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The described method starts from the assumption that each valency electron in a crystal is
subject to the following potential: inside the atomic sphere surrounding each atom this potential
18 spherically symmetrical while outside this sphere it 1s constant. The corresponding Schrodin-
ger equation 18 solved by means of the perturbation theory with the help of certain approximate
wave functions. The parameters determining the spherically symmetrical potential inside the
sphere are determined from the values of energy “for the lowest energy level, caleulated by

statistical methods.

Introduction.

The determination of the energies of valency
electrons in the periodic field of a crystal lattice is
the fundamental problem in the theory of solids,
up till now notsolved ina satisfactory manner. Once
we know the energy spectrum of valency electrons
in some solid, we can at once interpret a number of
its physical properties or even foretell other at the
time unknown physical phenomena. The method of
calculation elaborated by WiaNER, SEITZ and SLa-
TER [1, 2] is comparatively simple and gives quite
good results for electronic levels of lower states in
the energy bands. SHOCKLEY [3] however showed
that for higher energy states this method fails and
that the energy levels of electrons thus determined
do not correspond at all to real values. C. von der
LAcE and BETHE [4] recently showed on a concrete
example (metallic sodium), that the method of
Wigner, Seitz and Slater gives in fact wrong results
for the excited states and showed how to modify
this method so as to reproduce correctly the phy-
sical conditions accompanying these higher energy
levels.

A number of improvements [5, 4] on the Wigner,
Seitz, Slater method have been proposed, but only
two of them, i. e. the Herring-Hill and C. von der
Lage-Bethe methods were used for the solution of
practical problems. The main disadvantage of all
existing methods lies in the fact that they are
associated with considerable numerical calcula-
tions. Even in the simplest of cases it is often only
possible to accomplish the necessary numerical

*) Received February 27, 1951.

integrations of the differential equations by means
of modern caleulating machines.

The method described in this paper, although in
essence only an approximate method, has certain
advantages in that it can be used in cases where the
older methods fail. The numerical calculations
connected with it are neither complicated nor tir-
ing. The method was used by the author and his
collaborators for calculating a number of concrete
examples (metallic sodium, magnesium and alumi-
nium) and it always showed results, which, as far
as it is possible to judge by comparison with
experiment, seem to be correct.

I. The Principle of the Method.

Our method takes as a starting point an idea
which was once suggested by J. C. SLaTER [5].
Valency electrons in the crystal move in a field
which we idealise in the following way.

The positive ions in the crystal we surround by
spheres of radius R and assume that inside these
spheres the potential in which each valency elec-
tron is moving is spherically symmetrical: ¥ (|v —
— t,|), where t is the position vector of an arbitrary
point of the lattice and 1, the position vector of the
n-th positive ion at a lattice point. Outside these
spheres we assume the potential constant. To obtain
a continuous potential we require the potential

- V(jr — t,]) to attain this constant value on the sur-

face of the sphere of radius E.

It is clear that this idealised potential is really
some average potential caused by the action of
forces of the positive ions and the rest of the va-
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lency electrons so that in fact we are solving the
task as a “single electron” problem.

The wave function corresponding to this poten-
tial can be expressed as the product of spherical
harmonics with the radial solution of the wave
equation inside each sphere of radius B and as
strictly plane waves outside these spheres.

In the first part of this paper we give an approx-
imate solution of the Schrodinger equation, which
enables us to express the wave functions inside the
above-mentioned spheres in a suitable analytic
form. From these functions we now construct the
“unperturbed’’ solution of our problem which con-
sists of plane waves outside the spheres of radius B
and of certain spherical harmonics inside these
spheres. The sought for function y we then express
as & linear combination of the ‘“‘unperturbed’” wave
functions and determine the corresponding coef-
ficients in this linear combination by perturbation
methods. Some of these coefficients can in certain
cases be directly determined from group considera-
tions.

At the same time we can see that no special
assumptions regarding the spherically symmetric
potential inside the spheres have to be made.
A certain number of parameters related to this part
of the potential of the valency electron can be de-
termined from the known energy of the lowest
level of the energy spectrum, which can be deter-
mined with sufficient accuracy by statistical con-
siderations.

Il. The Wave Function in a Spherically
Symmetrical Field.

Our task then is to determine the solution of
the Schrodinger equation inside the spheres where
the potential V(r) in which the electron moves is
spherically symmetrical; » is the distance of an
arbitrary point from the centre of the sphere.
Schrodinger’s equation can be separated in polar
coordinates with the origin at the positive ion in
question. If we denote the coordinates by 7,9, ¢
we can write the wave function in the well-known
form.

WP} (cos) explimg} wlr). (1)

Here u;(r) denotes the radial function which is
determined by the equation

o

M+%%+@~“+)+wﬂm=0wm

For further calculating it will be convenient to
normalise our potential V(r) so that.on the surface
of the sphere of radius E it should be equal to zero;
the constant potential on the outside of the sphere,
mentioned in I is also equal to zero everywhere.

When substituting this potential in equation (2)
we have to replace V(r) by the expression

Vir) = V() = V(B) =V(r) B, )
p=TV(B).
and the energy E by the parameter £’ where
B =+ p. (4)
Equation (2) for the radial function now becomes
ui + 1)

4 2 i
uy 4+ 7“1 + (E ———+ V(r)) u, = 0. (5)
Let us now assume that we know the function yp,,
which satisfies the following equation

" 2 ! nig T >
ve + — o + (Holro) + V() wo = 0. (6)

at the same time satisfying the following boundary

conditions:
2
— 0, {M‘-’l — 0. (7)

dy|
Ay »[,:; *o

ar frer,

It is quite clear that the proper value Ey(r,) is
a function of the radius r, for which the boundary
conditions (7) are fulfilled. From equation (6) there
follows that
Eo(ro) = — V(ry)
or (8)

Ey(ro) = — V(ry).

Let us now try the solution of equation (5) in the
form wu; = v, . f;; after substituting into equation
(5) we obtain the following condition:

I}/)g + %"P(l) + (By(ry) + 17 @Uo] fi +
[{”'Jrgfz( ZO)+(“2 ‘—*‘(ZJFI )fz]%o

where we expressed ' in the form

E' = Eyrg) -+ o 9)

*) The following units are used in this paper: Rydberg units
2, 4
= 2 h?e are used consistently for energy and the Bobr
2

, h
radius Py

for length.
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The first square bracket in the above expression
vanishes as it satisfies equation (6). For the second
bracketed expression to vanish, the function f,
must satisfy the following equation:

’ U e\ [ W+
i +2.4 (*‘1‘1@) + (0‘2 _—("—j;*—)‘)fl:()' (10)
r oy, ’
As we see later we shall always be interested in
a solution in the neighbourhood of the point r = r,
and here considering conditions (7), v, is practic-

Yo

ally constant. The term = in equation (10) can
Y

0
therefore be neglected; the equation for f, now
takes the form

o4 2 (o LEE D) g

We can immediately write down the solution of
this equation which is regular at the origin of the
coordinate system:

T

B Jrea(wr) = Jra(ar),

(11)

fl: (12)

where J,, ,(or) is the Bessel function of half order.
The approximate solution of equation (5) can now
be written in the form:

Uy = Yo - Jy43(07). (13)

II. The Wave Function in a Crystal.

Outside our spheres, where the potential is con-
stant, the solution of the Schrédinger equation is
the known plane wave exp{i(f; . r)}, where ¥; de-
notes the wave vector. This solution must now
continuously change into that solution inside the
sphere which is due to the same energy. This prob-
lem has already been solved by StaTer [5]. He
showed that the wave function inside the sphere
of radius R with its centre at t,, which on its sur-
face changes continuously into a plane wave
exp{i(t; . 1,)}, is of the form

- o (kR)
pu=explithon) X 5 (LD IR
= ) %;—ﬁf}lg—l P} (cos9) P} (c0s,)

explim(p — g.)}, (14)

where (]t — 1,|) is a radial function determined
from: equation (5) and 9, ¢, determined the direc-
tion of ¥; in polar coordinates.

The above value (14) inside each sphere together
with the expression exp{i(f . t)} outside each

sphere completely determines the wave function
v, which is our unperturbed function. These wave
functions are continuous; their gradient, however,
on the surface of the spheres of radius R, is not.

It is natural to expect that the complete solution
of theSchrodinger equationina crystal will also have
a continuous gradient at every point. This means
that the correct wave function must be equal to the
linear combination of the above ‘‘unperturbed”
wave functions. The coefficients in this linear
combination have to be determined in such a way
as to make the gradient of the resultant wave func-
tion everywhere ‘continuous. To solve this problem
this way would be very difficult. It is, however,
possible to attain the end more readily, if pertur-
bational methods are used suitably.

We shall therefore assume that the exact wave
function can be expressed by the series:

2.0y,

(2
where ¢; are constants to be determined. Then
according to the general methods of quantum
mechanics (15) will be a solution of the problem if
the following equations are satisfied

Z(H — B)ycp=0

(15)

(16)

7
for all 4. Here H denotes the energy operator, K the
proper value of energy and

(H — B)y= [yi(H — By dz  (17)

the well known perturbational matrix element.
Equation (16) will be satisfied if the determinant
of the coefficients (H — E),; is equal to zero.
Let us now examine what f-vectors have to be used
in expression (15) for constructing the exact wave
function. Let us choose in f-space a fixed vector ,
which we shall identify with ¥; in (15). The com-
plete wave function (15) can then be written

¥(Eo) = Coy, + Ca¥y, + Capy, + -

If (%) is to be the exact wave function for the
crystal, then it necessarily has to show those sym-
metric properties which are prescribed by the
symmetry group appertaining to the crystal lattice
in question. One of these is the behaviour of the
wave function towards the translation crystal
group expressed by the well-known Bloch theorem.
According to this theorem the application of an
arbitrary translation from the translation crystal
group to the wave function reproduces the latter
except for a constant factor. Let us now rewrite
the analytical expression for the wave function

(18)
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inside the sphere in a more concise form. In equa-
tion (14) we can use the well-known relation from
the theory of spherical harmonics and carry out the
summation over m; we then get:

pr, = €T D (214 1) . b,
=0

jira(k;R) (£(r —1,))
ey ek ”"”Pl(m)‘

If we now transform vy, so that to every position
vector r, 1, we add a certain vector 1, vy, is multi-
plied only by the factor ¢/*-9. The wave function
is transformed equally on the outside of the sphere.
From theé above follows at once that Bloch's
theorem is fulfilled for functions of the type (18) if
the wave vector ¥, is written

E, = f0 + K
where 8, is the vector of the reciprocal lattice to

given translation crystal lattice. The exact function
(18) can therefore be written

() = ch'/’tn+f,,'

To every vector of f-space one can therefore
construct a wave function of type (19) and the
corresponding proper value of energy can be calcu-
lated by equating the perturbation determinant,
the elements of which are given by expressions (17),
to zero. In many cases it is quite sufficient to use
in expression (19) for the wave function only those
functions the wave vectors of which are equal in
magnitude to the magnitude of vector £. The addi-
tion of further terms to expansion (19) affects the
proper value of energy only negligibly. Other
symmetric properties of wave functions in erystals
may also be used and with the help of the theory of
crystal group representation it is easily possible to
determine the relative ratio of whole groups of
coefficients in expansion (19), which makes it
unusually simple to write down the explicit form of
the vanishing perturbation determinant.

M. TrLiFAJ and E. ANTONGIK undertook the
above task and so introduced an unusually clear
system into the whole energy spectrum of electrons
in solids.

(19)

IV, Matrix Elements.

We shall now explicitly express the matrix ele-
ment (17). Using function (14) we can write this
element according to SLATER [5] in the following
for:

Czechosl, Journ, Phys.
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(H — E')y = [(&Y) — E') 6,5+
1 .
g S explilll —8) = sl Fu  (20)

where

F,= 4nR2{—— (5% — E') J3(|E — E)IB) +

% — &
+ §(2Z+I)P(cosﬂ‘)7‘ (k;R) § (kR)%@ ]
< 11 i3] Ji+¥ AV 1+ (%5 u,(R)

=0

Here Q is the volume of the elementary cell, the

sum Y is to be summed over the positions of the
n

atoms in the cell and &;; is the angle between vec-
tors ¥, and ¥;.

For the function u,(R) we can use the approxi-
mate expressions (13), because, as will follow from
more detailed numerical calculations, R does not
differ much from ry. If we substitute from equation
(13) into expression (20) and use the well-known
addjtion theorems for Bessel functions

sin ® . .
=2 = 3 (24 1) Pyleosty) furalkilt) jusa(hs ),
=0
w = R|J B+ k2 = 2k;k; cosdy|»
we obtain the following formulas

T * 5
(H — E'),;

%RZexp

— | %(B) 5 1]sine
MWRJT*

+ 7%6(060) RYu? - Eyry) + 8 — (8E)] +

Ba 2 . .
+ 5 > (2 + 1) Pifeosty) juri(kiR) jralhsR) .
=0

i-3(xR) — ji 1 3(xR)
jl+i(0‘R) ’

(2la)

=7

(H — By [ Q g]

4 - 4nRZexp_ 3

—5— .R > exp
. a1 p(R) )
[k wEo(ro)—ﬂ—a]—§+w0(R)R+ (21b)
_3oR) — jir3(aR)

sz(OCR) ’

where D exp is a symbol standing for
2exp{i((f; — B) ra)}.
K

In order to be able to start evaluating these
expressions we have to determine the constants
R, B, and yo(R)/po(R). Let us first find the radius of
the sphere R. This constant R determines the
distance from the positive ion at which the spheric-

Rx & . j
+5 S @+ ) kR

i=0
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ally symmetric potential changes into the con-
stant value, Tt is clear that this change comes about
at the boundary surfaces of the well-known Wigner-
Seitz polyhedrons, which for symmetric lattices
can well be replaced by atomic spheres. We there-
fore identify our radius R with the radius of atomic
spheres defined thus: if we designate with n the
number of atoms in the elementary cell of volume 2

then

4n 3__[2
3=

- (22)

defines the radius R.

As a result of the above definition expressions

[___9___ _B
4R D exp 3

in the matrix element (21b) vanish identically as
in this case >exp = n.

In order to determine yy(R)/yo(R) let us recall
how the lowest energy levels in the Wigner-Seitz
method are determined. Here it is necessary to point
out that the value of energy determined in this
way is very precise as the boundary conditions
which have to be fulfilled for the determination of
the individual levels are fulfilled in this case with
great precision. We feel, therefore, justified in
expecting that our method on determining the low-=
est levels must give in essence the same results
as the classical method. According to Wigner and
Seitz we calculate the lowest energy value of the
valency electron by determining the s-funetion
;- satisfying an equation which is identical with
our equation (5) and subject it to the boundary
condition {%)}r = 0 where R again stands for the
radius of the atomic sphere. In our case, when
ug{oegr) is given by the following expression (see
equation 13)

_ singyr
Uo(oxg?) == o(7) o
the condition
0="Bp + oo R coto, R (23)
WO(R) ’

has to be fulfilled.

Knowing i(R) : po(R), enables us to determine
xg easily from the above condition and also from
equation (9) the corresponding proper value of
energy:

Eo(R) = Byry) + o,
Ey(R) = Eq(ro) + .

(24a)
(24b)

In our method the lowest proper value of energy
is easily determined by means of the single function
e _o to which corresponds a zero wave vector. The
corresponding matrix element is of the form:

(H — B')o
47
-D—R > exp

Setting the lefthand side of the above equal to zero
we get the same condition for «4 as before.

_ Pl »
= B B — 1 4 xR cotooR.

Later we shall show how it is possible by a statis-
tical method to determine the lowest levels as a
function of the radius of the atomic sphere. Let us
now agsume that we already know that function,
Then from relation (24b) follows at once that for
R = r, the value of the lowest energy attains its
minimum ¥ and that this minimum is equal to
Ey(ry). We can therefore easily determine the con-

oR
If we determine the above two constants we can

equally easily find x, which follows from equation
(24b} from which

«f = B(R) — Er,).
If we substitute in the condition for the lower level

: . Yo(B)

(equation 23) we obtain vl

There remains the determination of the constant
B = V(R). We shall make a very acceptable as-
sumption regarding the potential V(r) valid for
distances in the neighbourhood of 7, and greater
than the radius of the ions, i. e. 7 is in the interval
ro < r < R. We assuma that in this case it is pos-

sible to express the potential V(r) simply by:

stants E(r,) and r4from the condition {%} = 0.
R=r,

V(r) = 22y From equation (8) we get at once
2Zy; = — Hyfre) .7y
so that
r
= — Eyfro) 72 (26)

V. Calculation of the Energy of
the Lowest Level.

We shall first try to calculate the total energy
per atom of all valency electrons of a solid. For this
purpose we use statistical methods. In this paper
we shall only indicate the fundamental idea and the
results of our calculations; more detailed considera-
tions will be published in a later paper. We are
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proceeding in a similar manner as GomBAs [7] in
his work on the statistical theory of solids. We
again replace the Wigner-Seitz polyhedrons by
atomic spheres, assuming that the valency elec-
trons are on the average uniformly distributed
throughout the whole crystal. The charge inside
each sphere is equal to NV electron charges, where V
is the number of valency electrons in the atom of
which the solid under consideration is madeup. The
total energy E; per atom, i. e. the energy of the
unjformly distributed electron gas inside the atom-
ic sphere is equal to the sum of the following
energies. First we have to take into account the
electrostatic energy of repulsion of the electron gas
E, inside the sphere. This energy is equal to
6N
| R
Further, £, and ¥, denote the exchange and cor-
relation energies of such a gas.

In our case these energies can easily be enumerat-
ed. They are

E,=

_ 0,9164N%
‘44— R >
0,576 N
Bypr = — ———
51+ R.N—3

Further it is necessary to calculate the so-called
kinetic energy E,,, of the electron gas, which is the
consequence of the validity of Pauli’s principle.
This energy is also easily obtained and its value is
given by

2,21N%

R

Pinally it is necessary to add the energy which has
its origin in the interaction of the electron gas with
the positive ion of the atomic sphere under consi-
deration. If we denote by %(r) the potential of the
positive ion at the distance r, then this energy
is given by

E.’cin =

R
B, =v.4x[h(r) r* dr,-
0

3N .
where » = — Tk denotes the charge density of the

valeney electrons. The potential A(r) can be deter-
mined in various ways. According to Gombés A(r)
is given for example by the following expression:

hir) = — [x(") - ?ﬂ] - i [o(n] — k(1) +

r
2N
—!—7’

where x(r) stands for the Hartree potential of the
positive jon bared of all valency electrons, the
second term is the non-classic repulsion potential
which is a consequence of the Pauli principle and
which essentially corresponds to the resistance to
intrusion of valency electrons into the electron
shells of the positive ion. go(r), p,(r) are the total
charge densities of the positive ion and density of
s-electrons respectively, in case part of the elec-
trons in the free atom are in the p-state also. The
constant k for bivalent elements is equal to zero,
for trivalent or quadrivalent it takes up the value
% and } respectively. y, is given by the expression
%4(3752)%[60[%, where Ie[ is the charge of the electron
and a, is the Bohr radius.

The total energy of the valency electrons is
therefore

Et = Ec + EA + Ekor -+ Ekm + Ez‘-

Let us now try to express the total energy by
means of the energy of the lowest level in the band
spectrum. The energy E of the individual valency
electrons we normalise with regard to the lowest
level and write

(27)

E = Ey+ 1.

Let N(y) denote the density of energy states the
energies of which lie between 5 and 5 4 d#. Then

clearly
7Jmax

N=2[ N)dn,

where 7., denotes the Fermi limit, The total
energy K, of the valency electrons per atom is
therefore given by
Emax ) max
B,=2[ N(E)EJdE = 20f N(n) (B + n) dng —
B

Nmax

= N(B,) + 20f N(n)n dy.

0

The last integral, however, stands for the total
kinetic energy per atom. We can therefore write
the last relation in a simple form

Et = NEo + -Elcin'

Comparing both expressions for the total energy £,
we at once obtain for F, the following expression:

1

.EO == 2\7 (Ec —# FA '{" Ekor '+‘ Ez) (28)

If we approximate the

,
[x(r) — ?_A_]’ o(r) and g,(r) by suitable analytic

r

Hartree potential
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functions from the Hartree tables and for the rest
of the terms in (28) we substitute the expressions
introduced above we obtain E, as a function of the
radius B of the atomic spheres.

VI. Concluding Remarks.

To some of the approximations carried out on
the preceding pages, I should like to make the fol-
lowing remarks.

First of all in equation (10) we neglected the term

2]‘;1%9. This step is certainly permissible in those
]

cases when r is in the neighbourhood of r,, because
v, is then a very small quantity, (y,(r) is nearly
constant in the neighbourhood of 7y). For larger
differences (r — ry) we of course introduce certain
errors.

When calculating the energy of the lowest level
in V, some doubts can arise as to the justification
of the uniformly distributed electron gas. The de-
cisive terms in expression (28) for &, however are

1
i (E. + E,). These expressions represent the quan-

tum mechanical average of the type [ydVy,dr
taken over the electrostatic repulsion of (N — 1)
valency electrons and the interaction of the va-
lency electron in the lowest state with the positive
ion. The wave function p, is at the same time taken
as a constant and is normalised to the volume of
the atomic sphere. It is, however, well known [8]
and it follows from our calculations as well that
the wave function of the valency electron in the
lowest state is practically constant over the whole
space of the atomic spheres. Besides, the results
thus obtained are in good agreement with the
corresponding numerically integrated Schrodinger
equation.

The described method was applied to a number
of solids,’i. e. metallic sodium [9], magnesium [10]
énd aluminium [11]. Summarily we can say that
the results seem to be in good agreement either
with measured values or with the calculated values
of energies in the Brillouin zones as, for example,
with the results obtained by Von der Lage and
Bethe for metallic sodium.
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