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A CONTRIBUTION TO THE THEORY OF MULTIVALENT METALS 

]~mfl Anton~ik, 
Institute of Theoretical Physics, Charles University, Prague. 

The paper  deals wi th  the extension o] the statistical model o] metals having one or two 
valency electrons as suggested by Gombds to mul t ivalent  metals. On the basis o] this model 
a number  o /cons tants  o] metallic a l u m i n i u m  were calculated, no use being made o] an y era. 
p i r iea t  ~oarameters. The results are in  comparatively good agreement wi th  experiment.  

The statistical theory of metals was elaborated 
mostly by GOMBs [1], [2], who in a number of 
pal~e~s dealt with the calculation of the funda- 
mental constants of most of the univalent and 
bivalent metals. This theory, which in its sub- 
stance does not take into account the structure of 
the BZ (Brillouin zones) and the energy distribu- 
tion of the valency electrons in reciprocal space, 
achieved its greatest successes for alkali metals, 
Cu and others (i. e. for metals having one valency 
electron) for which the effect of the BZ on the 
physical properties is mostly very small. The mat- 
ter stands quite differently with bivalent metals, 
where this effect on the energetic spectrum of the 
valency electrons is considerable. Although for 
this case all assumptions of this theory are not 
fulfilled to the same degre3 as for univalent 
metals, where the average contributions of all 
valency electrons are concerned (e. g. for the 
total energy) good agreement with experiment 
can, however, still be expected; calculations 
confirmed this without exception. Quite analo- 
gous behaviour can, thereiore, be expected for 
multivalent metals. In the following we shall 
first briefly outline the main ideas of the  Gombs 
theory of metals and propose an extension of his 
equation for the total energy oi the crystal to 
metals with several valency electrons. This 
equation we shall then use for the calculation 
of some physical constants of metallic aluminium. 

I t  is a well-known fact that  the grouping to- 
gether of the atoms of a metal into a crystal 
lattice leaves the closed electron shells of the ion 
practically unchanged, while the wave functions 
and the energies oI valency electrons are changed 
considerably. In the following we shall therefore 
assume that  the state of the valency electrons 
in a metal is described by a wave function of the 
Bloch type, i. e. a wave function which is non-zero 

practically throughout the whole of the crystal 
and the state of the core electrons by a wave 
function which is localised in the immediate 
vicinity of the atomic nucleus. This latter wave 
function is to a first approximation identical to 
the wave function of the free ion. We shall further 
limit ourselves in our assumptions to the atomic 
sphere the radius of which is denoted by R, thus 
considerably simplifying the whole problem. 

In his theory of metals GOMB.~S assumes that  
to a first approximation, which without doubt 
corresponds to reality better in the case of a uni- 
valent than a bivalent metal, the wave functions 
of valency electrons are plane waves, i. e. the density 
of the valency electrons is uniform. I t  is, of course, 
obvious that  the wave function of valency elec- 
trons of the type 

e i ~ r  

in which k denotes the wave vector, are generally 
not orthogonal to the functions of the core elec- 
trons. As a consequence the energy of the valency 
electrons would be lower than corresponds to 
reality where due to the validity of the Pauli 
principle valency electrons cannot occupy states 
already fully occupied by the core electrons. 
GOMBs avoided this difficulty in a simple way. 
Starting out from the statistical formulation of 
the Pauli principle he derived for this obviously 
non-classical repulsion between the valency elec- 
trons and the core electrons a potential by which 
he supplemented the potential in the SchrSdinger 
equation. He was therefore not bound by ortho- 
gonality conditions between the wave function 
of the valency electrons and the wave functions 
of the core electrons. He derived two expressions 
for this repulsion potential which he denoted 
by F~ and G~. In principle these potentials differ 
by the fact that  while deriving Gz the core elec- 
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trons were consistently distinguished according 
to the azimuthal quantum number l, while 
in the case of the potential F ,  this was not con- 
sistently adhered to. The potential Gt is, moreover, 
better suited for metals having several valency 
electrons and we shall therefore use it in the 
following [3]. 

The idea from which GOM~XS [4] started when 
deriving the potential Gz is briefly this: 

If the volume element is dv and dp~ dp~ dp~ the 
element of momentum space, then as is well 
known the number of electrons in the volume 
element dv having momenta (p~, p~ -k dp~>, (p~, 
p~ -- dp~), (p~, p~+ dp~> is given by the formula 

2 
dp~ dp~ dp~ d r .  (1) 

Let us now divide momentum space by coaxial 
cylindrical surfaces the axis of which is identical 
with the position vector ~ of the volume element 
dv so that  the individual hollow circular cylinders 
contain consecutively the points representing the 
states of electrons having an azimuthal quantum 
number ~ -- 0, 1, 2, . . . .  Let us further require that  
the radii p~ of the individual cylindrical surfaces 
should, aeSording to semi-classical quantum theo- 
ry, satisfy the following relation 

i h 

Let us further assume tha t  the potential of the 
core electrons in a sufficiently small volume 
element dv is constant and that  the electron 
density i n  this volume element is so great that  
statistical methods can be applied to the solution 
of the problem. I t  is obvious that  this assumption 
loses validity in the vicinity of the nucleus and 
at the boundaries of the ion. As, however, these 
regions do not figure in our considerations they 
do not have to be specially considered. 

Points representing states of the core electrons 
having a certain quantum number 1 obviously 
occupy those 1Qlaces in momentum space which 
eorre3pond to the lowest energies up to a certain 
maximum. At the same time due to (1) each cell 
of phase space having the size h ~ can at  most 
contain two such points. I t  is thus obvious that  
each further (in our ca=e valency) electron which 
should be placed in the volume element dv must 
have an initial energy greater than this maximum 
energy of the core electrons. This energy, which 
is a basic consequence of the Pauh principle can 

be expressed by means of a potential which was 
derived by GOMBXS and can be written 

7~ ~ 11  . 
Gt(r) -- 4(2/ -- 1) 2 D ~ - 2 ~ '  ) (2) 

where Dz is the radial density of all core electrons 
having an azimuthal quantum number 1. By 
introducing this potential into the SchrSdinger 
equation as mentioned above - -  the condition 
of orthogonality between the wave functions of 
the'  valency electrons and the wave functions 
of the core electrons is automatically fulfilled. 

We shall now proceed with the calculation of 
the total  energy of the valency electrons in the 
atomic sphere. As was shown by GoMBXs [1, 2], 
it is possible to write the total energy of the 
valency electrons in a metal as the sum 

U - -  E ~ - -  E o + E~ • E w ~- W e §  
We W~ + W~ + Ww T / / ~ .  (3) 

In contradiction to GOMBXS, however, we supple- 
mented the individual terms of this equation on 
the one hand by new expressions and on the other 
hand generalized them for the ease of several valency 
electrons having a different azimuthal quantum 
number. The derivation of these expressions can 
be found in the cited book of GOMBXS even though 
not always in this connection. Below there follows 
an explanation of the individual terms in equa- 
tion (3). 

E~ is the total kinetic energy of the valency 
electrons. As wa3 mentioned above the individual 
electron levels in an atom spht up into bands when 
the atoms group together. The width of these 
bands for the filled shells of the ion is negligible 
while this is not the case for valency electrons. 
We shall therefore assume in the following that  
the levels of the valency electrons having a certain 
azimuthal quantum number split up into one 
band. If  we denote by vz the density of the valency 
electrons averaged over the angles O and ~ in the 
band formed from the level l, we can write for 
the total energy E~ the sum 

E x - :  E~ + E~-i- E~. (4) 

*) The following uni ts ,  if no t  otherwise s ta ted ,  are 
used in th is  paper :  The Bohr  radius,  i .e .  the  rad ius  of the  
lowest  e lectron orbi t  

h 2 
a o --  4r:~me 2 

is used as the  un i t  of lenght  a n d  R y d b e r g  un i t s  

e~ R y =  
2a o 

are used  for the  energy.  
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E~ is the kinetic energy of the electron gas in 
the individual bands at the absolute zero of tem- 
perature 

E ~ -- ~ 2~kfv,~ dv, u~ -- 2.871, (5) 

where the integration is carried out throughout 
the whole volume of the atomic sphere (which 
will not be specially marked by limits of integra- 
tion), and the sum is extended over all l for which 

v l •  
E~ is the contribution to the kinetic energy from 

the non-uniform distribution of density. 

f 1 (gradv~)~dv, . , --~,  (6) 

E~ is the average minimum kinetic energy of 
the valency electrons in the quantum state l 

Ei--- ~ f lil ;~l)V' dv. (7) 

This energy can also be interpreted as a conse- 
quence of the orthogonality between wave func- 
tions of the /-th state and wave functions of the 
valency electrons having a different azimuthal 

I . ( 1  • 1) 
quantum number, because the term 

r 2 
corresponds to the angular part  of the wave 
function of the electron. 

E v is the electrostatic energy which also in- 
eludes the self energy of the valency electrons 
compensated by an identical term in the exchange 
energy E ,  following from the interaction of the 
electron with its own self. I t  can be written in the 
f o r m  

f _> -->! 
Eo = ~(r )v( r ) dv dv'  (8) ~. -~, 

where v -- ~vt. 
t 

E~ is the exchange energy of the valency elec- 
trons and is given by the expression 

E~ - -  2zaJ'v~ dv, z~ - - 0 , 7 3 8 6 .  (9) 

E~ is the correlation energy given to a first 
approximation by the expression 

E~ -:- f g(v~) v dv, (10) 

where the function g(x) is defined by 

g(x) al  x,  a~ - -  0.11294, a2 -- 0.1216. 
X A-a2 

We and W~ is the contribution of the Coulomb 
potential and its deviation from the true ion 
potential. If we denote the potential of the ion 
by V we can write 

We -~ W~ - fVv dv. (11) 

W a is the exchange energy between the core 
electrons and the valency electrons. In  the first 
approximation it can be written 

Fg 
W~ -- 2 ~ f [ ( ~  T v)~ e~- -v~]  dv, (12) 

0 

where rg is the radius for which the ion density 
equals the limiting ion density of the Thomas- 
Fermi-Dirac model e 0 -  0.002127. I t  was shown 
by GOMB~S that  for e < ~0 equation (12) ceases 
to correspond to reality. 

W~ is the repulsion energy of the valency elec- 
trons being a consequence of the Pauli principle. 
Due to (2) it is given by the expression 

wK - dv. (13) 
1 

W w is the correlation energy due to the inter- 
action between core electrons and the valency 
electrons. This energy is fairly small and Go~BXs 
derived for it the approximate expression 

W w _'-- 0.130W~. 

H~ finally is the energy due to ion-ion inter- 
action the electron shells of which overlap. The 
expression for this energy will be found in the 
already cited book by GOMBXS [1] or in his recent 
paper [2]. 

As was mentioned above. GoMBXs calculated 
inter alia the total energy of univalent and bi- 
valent metals on the assumption that  the density 
of the valency electrons in these metals is uniform, 
i. e. 1 ~- 0, r 0 -- const. After substiting these va- 
lues into equation (3) there remains in the ex- 
pression for the kinetic energy only the term E ~ 
and it is completely identical to tha t  of GoMBXs 
derived for the total energy of univalent or bi- 
valent metals. I t  is, however, necessary to stress 
tha t  this agreement is only formal since Gombs 
assumption does not necessarily correspond in our 
case to tha t  state of the crystal for which its total 
energy is a minimum. We shall dea l  with this 
question in greater detail in a future paper. 

The assumption of uniform density of the va- 
lency electrons considerably simplifies numerical 
calculations of the individual terms of equation (3). 
I t  is obvious tha t  this assumption which is only 
very approximate for univalent metals is without 
question much less suited for metals having two 
valency electrons, while for the rest of the metals 
uniform valency electron distribution hardly cor- 
responds to reality. Probably the only exception 
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in this group of metals  is a luminium some physical  
propert ies  of which point  to the  fact  t h a t  the 
va lency  electrons are to a great  ex t en t  " f ree" .  
We shall therefore  re ta in  the  assumption t h a t  the 
three  e!ectrons of a luminium which in the  free 
a t om are in the  3s23p s ta te  are to a first approxima-  
t ion uni formly  spread over  the  a tomic sphere 
wi th  a densi ty  

6 3 
v0 4~R3, vl ~ 4~:R 3. (14) 

On the above  assumption we can easily evaluate  
those terms of equat ion  (3) which contain the 
mutua l  in teract ion of the  va lency  electrons 

9.2263 
E~ R2 , (15) 

6 
E~ R2 , (16) 

10.8 
E~ R ' (17) 

2.4922 
(18) EW-- 

7.3555 -w R' 

3.9650 
E~ R (19) 

For  the calculation of fu r ther  terms of equat ion 
(3) Har t ree ' s  calculations of the  radial densities 
D~ and  the potent ia l  for  Al +++ [5] was used, rg 
:being de te rmined  f rom the  same calculations. 

In  the expression for the  energy W~ the limits of 
integrat ion m a y  be ex tended  to infinity, because 
f rom r ~ 2.2 the integrand is equal  to zero. This 
energy can therefore  be wri t ten  (for R > 2.2) 
in the form 

38.3034 4.5 
W ~  -- RS § ~-~. ( 2 0 )  

The  terms W~ and W~ + W~ cannot  be express- 
ed as functions od R in a sufficiently simple and  
precise analyt ica l  form. I t  can also be easily shown 
tha t  the  terms W~ and  H~ can be neglected for 
aluminium. The  error  thereby  ommi t t ed  does 
not  exceed the  error  with which the energy E~ is 
determined.  Subst i tu t ing into equat ion (3) we 
obtain for the to ta l  energy 

6.8350 2.4922 19.7263 
U R 7.3555 R T R ~ - -  

38.3034 27.110 9 
T R~ § R~ R~ f 2 Z ~ d r  

~g 

- -  18.5630 f [(~ -~ v) ~ - -  ~ ]  r 2 dr. 
0 

(21) 

The energy U was calculated for various R in the 
range (2.4, 3.4} the value 1.898 being subs t i tu ted  
for rg. The results of these calculations are given 
in table  I.  

Table I .  

R 2.4 2.6 2.8 3.0 3.2 3.4 

- - U  3.8922 4.0545 4.1179 4.1212 4.0852 4,0234 

Knowing the  dependence of U on R we can 
easily calculate the  radius of the  atomic sphere 
for equi l ibr ium state  R 0 if we pu t  

~ RER0 

For  this purpose the  funct ion U(R) was approx-  
imated  b y  a polynomial  and af ter  subst i tu t ing 
condit ion (22) the value 

/?0  - -  2.911, 

was obtained.  The exper imenta l  value is 

Rexp o - -  2.984. 

The min imum energy corresponding to this radius 
of the a tomic sphere is 

U 0 -- - -  4.1255. 

f rom which we can easily calculate the binding 
energy, i. e. tha t  energy per a tom which is needed 
to  decompose metallic a luminium into free ions and 
free va lency  electrons.  The binding energy per 
a tom S can therefore  be wri t ten  as the  absolute 
value of the sum of U 0 and the absolute value of 
the  sum of the ionisation energies of the  va lency  
electrons I 

S = , V o +  1].  (23) 

Subst i tu t ing into equat ion  (23) the  value (22) and 
the sum of the ionisation energies [6] 

I -- 3.8971, 

we obta in  for the binding energy the value 

S -- 71.6 kcal/mol. 

The exper imenta l  value reduced to absolute zero 

is (7) S exp -- 67.6 kcal tool. 

I t  was mentioned above  tha t  the  latt ice constant  
or the radius of the atomic sphere and the binding 
energy are two constants  which to a cer ta in  
ex ten t  depend considerably less on the s t ruc ture  
of the BZ and on the  distr ibution of energy in 
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reciprocal space than other constants of a moral. 
I t  is also found tha t  the agreement of the two 
Values with experiment is very good. 

From the statistical model of the atom we can 
comparatively easily calculate the compressibility 

defined by the following relation 

1 dv 1 
- -  v o d p - -  127:R0 1 d U  1 " (24) 

After substituting into this formula we obtained 
for the compressibility the value 

= 0.65.10 -~* cm~/dyn. 

The experimental value reduced to absolute zero 

of temperature is according to GRfr~SE~r [8] 

~r 1.3. 10 -12 cm2/dyn. 

We cannot but stress the fact tha t  the compressi- 
bility and in general all the elastic constants de- 
pond considerably in the BZ So that  as far as 
these are concerned only an estimate of the order 
of magnitude can be obtained. Although for the 
compressibility the agreement with experiment 
is considerably worse than for R0 and S, the de- 
viation of the value is only a little larger than the 
deviation for elements having two valency electrons, 
where according to GO~BXS (9) it amounts to 
30% to 40%. 
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I~ BOHPOCY CTATHCTHqECI~OI~ TEOPHH MHOPOBAJIEHTIIbIX METAJIJIOB 
(Co~ep~aHHe Yipe~i)i~yi~ei~ CTaTbl/I) 

Emil Anton~ik, 
I/IHCTHTyT TeopeTrlqec~ofi ~HSIdI~I~I IIp~][ Kap~IOBOM yHHBepcHTeTe, Ilpara. 

B HaCTO~fII~e~ pa6oTe CTaT~CTIdHecI~a~f MO~e~I~ 

0~HOBa~IeHTHI~IX I~JII4 ~ByXBaJ~eHTH]~iX MeTaJIJIOB 

pael~oewlsaHeHa Ha M e T a ~  co MHOrHM!~I Ba~eHT- 

tt]~IMI4 3JIeI~TpOHaMI/I. ABTOp p a s n n ~ H n  BaJienwHI)le 

~)~eHTpont,i corJ~acno as~MyTa~bHOMy HBaHTOBOMy 

~c~iy,  ~TO npr~eao ~ Hec~o~no .~o~y  BLipame- 
H~o ~J~ ~HeT~HecI~o~ oHepr~ BaJ~eHTHI,~X D~e~- 

Tp0HOB B 3~IeMenTapHo~I c~epe (4). O5mym Dnep- 

rldlO Ba~eHTH/~IX ~eHTpOHOB upH OTOM MOdiSH0 

m,~paa~T~ B B~e (3). Ha OCIIOBaHIdH OTOI~ MO~eJII4 

MeTaJ~J~a aBTOp B~I~fCHIdJI He~OTOpbIe I~OHCTaHT~I 

MeTaJ~HecHoro aJIIOMHIIHH~ Hpe~Ho~ara~ HTO Ba- 

J~eHTHhIe 0~eRTp0H:~I B MeTa~JIe pam~oMepHo pac-  

n p e s e x e H ~  c HJIOTItOCT/aIO (14). O~asa~Ioc~, ~ITO 

BH~I~cJIeHHI~Ie 8HaqeHg~ p a ~ n y c a  aJIeMeHTapHo~ 

cq~epH R 0 ~ oaeprnn cs~aH S o xopomo coraacy- 
IOTCH e nsMepeHH~I~I~ 3HaqennzfM!~ R~ xp H S ~ .  
LIT0 me ~acaewc~ 8HaqeHrIZf I~0Oq~Hl/HeHwa C~Id- 
MaeM0CTI4 ;g~ TO ero COrJ~IacOBaHHOCTt, C OKcIIepH- 

MeHTOM B 0CHOBHOM xyme, qTo ~ HyHCHO 5]~UIO O~t~I- 

~aTh~ T. ~. CTaTI~CTHHecHHI~ MeTO~ He np]dHgMaeT 

BO BHHMaH~de BJIHYfH~Ie ]~pHJ~IySIIOBLIX 80H Ha 

~OHCTaHT~I ynpyrocTH, HOTOpOe S cay~ae MHOrO- 

BaJ~eHTH~[X ~[eTazIJIOB 5y)~eT 8HaHHTeJIbHI~IM. 

[I0cTyn~0 15. 9. 1952, B nepBofi pa3 0Hy6a~HOBaH0 
(Ha qemcno~ usage) 15. i. 1953. 
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[1] Comprehensively dealt with in P. GOMB$_S: Die sta- 
tistische Theorie des Atoms Und ihre Anwendungen, 
Springer-Verlag, Vienna 1949, para. 35, 

[2] P. GOMBXS, Zur Theorie der Edelmetalle und der 
Alkalimentalle, Acta Phys. Hung. 1 (3), 301 (1952). 

[3] The author used the potential 2' i in an earlier paper 
for the calculation of some of the constants of metallic 
aluminium (~s. ~as. Fys. 2 (1952)) with good results 
and as P. GOMBXS remarks in the book Theorie und  
L6sungsmethoden des Mehrteilchenproblems der Wel- 
lenmechanik, Birkh/iuser, Basle 1950, p. 246. R. 
GXSPAR used this potential successfully for the same 
element. As far as is known to the author, however, 
this paper has not yet been published.*) 
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