
MATHEMATICAL SYSTEMS THEORY 10, 33-52 (1976)
© 1976 by Springer-Verlag New York Inc.

O n the Complexity o f F in i t e , Pushdown, and Stack Automata

by

H. B. HUNT, III*

Harvard University
Cambridge, Massachusetts 02138

ABSTRACT

The complexity of predicates on several classes.of formal languages is studied. For finite
automata, pushdown automata, and several classes of stack automata, every nontrivial
predicate on the languages accepted by the 1-way devices requires as much time and space as
the recognition problem for any language accepted by the corresponding 2-way devices.
Moreover there are nontrivial predicates ~ on the languages accepted by the 1-way devices
such that {MI~(L(M)) is true} is the accepted language of some corresponding one or two
head 2-way device. Thus our lower bounds are fairly tight.

1. Introduction. Recently considerable activity has been devoted to studying
the computational complexity of decidable problems in combinatorics, logic, and
automata theory. Cook [1] and Karp [2] among others have studied a variety of
combinatorial problems. Meyer [3] and Fischer and Rabin [-4] have studied
several decidable theories of mathematical logic. Stockmeyer and Meyer [-5],
Hunt and Rosenkrantz [6], and Hunt, Rosenkrantz, and Szymanski [7] have
studied formal language theory emphasizing the regular and context-free
languages. Here we consider the complexity of decidable problems for several
classes of formal languages including the languages accepted by multiple-head
finite automata, pushdown automata, and stack automata.

Our research is motivated by several questions concerning computational
complexity and the theory of algorithms.
1. Can techniques be found to prove uniform nonlinear lower time or space

complexity bounds for nontrivial classes of problems?
2. What is the relationship between time and space complexity of languages in

P?
3. Can sufficient conditions be found for a nontrivial class of problems in P to

require "as much space" as any problem in P?
4. What is the relationship between the classes of languages accepted by

deterministic ~/nd nondeterministic L(n) space-bounded Turing machines?
5. What is the time and space complexity of the various decidable problems of

the natural extensions of the context-free languages intermediate between the
context-free languages and the context-sensitive language-~?

* This research was sponsored in part by an NSF graduate fellowship in computer science at
Cornell University, NSF grant GJ-35570 at Princeton University, and by United States Army
Contract No. DA-31-124-ARO-D-462 at the University of Wisconsin.

34 H.B. HUNT, III

We provide insights into each of these questions. We provide definite answers to
Questions 3 and 5. We provide partial or tentative answers to Questions 1 and 2.

Let f f be a family of languages. A general technique for efficiently reducing
the membership problem for any language in ~ to any nontrivial predicate on
is presented. Informally if some language L in ~ is "hard" to recognize, then all
nontrivial predicates on ~ are "hard" to decide. Conversely if the complexity of
some nontrivial predicate ~ on ~ is known, then all languages in ~ are no
"harder" to recognize than the decision problem for ~. We formalize these ideas
in Sections 3, 4, and 5. We use this technique to relate the work of Savitch [8] and
Hartmanis and Hunt [9] on Question 4 above to that of Jones [10] and
Sudborough [11] on log-reducibility and multi-head finite automata,
respectively. Similarly we use this technique to relate our work to that of Jones
and Laaser [12], Cook [13], and Cook and Sethi [14] on the space complexity of
languages in P. Finally this tecl~nique is also used to show that all nontrivial
predicates on several of the natural classes of languages intermediate between the
context-free and context-sensitive languages, such as the indexed languages,
require nonpolynomial time.

The remainder of this paper is divided into five sections. Section 2 consists of
definitions and preliminaries. Section 3 consists of a detailed study of the
complexity of predicates on the 1-way stack automaton languages. In Section 4
we study the time and space complexity of all nontrivial predicates on the regular
and context-free languages. In Section 5 the results of Sections 3 and 4 are
generalized. We also relate our results to Rice's Theorem for the recursively
enumerable sets. Section 6 is a short conclusion.

2. Definitions. We assume that the reader is familiar with the definitions of
finite automata, pushdown automata, and stack automata, abbreviated by FA,
PDA, and SA, respectively. Formal definitions and a,discussion of PDA and SA
can be found in [15] and [16]. Nested stack automata, abbreviated by nSA, are a
still more powerful class of devices introduced by Aho [15], whose class of
accepted languages equals the class of indexed languages introduced by Aho
[17]. In Sections 3-5 we consider several subclasses of the stack automata
especially the nonerasin# stack automata, abbreviated NESA, the checking
stack automata, abbreviated CSA, and the reading pushdown automata,
abbreviated RPDA. An NESA is a stack automaton that never erases its storage
tape. A CSA is an NESA that, once its stack head enters its stack, can never write
upon its stack thereafter. An RPDA is a stack automaton whose storage tape
head can move upwards, only with a reset move that puts its storage tape head on
top of its stack. Related grammatical concepts include the indexed grammars of
[17] and the .macro grammars of [18] or [19].

Formally the various kinds of automata mentioned above are defined as k-
tuples for different values of k. The coordinates of these k-tuples include a finite
nonempty set of states Q, a finite nonempty input tape alphabet E, and a finite
nonempty storage tape alphabet F. Also included in the formal definition is the
start state qo, the set of accepting states F __ Q, and the next state function 6. We
are interested in the time and space complexity of various decidable problems of
the classes of automata mentioned above. To discuss time and space complexity

On the Complexity of Finite, Pushdown, and Stack Automata 35

meaningfully, we need fixed formal representations of these classes of automata as
strings over some finite alphabet. Our complexity results will assume this
particular formal representation of FA, PDA, and SA.

Our representation of an automaton is a finite sequence of move-rules as
described informally below.
(1) For a 1-way nondeterministic FA M, a move-rule or move is a 3-tuple (q, a, r)

with q, r e Q and a e E u {2}. 2 The interpretation of(q, a, r) is that M, when
in state q and scanning symbol a s E (or any symbol in Z if a = 2), can in
one move change state to r and move its input head one tape square to the
right if a • 2 (or keep its input head stationary if a = 2.)

(2) For a 1-way nondeterministic PDA M, a move-rule or move is a 5-tuple (q, a,
b, r, w) with q, r • Q, a ~ E u {2}, b ~ F and w • F*. The interpretation of (q,
a, b, r, w) is that M, when in state q scanning input tape symbol a :~ 2 (or any
input symbol if a = 2) with b as its top pushdown store symbol, can in one
move change state to r, replace b on the top of its pushdown store by w, and
move its input tape head one tape square to the right if a ~ 2 (or keep its
input tape head stationary if a = 2.)

(3) For a 1-v~ay SAM there are two distinct types of move-rules or moves. I fM is
in the stack reading mode, then a move-rule is a 6-tuple (q, a, b, r, dl, dz) with
q, r • Q, a • E, b • F, dl ~ {S, R}, and d 2 • {L R, S}. The interpretation of(q,
a, b, r, d~, d2) is that M, when in state q scanning input tape symbol a and
scanning stack tape symbol b, can in one m o v e -
(a) change to r;
(b) move its input head one tape square to the right or leave its input tape

head stationary, if d I = R or S, respectively; and
(c) move its stack tape head one tape square to the left, right, or leave its

stack tape head stationary, if d 2 = L, R, or S, respectively. 3

The representation of move-rules of M, when M is in the stack writing mode, is
similar and is left to the reader.

We assume that the input tape alphabet and the pushdown store or stack
alphabet of each automaton equal {0, 1 } and F, respectively. F is some fixed finite
nonempty alphabet ofcardinality > 2. States are denoted by the binary numerals
for the nonnegative integers {0, 1 , . . . ,]QI- 1}. The start state is always denoted
by the numeral 0. The accepting states are denoted in some simple uniform
fashion. Thus each automata M is represented by a string over some finite
alphabet A invariant of M. We define I MI to be the length of this representation of
M. Henceforth M will refer both to the automaton and to its representation.

We use the following abbreviations--
1. cfl for context-free language;
2. c.fg for context-free grammar;
3. csl for context-sensitive language;
4. Tm for Turing raachine;
5. re for recursively enumerable;
6. i.o. for infinitely often;

2 2 denotes the empty word. Thus our nondeterministic FA have epsilon-rules.

3 Move-rules for 2-way FA, PDA, and SA are represented analogously.

36 H.B. HLrNT, III

7. a.e. for almost everywhere, when applied to the nonnegative integers almost
everywhere means except for some finite set of nonnegative integers;

8. FA for finite automaton;
9. NDFA for nondeterministic finite automaton;

10. PDA for pushdown automaton;
11. SA for stack automaton;
12. DSA for deterministic stack automaton;
13. nSA for nested stack automaton;
14. nDSA for nested deterministic stack automaton;
15. NESA for nonerasing stack automaton;
16. NEDSA for nonerasing deterministic stack automaton;
17. CSA for checking stack automaton;
18. RPDA for reading pushdown automaton; and
19. RAM for random access machine.

We also use the following definitions.

Definition 2.1. P is the class of all languages over (0, 1) recognizable by some
deterministic polynomially time-bounded Tm. NP is the class of all lariguages
over {0, 1} recognizable by some nondeterministic polynomially time-bounded
Tm. PSPACE is the class of all languages over {0, 1} recognizable by some
polynomially tape-bounded Tm. •

Definition 2.2. Dtape If(n)] (Ndtape If(n)]) is the class of all languages over
{0, 1 } recognizable by some f(n) tape-bounded deterministic (nondeterministic)

Tm. •
The next three definitions define the different kinds of efficient reducibilities

6onsidered in this paper. In each definition E and A denote finite nonempty
alphabets.

Definition 2.3. Let L _ E* and M g A*. Let 17(E, A) denote the class of all
functions from E* into A* computable by some deterministic polynomially
time-bounded Tm. We say that L is p-reducible to M (written L < time M) if there
exists f e H(E, A) such that for all x E E*, x ~ L if and only if f(x) E)~/. A language
L 0 is said to be NP-hard if for all L ~ NP, L __'(time L°" A language L o is said to be
NP-complete if L o is NP-hard and is t~e accepted language of some
nondeterministic polynomially time-bounded Tm. Analogously L o is said to be
PSPACE-hard if for all LE PSPACE, L < . L o. L 0 is said to be PSPACE- - - ptlme
complete if L o is PSPACE-hard and is the accepted language ot some
polynomially tape-bounded Tm. •

Definition 2.4. A log-space transducer M is a deterministic Tm with a 2-way
read-only input tape, a 1-way output tape, and several 2-way read-write work
tapes such that M, given input x, always halts with some stringy on its output tape
and such that M never uses more than o(log Ixl) tape cells on its work tapes. A
function f f rom E* into A* is said to be log-space computable if there exists a log-
space transducer M such that M, when given input x e Z*, eventually halts with

On the Complexity of Finite, Pushdown, and Stack Automata 37

output f(x). For L ~ 51. and N ~ A* we say that L is log-space reducible to N
(written L < log N) if there exists a log-space computable function f such that for
all x e Z*, x ~ Lif and only if fix) ~ N. If in addition ~x)[< c Ix[log (Ixl) and
some log-space transducer that computes f is o(Ixt log (Ixl)) time-bounded, we
denote this by

L _< N.
log

nlogn(space + time)

A language L o is said to be log-space complete in Ndtape (logn) if Lo eNdtape
(logn) and for all L~ Ndtape(logn), L <_ log Lo. Lo is said to be log-space complete in
P if L o e P and for all L~P, L _logL o. []

Definition 2.5. We say that L ~ Z* is effectively reducible to M ___ A* (written
L '_<0rrM) if there exists a recursive function f: Y~* ~ A* such that for all xe Z*,
x~L if and only if f(x)EM. [~4

Definition 2.6. A predicate ~ is a function from a set A into {True, False}, ~ is
said to be nontrivial if there exists a, b e A such that ~(a) = True and ~(b) = False.

Definition 2.7. A function T(n) is said to be countable if there is some single-
tape Tm M that is T(n) time bounded and marks off a block of length T(n) on its
tape. •

PROPOSITION 2.8.
(1) Dtape(logn)=Ndtape(logn) if and only if there exists a language

L o e Dtape(logn) such that for all L e Ndtape(logn), L < log Lo.
(2) Let k be any nonnegative integer. P ~_ Dtape([logn] k) if and only if there exists a

language L ~ Dtape([logn] k) such that for all L E P, L < log L0. •
A proof of (1) can be found in [10]. A proof of (2) can be found in [12].

Finally, we use L I < ptimeL2 and L 2 _>ptimeL1, L 1 < logL2 and L2 >logL1,
L 1 <e~L 2 and L 2 >e~L1, and

L 1 <lolL2 and L 2 _>logL1,
nlogn(space + t ime) nlogn(space + time)

interchangeably.

3. Stack Languages and an Exponential Time Gap. In this section the
membership problems for several kinds of 2-way stack automata are efficiently
reduced to many predicates on the corresponding 1-way devices, e.g. emptiness or
finiteness. Since the time complexities of the membership problems for the 2-way
devices are known to be exponential, exponential lower time bounds are derived
for the predicates on the 1-way devices. This shows that there is an exponential
complexity gap between the time complexity of many predicates on the cfl's and
the corresponding predicates on the indexed or 1-way stack languages. Moreover,
there are nontrivial predicates ~ on the various classes of 1-way SA languages

4 This is the many-one reducibility in Rogers [20].

38 H.B. HUNT, III

such that {M]~(L(M)) is true) is the accepted language of some two head 2-way
device of the same type. This can be used to show that our lower bounds are fairly
tight. Finally we investigate the time complexity of the recognition problems for
various languages accepted by 1-way nondeterministic SA. Extending results in
Rounds [21], we show that the simplest kind of stack automata, the checking
stack automata, accept NP-complete languages.

The following theorem summarizes some of the known results about 2-way
stack automata.

THEOREM 3.1 ([22], [23], AND [24]). For all integers k >_ 1.

(1) a language L is accepted by a 2-way k-head SA if and only if it is accepted by
some 2 cn~k deterministic time bounded Tm, where c is a constant;

(2) a language L is accepted by a 2-way k-head DSA if and only if it is accepted by
s o m e 2 cn~l°g~ deterministic time bounded Tin, where c is a constant;

(3) a language L is accepted by a 2-way k-head NESA if and only if it is accepted by
s o m e n 2k nondeterministic tape bounded Tin;

(4) a language L is accepted by a 2-way k-head NEDSA if and only if it is accepted
by some nklogn deterministic tape bounded Tin; and

(5) a language L is accepted by a 2-way k-head CSA if and only if it is accepted by
s o m e n k nondeterministic tape bounded Tin. []

Here we consider only one and two head devices for a proof of Theorem 3.1, see
Ibarra [24].

We also use the following two well-known results. The first is from Hennie and
Stearns [25]; the second is from Ibarra [26].

PROPOSITION 3.2 [25]. I f Tl(n) is a real-time countable function, then there
is a set A of strings, which is accepted by some deterministic multi-tape Tm within
time Tl(n) but by no such machine within time T2(n) for any function T2(n) satisfying

lim inf T2(n)l°g(TE(n)) = O. []
~ ® T,(n)

PROPOSITION 3.3 [26]. let m, p, and q be integers with m >_ 0 and p, q >_ 1.
Let Ll(n) = m m+ p/~ and let L2(n) = n m+ p/(~+ 1). 7hen there is a language A accepted
by some nondeterministic Ll(n) tape bounded Tin, that is not accepted by any
nondeterministic L2(n) tape bounded Tin. []

Our first major result is the following.

THEOREM 3.5.
(1) For all nontrivial predicates ~ on the 1-way SA languages, to decide N(L(M)),

where M is a 1-way SA, requires at least 2 cn2/[~°gn]2 time i.o. on any determim~stic
multi-tape Tin, where c is a constant greater than O;

(2) For all nontrivial predicates ~ on the indexed language, to decide ~(L(M)),
where M is a 1-way nSA, requires at least 2 c~2/tz°onl~ time i.o. on any
deterministic multi-tape Tin, where c is a constant greater than O;

(3) For all nontrivial predicates ~ on the 1-way D S A languages, to decide ~(L(M)),
where M is a 1-way DSA, requires at least 2 cn time i.o. on any deterministic
multi-tape Tin, where c is a constant greater than O;

On the Complexity of Finite, Pushdown, and Stack Automata 39

(4) For all nontrivial predicates ~ on the 1-way nDSA languages, to decide
~(L(M)), where M is a 1-way nDSA, requires at least 2 c" time i.o. on any
deterministic multi-tape Tin, where c is a constant 9reater than O;

(5) For all nontrivial predicates ~ on the 1-way NESA lanouages, to decide
~(L(M)), where M is a 1-way NESA, requires tape > n" for all r < 2, i.o. on
any nondeterministic Tin;
For all nontrivial predicates ~ on the 1-way NEDSA languaoes, to decide
~(L(M)), where M is a 1-way NEDSA, requires tape > nr for all r < 1, i.o. on

any deterministic Tin; and
(7) there exists r > 0 such that for all nontrivial predicates ~ on the indexed

languaoes to decide ~(L(G)), where G is an indexed or OI-macro 9rammar,
requires at least 2"" time i.o. on any deterministic Tm. •

Proof (1) Let ~ be any nontriviat predicate on the 1-way SA languages.
Without loss of generality we assume that ~(~b) is false. Since ~ is nontrivial there
exists a 1-way S A M o such that ~(L(Mo)) is true. Let/-o = L(Mo), Let M i be any
arbitrary 2-way SA. For each x, a 1-way SA Mi, x can be constructed such that

L (Mi x) = ~c~b' if x ¢ L(Mi),
' ~Lo, otherwise.

For each input x = x l x 2 "" "x, to Mi, Mi, x is constructed as follows.
(a) All input tape configurations of M i on x are embedded in Mi, x'S finite

state control.
(b) M~,x uses its stack to simulate M/s stack directly.
(c) [M,,x[< k,[x[loglxl, where k, depends only upon M i and M o not on x.
(d) Mi, ~ simulates M i on x. If M i accepts x, then Mi, ~ simulates M o on its

(M~,x's) input. If M~ rejects x or fails to halt on x, then Mi, ~ fails to halt for
all of its inputs.

The reader should note that Mi, x's simulation of Mz on input x only involves
epsilon moves. M~,x's state set includes states of the form (p, v), where p denotes a
state of M~ and v is a binary numeral for a nonnegative integer [v] with
[v] < Ix I = n. State (p, v) signifies that M~ is in state p and that M/s input tape
head is scanning the [v] 'h character of x.

We illustrate the construction of Mi.x (actually the representation of M~,,)
from M~, M o, and x. We note that moves or move-rules of 2-way SA can also be
denoted as described in Section 2. Let p = (p, a, b, q, L, R) with p, q binary
numerals and a, b letters in the 2-way SA's input tape and stack tape alphabets,
respectively. The interpretation ofp is that the 2-way SA can in one move, when in
the state denoted by p, scanning a on its input tape and b on its stack tape, change
state to that state denoted by q, move its input tape head one tape square to the
left, and move its stack tape pointer one tape square to the right. Suppose Mi
contains rule p. Then M~,~ simulates the application of # on x by all 6-tuples of the
form

(6)

((p, Vx), c, b, (q, v2) , S, R), where

(i) v 1 and v 2 are binary numerals for the positive integers [vl] and [vz],
respectively, with [vl], [v2] < Ix[= n and [v l] - [v 2] = 1;

40 H.B. Hubrr, III

(ii) the [Va] 'h symbol o f x is a; and
(iii) c is any element of M~'s tape alphabet.

The amount of tape required to write out each such move-rule is o(logn). There are
o(n) such move-rules. Thus IM,, I -< k, nlogn, where k i depends only upon M i and
M o not x. Clearly the move-rules of M~,~ can be constructed determi~isticaUy in
time bounded by a polynomial rq in [x[; and the intermediate storage required to
perform this construction is o(logn).

But ~(L(Mi,x)) is true if and only if x ~ L(M~). This follows since x ¢ L(M~)
implies that L(Mi,~)= ~ a n d ,~(L(Mi, x)) is false by assumption. Similarly if
x ~ L(Mi), then L(MI,~) = L 0 and ~(L(Mi, x)) is true by assumption. Let T(m) be the
time required by some deterministic multi-tape Tm to decide ~ . Then for all
constants c > 0, all languages £,e accepted by 2 ~"2 time-bounded deterministic
multi-tape Tm's are accepted deterministically in time < rtj(n) + 711Mj,~I) a.e. for
somej (where Mj is a 2-way SA and~f' = L(M~)) by some deterministic multi-tape
Tm.

From 3.2 there exists a 2-way SA language/ , and constants s, t > 0 with
s - t > 0 such that L is the accepted language of some 2 " ' deterministic time-
bounded Tm, and L is not the accepted language of any 2 '"~ deterministic time-
bounded Tm. Let Mj be a 2-way SA for which L equals L(Mj). Then rc,(n)
+ T(IMj,~I) > 2 '"~ i.o. Let c = t/2k~. Then letting m = IMjA, r(m) > 2~'/2k~)"~/['°~?
i.o.

We prove this by contradiction. Suppose that T(m) <_ 2 (tl2k)rn~l[l°g'n]2 a . e . For
almost all inputs x to M~, nlogn < m < k~ "n -logn. Thus

k~n2[l°gn] 2 _ 2 ''2
7tj(n) + T(m) < r~j(n) + 2 ('/2kz~) '[log(nlogn)] 2 a.e. < a.e.

(2) The proof of (2) follows immediately from that of (1), since every 2-way SA
is also a 2-way nSA.

(3) The proof of (3) is almost identical to that of (1), except that in this case
M~. x is a 1-way DSA. Let T(n) be the time'required for some deterministic multi-
tape Tm to decide ~ . Then for all constants c > 0, all languages accepted by
some 2 cnl°gn time-bounded deterministic multi-tape Tm are accepted
deterministically in time < n,(n)+ T(IMd) a.e.,where n = Ix[, by some multi-tape
Tm.

From 3.2 there is a 2-way DSA language L and constants s, t > 0 with
s - t > 0 such that L is the accepted language of some 2 'n~°gn deterministic time-
bounded Tm, and / , is not the accepted language of any 2 'n~°g~ deterministic time-
bounded Tm. Let Mj be a 2-way DSA for which L equals L(M~). Then n~(n)
+ T(IMi,xl) > 2 ''°g" i.o. Thus letting m = IM~,xl, T(m)> 2('/Zki 'm i.o. The remainder
of the proof is analogous to that of.(1) and is left to the reader.

(4) The proof of (4) follows immediately from that of (3), since every 2-way
DSA is also a 2-way nDSA.

(5) Mi, x is a 1-way NESA. Let L(n) be the space required for some
nondeterministic multi-tape Tm to recognize the set {MIM is a 1-way NESA and
~(L(M)) is true}. Then all languages accepted by some n 2 tape bounded
nondeterministic Tm are accepted in nondeterministic space

On the Complexity of Finite, Pushdown, and Stack Automata 41

_< o(L([Mi, x[) + kinlogn) a.e. Suppose some nondeterministic Tm that recognizes
the set {M[M is a 1-way NESA and ~(L(M)) is true} uses space L(n) < n 2-~ a.e. for
some e > 0. Since IMi.x[_< kinlogn, this implies that there exists an e' > 0 such
that all languages recognized by n 2 tape bounded nondeterministic Tm are also
recognized within space-n 2-~'. This contradicts 3.3.

(6) M~.~ is a 1-way NEDSA. We note that for fixed 2-way NEDSA M~, the
construction of M~,~ from M~ and x can be effected by a logn tape bounded
deterministic transducer. The proof of (6) now follows by an argument similar to
that of (5) and is left to the reader.

(7) In ['15] Aho gives an algorithm for converting an arbitrary 1-way nSA M
into an equivalent indexed grammar G. This algorithm can be seen to be
executable deterministieally in time bounded by a polynomial in [m[. In [18]
Fischer gives an algorithm for converting an arbitrary indexed grammar G into
an equivarent OI-macro grammar G'. Again this algorithm can be seen to be
executable deterministieally in time bounded by a polynomial in IG[.

We note that the constructions, used in the proof of this theorem and that of
Proposition 3.9 below, are closely related to the construction used in [16] to show
that all 2-way SA languages are recursive. []

We present several immediate consequences of 3.5. Let M and N denote
arbitrary 1-way stack automata, indexed grammars, or OI-macro grammars. I f~
isany nontrivial predicate on the 1-way stack or indexed languages, respectively,
such that L(M) = L(N) implies ~(M) = ~(N), then :~ satisfies the conditions of
3.5. Thus such predicates as "L(M) is empty ;" "L(M) is finite ;" "L(M) is bounded ;"
"x e L(M)," where x is any fixed string in {0, 1}*, all require exponential time for
the 1-way stack automata, indexed grammars, and OI-macro grammars.
Moreover this implies--

COROLLARY 3.6. {(x, M)lx ~ L(M) and M is a 1-way DSA, 1-way SA,
indexed grammar, or Ol-macro grammar} ¢ P, i.e. there is no deterministic
polynomial algorithm uniform in both M and x for the membership problem for the 1-
way DSA, 1-way SA, indexed grammars, or OI-macro grammars. •

Next we present upper time or space bounds for several of the easiest
predicates on the various types of 1-way devices mentioned in 3.5. In each case the
simplest nontrivial predicates are recognizable by 2-way 2-head devices of the
same type. This together with 3.1 shows that the lower bounds of 3.5 are
reasonably tight. The emptiness problems for the 1-way devices are shown to be
recognizable by 2-way 2-head nondeterministic devices of the same type. Finally
the emptiness problems for the 1-way deterministic devices are shown to be as
hard as the emptiness problems for the 1-way nondeterministic devices of the
same type.

PROPOSITION 3.7. For all x ~ {0, 1}*,
(1) the set {M]M is a 1-way SA and x ~ L(M)} is recognizable by some 2 c""

deterministic time bounded multi-tape Tin, where c is a constant;
(2) the set {MIM is a 1-way DSA and x e L(M)} is recognizable by some 2 c"21°g"

deterministic time bounded multi-tape Tm, where c is a constant;

42 H.B. HUNT, III

(3) the set {MIM is a 1-way NESA and x e L(M)} is recognizable by some n"
nondeterministic tape bounded Tin; and

(4) the set { MIM is a 1-way N E DS A and x ~ L(M)} is recognizable by some n21ogn
deterministic tape bounded Tin. •

Proof. This proposition follows from Theorem 3.I once the sets in statements
(1) through (4) are shown to be recognizable by 2-way 2-head stack devices of the
same type. Thus, for example, to prove (1) it suffices to show that the set
L = (MIM is a 1-way SA and x ~ L(M)} is recognizable by a 2-way 2-head SA.
We only sketch the proof of (1) for x = 2, the empty string.

We describe the operation of a 2-way 2-head SA A that accepts L. A, given
input y, first verifies that y is a 1-way SA, that is y consists of a finite set of 1-way SA
move-rules with designated start and acceptin8 states. If not A halts without
accepting. If so A directly simulates the operation of y on 2, using its stack to
simulate y's stack. The only point that requires verification is that A, when
simulatingy on 2, can apply any allowable next move-rule ofy and can only apply
allowable next move-rules of y.

A accomplishes this as follows. Suppose that, after k steps of some
computation of y on 2, y is in state q with stack contents w. A's stack contents is
also w; and A's first input tape head points to some move-rule # of y such that
~t = (q -, -). Next A guesses some move-rule v = (q', b, a, q", s, -) ofy as an
allowable k + 1 th m o v e of some computation of y on 2. Using both of its input tape
heads A verifies that q' = q and that a is the top symbol of its (A's) stack. If not A
halts without accepting y, if so A moves its first input tape head to point to some
move-rule #' = (r -) of y for which r = q". A uses both of its input tape
heads to verify that r = q". Finally A updates its stack according to v. []

Thus the lower bounds of Theorem 3.5 are fairly tight.
A slight modification of the ideas sketched in the proof of Proposition 3.7

shows the following.

PROPOSITION 3.8. (1) L = {M[M is a 1-way SA and L(M) ~ ~} is the
accepted language of a 2-way 2-head SA; and

(2) L = {MIM is a 1-way NESA and L(M) ~ ~} is the accepted language of a

2-way 2-head NESA. •
Proof. (1) The automaton A that accepts L behaves as follows. A, given input y,

first verifies that y is a 1-way SA. If not A halts without accepting. If so A guesses a
string x one character at a time such that x ~ L(M). A verifies that x ~ L(M) as
described in the proof of 3.7. The proof of (2) is similar. [] Thus our lower bounds
are fairly tight for some interesting predicates on the 1-way devices as well.

Next we note that the lower bounds for the complexity of the emptiness
problem for the 1-way nondeterministic stack devices also hold for the emptiness
problem for the 1-way deterministic stack devices of the same type.

PROPOSITION 3.9.
(1) The emptiness problem for l-way DSA requires at least EC"~/D°gnJ~time i'°. °n any

deterministic multi-tape Tin, where c is a constant greater that 0;
(2) The emptiness problem for 1-way nDSA requires at least 2 cn2/[l°gn]2 time i.o. on

any deterniinistic multi-tape Tm, where c is a constant greater than O; and

On the Complexity of Finite, Pushdown and Stack Automata 43

(3) The emptiness problem for 1-way NEDSA requires tape > n" for all r < 2, i.o.
on any nondeterministic Tin. •

Proof. We sketch the proof of (1).
Let L be any fixed 2-way SA language. We efficiently reduce the membership

problem for L to the emptiness problem for 1-way DSA.
Let M be some 2-way .SA that accepts L. Without loss of generality we assume

that for each state, tape symbol, and stack symbol triple (p, s, t), M has at most two
distinct applicable move-rules, i.e. M when in state p, scanning tape symbol s and
stack symbol t can make at most two distinct moves. For every arbitrary 2-way
SA, an equivalent 2-way SA with this property can be constructed effectively by
adding more states. For each input x = x l . . . x n to M, a 1-way DSA M x is
constructed as described b e l o w -
(a) All input tape configurations of M on x are embedded in Mx's finite state

control.
(b) M~ uses its stack directly to simulate Mi's stack.
(c) IMxl __ k'nlogn, where k depends only upon M not on x.
(d) M~ simulates M on the fixed string x. M x uses its input to determine which

sequence of moves to apply to x.
The reader should note that unlike Mi. ~ in the proof of (1) of Theorem 3.5, M~ has
no epsilon-rules. We illustrate the moves of Mx with an example. Suppose m 1 =
(p, a, b, q, L, R) and m 2 = (p, a, b, q', R, S) are the two distinct moves of M for the
state, input tape symbol, stack symbol triple (p, a, b). Suppose the i 'h character ofx
equals a, then m~ = ((p, Vx) , 0, b, (q, v2) , R, R) and m 2 = ((p, vl), 1, b, (q', v3), R, S)
are moves of M~. Here vl, v2, and v 3 are the binary numerals for the nonnegative
integers i, i - 1, and i+ 1, respectively. The input symbol 0 causes M~ to execute
m~' and thus to simulate rule m~. Similarly the input symbol 1 causes M x to
execute m~ and thus to simulate rule m 2. Since for each state, input tape symbol,
stack symbol triple, there are at most two distinct applicable moves, 0 and 1
suffice to determine M~'s moves.

Thus an input stringy = y~. - 'Yr~ to M x causes M~ to simulate M on x using
the rules determined byyx,. -., y,,. If this sequence of rules is not applicable (Mx
ends in a trap state) or does not correspond to an accepting computation of M on
x, M~ halts without accepting. If the sequences of moves of M on x does result in
M's accepting x, then M~ halts and accepts y. Thus L(M,) ~ ~ if and only if
x ~ L(M). Since the construction of M~ from x requires time < K- nlogn, where K

depends only upon M not on x, K. nlogn + T(IMx[) _> time required to determine

if x ~ L, a.e. Here T is the time required by some multi-tape deterministic Tm to
determine if L(M,) = ~. The lower bound of (1) now follows from an argument
exactly analogous to that of the proof of (1) of 3.5.1N

Finally, we consider the time complexity of the recognition problem for fixed
1-way SA languages. Rounds [21] has shown t h a t -

(i) there exist NP-complete languages that are recognizable by 1-way SA
and

(ii) all indexed languages, hence all 1-way SA languages, belong to NP.

We show that (i) holds even for the most restricted kind of stack automata studied
in the literature.

44 H.B. HUNT, III

P R O P O S I T I O N 3.10. There exists an NP-complete language L that is
recognizable by a 1-way CSA that is also an RPDA. •

Proof. L is the set of nontautological D3-Boolean forms with all variable
subscripts in unary. From [1] L is NP-colnplete. One 1-way CSA M that accepts L
behaves as follows: Given a string x on its input tape,
(1) M verifies that x is a D3-Boolean formfwith all variable subscripts in unary.

M does this in its finite control.
(2) M guesses a stringy = Yn" " "Yl for whichf(vl," • ", Yn) is false and writes y on

its stack tape.
(3) M verifies that f(v) is false. To do this it uses the unary subscripts of f as

.counters.
Since M need only read its stack tape in one direction, M is also an RPDA. []

Finally, we observe that the results of this section show that there is a provably
exponential gap between the time complexity of many predicates on the
deterministic cfl's and on the 1-way DSA languages. These results also show that
there is a provably exponential gap between the time complexity of many
predicates on the cfl's and on the 1-way SA languages, and on the cfg's and the
indexed grammars. These results also suggest that such an exponential gap exists
between the time complexity of the recognition problems for the cfl's and the
index languages as well.

4. Finite and Pushdown Automata. Exact analogues of the results in Section 3
hold for the multi-head finite and pushdown automata as well.

T H E O R E M 4.1.
(1) Let ~ be any nontrivial predicate on the regular sets over {0, 1} such that ~ (~) is

false. Then for all L~ Ndtape (logn), L <_ ,og {M]M is an N D F A with epsilon
moves and ~(L(M)) is true}.

(2) Let ~ be any nontrivial predicate on the deterministic efl" s over {0, 1} such that
~(Zi) is false. Then for all L~ P, L <-log {M]M is a deterministic PDA and
~(L(M)) is true}.

(3) Let ~ be any nontrivial predicate on the cfl' s over {0, 1} such that ~ (~) is false.
Then for all L~ P, L <-log {MIM is a PDA [or cfg] and ~(L(M)) is true}.

(4) L e t ~ be any nontrivial predicate on the cfl' s over {0, 1} such that ~ (~) is false.
Then for all 2-way PDA languages L,

L <- {MIM is a PDA and ~(L(M)) i s true}. •
log

nlogn(spaee + time)

Proof. (1) It is well-known (see ['9]) that the classes of languages accepted by 2-
way multi-head deterministic and 2-way multi-head nondeterministic FA equal
Dtape (logn) and Ndtape(logn), respectively. Noting this the proof is almost
identical to that of (1) of Theorem 3.5 and can be found in [39].

(2) Cook [23] has shown that the class of languages accepted by 2-way multi-
head deterministic PDA equals P. The proof now follows that of(l) of 3.5 and (1)
of this theorem and is left to the reader.

(3) Cook 1-23] has also shown that the class of languages accepted by 2-way
multi-head nondeterministic PDA equals P.

On the Complexity of Finite, Pushdown, and Stack Automata 45

The theorem holds, for the cfg's as well as the PDA since there exists a
deterministic logn space-bounded transducer M such that M, when given a PDA
as input, outputs an equivalent cfg G. The standard construction in [161 can be
modified so that it requires only o(log]M I) intermediate space, when executed on
a two-way transducer.

(4) For a fixed one head 2-way PDA M i, M~. :, can be constructed from M i
using o ly o log Ixl)intermediate storage and o lxl log Ixl) time and space. []

Theorem 4.1 provides whole new classes of log-space complete problems for
Ndtape(logn) and P. Thus it extends the results in Jones [101, Jones and Laaser
[121, Cook [13], and Cook and Sethi [14]. Moreover (4) of Theorem 4.1 strongly
suggests that every nontrivial predicate on the cfl's, when applied to the PDA,
requires nonlinear time. Otherwise every 2-way PDA language is recognizable in
o(nlogn) slSace and time on a multi-tape deterministic Tm. The best known
algorithms for recognizing arbitrary 2-way PDA languages require o(n 3) time and
o(n 2) space on random access machines, not to mention Turing machines.

One immediate corollary of Theorem 4,1 follows.

COROLLARY 4.2.
(1) I f there exists a nontrivial predicate ~ on the regular sets over {0, 1} such that

{M~I is an NDFA with epsilon moves and ~(L(M)) is true} EDtape(logn), then
Dtape(logn) = Ndtape(logn).

(2) I f there exists a nontrivial predicate ~ on the deterministic cfl' s over {0, 1 } and
a positive integer k such that {M[M is a deterministic PDA and ~(L(M)) is
true I ~ Dtape([logn]k), then P ~_ Dtape([lognlk).

(3) I f there exists a nontrivial predicate ~ on the cfl's over {0, 1} and a positive
integer k such that {MIM is a PDA [or cfg I and ~(L(M)) is
true} e Dtape([logn]k), then P ~_ Dtape([lognlk). •
Proof From Theorem 4.1 for any such predicate ~ and all LE Ndtape(logn),

either L _< log {MIM is an NDFA with epsilon moves and ~(L(M)) is true} or
L <_ log {M[M is an NDFA with epsilon moves and ~(L(M)) is false}. Since
Dtape(logn) is closed under complementation, (1) follows from (1) of Proposition
2.8. The proofs of (2) and (3) follow from (2) of Proposition 2.8 by a similar
argument. []

Moreover analogues of Propositions 3.7-3.9 hold for the finite and pushdown
automata.

PROPOSITION 4.3. The set L o = {M]M is an N DFA with epsilon moves and
L(M) v ~ ~} is the accepted language of some 2-way2-head nondeterministic FA.
Thus L o is the accepted language of some 2-way multi-head deterministic FA if and
only i f Dtape(logn) = Ndtape(logn). •

Proof Theorem 4.1 implies that for all Le Ndtape(logn), L _< log L0- The proof
that L 0 is the accepted language of some 2-way 2-head NDFA exactly parallels
that of 3.7 and 3.8 and is left to the reader. The proposition now follows from (1) of
Corollary 4.2. []

This provides a simple direct proof of the result in Sudborough [111 that there
exists a 2-way 2-head nondeterministic FA M such that L(M) is the accepted

46 H.B. HUNT, III

language of some 2-way multi-head deterministic FA for any number of heads if
and only if Dtape(logn) --- Ndtape(logn).

PROPOSITION 4.4 [10]. ?he set L o = {M[M is a deterministic FA: and
L(M) v~ .~} is log-space complete in Ndtape(logn). •

Proof. That L 0 e Ndtape(logn) follows immediately from 4.3 since L o is the
accepted language of some 2-way 2-head NDFA. The fact that for all
LeNdtape(logn), L < log L0 follows from an argument analogous to that of 3.9
and is left to the reader. []

Stronger analogues of Propositions 3.7 and 3.8 hold for the PDA.

PROPOSITION 4.5.
(1) L = (MIM is a deterministic PDA and 2 e L(M)} is the accepted language of

some 2-way one-head deterministic PDA. Thus L is log-space complete in P.
(2) /~ = {MIM is a nondeterministic PDA and L(M) ~ ~} is the accepted

language of some 2-wqy one-head nondeterministic PDA. •
Proof. A direct simulation of the constructions in the proofs of 3.8 and 3.9

shows that L and £ are recognizable by a 2-way 2-head deterministic PDA and a
2-way 2-head nondeterministic PDA, respectively. One of these two input tape
heads is used only to verify that each consecutive pair of 1-way PDA moves (#1,
/22) simulated is compatible, i.e. i f# , = (p, a, b, q, wl) and #2 = (P', a', b', q', w2),
then p' --- q. This head can be eliminated by writing the binary numeral q, which
denotes the state of the automaton after executing #1, on the top of the 2-way
device's pushdown store. Before simulating /~2 the 2-way device verifies that
p' equals q by popping its pushdown store. If p ' # q it rewrites q on top
of its pushdown store employing the ability of its input tape head to move
both ways. V1 s

Thus since

L o = {MIM is a PDA and L(M) :# ~} >
log

nlogn(space + time)

all 2-way PDA languages by Theorem 4.1, L o is a hardest time and space 2-way
PDA language analogous to the hardest time and space cfl in [31] and the
hardest time and space csl's in [9].

5. On Rice's Theorem. The results of Sections 3 and 4 suggest a close
relationship to Ric¢~s Theorem for the re sets. As will be shown below, the results
of Sections 3 and 4, Rice's Theorem for the re sets, and several other related results
follow because for classes qf of sufficiently powerful automata, grammars, etc., the
membership problem for any language recognized or generated by elements of
is efficiently reducible to any nontrivial predicate on the languages accepted or
generated by the elemerits of c£. First we state one version of Rice's Theorem for
the re sets.

5A related result appears in [35].

On the Complexity of Finite, Pushdown, and Stack Automata 47

THEOREM 5.1. Let ~ be any, nontrivial predicate on the re sets. Then { MIM is
a Tm and ~(L(M)) is true} is not recursive. •

Definition 5.2. A family of languages P over {0, 1} is a quadruple (Z, C, f F),
where
(1) Z is a finite alphabet;
(2) C _ Z* ,and
(3) f : Z* -* 2/°' 1/* such that

(a) there exists a unique Loe2 ~°:: such that y ¢ C implies f(y) = L o and
(b) F = f (C) u {Lo}.

L o is frequently taken to be ~. C corresponds to those strings over Z satisfying the
syntactic definition of a grammar or automaton.

ff is recursive if the total function g: Y.* x {0, 1}*~ {0, 1} defined by

{10 ifyEL~
g(x, y) = if y ¢ L~

is recursive. F is effective if the partial function g: Z* x {0, 1}* ---, {0, 1} defined by

{10 i f y e L ~
g(x, y) = or undefined if y ¢ L~

is partial recursive. •

Definition 5.3. A family of languages over {0, 1} P = (Z, C,f, F) is effectively,
p-effectively, log-effectively closed under intersection with single strings if for all
y e I2", there exists a Tm Mr, a deterministic polynominally time-bounded Tm
Mr, or a deterministic log-space transducer Mr, respectively, such that Mr, given
input x e {0, 1}*, outputs z e {0, 1}*,whereJ(v) n {x} = flz). Other effective, p-
effective, and log-effective closures are defined analogously. •

THEOREM 5.4.
(1) Let P = (Z, C,f, F) be a recursive or effective family of languages over {0, 1}

such that F is (a) effectively, (b) p-effectively, or (c) log-effectively closed under
intersection with single strings, quotient with single strings on the left (or right)
and concatenation. Let ~ be any nontrivial predicate on F such that ~(;g) is
false. Then for all ye 12", {wlwe {0, 1}* and wELy = f(y)} "-<eyy {x[xe Y~* and
~(Lx) is true}, {wlwe{0 , 1}* and weLy = f(y)} < time {X]Xe Z* and ~(Lx) is

~x[x~ Z* and ~(L~) is true}, true}, or {w[we{0, 1}* and weLr =f(y)} <log ,
respectively.

(2) Let P = (Z, C , f F) be a recursive or effective family of languages over {0, 1}
such that P is (a') effectively, (b') p-effectively, or (c') log-effectively closed under
the homomorphism h: {0, 1} ~ ~ {0, 1}* defined by h.(O) = O0 and h(1) = 01,
concatenation with 10, concatenation, and quotient with single string on the left
(or right).Let ~ be any nontrivial predicate on F such that ~(~) is false. Then for
all ye Z*, {w[we {0, 1}* and weLr = f(v)} <ey: {x[x~ Y~* and ~(Lx) is true},
{w[ws{O, 1}* and w e L r = f (y) } <,..e{XIX~Y~* and ~(Lx) is true}, or
{w[w ~ {0, 1}* and w s L, = f(y)} < lo~ {xlx ~ Z* and ~(L~.)} is true, respectively.

48 H.B. HUNT, III

Proof (1) Since N is nontrivial, there exists L o e F such that ~(Lo) is true. Let
Ly = f (y)eF . For all xe {0, 1}*, let L x = Ly c~ {x}, L;~ = x\L~, and L~ = L~ .L o.

But,

{~g if xcLy I
L~= Lo i fxELy

Thus ~(L~) is true if and only ifx s L r But since F is effectively, p-effectively or log-
effectively closed under intersection with single strings, quotient with single
strings on the left, and concatenation, and these reducibilities are transitive, given
a fixed y, any index for L o and x, an index y' for L~ can be calculated such that

! t t Ly = Lx and the lower bounds of (1) hold.
(2) Similar to that of (1) with L~ = h(x). 10\h(Ly). 10"L o. []
The standard encoding of Tm's satisfies the conditions of (1) and {2) of

Theorem 5.4. Thus 5.1 is a corollary of 5.4. Similarly various classes of Tm's with
time or space clocks satisfy the conditions of Theorem 5.4. Moreover, several
classes of 1-way stack automata also satisfy 5.4. Since there are NP-complete
languages that are recognizable by 1-way nondeterministic CSA, RPDA, NESA,
etc., all nontrivial predicates on these language classes are NP-hard. The stronger
results in Sections 3 and 4 are due to the ability to simulate the membership
problem for 2-way devices with 1-way devices efficiently. We conjecture that 5.4 is
also applicable to many other classes of languages intermediate between the cfl's
and csl's such as the context-flee programmed grammar languages of
Rosenkrantz [-363 and various matrix grammars. Theorem 5.4 also applies to the
scattered context grammars of Greibach and Hopcroft [373, since there are
languages recognizable by linear time bounded non-deterministic Tm's that are
NP-complete [32] and all languages recognizable by linear time bounded
nondeterministic Tm's are generated by scattered context grammars
[37].

One corollary of Theorem 5.4 for the re sets follows,

COROLLARY 5.5. Let~ be any nontrivial predicate on the re sets over {0, 1}
such that ~(~) is true, then {M[M is a Tm and ~(L(M)) is true} is not recursively
enumerable. •

Proof. From the proof of 5.4, {MIM is a Tm and M halts on empty
input} _< e~ {M[M is a Tm and ~(L(M))is false}. Thus L = {M[M is a Tm and M
does not halt on empty input} <_og{M[M is a Tm and ~(L(M)) is true}. But L is
well-known not to be re. []

Again as in Sections 3 and 4 partial converses hold for 5.4. One such converse
is presented below.

(1)
PROPOSITION 5.6.
Let F = (Z, C,f, F) satisfy the conditions of(a) or (a') of Theorem 5.4. I f there
exists some nontrivial predicate ~ on F such that ~ is decidable, i.e., the set
{x[x~ E* and ~(Lx) is true} is recursive, then F c_ recursive sets over {0, 1}.

On the Complexity of Finite, Pushdown, and Stack Automata 49

(2) Let P = (E, C , f F) satisfy the conditions of(b) or (b') of Theorem 5.4. I f there
exists some nontrivial predicate ~ on F such that {x[x~ Y~* and ~(L~)is
true} ~ P, then F ~_ P.

(3) I f F = (~, C,f, F) is effectively closed under intersection with single string and
the set {x]x ~ Y~* and L~ ~ ~} is recursive, then V ~_ recursive sets over {0, 1}.

(4) I f P = (E, C, f F) is p-effectively closed under intersection with single string
and the set {x]x E Y~* and L~ ~ ~} is in P, then F c p. •

Proof (1) and (2) follow immediately from Theorem 5.4.
(3) Let P be effectively closed under intersection with single string. Let y ~ ~*.

For all x E {0, 1.}* x ~ fly) if and only ifflz) = fly) ~ {x} ~- Z~. But z is effectively
calculable from y and x. Thus j(v) and hence F < ~ {x]x ~ Y* and fix) ~ (g}.

(4) If P is p-effectively closed under intersection with single strings, then

F %ime {x]x E ~* and fix) ~ ~}. []
We present one interesting corollary of Proposition 5.6.

COROLLARY 5.7. The lO-macro languages c_ p. •
Proof The emptiness problem for IO-macro grammars is easily seen to be

decidable by some deterministic polynomially time bounded Tm. (See Fischer
[18] or [19].) Moreover the IO-macro grammars are p-effectively closed under
intersection with single string. Thus by (3) of 5.6, the IO-macro languages _~ P.
The proof that the IO-macro grammars are p-effectively closed under intersection
with single string follows from a detailed analysis of the proof of the Factor
Theorem (Theorem 3.2.7, pp, 3-25) in [18] and will not be presented here. The key
ideas are for a fixed IO-macro grammar G and any arbitrary string w ~ E*,

(i) the congruence relation -= w on E* defined by x - w Y if and only if for all
u, v e E*, u . x . v = w if and only i fu .y .v = w, has only o([wl 2) distinct
equivalence classes;

(ii) the partition of E*g w induced by - w is calculable deterministicaily in
time bounded by a polynomial in]w[;

(iii) letting V be the set of variable symbols of G, the cardinality of the set of
all functions from V into 8 w is o([wl21vl), and thus is polynomial in Iw[; and

(iv) the cardinality of the set {(Fif o ;fl, " " ",f~t~))[F is a function symbol of G of
arity p(F) andfo , - . ",fp, F, ~ gw} is O(tWIK~), where K~ is a positive integer
depending only upon G not w. []

5.7 is of interest since the OI-macro grammars are known to generate NP-
complete languages.

Finally to further illustrate the utility of the results in this section, we present a
new o(n3z~(logn)) time bounded algorithm for arbitrary 2-way PDA language
recognition on a logarithmic cost RAM. Here n is a polynomial.

Algorithm 5.8. Let L be a fixed 2-way PDA language. Let M be a fixed 2-way
PDA such that L(M) = L. Let x = x I " "x, be an input to M. To test if x~L(M)
= L the following steps suffice:

(i) Construct a 1-way PDA Mx, as described in the proofs of 3.5 and 4.1, such
that L(Mx) ~ ~ i f and only i f x ~ L.

(ii) Convert M x into an equivalent context-Jree grammar Gx.

50 H.B. HUNT, III

(iii) Test G~ f o r emptiness.

(iv) I f L(G~) # ~ , then x E L. Otherwise x ¢ L. •

The time required to execute step 1 is o(nlogn). Similarly the time required to
convert M~ into an equivalent CFG G x is < Kv, -n31ogn, where K~ is a constant
depending only upon M not x. Finally the time to test G x for emptiness is well-
known to be o(nlogn) on a logarithmic cost R A M . (See [16] for the details of the
construction o.f G x from M x. Note that we may assume that M hence M~ for all x
in E* pushes at most two symbols on its stack at one time.) A slightly more
efficient algorithm appea r s in 1-38]. Our point for presenting Algorithm 5.8 is
that the ideas of this section can yield reasonably efficient algorithms as well as
insights into what causes problems to be hard.

6. Conclusion. We feel that there are two especially significant results in this
paper. First, one simple combinatorial idea underlies most of the recent work in
the relationships of time and space complexity classes. No longer need the results
in [8], [9-], [10], [11], [12], [13], [14], [21], [32], [38], etc. be viewed as being
either isolated or unrelated. Nor need the existence of hardest time or space
languages for Ndtape (logn), P, the 2-way PDA languages, etc. be viewed as
combinatorial accidents that just happen to be true. Second, we have presented
uniform nontrivial lower time and space complexity bounds for several nontrival
classes of problems such as problems about stack or indexed languages. We have
also presented strong evidence for the nonlinearity of every nontrivial predicate
on the cfl's, when applied to the pushdown automata.

7. Acknowledgment. I wish to thank L. H. Landweber for a careful reading of
portions of this paper. I also wish to thank the referees for numerous suggestions
on how to improve the presentation of these results.

REFERENCES

[1] S. A. COOK, The complexity of theorem-proving procedures. Proc. 3rd Annual A CM Syrup. on
Theory of Computing, May, 1971.

[2] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer
Computations, (R. E. Miller and J. W. Thatcher, eds.), Plenum Press, New York, 1972.

[3] A. R. MEYER, Weak monadic second order of successor is not elementary recursive-preliminary
report (unpublished).

[4] M. J. FISCHER and M. O. RABIN, Super-exponential complexity of" Presburger arithmetic,
SIAM-AMS Proc., vol. 7, Amer. Math. Soc., Providence, R.I., 1974.

[5] L. J. STOCKMEYER and A. R. MEYER, World problems requiring exponential time: preliminary
report, Proc. 5th Annual ACM Symp. on Theory of Computing, May, 1973.

[6] H. B. HUNT, III and D. J. ROSENKRANTZ, Computational parallels between the regular and
context-free languages, Proc. 6th Annual ACM Symposium on Theory of Computing, May,
1974.

[7] H. B. HUNT, III, D. J. ROSENKRANTZ, and T. G. SZYMANSKI, On the equivalence, containment,
and covering p-oblems for the regular and context-free languages (submitted for
publication).

[8] W. J. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. System Sci. 4 (1970), 177-192.

[9] J. HARTMANIS and H. B. HUNT, Ill, The lba problem and its importance in the theory of
computing, S1AM-AMS Proc., vol. 7, Amer. Math. Soc. Providence, R.I., 1974.

On the Complexity of Finite, Pushdown, and Stack Automata 51

[10] N. JONES, Preliminary report: reducibility among combinatorial problems in logn space. Proc.
7th Annual Princeton Conference on Information Sciences and Systems, March, 1973.

[11] I. H. SUDBOROI.JGH, On tape-bounded complexity classes and multi-head finite automata, Proc.
14th Annual 1EEE Symp. on Switching and Automata Theory, October, 1973.

[12] N. D. JONES and W. T. LAASER, Complete problems for deterministic polynomial time, Proc. 6th
Annual ACM Symp. on Theory of Computing, May, 1974.

[13] S.A. COOK, An observation on time-storage tradeoff, Proc. 5th Annual A CM Symp. on Theory
of Computing, May, 1973.

[14] S. A. COOK and R. SETm, Storage requirements for deterministic polynomial time recognizable
languages, Proc. 6th Annual ACM Symp. on Theory of Computing, May, 1974.

[15] A. V. Ano, Nested stack automata, J. Assoc. Comput. Mach. 16 (1969), 383--406.
[16] J. E. HOPCROFT and J. D. ULLMAN, Formal Languages and Their Relation to Automata,

Addison-Wesley, Reading, Mass., 1969.
[17] A. V. AHO, Indexed grammars---an extension of context-free grammars, J. Assoc. Comput.

Mach. 15 (1968), 647-671.
[18] M. J. FISCHER, "Grammars with Macro-like Productions," Ph.D. Dissertation, Harvard

University, 1968.
[19] M. J. FISCHER, Grammars with macro-like productions, Proc. 9th Annual IEEE Syrup. on

Switching and Automata Theory, October, 1968.
[20] H. ROGERS, Jr., Theory o f Recursive Functions and Effective Computability, McGraw-Hill, New

York, 1967.
[21] W. C. ROUNDS, Complexity of recognition in intermediate-level languages, Proc. 14th Annual

IEEE Symp. on Switching and Automata Theory, October, 1973.
[22] J. E. HOI'CROFT and J. D. ULLMAN, Nonerasing stack automata, J. Comput. System Sci. 1

(1967), 166-186.
[23] S. A. COO~, Characterizations of pushdown machines in terms of time-bounded computers, J.

Assoc. Comput. Mach. 18 (1971), 4-18.

[24] O. H. IBARRA, Characterizations of some tape and time complexity classes of Turing machines
in terms of multi-head and auxiliary stack automata, J. Comput. System Sci. 5 (1971),
88-117.

[25] F.C. HENNIE and R. E. STEARNS, Two-tape simulation of multi-tape Turing macnines, J. Assoc.

Comput. Mach, 13 (1966), 533-546.
[26] O. H. IBARRA, A note concerning nondeterministic tape complexities. J. Assoc. Comput. Mach.

19 (t972), 608~12.
[27] J. I. SEIFERAS, M. J. FlSCHER, and A. R. MEYFR, Refinements of the nondeterministic time and

space hierarchies, Proc. 14th Annual IEEE Syrup. on Switching and Automata Theory,
October, 1973.

[28] W. C. ROUNDS, Tree-oriented proofs of some theorems on context-free and indexed languages,
Proc. 2nd Annual A C M Syrup. on Theory of Computing, May, 1970.

[29] W. C. ROUNDS, Mappings and grammars on trees, Math. Systems Theory 4 (1970), 257-287.
[30] V. RAJLICH, Absolutely parallel grammars and two-way deterministic finite-state transducers,

Proc. 3rd Annual A C M Symp. on Theory o f Computing, May 1971.

[31] S. A. GREmACH, The hai'dest context-free language, S l A M J. Comput. 2 (1973), 304-310.

[32] H. B. HUNT, III, On the time and tape complexity of languages I, Proc. 5th Annual ACM Symp.
on Theory o f Computing, May, 1973.

[33] H. B. HUNT, III, "On the Time and Tape Complexity of Languages," Ph.D. Dissertation,
Cornell University, 1973.

[34] R. BOOK, On languages accepted in polynomial time, S lAM J. Comput. 1 (1972).

[35] Z. GALIL, Two-way deterministic pushdown automaton languages and some open problems in
the theory of computation, Proc. 15th Annual IEEE Symp. on Switching and Automata
Theory, October, 1974.

[36] D.J. ROSENKRANTZ, Programmed grammars and classes of formal languages, J. Assoc. Comput.
Mach. 16 (1969), 107-131.

[37] S. A. GREIBACH and J. E. HOPCROFT, Scattered context grammars, J. Comput. System Sci. 3
(1969), 233-247.

52 H.B. HUNT, Ill

[38] A. V. AHO, J. E. HOPCROFT, and J. D. ULLMAN, Time and tape complexity of pushdown
automaton languages, InJbrmation and Control 13 0968), 186--206.

[39] H. B. HUNT, Ill, "On the Complexity of Finite, Pushdown, and Stack Automata," MRC
Technical Summary Report No. 1504, Mathematics Research Center, University of
Wisconsin-Madison, 1975.

(Received 28 January 1974, and in revised form 10 February 1975 and 8 August 1975)

