Ultrasonic Extraction of Carbofuran Residues from Radishes¹

W. B. Wheeler², N. P. Thompson², R. L. Edelstein², and R. T. Krause³ ²Pesticide Research Laboratory, Food Science and Human Nutrition Department, University of Florida, Gainesville, Fla. 32611, ³Department of Health, Education and Welfare, Food and Drug Administration, Washington, D.C. 20204

Ultrasonic extraction of pesticides was first reported by JOHNSON and STARR (1967). This initial report indicated that the use of an ultrasonic cleaner had promise and a second publication (JOHNSON and STARR 1970) confirmed the effectiveness of this method. Ultrasonic extraction of several organochlorine insecticides from soil was as efficient as Soxhlet extraction and superior to roller and blender methods.

JOHNSON and STARR (1972) reported that the Polytron homogenizer was also generally superior to other extraction procedures for the removal of organochlorine insecticides from soil. MOYE et al. (1977) also reported that the Polytron homogenizer was equal in extraction efficiency to Soxhlet extraction of a sandy soil fortified with certain carbamate and organophosphate pesticides.

This laboratory is investigating the extraction of "field incurred" pesticide residues. This paper reports the extraction efficiency utilizing the Polytron homogenizer for carbofuran residues in radishes using various blending times and blending speeds.

MATERIALS and METHODS

Radishes (Red Globe variety) were grown from seed in an environmental growth chamber. Mature radishes were treated by soil application at a rate of 0.2 lb/ acre with Furadan 4 Flowable formulation containing ¹⁴C-carbofuran (uniformly ring labelled, New England Nuclear Corporation).

Three days after carbofuran application, the radishes were harvested, the tops removed and the roots rinsed with water to remove adhering soil. Radishes were chopped, thoroughly mixed and 100 g portions were weighed into 32-oz glass jars. Radish tissues were blended using a Model PT-10-35 Polytron homogenizer with a PT 35K non-saw tooth generator in 200 ml acetone for various times (at maximum speed) and for various speeds (for 1.0 min periods). The blended slurry was

¹Florida Agricultural Experiment Station Journal Series No. 965.

poured into a sintered glass filter funnel and the acetone-water extract was collected by vacuum filtration.

The total amounts of radioactivity in the extract and in the tissue residue were determined. Aliquots of extracts were evaporated to dryness in small cellophane pouches, combusted in an automatic sample oxidizer (IN/ US, Model 4101) and the ¹⁴C determined by liquid scintillation counting. Portions of the tissue residue were also oxidized and subjected to scintillation counting. All combustion samples were done in duplicate. The combustion efficiency of the automatic oxidizer and ¹⁴C carryover between samples were monitored routinely. These parameters, as well as liquid scintillation counting efficiencies, were constant during analyses.

RESULTS and DISCUSSION

The results of extraction efficiency (% Extracted) vs blending time at maximum speed are presented in Table 1. Blending time is shown in the far left column. The "a" and "b" terms represent the two combustion and counting replications for the extract and for the residue and are included to show the variability of the data. The far right column indicates the final temperature of the solvent immediately after the blending was completed. The results indicate that, in general, all blending times of 0.50 min and longer at maximum speed are of equal efficiency in extracting carbofuran treated radishes. The 0.25 min time may be slightly less effective removing only 52% of the ¹⁴C from the radishes. These blending times resulted in extraction efficiencies ranging from 54% to 63%. One advantage of shorter blending times is the

One advantage of shorter blending times is the factor of solvent temperature. During the first 0.50-1.0 min, the temperature rose 8°C. During the second and third minutes of blending, temperature rises were 6° and 8°, respectively. Only after 10 min of blending were further temperature increases noted. The extraction efficiency at 0.25 min was relatively good and no temperature increase was detected; this indicates that extraction efficiency is not dependent upon elevated solvent temperatures. It would, therefore, be advantageous to keep the blending time short in order to minimize potential problems related to elevated solvent temperatures.

The results of extraction efficiency (% Extracted) vs blending speed (1.0 min blending time) are presented in Table 2. The speed designations are the rheostat designations on the Model PT-10-35 basic assembly. The blender did not run at rheostat settings of "1" or "2" and, therefore, data are not included. TABLE 1

POLYTRON TIME STUDY: Carbofuran Treated Radishes at 3 Days After Application

Blending Time (min) ¹	a ² Ex	Extract (cpm) b a	pm) avg	Tissue a	Tissue Residue (cpm) a b avg	(cpm) avg	Total Activity (avg)	% Extracted (avg)	Temp (°C)
0.	ł	1	1	8	1	1	-		26
0.25	135180	130815	132997	123316	120722	122019	255016	52.2	26
0.50	151860	152955	152407	83361	93408	88384	240791	63.3	34
0.75	165795	150045	157920	190135	109057	109096	267016	59.1	34
1.0	153315	146625	149970	111287	105354	108320	258290	58.1	34
1.5	140145	130545	135345	105847	102770	104308	239653	56.5	36
2.0	149895	152085	150990	92326	96153	94239	245229	61.6	40
2.5	149055	155205	152130	105404	108793	107098	259228	58.7	48
3.0	142875	132915	137895	111326	111324	111325	249220	55.3	48
4.0	138765	136605	137685	102839	103696	103268	240953	57.1	48
5.0	133755	135365	135060	111475	114997	113236	248296	54.4	47
7.0	142755	138735	140745	105396	110309	107853	248598	56.6	48
10.0	148275	142905	145590	94486	95564	95025	240615	60.5	50
مىرىنى 100 يىلىغا، بىلى مىلىغانىيا، بىلىغانى بىلىغانى بىلىغانى بىلىغانى بىلىغانى بىلىغانى بىلىغانى بىلىغانى بى									

¹Samples were blended at maximum speed using a Polytron homogenizer for the times indicated. $^2{\it n}a{\it n}$ and $^{\it n}b{\it n}$ are combustion and counting replications. TABLE 2

POLYTRON SPEED STUDY: Carbofuran Treated Radishes at 3 Days After Application

28840 28271 22537 24586 28087 28052 23335 24586 29767 30371 22189 22779 231202 31089 24497 24670 31202 31089 24497 24670 31202 31089 24497 24670 31202 31089 24497 24670 31325 31911 18833 18005 31325 31911 18833 18005 31325 31911 18833 18005 31325 31911 18833 18005 31325 31911 18833 18005 31325 31911 18833 18005 32830 33372 24201 24732 34545 34072 21224 20204 35367 35560 22389 20958 32672 33714 21396 21994 34037 33679 22884 27786		a^2 b	b ave	ë T T T	p q	avg	TOTAL ACTIVITY (avg)	» Extracted (avg)
28017 28087 28052 23335 2455 28017 28087 28052 23335 23265 30975 31202 31089 24497 24670 30975 31202 31089 24497 24670 32112 32113 22439 22037 32112 32113 22439 22037 32112 32113 22439 22037 32915 31325 31911 18833 18005 33915 32830 33372 24201 24732 33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 2284 27786			7871	22537	24586	23562	51833	54.5
2001/ 2000/ 2001/ 2000/ 2001/ 30975 29767 30371 22189 22779 30975 31202 31089 24497 24670 30975 31202 31089 24497 24670 32112 32113 22439 22037 32497 31325 31911 18833 18005 32497 31325 31911 18833 18005 33915 32830 33372 244201 24732 33600 34545 34072 21224 20204 35752 35367 35560 213389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			10050	30000	73965	00556	51353	57 6
30975 29767 30371 22189 22779 30975 31202 31089 24497 24670 32112 32113 22439 22037 32112 32113 22439 22037 32497 31325 31911 18833 18005 32497 31325 31911 18833 18005 33915 32830 33372 24201 24732 33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786	4A 280		70007	CCCC7	60767	00007	ZCCTC	74.0
30975 31202 31089 24497 24670 32112 32113 22439 22037 32497 31325 31911 18833 18005 32497 31325 31911 18833 18005 32497 31325 31911 18833 18005 33915 32830 33372 247201 24732 33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			30371	22189	22779	22484	52855	57.5
32112 32113 22439 22037 32497 31325 31911 18833 18005 32915 31325 31911 18833 18005 33915 32830 33372 24201 24732 33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			31089	24497	24670	24584	55673	55.8
32497 31325 31911 18833 18005 33915 32830 33372 24731 24732 33600 34545 34072 24201 24732 33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			32113	22439	22037	22238	54350 ³	59.1
33915 32830 33372 24201 24732 33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			31911	18833	18005	18419	50330	63.4
33600 34545 34072 21224 20204 35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			33372	24201	24732	24466	57838	57.7
35752 35367 35560 22389 20958 34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			34072	21224	20204	20714	54786	62.2
34755 32672 33714 21396 21994 33320 34037 33679 22884 22786			35560	22389	20958	21673	57233	62.1
33320 34037 33679 22884 22786			33714	21396	21994	21695	55409	60.8
			33679	22884	22786	22835	56514	59.6
33302 35385 34344 22218 23652			34344	22218	23652	22935	57279	60.0

¹Samples were blended on a Polytron homogenizer for 1.0 min using dial settings 3 to 10 as indicated. ²"a" and "b" are combustion and counting replications.

³The average value for the extract is taken from counting replicate "a" only.

⁴"A" and "B" are duplicate samples.

Duplicate samples were run at settings of 4, 5, 6 and 8 and are presented to show variation between samples. The "percentage extracted" data indicate that the Polytron is somewhat less efficient and consistent at the lower speeds (3, 4 and 5); the efficiency seems to increase and stabilize in the speed range of 7 to 10.

The data in Table 1 and in Table 2 were derived from different applications of ¹⁴C-carbofuran in formulated material. It should be pointed out the radish tissues appeared to be well disrupted under all the experimental conditions utilized. Furthermore, it is known from other work done at this laboratory (WHEELER et al. 1977) that 55-60% extraction efficiency represents maximum removal of ¹⁴C from radishes treated with ¹⁴C-carbofuran in commercial formulation; exhaustive Soxhlet extraction of radish tissues yielded no significant additional ¹⁴C.

Thus, the Polytron homogenizer is an efficient blending device for extracting carbofuran from radishes. It is likely that this effectiveness would extend to other pesticides and substrates. This homogenizer was efficient for relatively short blend times, but exhibited greater effectiveness at higher rather than lower blend speeds.

ACKNOWLEDGEMENTS

We acknowledge the technical assistance of Nora Maddox, Laura Kennedy and Cheryl DeVore. This study was supported in part by Food and Drug Administration Contract No. 223-76-2220.

REFERENCES

JOHNSON, R. E. and R. I. STARR: J. Econ. Entomol. <u>60</u>, 1679 (1967).

JOHNSON, R. E. and R. I. STARR: J. Econ. Entomol. <u>63</u>, 165 (1970).

JOHNSON, R. E. and R. I. STARR: J. Agr. Food Chem. 20, 48 (1972).

- MOYE, H. A., S. WITKONTON and G. CASH: Extension of multi-residue methodology: I. Determining multiclass pesticide residues in soil by gas chromatography. II. Dynamic fluorogenic labelling detector for carbamates. EPA-600/1-77-029, Environmental Health Effects Research Series, 168 pp.
 WHEELER, W. B., N. P. THOMPSON, P. ANDRADE and R. T.
- WHEELER, W. B., N. P. THOMPSON, P. ANDRADE and R. T. KRAUSE. Final report of Food and Drug Administration Contract No. 223-74-2223 (1977).