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ABSTRACT 

In this paper we consider the system of bilinear forms which are defined by a product of two 
polynomials modulo a third P. We show that the number  of multiplications depend on how 
the field of constants  used in the algorithm splits P. If P = l-I~= 1 P~' then 2 -deg(P) - k 
multiplications are needed. (We assume that Pi is irreducible.) 

I. Introduction 

The framework for many of the results on the number of multiplications 
necessary to compute algebraic functions is as follows: We start with a field G, 
called the field of constants, and then consider the functions to be computed as 
elements of F = G ( x l ,  x 2 . . . . .  xn)---the extension of G by the indeterminates 
x l , . . . ,  xn. The lower bounds which are then derived on the number of 
multiplications needed to compute the functions are valid even if multiplications 
by a fixed element 9 ~ G is not counted as a multiplication. (See, for example, [1] 
and [2].) 

This assumption, that a multiplication by a 9 ~ G is not counted, is valid if O is 
an integer, for then this multiplication may be replaced by several additions. In 
many applications the assumption may still be valid if 9 is a rational number, but 

if G = Q(x//2), why assume that multiplication by x/~ is not counted? 
Many of the results in the literature are insensitive to the exact nature of G. 

The results of [1] and [2], for example, are of this nature, but as we will see in the 
next section the minimum number of multiplications may depend on the choice of 
G. We will give an example which requires 3 multiplications if G = Q, the 
rationals, but only 2 if G = ¢, the complex number. We will then use the 
algorithm for G = ¢ to construct an efficient algorithm to solve a related problem 
for the case G = Q. 

In the following section we will analyze the dependence of the number of 
multiplications on the field G for a certain class of systems of bilinear forms. 
Fiduccia and Zalcstein [3] obtained the result of Theorem 3 for the case l = 1. 
They also obtained the result of the first half of Corollary 1 when the field G splits 
P and P has no repeated roots. 
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II. Examples 

S. WINOGRAD 

Consider the following system of bilinear forms: 

(1) ¢1 = XlYl--x2Y2 

¢2 = X2Yl+XlY2" 

This system is the real and imaginary part of the product of two complex 
numbers. It can  be computed using 3 multiplications, for example: 

(2) ml = xI(Yl +Y2) m2 = (xl  +x2)Y2 m3 = ( - - x l  +x2)Yl  

¢1 = m l - m 2  ¢2 = ml+m3. 

It is known I-4] that 3 multiplications is minimal if we take the field of constants to 
be Q. However, if we take G = Q(i) then we have the following algorithm, which 
uses only 2 multiplications: 

PI x l  + ix2 x l  - ix2 
- 2 (Yl + iy2) P2 = 2 (Yl - iy2) 

(3) 
¢1 = P1 + P 2  ¢2 = -- iP1 7t- iP2. 

The next example will illustrate how the second algorithm can be used to 
derive an efficient algorithm when G = Q. 

Consider the system of bilinear forms 

(4) 

1) 
¢2 = x2 x~ - x 4  - x 3  Y2 

¢3 x3 - x 4  xl - x 2  Y3 

¢ x4 x3 x2 x1 4 • 

This system is easily recognizable as the direct product of the complex algebra 
with itself, that is, if we denote: 

X1 = (xl +ix2), X2 = (x 3 + i x 4 ) ,  ]11 = (Yl +iy2), Y2 = (Ya+iYa) 

then: 

(5) 

¢1 = Re(X1YI-X2Yz) 

¢2 = Im(X1 Y1-X2Yz) 

¢3 = Re(X2Y1 +XIY2)  

¢3 = Im(X2Y1 + X I  Y2). 

It may be seen that 9 = 32 multiplications are necessary to compute (4) when G 
= Q, however, using algorithm (3) we can obtain an algorithm for computing (4) 
using only 6 multiplications. Using algorithm (3) we define 
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X 1 + / 2 2  (x1 - x4) "{- i ( x2  ~'- x3) 
P~ = -  (Y~ +iY2)= 

2 2 
((Ya - Y4) + i(y2 + Y3)) 

(6) P2 =X1  -iX~2 (Y I - iY2 )  = (xl + x4)+ i(x2 - x3) 

2 2 
((Yl + Y4) + i(y2 - Y3)) 

X I \ Y 1  - X 2 Y 2  = P1 + P 2  

X 2 Y 1 --~-X I Y 2 = - i P  1 -~- iP2,  

and therefore: 

(7) 

~/1 = Re(P1) -'[- Re(Pz) 

02 = Im(P1) + Im(P2) 

~/3 = Im(P1)- - Im(P2)  

¢4 = - R e ( P 0 + R e ( P z ) .  

Using a lgor i thm (2) twice we can compute  Re(P1), Im(P1), Re(P2), Im(P2) in 6 
multiplications, that  is: 

x l - x 4  x l - x 4 + x 2 + Y 3  (Yz +Y3) 
mx ~ ( Y l - Y 4 + Y 2 + Y 3 )  mz = 2 

(8) 

- - x t  + x 4 + X z + X 3  x x + x 4  
ma= 2 (Yl--Y4) m4--  ~ (Ya+Y4+Yz--Y3) 

X 1 "~-X4"-I-X 2 - - X  3 - - X  1 - -X4 . - I -X  2 - - X  3 
m5 = 2 (Yz -Y3) m6 = 2 (Yt + Ya) 

Re(P1) = ml - mz 

Re(Pz) = m 4 - m 5 

Substituting (8) into (7) we obtain:  

(9) ~kx = ml - m z + m 4 - m 5  

~k 3 = ml +m3- -m4- -m  6 

Im(P1) = ml q-m3 

Im(P2) = m 4 + m6. 

I//2 = m 1 + m 4 + m 3 + m 6  

~k4 = - m l  + m 2 + m 4 - m s .  

In the next section we will see that  6 multiplications is minimal for the system (4). 
It should be clear that  the construct ion used above is quite general: Using this 

construct ion one can show, for example, that  if there is an algori thm for 
comput ing  two n o x n o matrices in k multiplications using any field G < C. then it 
is possible to multiply two n x n in Anl°g"o k operations.  

IIl. Results 

In this paper  we will write a system of bilinear forms as A(x)y_ where A(_x) is a 
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t x m matr ix  whose entries are linear forms (over G) of  the indeterminates  {x~, 
x 2 . . . . .  x,}, and _y is the (column) vector  (Yl, Y2, • • • ,  Ym) r- We will need the 
following two results f rom [2]:  

T H E O R E M  1: Let A(x_)y be a system of bilinear forms. I f  A(x)  has at least s 
columns such that no non-trivial linear combination of  them (with coefficients in G) 
yields the column 0 then any algorithm for  computing A(x_)y requires at least s 
multiplications. 

T H E O R E M  2: Let A(x_)_y be a system of  bilinear forms, and let s be the 
minimum number of  multiplications needed to compute A(x_)_y, then there exists 2s 
linear forms (of x '  s and y'  s with coefficients in G) L1, L 2 . . . .  , L,, L; ,  L~ . . . .  , L~ 
such that A(x_)y = U m  where U is a matrix with entries in G, m is the (column) 
vector (ml, m 2 , . . .  , ms) r and m i = L i .L' i i = 1, 2 . . . .  , s. 

a * b " Let R ( z ) =  ~ i=o  x~z' and S ( z ) =  ~ i=o  Yi z' be two polynomials  with 
indeterminates  as coefficients, and let T(z) = R(z) .S(z). The a + b + 1 coefficients 
of T are a system of bil inear forms, denoted by 7". It  is known [3] that  the 
min imum number  of  coefficients needed to compu te  7" is a + b + 1. 

One  way of comput ing  7' using a + b + 1 mult ipl icat ions starts by choosing a 
+ b + 1 distinct elements  of  G, ct o, ~1 . . . . .  ao+ b. Since deg(T)  = a + b we have 

a + b  

(10) R(z) "S(z) = R(z) 'S(z )  mod  [-I ( z -~ i ) .  
i = 0  

By the Chinese Remainder  Theo rem R(z) .S(z) rood ] ' -I 'a  ÷ b ( Z  - -  0~i) can be obta ined  I l i  = 0  

b y  comput ing  R(z) .S(z)  m o d  ( u - ~ i )  = R(~i)"S(~i) for i = 0, 1, . . .  , a + b, and 
then using only mult ipl icat ions by elements  of  G we obta in  R(z) .S(z) m o d  [-I~+o b (z 
-~ i ) .  The  a + b + l  mult ipl ications are R(cti).S(~i) i =  0, 1 , . . . ,  a+b .  This 
me thod  is essentially the one described in [6]. 

A second method  starts by choosing a + b  distinct elements of G, ill, 
f12, • • • , fla+b, and uses the identity 

(11) 
a + b  a + b  

R(z) "S(z) = R(z) "S(z) m o d  1--1 (z - fli) + x.yb I-I (z -- fli)" 
i = l  i = 1  

As before R(z) .S(z )  m o d  [-I~=+l b ( z - i l l )  is compu ted  by using the Chinese 
Remainder  Theorem using a + b multiplications,  and the (a + b + 1)s' 
mult ipl icat ion is x a "Yb. 

Of course we could replace the p roduc t  R(~i)-S(cq) by the p roduc t  
([7 "R(cxi)).(h "S(~i)) for any g, h EG (g,.h :~ 0). If  we agree to call two algor i thms 
essentially the same if they differ only by this kind of changes then we obtain:  

T H E O R E M  3: Any algorithm for  computing 7" in a + b + 1 multiplications is 
essentially the same as either the one derived f rom (10) or the one derived f rom (11). 

Proof" Let rag, m 1 . . . .  , ma +b be the a + b + 1 multiplications.  Since 
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(12) 7 " -  

f.c o 0 

X 1 XO 

X 1 

X a XO 

0 X a Xl 

0 0 X,~ 

fYo~ 

Y 1 

Yb/ 

=- Xy 

we obta in  that  there exists an (a + b + 1 ) × (a + b + 1 ) matr ix  U with entries f rom G 
such that  

(13) Xy  = U m 
rrla+ b 

Since all the rows of X are linearly independent  (over G) we obtain  that  U is non- 
singular. Let W =  U 1. Consequent ly ,  

(14) (WX)v ( m° t =  = m, 
ma+b 

Let (w~, w/1 . . . . .  i ith WQ+b) denote  the row of W, then f rom (14) we obtain  

(15) Z w~xj, ~ w~+,xj . . . . .  Z W~+bXj Vl = ml, 
j=O j=O j=O i~ ~ 

that  is the bilinear form (15) can be compu ted  in only one multiplication, and by 
Theorem 1 all of  the forms ~ i  ~= o wj.i +bxj k = 0, 1,. . . ,  b are multiples of  one of 
them. Tha t  is the matr ix  

(16) 
W2 . . . .  Wa + 1 ~  

w,o+j 
has rank 1. It.is easily verified that  this can happen  under  only two situations: 
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eitherO w~ w~ w~ . .  i and i . . . .  . = w~ + b-a w, + b # O, or there exists 0t~ such 
that wj = (~t~)Jw~ j = O, 1 . . . .  , a + b. Since W is non-singular at most one row can 
be of the second type, and if two rows are of the first kind their 0t's. are different. 

I f  Whas no row of the second type, the algorithm is essentially the same as 
(10), and otherwise it is essentially the same as (11). This proves the theorem. 

In the rest of the paper we will assume a = b = n -  1. 
Let P = z"-X-' ,-1 " ~ = o  a~ z~ be a polynomial with coefficients in a field F. Let R 

n - 1  ' n - 1  ' = ~i=0 xiz' and S = ~i=0 Yi z~ be two polynomials with indeterminates as 
coefficients. The coefficients of the polynomial T(z) = R(z) .S(z) mod P are a 
system of bilinear forms, denoted by 7"p. For  example, i fP = z 2 + 1, the system 7"p 
is 

(17) x°y° -x lYa  

Xlyo + Xoyl, 

that is, the same as (1). 
The results in this section will describe the minimum number of 

multiplications needed to compute 7"p, and its dependence on G. 

T H E O R E M  4: Let P = pt where P is irreducible (over G), and let n = deg(P). 
The minimum number of multiplications needed to compute 7"9 is 2 n -  1. 

Proof  Let C, be the companion matrix of P, and let Vp = {v ~ G" 13 polynomial 
q # 0, deg(q) < n and vq(Cp) = 0}. Since/~ is irreducible, q(Cp) is non-singular 
whenever P,~q. If v ~ Vp then vq(Cp) = 0 then q = P" "q for some 1 > r > 0 and t] 
relatively prime to P. Therefore 0 = vq(Cp) = vP'(cp)~l(Cp), and since t](Cp) is non- 
singular v~'(C,) = 0 and consequently vP'-I(Cp) = 0. So Vp = (veG"lvP g-~ (Cp) 
= 0}. We thus deduce that Vp is a subspace of G ~ and d im(~)  < n. 

Let ~p = A(_x)_y then A(x) is 

I J a 
(18) A(_x) = (x.Cpx IC,x I,..., ," C~- l_x) 

where _x is the (column) vector (Xo, xl . . . .  , x,_ 1) r. (This follows from the 
observation that the coefficients of the polynomial z ~i= o ti zi mod P are Cp .t 
where t r is the~vector (to, q , . . . ,  t,_~)). Let t be the minimum number of 
multiplications needed to compute 7" v, then by Theorem 2, A(x)y = U m  where U 
is an n x t matrix with enltries in G and m_ = (ml, m2, • • • m y .  Since for all non- 
zero (row)vectors) w ~ G" !wA (x) ~ 0 we obtain that rank (U) = n, and therefore U 
has n linearly independem columns. Assume with no loss of generality that the 
first n columns of U are linearly independent (otherwise we can permute the 
columns of U and th~ m~'s). There exists, therefore, an n x n non-singular matrix W 
such that WU = (IIU'). Since W is non-singular its rows span G" and therefore 
there exists a row of W which is not in V v Assume with no loss of generality that it 

I t is the first row, and denote it by w. Since WA(~)y = (I IU )_m, we obtain wA(x)y 
- e d  ( 1  ' ' ' " "" A (  ) y  = , 0 , . .  ". , 0 , u x , U z , . . . ,  ut_,)m, Le.,thebdlnearformlw x can be comput 

using t -  n + I multiplications. We claim that no non-trivial linear combination of 
the columns of wA(x) is 0. Assume 

0 = ~ wC~_x.~, = x then w 2 ~C~ 0, 
i = 0  i = 0  i=O 
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but we lip and therefore ct~ = 0 i =  0, 1 , . . . ,  n - 1 .  By Theorem 1 at least n 
multiplications are needed to compute wA(x_)y_, that is, t - n + 1 > n, and t > 2n 
- 1  which proves the theorem. (Note that since 7" can be computed in 2 n -  1 
multiplications so can 7"p.) 

Let P = ptl .p~ where Pt, P2 are irreducible and (Px, P2) = 1. By the Chinese 
Remainder Theorem the system 7"p can be computed by computing 7"p,~ and ~ , 2  
and then combining the results using only additions and multiplications by 
elements of G. 

Definition: Let A(_x)_y and B(~)t/be two systems of bilinear forms on disjoint 
sets ofindeterminates. The disjoint sum of  A and B, denoted by A + B, is the system 

An algorithm for computin 9 A(~B is said to be disjoint if its matrix U is 

0) 
U2 ' 

that is, if it can be viewed as computing A(_x)_y and B(_~)_r/separately. 

Conjecture: The minimum number of multiplications needed to compute 
A 0)B is re(A) + re(B)where re(A) denotes the minimum number of multiplications 
needed to compute A(x)_y, and similarly for re(B). Moreover, every algorithm 
which computes A 0)B in the minimum number of multiplications is disjoint. 

We cannot prove the conjecture in general but the next theorem proves it in a 
special case. 

THEOREM 5: Let P~ = Pl 1 i =  1, 2 . . . .  , k, where P~ is irreducible and 
deg(Pi) = ni, and let n = ~i  k 1 ni. The minimum number of multiplications required 
to compute 7" = ~ 1 ~  ~ 2 ~ .  . "O) 7"pk is 2 n - k .  Moreover, every algorithm Jbr 
computin9 this system in 2 n - k  multiplications is disjoint. 

Proof." Let 7"p, be Ai(x_i)y_ i and 7" be A(x)_y where 

(19) 

0)(i) 
= = y2 A (Lc_) A2(_x 2 ) Y 

0 A k(_X k) k 

Let A (x)_y = U, ×t_m, (where t denotes the number of multiplications), then since all 
the rows ofA(x) are linearly independent, the rank of U is n. Therefore there exists 
an n x n non-singular matrix W such that WU ( I  IIU' ). Partition W as W 
= (W' I I W 2 I.. "rlwk) where W 1 is the first nl columr~s of W, W 2 the next n2 
columrCs ofIW, letc. Since W is non-singular rank(W/) = ni i =  1, 2 . . . . .  k. 
Therefore each W i has a row which is not in Vp,. Let w~ denote the j  th row of W ~, 

and let p(j) denote the cardinality of the set {ilw~¢ Ve, }. 
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L E M M A  1 : I f  for  some j, p(j) = s then t > 2n - k + s - 1. 
Proof." Assume with no loss of generality that  p(1) = s and that  w~ ¢ Vp, i = 1, 

2 . . . . .  s. Let j,+ ~,J,+2 . . . .  ,Jk be such that  w~,¢ Vpj r = s +  1, s + 2  . . . .  , k, then 
there exists a row vector fl with non-zero coefficiehts only in positions 1, L+ a, 
L + 2 , . . .  ,Jk such that  if 3' = f l W =  (3'~3'2... 3'k) then 3'z¢Ve, i =  1, 2 , . . . ,  k. 
Consider the bilinear form flWA(x_)y = fl(l U')m. We claim that  at least n 
multiplications are needed to compute  it. Consider any nontrivial linear 
combinat ions  of the columns of flWA(x_) = ~A(x_). Substituting C{x_ ~ for the j th 
column of  A~(_x i) we obtain that this linear combina t ion  is 

i = 1  \ j = 0  

~"~n, - 1 ~ i  j C j  , = 0 f o r  i 1 ,  This linear combina t ion  vanishes if and only if 7~/.,j= o , = 
2 . . . . .  k. But Yi ¢ Vp, and therefore ~, ~ = 0 for all i and j. This establishes the 
claim. By Theorem 1 at least n multiplications are needed to compute  yA(_x)y, but 
fl(l U') has at most  k - s + 1 + t - n non-zero coefficients, and therefore k - s + 1 
+ t - n > n or  t > 2n - k + s - 1. This proves the lemma. 

Since s > 1 we have also proved that  every algori thm for comput ing  7" 
requires at least 2n - k multiplications. Since it can be trivially computed  in 2 n -  k 
multiplications, this proves the first half of the theorem. 

To prove the second half of the theorem, consider an algori thm for comput ing  
7" in 2n - k multiplications, and write it as 7" = Urn. Let W be as before, then as a 
consequence of  Lemma 1 we obtain pq) < 1 for j = 1, 2 . . . . .  n i.e., we can 
part i t ion the rows of  W into k + 1 disjoint sets No, N1, N2, • • • N ,  such that  ifj ~No 
w ~  Vv, for i = 1, 2 . . . . .  k, and i f jEN,  (r ~ 0) then ~ ¢  Vv, and w ~  Vv, for i ~ r. 
With no loss of  generality we may  assume that  Nx = {1, 2 . . . . .  ml}, N2 = {ml 
+ 1,m 1 + 2 . . . . .  m I + m2},etc, and t h a t N  o = {~k= x m,+  1,~k= a mi+ 2 , . . . ,  n}. 
(If this is not  the case we can permute the rows of W, to bring it to this form.) As 
before we have WU = (I U') and denote the i, j entry of U'  by  ul, j. 

L E M M A  2: l f  il aNjl and i2eNj2jl ~ J2 (]1, J2 ~: 0) then for all j, u!,l, J" .u'.,2,: 
~ 0 .  

I UI Proof." Assume ui, ' j ~ 0 and i2, J ~ 0. Assume with no loss of  generality, that  

J l  = 1, i t = 1, J2 = 2, i 2 = m 1 + l ,  and j = 1. Let M be the matrix 

(20) M = 

/ 1/u'l, ~ 0 0 . . .  0 

u'2.1 1 0 0 
Utl, 1 

u'a, 1 0 1 0 
Url, 1 

u'., 1 0 0 1 \ u' ,l 
i 

Then MWA(x_)y_ = VV'A(X)y = M ( I  U')_m = (IIG)_m' where m' is _m with the first 
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and (n+  1) ~t entries exchanged, and (I i / 7 )=  M(I iU ' )wi th  the first and (n +1)  ~ 
columns exchanged. The (m 1 + 1) ~ rove of W is 

W1 U r n + l ,  1 r 2 U m + l .  1 k U r a + l , 1  
W m +  1 r W I W r a , +  1 W . . .  ! W . 

/'/1, 1 l ,  1 U l ,1  

By construct ion Wm,+ll ~ Vp, and w~ ¢ Vp, and therefore 

W 1 him + 1, 1 

1 , 1  

similarly 

t 

w 2 ~ , . . , . ,  w~¢  v~2 ' 
ml + 1 I,/" 

1 , 1  

and by Lemma 1 the algori thm uses at least 2 n - k + !  multiplications. 
Contradic t ion ! 

Lemma 2 states that  the n -  k columns of U' can be part i t ioned into k + 1 
disjoint sets Mo, M 1 . . . . .  M k such tha t  if i eNj,  (Jl # 0) and j eMj2 (J2 ~ J l )  then 
u[ ~ = 0. Schematically then U' can be written as 

(21) 

N1 

N 2  

U '  

N k  

No 

[Mi  

u; 

0 

0 

M 2 . . . . .  : M k 

0 . . . . .  0 

I 

U~ . . . . . .  0 

t 0 . . . . .  U k 

M0~ 

L E M M A  3: (1) For each ~ the cardinality of M; is n ; -  1 (and thereJore M G 
- 0 ) .  

(2) I f  ieN,  and j e M ,  (r # O) then u' ~ , ~ 0 .  
(3) I f  iEN, then w{ = O for  j # r. 

Proof" Let i be in N,(r  # 0) then since WA(x)y = (l.iU')m we obtain that  
1 n M r  the bilinear form (w], w E . . . . .  wk)A(x)y ---- (0, 0,- 0, 1, 0 , . . .  0, 0 . .  0, u,, 

0 . . . . .  0) m = u~m. Since w~. ¢ Vp, we obtain from Theorem 1 as in the proof  of 
Theorem 4, that at least n, multiplications are needed to compute  it, and that 
therefore uj has at least n, non-zero entries. But that  means that the card ina l i tyof  

k M, is at least n, - 1. Since U' has n - k = ~,~ = 1 (ns -- 1) columns the cardinali ty of 
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M~ is exactly n , -  1, and u j has exactly n, non-zero entries 1TolProve the third part 
• j • 1" 2 k of the lemma, observe that if w i ~ 0 fo(j :/: r then (w ~1 w i I...I w i)A(_x) has at least 

~-1 1 ~ - 1  n, + 1 linearly independent columns, namely the n~ columns ~ = 1 n~ + ,/_.,, = 1 n~ 
+ 2 . . . . .  ~' ,  = 1 n~ (which are linearly independent since w~. ¢ Vv,) and without loss 
of generality, the column ~ -  ~ n~ + 1 which is not zero since w~ ~ 0 and cannot 
depend on the other n, columns since it has the indeterminates {#} while the 
other n~ columns are linear combinations of the indeterminates {x'}. But u~ has 
exactly n, non-zero entries, contradicting Theorem 1. 

LEMMA 4: Let  i~_N o and jEM, ,  and assume u [ j  # 0, then: 
(1) I f  s c M ,  then u~,~ = O. 
(2) I f  a # r then w~ = O. 

Proof." Assume with no loss of generality t ha t j  = 1 EM 1. Let M be as in the 
proof of Lemma 2 (that is, M as in (20)). Note that by Lemma 3, u' 1.1 # 0. Let ITV 
= M W  and let M(I U')m_ = (I O)m_' as in the proof of Lemma 2. Let NTo, 

371 . . . . .  ~r k be the partitioning of the rows of W, then iEb71, since 

u;,, w~sV~,. 
1 , 1  

But by Lemma 2, ifs CM, then ai, s = u[ s, and applying Lemma 2 again, we obtain 
0 = ai. s. This proves the first part of the lemma. By Lemma 3 (third part) ~ = w~, 
and again applying Lemma 3 we obtain ~ = 0. This proves the lemma. 

Lemma 4 states that the rows of W can be partitioned into k disjoint sets H1, 
1-12,. • •, Hk, where ial-l, if and only if w~ # 0. Since W is non-singular, the 
cardinality of 17, is n,, i.e., 

(22)  

n , / w ,  I o , , . . . . .  \ 

) 
II ' ' ' °  

n ~ \ -  ~ - i - o  . . . . .  ~ -  

and similarly 

(23) U' = 

M1 M2 . . . M k 
,L 

I'I2I'I/-0- gl I!t 0 . .. 0 
I US - . .~  0 

/ - -  ~ - -  I . . . . .  q - -  I 
/ ~ L ' .  I / 
/ i i ". I ! 
\ ~ , . ,  / 

n "  o :  - 

I ! 
and therefore the columns of (I I U ) can be permuted by a permutation P such that 
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/ <  0 ... 0\ 

\ o  o " 

But WA(x)y = ((I I U')P)P- ira_ and therefore A(x_)y = ( (W-  ~(I I U')P)P- lm_, that 
is, the columns of the matrix U could be permuted such that I 

(25) I 
U 0 

0 U2 

U ' ~  

0 0 

0) 
ud 

and therefore the algorithm is disjoint, and we have proved the second half of the 
theorem. 

COROLLARY 1: Let k be the number of irreducible factors of a polynomial P 
(not countino multiplicity) then the minimum number of multiplications needed to 
compute 7" v is 2 "deo(P) - k. Moreover, if P has no repeated roots and it is split by G 
then the minimal algorithms is unique. 

Proof." Let P = I-Ik= 1 P~', by the Chinese Remainder Theorem multiplication 
modulo P is the same as multiplication modulo the PI %- The second part of the 
corollary follows from the observation that ifP is linear the minimal algorithm for 
computing ~ is unique• 

COROLLARY 2: Let G = ~, the reals• The minimal number of multiplications 
needed to compute the system (4) of bilinear forms is 6. 

Proof" Define 41 = xl +x4, 42 = x2 -x3 ,  43 = xl -x4 ,  44 = x2 +x3, t/1 = Yl 
+Y4, 72 = Y2-Y3, 73 = Yl -Y4, 74 = Y2 +Ya, then we obtain 

(26) 

~ ' 2 - ~ 3 / =  ~2 ~1 0 72 

~ , - ~ 4  1 0 43 -~4 ~3 

~2 +~ '3 /  0 44 43 74 • 

System (19 is clearly equivalent to (4), and (19) is 7"p@ 7"p where P = z2+ 1. 
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