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A New Method for Calculating the Energy Levels of Electrons 
in Solids.*) 
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The described method starts ]rom the assumption that each valency electron in a crystal is 
subject to the/oUowing potential: inside the atomic sphere surrounding each atom this potential 
is spherically symmetrical while outside this sphere it is constant. The corresponding SchrSdin- 
ger equation is solved by means o/the perturbation theory with the help o/certain approximate 
wave/.unctions. The parameters determining the spherically symmetrical potential inside the 
sphere are determined ]rout the values o/ energy ~]or the lowest energy level, calculated by 
statistical methods. 
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Introduction. 

The determination of the energies of valency 
electrons in the periodic field of a crystal lattice is 
the fundamental  problem in the theory of solids, 
up till now not solved in a satisfactory manner. Once 
we know the energy spectrum of valency electrons 
in some solid, we can a t once interpret a number of 
its physical properties or even foretell other at the 
t ime unknown physical phenomena. The method of 
calculation elaborated by Wm~ER, SEITZ and SLA- 
TEa [1, 2] iS comparatively simple and gives quite 
good results for electronic levels of lower states in 
the energy bands. SHOCKLEY [3] however showed 
tha t  for higher energy states this method fails and 
tha t  the energy levels of electrons thus determined 
do not correspond at all to real values. C. yon der 
LAGE and BETHE [4] recently showed on a concrete 
example (metallic sodium), that  the method of 
Wigner, Seitz and Slater gives in fact wrong results 
for the excited states and showed how to modify 
this method so as to reproduce correctly the phy- 
sical conditions accompanying these higher energy 
levels. 

A number of improvements [5, 4] on the Wigner, 
Seitz, Slater method have been proposed, but only 
two of them, i. e. the Herring-Hill and C. yon der 
Lage-Bettm methods were used for the solution of 
practical problems. The main disadvantage of all 
existing methods lies in the fact that  they  are 
associated w i t h  considerable numerical calcula- 
tions. Even in the simplest of cases it is often only 
possible to accomplish the necessary numerical 

*) Received February 27, 1951. 

integrations of the differential equations by means 
of modern calculating machines. 

The method described in this paper, although in 
essence on!y an approximate method, has certain 
advantages in that  it can be used in cases where the 
older methods fail. The numerical calculations 
connected with it are neither complicaVed nor tir- 
ing. The method was used by the author and his 
collaborators for calculating a number of concrete 
examples (metallic sodium, magnesium and alumi- 
ninm) and it always showed results, which, as far 
as it is possible to judge by comparison with 
experiment, seem to be correct. 

I. The Principle of  the Method. 

Our method takes as a starting point an idea 
which was once suggested by g. C. SLATEa [5]. 
Valency electrons in the crystal move in a field 
which we idealise in the following way. 

The positive ions in the  crystal we surround by 
spheres of radius R and assume tha t  inside these 
spheres the potential in which each valency elec- 
tron is moving is spherically symmetrical: V ( [ t -  
-- ~.]), where ~ is the position vector of an arbitrary 
point of the lattice and 3, the position vector of the 
n-th positive ion at  a lattice point. Outside these 
spheres we assume the potential constant. To obtain 
a continuous potential we require the potential 
V(]~ - t . ] )  to attain this constant value on the sur- 
face of the sphere of radius R. 

I t  is clear that  this idealised potential is really 
some average potential caused by t h e  action of 
forces of the positive ions and the rest of the ca- 
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lency electrons so tha t  in fact we are solving the 
task as a "single electron" problem. 

The wave function corresponding to this poten- 
tial can be expressed as the product of spherical 
harmonics with the radial solution of the wave 
equation inside each sphere of radius R and as 
strictly plane waves outside these spheres. 

In  the first part  of this paper we give an approx- 
imate solution of the SchrOdinger equation, which 
enables us to express the wave functions inside the 
above-mentioned spheres in a suitable analytic 
form. From these functions we now construct the 
"unperturbed" solution of our problem which con- 
sists of plane waves outside the spheres of radius R 
and of certain spherical harmonics inside these 
spheres. The sought for function ~ we then express 
as a linear combination of the "unperturbed" wave 
functions and determine the corresponding coef- 
ficients in this linear combination by perturbation 
methods. Some of these coefficients can in certain 
cases be directly determined from group considera- 
tions. 

At the same time we can see tha t  no special 
assumptions regarding the spherically symmetric 
potential inside the spheres have to be made. 
A certain number of parameters related to this part  
of the potential of the valency electron can be de- 
termined from the known energy of the lowest 
level of the energy spectrum, which can be deter- 
mined with sufficient accuracy by statistical con- 
siderations. 

II. T h e  W a v e  F u n c t i o n  i n  a S p h e r i c a l l y  
S y m m e t r i c a l  F i e l d .  

Our task then is to determine the solution of 
the Schr6dinger equation inside the spheres where 
the potential V(r) in which the electron moves is 
spherically symmetrical; r is the distance of an 
arbitrary point from the centre of the sphere. 
Schr6dinger's equation can be separated in polar 
coordinates with the origin at  the positive ion in 
question. If  we denote the coordinates by r, z~, 
we can write the wave function in the well-known 
f o r m .  

+ l  

i ~ Az~pl~l(c~ exp{im~0} uz(r). (1) 
/ = 0  m = - - I  

Here ut(r) denotes the radial function which is 
determined by the equation 

2 (E Z(i 1) )) ~4' ~'4 - T v(~ ~ = 0. (2)*) 
r T 2 

t 

For further calculating it will be convenient to 
normalise our potential V (r) so tha t  on the surface 
of the sphere of radius R it should be equal to zero; 
the corrstant potential on the outside of the sphere, 
mentioned in I is also equal to zero everywhere. 

When substituting this potential in equation (2) 
we have to replace V(r) by the expression 

V(r) : V(r) V(R) V(r) fl, 
f l -  V(R) (3) 

and the energy E by the parameter E' where 

E' -: E T 3. (4) 

Equation (2) for the radial function now becomes 

, 2 u ,  ( l ( l~ - l )  ) 
u~ r z +  E'  = ,.~ -+-V~) ~.,~ 0. (,5) 

Let us now assume tha t  we know the function ~o, 
which satisfies the following equation 

v'o Wo + (/%(re) - ~(r) )  wo o. (6) 

at the same time satisfying the following boundary 
condNons: 

dr,0] Idly,,,/ 0, ..... 0 (v) 

I t  is quite clear that  the proper value E'o(ro) is 
a function of the radius r0 for which the boundary 
conditions (7) are fulfilled. From equation (6) there 
follows that 

E'o(ro)- V(ro) ] 
or J (8) 

Eo(ro) -~ -- V(ro). 

Let us now try the solution of equation (5) in the 
form uz -- ~o �9 [t; after substituting into equation 
(5) we obtain the following condition: 

; + -7 Yo + (E'o(ro) -~ V(r)) ~o 1, + 

-~ ,z + 2/; + + c, ~ 
r 2 

where we expressed E'  in the form 
t 

E '  - -  Eo(ro) + a 2. (9) 

�9 ) The  f o l l o w i n g  u n i t s  a re  u s e d  i n  t h i s  p a p e r :  R y d b e r g  u n i t s  

2~2n, e 4 
- -  a re  u s e d  c o n s i s t e n t l y  for  e n e r g y  a n d  t h e  \Bohr  

h 2 
h ~ 

r a d i u s  4g2me----- ~ for  l e n g t h .  
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The first square bracket in the above expression 
vanishes as it satisfies equation (6). For the second 
bracketed expression to vanish, the function /t 
must  satisfy the following equation: 

]~ ~ -  2 . f~ - + ~ ~  ~-  o~ l(1 1) 
\ r ~f0/ r ~ ,}ft-= 0. (10) 

As we see later we shall always be interested in 
a solution in the neighbourhood of the point r -- re 
and here considering conditions (7), ~o o is practic- 

# 

ally constant. T h e  term ~o in equation (10) can 
~0 

therefore be neglected; the equation for fl now 
takes the form 

( ) ft •  o~ ~ l(l r~ l )  i t _  0. (11) 

We can immediately write down the solution of 
this equation which is regular at  the origin of the 
coordinate system: 

s _ 11-  =)~--: J ~ + ~ ( ~ r )  -- ?',+~(c~r), (12) 

where Jr+ ~(ar) is the Bessel function of half order�9 
The approximate solution of equation (5) can now 
be written in the form: 

u~ - -  Vo . ]~+~(ar) .  (13) 

III. The Wave Funct ion  in a Crystal .  

Outside our spheres, where the potential is con- 
stant, the solution of the Schr0dinger equation is 
the known plane wave exp{i(~i �9 r)}, where ~ de- 
notes the wave vector. This solution must now 
continuously change into that  solution inside the 
sphere which is due to the same energy. This prob- 
lem has already been soked by SLAT~ [5]. He 
showed that  the wave" function inside the sphere 
of radius 37 with its centre at  ~,  which on its sur- 
face changes  continuously into a plane wave 
exp{i(Fi, r~)}, is of the form 

l : o  , , , = - z  u,~(R) 

(z pl~I(cos0) P~ml(cos~0D �9 uz(lr - r,,]) (l_~ m )! 

�9 exp{im(~ ~v~)}, (14) 

where uz(]~ -- t~l) is a radial function determined 
from equation (5) and Oi, ~o~ determined the direc- 
tion of [~ in polar coordinates. 

The above value (I4) inside each sphere together 
with the expression exp{i([~. ~)} outside each 

sphere completely determines the wave function 
~tl which is our unperturbed function. These wave 
functions are continuous; their gradient, however, 
on the surface of the spheres of radius R, is not. 

I t  is natural to expect that  the complete solution 
of the Schr6dinger equation in a crystal will also have 
a continuous gradient at  every point. This means 
that  the  correct wave function must  be equal to the 
linear combination of the above "unperturbed" 
wave functions. The coefficients in this linear 
combination have to be determined in such a way 
as to make the gradient of the resultant wave func- 
tion everywhere continuous. To solve this problem 
this way would be very difficult. I t  is, however, 
possible to at tain the end more readily, if pertur- 
bational methods are used suitably. 

We shall therefore assume tha t  the exact wave 
function can be expressed by the series: 

~CdV~ (15) 

where c~ are constants to be determined. Then 
according to the  general methods of quantum 
mechanics (15) will be a solution of the problem if 
the following equations are satisfied 

~(// E).  c ~ -  0 (16) 
i 

for all i. Here H denotes the energy operator, E the 
proper value of energy and 

( H  - -  E ) i j  - -  f~pt*(H -- E)~0rs dz (17) 

the well known perturbational matrix element. 
Equat ion (16) will be satisfied if the determinant 
of the coefficients (H E)~j is equal to zero. 
Let  us now examine what  F-vectors have to be used 
in expression (15) for constructing the exact wave 
function. Let  u s  choose in ~-space a fixed vector ~o 
which we shall identify with rl in (15). The com- 
plete wave function (15) can then be writ ten 

~o(fo) -= c0~o~, -}- czvdr, q- ca~p~, -4- . . .  (18) 

If ~o(f0) is to be the exact  wave function for the 
crystal, then it necessarily has to show those sym- 
metric properties which are prescribed by  the 
symmetry group appertaining to the crystal lattice 
in question. One of these is the behaviour of the 
wave function towards the translation crystal 
group expressed by the well-known Bloch theorem. 
According to this theorem the application of an 
arbitrary translation from the translation crystal 
group to the wave function reproduces the latter 
except for a constant factor. Let  us now rewrite 
the analytical expression for the wave function Wt~ 
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inside the sphere in a more concise form. In  equa- 
tion (14) we can use the well-known relation from 
the theory of spherical harmonics and carry out the 
summation over m; we then get: 

~o~i=#(tt,%) ~ ( 2 / +  1 ) . i  ~. 
l=O 

If we now transform ~ so tha t  to every position 
vector  ~, ~, we add a certain vector t, ~ is multi- 
plied only by the factor e~(~ "~). The wave function 
is transformed equally on the outside of the sphere. 
From the  above follows at  once tha t  Bloch's 
theorem is fulfilled for functions of the type (18) if 
the  wave vector f~ is writ ten 

where ~t, is the vector of the  reciprocal lattice to 
given translation crystal lattice. The exact function 
(18) can therefore be writ ten 

~O($o) = ~c.v2~ ~ + ~. (19) 

To every vector of ~-space one can therefore 
construct a wave function of type (19) and the 
corresponding proper value of energy can be calcu- 
lated by equating the perturbation determinant, 
the elements of which are given by expressions (17), 
to zero. In  many cases it is quite sufficient to use 
in expression (19) for the wave function only those 
functions the wave vectors of which are equal in 
magnitude to the magnitude of vector f. The addi- 
tion of further  terms to expansion (19) affects the 
proper value of energy only negligibly. Other 
symmetric properties of wave functions in crystals 
may  also be used and with the help of the theory of 
crystal group representation it is easily possible to 
determine the relative ratio of whole groups of 
coefficients in expansion (19), which makes it 
unusually simple to write down the explicit form of 
the vanishing perturbation determinant. 

]~r TRLIFAJ and E.  ANTON6iK undertook the 
above task and so introduced an unusually clear 
system into the whole energy spectrum of electrons 
in solids. 

I V .  M a t r i x  E l e m e n t s .  

We shall now explicitly express the mat r ix  ele- 
ment  (17). Using function (14) we can write this 
element according to S ~ E ~  [5] in the following 

/ 
form: 

(H --  E')~ = [($&) --  E'] 0~j + 

+ ~ e x p  [i((~ -- ~) -- v.)]. Fij, (20) 
n 

where 

F , j  = - -  E ' )  ii(l   - -  - + 

~.  u',(R)] 

/=0 

Here /2 is the volume of the  elementary cell, the 
sum ~ is to be summed over the positions of the 

~toms in the cell and z~j is the angle between vec- 
tors ~l and fj. 

For the function u~(R) we can use the approxi- 
mate expressions (13), because, as will followfrom 
more detailed numerical calculations, R does n o t  
differ much from re. If we substitute from equation 
(13) into expression (20) and use the well-known 
addition theorems for Bessel functions 

simo 
---- ~ (2/q- 1) P~(cosv~,~) ~z+i(kiR ) ~+t(k~R), 

O~ l=0 

- R + c o s t . i ,  

we obtain the following formulas 

(H --  E'),~ = [--~-~) ~] sino~ + 
4__~ R ~ exp eo 

4_ i~(r176 R~[~, q- Eo(ro) q- fl -- (~f~)] 4_ 
O3 

q- ~ ~ (2/q- 1) P,(cosO/~) j,+,(/c,R) j,+,(k~R). 
l=0 

j~_�89 -- ]~+~(~R) 
~+~(~R)  ' (21a) 

i = ?'; 

(H -- E')ii .(2 
. . . . . . .  

. R e x p  

1 + R �9 [ k g - - E . ( r o ) - - f l - - ~ ' ] - - ~ _ ~  + (21b) 

R~ ~ 

where ~exp  is a symbol standing for 

~exp{i(($~ -- ri) ~r 

In order to be able to start  evaluating these 
expressions we have to determine the constants 
R, fl, and V2o(R)/v2o(R ). Let us first find the radius of 
the sphere R. This constant R determines the 
distance from the  positive ion at  which the  spheric- 
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ally symmetric potential changes into the con- 
stant  value. I t  is clear tha t  this change comes about  
at  the boundary surfaces of the well-known Wigner- 
Seitz polyhedrons, which for symmetric lattices 
can well be replaced by atomic spheres. We there- 
fore identify our radius R with the radius of atomic 
spheres defined thus: if we designate with n the 
number of atoms in the elementary cell of volume 12 
then 

4~r Ra ~2 (22) 
3 n 

defines the  radius R. 

As a result of the  above definition expressions 

in the matrix element (2ib) vanish identically as 
in this case ~exp  = n. 

In order to determine y~o(R)/~,o(R) let us recall 
how the lowest energy levels in the Wigner-Seitz 
method are determined. Here it  is necessaryto point 
out tha t  the value of energy determined in this 
way  is very precise as the boundary conditions 
which have to be fulfilled for the determination of 
the individual levels are fulfilled in this case with 
great precision. We feel, therefore, justified in 
expecting that  our method On determining the low- 
est levels must give in essence the same results 
as the classical method, According to Wigner and 
Seitz we calculate the lowest energy value of the 
valency electron by  determining the s-function 
at=0 satisfying an equation which is identical with 
our equation (5) and subject it to the boundary 

condi t ion/du" /  = [ dr ]~=~ 0 where R again stands for the 

radius of the atomic sphere. In our case, when 
Uo(~o r) is given b y  the following expression (see 
equation 13) 

Uo(aor) ~ yJo(r) sin~0r 
0~07" 

the  condition 

_ to(R) 
0 ~o(R) R -- 1 + a0 R cota0R (23) 

has to be fulfilled. 

Knowing ~o(R) :~o(R), enables us to determine 
s0 easily from the above condition and also from 
equation (9) the corresponding proper value of 
energy: 

Eo(R ) = E'0(ro) + ~ ,  (24a) 

E o ( R  ) = Eo(ro) + a~. (24b) 

In our method the  lowest proper value of energy 
is easily determined by  means of the single function 
v/~ =o to which corresponds a zero wave vector. The 
corresponding matrix element is of the form: 

(H -- E')00 ___ ~V'o(R ) R -- 1 ~- ~0 R corse R. 
4~ ~0(R) 
~-  R ~ exp 

Setting the lefthand side of the above equal to zero 
we get the same condition for ~o as before. 

Later we shall show how it is possible b y  a statis- 
tical method to determine the lowest levels as a 
function of the radius of the atomic sphere. Let  us 
now assume that  we already know that  function. 
Then from relation (24b) follows at once that  for 
R ~ r o the value of the lowest energy attains its. 
minimum E and that  this minimum is equal to 
Eo(ro). We can therefore easily determine the con- 

P 0/ stants Eo(ro) and re from the condition [ ~R ]R=~:- 0. 

If we determine the above two constants we can 
equally easily find ~0 which follows from equation 
(24b) from which 

a~ = E o ( R  ) - -  Eo(ro). 

If we substitute in the condition for the lower level 

(equation 23) we obtain ~V'o(R) 
~o(R) 

There remains the determination of the constant 
fl = V(R). We shall make a ve ry  acceptable as- 
sumpt ion  regarding the potential V(r) valid for 
distances in the neighbourhood of r0 and greater 
than the radius of the ions; i. e. r is in the interval 
r0 ~ r < R. We assumQ that  in this case it is pos- 
sible to express the potential V(r) simply by~ 

E(r) = 2Z~----A-t From equation (8) we get  at  once 
r 

2Ze! = _ Eo(ro) �9 r0 
so that  

r~ (26) [~ = _ Eo(ro) --~. 

V. Calculation o f  the Energy o f  
the  Lowes t  Level. 

We shall first t ry  to calculate the total energy 
per a tom of all valency electrons of a solid. For this 
purpose we use statistical methods. In  this paper 
we shall only indicate the  fundamental idea and the 
results of our calculations; more detailed considera- 
tions will be published in a later paper. We are 
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proceeding in a similar manner as GOMBXS [7] in 
his work on the statistical theory of solids. We 
again replace the Wigner-Seitz polyhedrons by  
atomic spheres, .assuming that  the valency elec- 
trons are on the average uniformly distributed 
throughout the whole crystal. The charge inside 
each sphere is equal to N electron charges, where 1V 
is the number of valency electrons in the atom of 
which the solid under consideration is made up. The 
total energy Et per atom, i. e. the energy of the 
uniformly distributed electron gas inside 'the atom- 
ic sphere is equal to the sum of the following 
energies. First we have to take into account the 
electrostatic energy of repulsion of the electron gas 
Eo inside the sphere. This energy is equal to 

6N 2 
E~ -- - 5R " 

Further, Ea and Eke ~ denote the exchange and cor- 
relation energies of such a gas. 

In our case these energies can easily be enumerat- 
ed. They are 

a.9] 64N~ 
E ~ - -  R 

0,576N 
Ekor = : 

5 , 1 •  N 

Further  it is necessary to calculate the so-called 
kinetic energy E ~  of the electron gas, which is the 
consequence of the validity of Pauli's principle. 
This energy is also easily obtained and its value is 
given by  

2,21N+ 
E e in  - -  . R  2 

Finally it is necessarv to add the energy which has 
its origin in the interaction of the electron gas with 
the  positive ion of the atomic sphere under consi- 
deration. If  we denote by  h(r) the potential of the 
positive ion at  the d/stance r, then this energy 
is given by 

E~ - -  v . 4z~ f h ( r )  r 2 dr,  
0 

3 N  
where v = -- 4uR---- 5 denotes the charge density of the 

valency electrons. The potential h(r) can be deter- 
mined in various ways. According to Gombs h(r) 

is given for example by  the following expression: 

- 2~o{[~(r)]'-/~[e~(r)] ~} ~- 

2~V 
r 

where %(r) stands for the Hartree potential of the 
positive ion bared of all valency electrons, the 
second term is the non-classic repulsion potential 
which is a consequence of the Pauli principle and 
which essentially corresponds to the resistance to 
intrusion of valency electrons into the electron 
shells of the positive ion. 0(r), Qi(r) are the total 
charge densities of the positive ion and density of 
s-electrons respectively, in case part  of the elec- 
trons in the free atom are in the p-state also. The 
constant k for bivalent elements is equal to zero, 
for trivalent or quadrivalent it takes up the value 
�89 and �89 respectively. Y0 is given by  the expression 
~-(3s~) ~ eolao, where [e I is the charge of the electron 
and a0 is the Bohr radius. 

The total energy of the valency electrons is 
therefore 

E t  ~ E~ -~- E A + E~or w- Ek~n -1- El .  (27) 

Let us now try  to express the total energy by  
means of the energy of the lowest level in the band 
spectrum. The energy E of the individual valency 
electrons we normalise with regard to the lowest 
level and write 

E - -  E o + ~ .  

Let N(~) denote the density of energy states the 
energies of which lie between ~ and ~ d~. Then 
clearly 

~'/max 

N = 2 f IV(v) d~, 
o 

where ~m:~ denotes the Fermi limit, The total 
energy .Et of the valency electrons per atom is 
therefore given by  

Emax  f~max 

Et  - -  2 f N ( E )  E d E  ~ 2 f ~v(v) (E.o -4= ~]) d~ 
E o  u 

- N(E0) 2 f N(~) V dr. u 
The last integral, however, stands for the total 
kinetic energy per atom. We can therefore write 
the last relation in a simple form 

E~ - -  N E o  + Ek~.  

Comparing both expressions for the total energy E t 

we at once obtain for E 9 the following expression: 

1 (E~ - EA - -  Eko~ -~: E~). (28) Eo-:  

If  we approximate the Hartree potential 

/~<r / -  ~--~=~/-/, ~(r/ aud ~i(r / by suitable analytic 
k ' r j  
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funct ions f rom the  Ha r t r ee  tables and  for the  rest  

of the  te rms in (28) we subs t i tu te  the  expressions 

in t roduced  above we obta in  E0 as a funct ion  of the  

radius R of the  a tomic  spheres. 

VI. Concluding Remarks. 

To some of the  approx imat ions  carried out  on 

the preceding pages, I should like to make  the  fol- 

lowing remarks .  

F i rs t  of all in equat ion  (10) we neglected the  t e rm  
I 

' ~  This step is cer ta in ly  permissible in those 2/~y~0" 

cases when r is in the  ne ighbourhood  of r0, because 

~ is then  a v e r y  small quan t i ty ,  (~0(r) is near ly  

cons tan t  in the  ne ighbourho0d of r0). Fo r  larger  

differences (r - -  r0~ we of course in t roduce  cer ta in  

errors.  

When  calculat ing the ene rgy  of the  lowest level 
in V, some doubts  can arise as to the  just i f icat ion 
of the  un i fo rmly  d is t r ibuted  electron gas. The de- 
cisive te rms in expression (28) for ,E 0 however  are 

1 
(Ec ~- E~). These expressions represent  the  quan-  

t u m  mechanical  average  of the  t y p e  f~f~V~o d~ 
t a k e n  over  the  e lect rosta t ic  repulsion Of (N - -  1) 
va l ency  electrons and  the  in te rac t ion  of the  va- 
lency  electron in the  lowest  s ta te  with the  posi t ive  
ion. The wave func t ion  ~0 is a t  the  same t ime t aken  
as a cons tan t  a n d  is normal ised to  the  volume of 
the  a tomic  sphere. I t  is, however ,  well known [8] 
and  i t  follows f rom our  calculat ions as well t h a t  
the  wave  funct ion  of the  va lency  electron in the  
lowest  s ta te  is practicall~r cons tan t  over  the  whole 
space of the  a tomic  spheres. Besides, the  results 
thus  ob ta ined  are in good agreement  wi th  the  
corresponding numer ica l ly  in tegra ted  Schr6dinger  
equat ion.  

The  described m e t h o d  was appl ied  to  a n mnbe r  
of solids; 'L e. metal l ic  sodium [9], magnes ium [10] 
~nd a lumin ium [11]. Summar i ly  we can say t h a t  
t he  results seem to be in good agreement  e i ther  
wi th  measured  values or wi th  the  calculated values 
of energies in the  Bril louin zones as, for  example,  
wi th  t h e  results ob ta ined  b y  V o n d e r  Lage and  
Be the  for metall ic sodium. 
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