MATHEMATICAL SYSTEMS THEORY 10, 169-180 (1977)
© 1977 by Springer-Verlag New York Inc.

Some Bilinear Forms Whose Multiplicative Complexity Depends on
the Field of Constants
by

S. WINOGRAD

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

ABSTRACT

In this paper we consider the system of bilinear forms which are defined by a product of two
polynomials modulo a third P. We show that the number of multiplications depend on how
the field of constants used in the algorithm splits P. If P = [f_, P} then 2 -deg(P)—k
multiplications are needed. (We assume that P, is irreducible.)

1. Introduction

The framework for many of the results on the number of multiplications
necessary to compute algebraic functions is as follows: We start with a field G,
called the field of constants, and then consider the functions to be computed as
elements of F = G(xy, X,, . . ., X,}—the extension of G by the indeterminates
Xgy ..., X%, The lower bounds which are then derived on the number of
multiplications needed to compute the functions are valid even if multiplications
by a fixed element g e G is not counted as a multiplication. (See, for example, [1]
and [2].)

This assumption, that a multiplication by a g G is not counted, is valid if g is
an integer, for then this multiplication may be replaced by several additions. In
many applications the assumption may still be valid if g is a rational number, but

if G = Q(\/E), why assume that multiplication by\/i is not counted?

Many of the results in the literature are insensitive to the exact nature of G.
The results of [ 1] and [2], for example, are of this nature, but as we will see in the
next section the minimum number of multiplications may depend on the choice of
G. We will give an example which requires 3 multiplications if G = Q, the
rationals, but only 2 if G =€, the complex number. We will then use the
algorithm for G = € to construct an efficient algorithm to solve a related problem
for the case G = Q.

In the following section we will analyze the dependence of the number of
multiplications on the field G for a certain class of systems of bilinear forms.
Fiduccia and Zalcstein [3] obtained the result of Theorem 3 for the case | = 1.
They also obtained the result of the first half of Corollary 1 when the field G splits
P and P has no repeated roots.
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II. Examples
Consider the following system of bilinear forms:
(1) Y1 = X1Y1—X2),
Yy =Xy +X1);

This system is the real and imaginary part of the product of two complex
numbers. It can be computed using 3 multiplications, for example:

2 ™= X1 (y1+2) my = (X1 +X,)y, my = (—X; +%3)y,
Yy =my—m, Yo =my+ms.
Itis known [4] that 3 multiplications is minimal if we take the field of constants to

be Q. However, if we take G = Q(i) then we have the following algorithm, which
uses only 2 multiplications:

X, +ix . X, —ix .
= 12 2 (y1+iy,) P, = ! 2 1 —iy,)

P, 3

(3)
Y =P, +P, Y, = —iP +iP,.

The next example will illustrate how the second algorithm can be used to
derive an efficient algorithm when G = Q.
Consider the system of bilinear forms

A X1 —X3 — X3 X4 Y1
@) Vo) _ | %2 X1 TXg TX3 Y2
¥s X3 —Xq X1 —X3 Y3
Ya X4 X3 Xz Xy Ya

This system is easily recognizable as the direct product of the complex algebra
with itself, that is, if we denote:
X; = (x40xy), X, =(x3+ixy), Yy=(y1+iys), Yo =(ya+iys)

then:

Y1 =RelX Y, —X, 1))

V, =ImX,Y, —X,Y,)

3 =ReX,Y, +X,Y,)

Vi =ImX,Y, +X,Y,)

()

It may be seen that 9 = 32 multiplications are necessary to compute (4) when G
= (, however, using algorithm (3) we can obtain an algorithm for computing (4)
using only 6 multiplications. Using algorithm (3) we define
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Py =KX (y, iy S ITRITITRD () i, 0
O py D2 iy 2 IR i)

XY, -X,Y,=P, +P,

X,Y, +X,Y, = —iP, +iP,,
and therefore:
¥, = Re(P;)+Re(P,)
Y, = Im(P,) +1Im(P;)
Y3 = Im(P,)—Im(P,)
Yo = —Re(Py)+Re(P,).

(7)

Using algorithm (2) twice we can compute Re(P, ), Im(P, ), Re(P,), Im(P,)in 6
multiplications, that is:

Xy —X Xy — X4 X+
my = 12 4()’1*y4+}’2+Y3) m2=_1__§2_2__la_(y2+y3)
—X{+X4+X,+X Xi+Xx
my =2 -y my == 5 01+ yaty2—y3)
®) Xy +Xg+Xy— X3 —X; —X4+X, — X3
ms = 5 (y2—ys) mg = 5 y1+va)
Re(P,) = m;—m, Im(P,) = m, +m,
Re(P,) = my—mg Im(P,) = my+ms.
Substituting (8) into (7) we obtain:
©) Y, =my—my+my—ms Yo =m +my+my+mg
Y3 =mytmy—m,—mg o= —my+my+my—ms

In the next section we will see that 6 multiplications is minimal for the system (4).

It should be clear that the construction used above is quite general. Using this
construction one can show, for example, that if there is an algorithm for
computing two n, x n, matrices in k multiplications using any field G < . then it
is possible to multiply two n x n in An'*®=* operations.

111. Results

In this paper we will write a system of bilinear forms as A4(x)y where A(x) is a
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t x m matrix whose entries are linear forms (over G) of the indeterminates {x1,
Xgs -« » X,}, and y is the (column) vector (yy, y,, - - - , ¥)'- We will need the
followmg two results from [2]:

THEOREM 1: Let A(x)y be a system of bilinear forms. If A(x) has at least s
columns such that no non-trivial linear combination of them (with coefficients in G)
yields the column Q then any algorithm for computing A(x)y requires at least s
multiplications. )

THEOREM 2: Let A(x)y be a system of bilinear forms, and let s be the
minimum number of multiplications needed to compute A(x)y, then there exists 2s

linear forms (of x’s and y’s with coefficients inG)L,,L,, ... , L, L{,L;, ..., L]
such that A(x)y = Um where U is a matrix with entries in G, m is the (column)
vector (my, my, ..., m)T andm;=L;-Lii=12...,s

Let R(z) =37, xz' and S(z)=3"_, yz be two polynomials with
indeterminates as coefficients, and let T(z) = R(z) -S(z). The a + b + 1 coefficients
of T are a system of bilinear forms, denoted by T. It is known [3] that the
minimum number of coefficients needed to compute T is a+b+1.

One way of computing T using a + b + 1 multiplications starts by choosing a

+b+1 distinct elements of G, ag, a4, . . ., a,,,. Since deg(T) = a+ b we have
a+b
(10) R(z) -8(z) = R(z) ‘S(z) mod [] (z—a,).

i=0

By the Chinese Remainder Theorem R(z) -S(z) mod [ [¢2¢ (z — «;) can be obtained
by computing R(z) -S(z) mod (u—o;) = R(a;) S(ax;) for i =0, 1, ..., a+b, and
then using only multlphcatlons by elements of G we obtain R(z) S(z) mod [Tizé(z
o;). The a+b+1 multiplications are R(x)-S(o;) i=0, 1,...,a+b. This
method is essentially the one described in [6].
A second method starts by choosing a+b distinct elements of G, b1,
B2, - - -5 Ba+p and uses the identity

a+tb a+b

(1 R(z) S(z) = R(2) ‘S(z) mod [] (z—B)+ x5 [] (=5

i=1 i=1

As before R(z)S(z) mod []¢Z? (z—B;) is computed by using the Chinese
Remainder Theorem wusing a+b multiplications, and the (a+b+1)"
multiplication is x, ‘y,.

Of course we could replace the product R(e;)-S(x;) by the product
(g ‘R()) «(h -S(;)) for any g, heG (g,-h # 0). If we agree to call two algorithms
essentially the same if they differ only by this kind of changes then we obtain:

THEOREM 3: Any algorithm for computing T in a+ b+ 1 multiplications is
essentially the same as either the one derived from (10) or the one derived from (11).
Proof: Let mg, m,, . . ., m,,, be the a+ b+ 1 multiplications. Since
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Xo 0 o 0 \ Yo
X, X ce . V1
(12) T= X, 0 =X)
X, Yo
0 X, X V,
0

\ 0 0 X,
we obtain that there exists an (a+ b+ 1) x (a + b + 1) matrix U with entries from G
such that

my
(13) Xy=U< m >
Myip

Since all the rows of X are linearly independent (over G) we obtain that U is non-
singular. Let W= U '. Consequently,

my
(14) (WX);1’=< m, )
mn+b

Let (w), wi, ..., w.,,) denote the i row of W, then from (14) we obtain

a a a .“0

i i i . —
Yowix, Y owhox, .o, Y wj“,xj) ¥y |=my
j=0 j=0 j=0 .

Y

(15)

that is the bilinear form (15) can be computed in only one multiplication, and by
Theorem 1 all of the forms ijo wj-+,,xj k=0,1,..., bare multiples of one of
them. That is the matrix

w) wiow

w) whooLwha
(16)

Wy What o - Warp

has rank 1. It-is easily verified that this can happen under only two situations:
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either 0 = wg =w{=wj =...=w.,,_, and w.,, # 0, or there exists «, such
that wi = (a,Ywé j=0,1, ..., a+b. Since W is non-singular at most one row can
be of the second type, and if two rows are of the first kind their o’s are different.

If Whas no row of the second type, the algorithm is essentially the same as
(10), and otherwise it is essentially the same as (11). This proves the theorem.

In the rest of the paper we will assume a =b =n-—1.

Let P =z "+3%25 az'bea polynom1a1 with coefficients in a field F. Let R
=370 x;z' and § = Z" ! y,z' be two polynomials with indeterminates as
coefﬁ01ents The coefﬁc1ents of the polynomial T(z) = R(z) -S(z) mod P are a
system of bilinear forms, denoted by T, For example, if P = z2 + 1, the system T,
is
(17) XoYo—X1¥1

X1Yo+Xo¥1s

that is, the same as (1).
The results in this section will describe the minimum number of
multiplications needed to compute Tp, and its dependence on G.

THEOREM 4: Let P = P where P is irreducible (over G), and let n = deg(P).
The minimum number of multiplications needed to compute 7; is 2n—1.

Proof. Let C, be the companion matrix of P, and let ¥, = {veG"| 3 polynomial
g # 0, deg(g) < n and vq(C,) = 0}. Since P is irreducible, g(C,) is non-singular
whenever P}g. If ve V, then vg(C,) = O then g = P' -G for some 1 > r>0and g
relatively prime to P. Therefore 0 = vg(C,) = vP"(C,)g(C,), and since §(C,) is non-
singular vP"(C,) = 0 and consequenily vP'~'(C,) = 0. So V, = {vG"[vP'~* (C))
= 0}. We thus deduce that V, is a subspace of G" and dim(¥}) < n.

Let Tp = A(x)y then A(x) is
(18) A(x) = (x i Fcf,;_c i - ic;*l;_c)
where x is the (column) vector (xg, Xy, ..., X,_;)7. (This follows from the

observation that the coefficients of the polynomial z }72¢ t,;z' mod P are C,, -t
where t7 is thewector (g, ¢;,...,t,—,)). Let ¢t be the minimum number of
multiplications needed to compute Tp, then by Theorem 2, A(x)y = Um where U
is an n X t matrix with entries in G and m = (my, m,, . . . m)). Since for all non-
zero (row)vectors) we G" \ wA(x) # Owe obtain that rank (U) = n, and therefore U
has n linearly independent columns. Assume with no loss of generality that the
first n columns of U are linearly independent (otherwise we can permute the
columns of U and the m;’s). There exists, therefore, an n x n non-singular matrix W
such that WU = (I |U’). Since W is non-singular its rows span G" and therefore
there exists a row of W which is not in V,. Assume with no loss of generality that it
is the first row, and denote it by w. Smce WAX)y = (I |U )m, we obtain wA(x)y

=(1,0,..%, O,uf,uj, ..., u;_,)m,ie., the bilinear form'wA(x)y can be computed
usingt—n + 1 multlphcatlons We clalm that no non-trivial linear combmatlon of
the columns of wA(x) is 0. Assume

n—1 n—1 -1
0= ) wCix a;= w( Y aC‘)x then w Z aCi =0,

i=0 i=0

i=0
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but w¢V, and therefore ;=0 i=0, 1,...,n—1. By Theorem 1 at least n
multiplications are needed to compute wA(x)y, thatis, t—n+1>n, and ¢t > 2n
—1 which proves the theorem. (Note that since T can be computed in 2n—1
multiplications so can T,.)

Let P = P! ‘Pz where P,, P, are irreducible and (P,, P,) = 1. By the Chinese
Remainder Theorem the system T, can be computed by computing 7,; and T, ,
and then combining the results using only additions and multiplications by
elements of G.

Definition: Let A(x)y and B(¢)n be two systems of bilinear forms on disjoint
sets of indeterminates. The disjoint sum of A and B, denoted by A + B, is the system

(S we) ()
0  B©®) \n)’

An algorithm for computing A@B is said to be disjoint if its matrix U is
U= U, 0
0o U,

that is, if it can be viewed as computing A(x)y and B({)y separately.

Conjecture: The minimum number of muitiplications needed to compute
A®B is m(A)+ m(B) where m(A) denotes the minimum number of multiplications
needed to compute A(x)y, and similarly for m(B). Moreover, every algorithm
which computes A@B in the minimum number of multiplications is disjoint.

We cannot prove the conjecture in general but the next theorem provesitina
special case.

THEOREM 5: Let P,=P i=1, 2,..., k, where P, is irreducible and
deg(P;) = n;, and let n = Zi’; 1 1. The minimum number of multiplications required
to compute T =T, ®T,,®.. . ®T, is 2n—k. Moreover, every algorithm for
computing this system in 2n— k multiplications is disjoint.

Proof: Let T, be A,(x')y’ and T be A(x)y where

A;(x") 0 y!
(19) Ax) = Ay(x?) y=f »*
0 A x" yk

Let A(x)y = U, . m, (where t denotes the number of multiplications), then since all
the rows of A(x) are linearly independent, the rank of U is n. Therefore there exists
an nxn noln-siﬁlgular matrix W such that WU = (I :U’). Partition W as W
= (W' W?|...|W*) where W' is the first n, columns of W, W? the next n,
columns of'W, letc. Since W is non-singular rank(Wi)=n, i=1, 2,..., k.
Therefore each W' has a row which is not in ¥, . Let w', denote the j* row of wi
and let p(j) denote the cardinality of the set {ijwi¢ V} }.
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LEMMA 1: If for some j, p(j) = s then t > 2n—k+5s—1.

Proof: Assume with no loss of generality that p(1) = s and that w) ¢V}, i =1,
2,...,s.Letjoypjsez - oo, Jibesuchthatw) ¢ Vp r=s+1,5+2,..., k then
there ex1sts a row vector f§ with non-zero coefficients only in posmons L Jjet 1
Js+20 -+ -5 Jx such that if y = BW = (3,7, ... y) then y;¢ Vs, i=1,2,..., k.
Consider the bilinear form fWA(x)y = /3(1 U'Ym. We claim that at least n
multiplications are needed to compute it. Consider any nontrivial linear
combinations of the columns of fWA(x) = yA(x). Substituting C} x' for the j*
column of A,(x’) we obtain that this linear combination is '

k n_,'—l X
Z (Z i,ijn) x'

0

This linear combination vanishes if and only if y; Y3 o, ;Ch, =0for i =1,
2,..., k. But y;¢V,, and therefore o; ; = 0 for all i and J. This establishes the
claim. By Theorem 1 at least n multiplications are needed to compute yA(x)y, but
B U’y has at most k—s+ 1+t —n non-zero coefficients, and therefore k—s+1
+t—n>nort>2n—k+s—1. This proves the lemma.

Since s > 1 we have also proved that every algorithm for computing T
requires at least 2n — k multiplications. Since it can be trivially computed in 2n - k
multiplications, this proves the first half of the theorem.

To prove the second half of the theorem, consider an algorithm for computing
T in 2n— k multiplications, and write it as T = Um. Let W be as before, then as a
consequence of Lemma 1 we obtain p(j) <1 forj=1,2,...,n ie, we can
partition the rows of Winto k+ 1 disjoint sets Ny, N{,N,, . . . N suchthatifjeN,
wieVp fori=1,2,..., k,andifjeN, (r # 0) then wj¢ V;,_and wie V; fori # r.
With no loss of generality we may assume that N, = {1,2,..., m},N, = {m,
+1,m+2,..., m+m}etcandthatNg = 3%, m+1Y¢ m+2,..., n}
(If this is not the case we can permute the rows of W, to bring it to this form.) As
before we have WU = (I U’) and denote the i, j entry of U’ by u; ;.

LEMMA 2:If i, eN; and i,eNj, j; # j; (1,2 # 0) then for all j, w;, ;u;, ;
=0.

Proof: Assume u; i # 0and uj, ; # 0. Assume with no loss of generality, that
jy=1,i,=1,j,=21i,=m;+1,and j = 1. Let M be the matrix

iyu,y, 0 0 ... © \
_“:Zv 1 1 0 0
(20) M= 1.1
R 0
Uy g
\ B 7L S 1
Ui

Then MWA(x)y = WA®y = M(I 1 Uhm = (I iU)r_n’ where m’ is m with the first
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and (n+ 1)* entries exchanged, and (I ;U ) = M(I{U’) with the first and (n +1)*
columns exchanged. The (m, + 1)* row of W is

u i u | | u’

1 m+1,1 ' 2 m+1,1 2 ¥ m+1,1 k

Woy 41— Wilwp vy~ — W11~'-:Wm+1“ ; Wil
Uy ' Uy | Uy

By construction w), ;e V, and wi¢V, and therefore

ul
1 m+1,1 1
wm;—i—l - wlél/}’la

7

1,1

similarly

ul
2 m+1,1
Wo+1 — —,—— Wi¢ Vp,

’

1,1

and by Lemma 1 the algorithm uses at least 2n—k+1 multiplications.
Contradiction!

Lemma 2 states that the n— k columns of U’ can be partitioned into k+1
disjoint sets Mo, M, . . ., M, such thatifieN; (j, # 0)and jeM,, (j, # j,) then
u; ; = 0. Schematically then U’ can be written as

My My M, M,

N U0 0 \

IR
No| 0 UZ’E ..... 0 i

o1 v- |- T
N, . oﬁ’U,cg

[ S A N R

N, \ Uy )

LEMMA 3: (1) Fo& each § the cardinality of M; is n;— 1 (and therefore M,
=V
(2) If ieN, and jeM, (r # 0) then u; ; # 0.
(3) If ieN, then wi =0 forj #r.

Proof: Let i be in N,(r  0) then since WA(x)y = (I \U’)m we obtain that
the bilinear form (w', w? ..., whA(x)y=(0, 0,- 0, 1, 0,...0, 0..0, %,
0,...,0) m=um. Since w;¢V,_ we obtain from Theorem 1 as in the proof of
Theorem 4, that at least n, multiplications are needed to compute it, and that
therefore u; has at least n, non-zero entries. But that means that the cardinality of

M, is at least n,— 1. Since U' has n — k = Y *_; (n,— 1) columns the cardinality of
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M, is exactly n,— 1, and ' has exactly n, non-zero enﬁries1 To, prove the third part
of the lemma, observe that if wi # Oforj # rthen (w}w? . . | wk)A(x)has at least
n,+ 1 linearly independent columns, namely the n, columns Y 12 n,+ 1,371 n,
+2,..., Y 4=1n, (Which are linearly independent since w}¢ V3 ) and without loss
of generality, the column Y21 n,+ 1 which is not zero since w! # 0 and cannot
depend on the other n, columns since it has the indeterminates {x’} while the
other n, columns are linear combinations of the indeterminates {x"}. But u; has
exactly n, non-zero entries, contradicting Theorem 1.

LEMMA 4: Let icN, and jeM,, and assume u;_; # 0, then:

(1) If s¢M, then u; = 0.
(2) Ifa#rthen wi=0.

Proof: Assume with no loss of generality that j = 1<M,. Let M be as in the
proof of Lemma 2 (that is, M as in (20)). Note that by Lemma 3,4} ; # 0. Let W
=MW and let M{(I U)m = (I O)m’ as in the proof of Lemma 2. Let N,
Ni, ..., N, be the partitioning of the rows of W, then ieN,, since

ul
ol i, 1 1
=w;———wi¢hp,.
1,1

1
w5

But by Lemma 2,if s¢ M, then #; | = u; , and applying Lemma 2 again, we obtain
0 = #; ,. This proves the first part of the lemma. By Lemma 3 (third part) w} = w},
and again applying Lemma 3 we obtain w} = 0. This proves the lemma.

Lemma 4 states that the rows of W can be partitioned into k disjoint sets IT,,
I,, ..., I, where iell, if and only if w} s 0. Since W is non-singular, the
cardinality of I, is n,, i.e.,

n, / w, { 0 : ..... : 0
—s g A—————5—
Hz 0 : W2 1 ..... \I 0
(22) W= ___;___;7.__7“*’
B
IT, _6_j_6_JT'_‘T‘_i_VT/"_
and similarly
M, M, M,
M, U{} 0| ... |0
——
In,f o { U, ; g 0
(23) U = __j!_‘_t?“_‘}—_"
| [ I
| | L
m, ' 0. 0 ... U/

and therefore the columns of (/ : U’)can be permuted by a permutation P such that
i



Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field of Constants 179

U, 0 0
(24) quyp=f 0 U, 0
0 0 U,

But WA(x)y = (I|U YP)P~'m and therefore Ay = (W~ 1(I!U YP)P ™ 'm, that
is, the columns of the matrix U could be permuted such that

U, 0 . 0
(25) U= .
0 0 ..U,

and therefore the algorithm is disjoint, and we have proved the second half of the
theorem.

COROLLARY 1: Let k be the number of irreducible factors of a polynomial P
(not counting multiplicity) then the minimum number of multiplications needed to
compute 7"1, is 2 -deg(P) — k. Moreover, if P has no repeated roots and it is split by G
then the minimal algorithms is unique.

Proof: Let P = []%_, P}, by the Chinese Remainder Theorem multiplication
modulo P is the same as multiplication modulo the P!?s. The second part of the
corollary follows from the observation that if P is linear the minimal algorithm for
computing T, is unique.

COROLLARY 2: Let G = R, the reals. The minimal number of multiplications
needed to compute the system (4) of bilinear forms is 6.

Proof: Define §; = x;+x4, &3 = X3 — X3, 3 = X1 — X4, {4 = X5+ X3, 111 = ¥,
+Ya 12 = Y2 —Y3 113 = Y1 —Ya, s = Y2+ 3, then we obtain

Vit & —¢ 0 0 M
Va=¥s ) J& & 0 0 2
(26) e I 13
Yoty 0 0 s ¢s N4

System (19 is clearly equivalent to (4), and (19) is T,@® T, where P = z2+1.
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