dR)een, =

For this purpose the function U(R) was approx-
imated by a polynomial and after substituting
condition (22) the value

(22)

R, = 2.911,
was obtained. The experimental value is
R*P = 2.984.

The minimum energy corresponding to this radius
of the atomic sphere is

U, = — 4.1255.

from which we can easily calculate the binding
energy, i. e. that energy per atom which is needed
to decompose metallic aluminium into free ions and
free valency electrons. The binding energy per
atom § can therefore be written as the absolute
value of the sum of U, and the absolute value of
the sum of the ionisation energies of the valency
electrons 1

S = [U, + I1i]. (23)

Substituting into equation (23) the value (22) and
the sum of the ionisation energies 6]
I = 3.8971,
we obtain for the binding energy the value
S = 71.6 keal/mol.
The experimental value reduced to absolute zero
is (7) 8P — 67.6 keal/mol.

It was mentioned above that the lattice constant
or the radius of the atomic sphere and the binding
energy are two constants which to a certain
extent depend considerably less on the structure
of the BZ and on the distribution of energy in
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reciprocal space than other constants of a metal.
It is also found that the agreement of the two
values with experiment is very good.

From the statistical model of the atom we can
comparatively easily calculate the compressibility
» defined by the following relation

o == 1 ——(1—” =S ].ZTERO “”‘1"——.
dU
aR ;s

~ wedp
Atfter substituting into this formula we obtained
for the compressibility the value

% = 0.65.10-12 cm?/dyn.

(24)

The experimental value reduced to absolute zero

of temperature is according to GRUNEISEN [8]
«**P = 1.3 . 10-12 cm?2/dyn.

We cannot but stress the fact that the compressi-
bility and in general all the elastic constants de-
pend considerably in the BZ so that as far as
these are concerned only an estimate of the order
of magnitude can be obtained. Although for the
compressibility the agreement with experiment
is considerably worse than for R, and S, the de-
viation of the value is only a little larger than the
deviation for elements having two valency electrons,
where according to GoMBAS (9) it amounts to
309, to 409%,.
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K BOIIPOCY CTATHCTHYECKOIl TEOPMH MHOI'OBAJTEHTHBIX METAJIJIOB
(Comepsanue Dpegmgyleil craTen)

Emil Antonéik,
Wucruryr Treopernyeckoii pusuru npu Hapaosom ynusepcutere, [Ipara.

B macrosmeit pabore craTvcTMYECKAd MOMETh
OJIHOBAJIEHTHEIX WX [BYXBAJEHTHHX MeTAJJI0B
pacrpocTpaHeHa Ha METAJUIEl CO MHOTMMM BaJIeHT-
HEIMY BJIEKTPOHAMM. ABTOD Pasiuvui BAJIEHTHEIE
BIEKTPOHEL COIVIACHO A3MMYTAJIBHOMY KBAHTOBOMY
9MCIIy, YTO IPUBEIO0 K HECKOJBKO WHOMY BEIpasKe-
HIIO Vi KUHETHYeCKOM DHEPINN BaJIeHTHEIX DIIEK-
TPOHOB B sjleMeHTapHOU cdepe (4). Oburyo suep-
IMI0 BAJEHTHHIX OJIEKTPOHOB IpPH 9TOM MOKHO
Beipasuth B Buje (3). Ha ocnoBanum stoii Mmonenn
MeTaJlIa aBTOpP BHIACHUI HEKOTOPHE KOHCTAHTHI
MEeTAINYECKOr0 ATIOMUHIA, TPEHoaaras, 4ro Ba-
JeHTHEe BIEKTPOHH B MeTallle PAaBHOMEpPHO pac-

JIUTEPATYPA

[1) Comprehensively dealt with in P. GomBAs: Die sta-
tistische Theorie des Atoms und ihre Anwendungen,
Springer-Verlag, Vienna 1949, para. 35.

[2] P. GomBAs, Zur Theorie der Edelmetalle und der
Alkalimentalle, Acta Phys. Hung. I (3), 301 (1952).

[3] The author used the potential F; in an earlier paper
for the calculation of some of the constants of metallic
aluminium (Cs. Cas. Fys. 2 (1952)) with good results
and as P. GoMBAs remarks in the book Theorie und
Losungsmethoden des Mehrteilchenproblems der Wel-
lenmechanik, Birkhéuser, Basle 1950, p. 246. R.
GAsPAR used this potential successfully for the same
element. As far as is known to the author, however,
this paper has not yet been published.*)

mpefedentl ¢ IioTHocTe0 (14). Owrasanoce, 9To
BHYUCIIeHHBE BHAUYCHHA pajuyca slIeMeHTaApHOI
cdeprr Ry u sHeprum c¢Bssu 8, X0opomio corjacy-
IOTCH ¢ USMepeHHHMH 3HaveHMaMu R* u Sgr.
Uro ke xacaercs sHaveHuA KodpdnuuenTta CiHu-
MaeMOCTH %, TO ero COTVACOBAHHOCTH ¢ DKCIIEPH-
MEHTOM B OCHOBHOM XY?Ke, YTO ¥ HY#KHO GBLIO 0KI-
Aarhk, T. K. CTATMCTHYECKUII MeTO] He IpUHUMAeT
BO BHUMaupe BiIuAuue DBpumrysHoBHX B0H Ha
KOHCTAHTH YIPYTOCTH, KOTOPOE B CiIyd4ae MHOTO-
BAJIEHTHHIX METAJI0B GyJeT 3HAYUTEJIHHEIM.

Mocrynuao 15. 9. 1952, B mepsoil pas onyGAMKOBAHO
{(Ha uvemckoM s3pire) 15. 1. 1953.
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