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ON SOME MATHEMATICAL PRINCIPLES IN THE LINEAR 

THEORY OF DAMPED 0SCILATIONS OF CONTINUA !i I) 

M.G. Krein and H. Langer 

~5. A fundamental theorem on a quadratic operator equ- 

ation and some of its consequences. 

5 .i. We shall say that the SpaCe L c ~0 = NI 8 N2 has an 

an~ular operator K (with respect to N), where K is some linear 

bounded operator, mapping ~I in ~2' if L = {x 8 Kx; x £ ~i }. 

It is easy to see that the theorem of Banach on the existence of 

a continuous inverse operator of a linear operator which maps one 

Banach space one-to-one and continuously on the other, admits to 

state that the space L(c~ 0 ~ has an angular operator K if and only 

if the projector P1 (projecting ~0 orthogonally on ~i ) projects L 

one-to-one onto ~i" 

I) Note of the editor: This paper is the second and last part of 
a paper published in Russian in "Proc. Int. Sympos. on Applicati- 
ons of the Theory of Functions in Continuum Mechanics, Tbilisi 
1963, vol II: Fluid and Gas Mechanics, Math. Methods, Nauka, 
Moskow, 1965, pp. 283-322." 
The first part appeared in this Journal V.I, No. 3, (1978). The 
division into two parts is made formally. The editor is grateful 
to R. Troelstra of the Wiskundig Seminarium of the Vrije 
Universiteit at Amsterdam for make the translation. 
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LEMMA 5. I. Let 

G -- 

0 C I 

-C 2 -B 
(C I, C 2 , B £ ~) 

be some operator, actin~ __in ~0' and let L(c~ 0) be some subspace, 

havin+ an ansular operator K. In order that the subspace L will 

be invariant with respect t~o G, it is necessary (and if R(C I) = ~I 

it is also sufficient) that the operator Z = KC I satisfies the 

relation 

(5.1) Z 2 + BZ + C2C I = 0. 

PROOF. If ~ 6 Z, then ~ = x 8 Kx (x 6 ~) and so 

G~ = CIKX ~ (-C2x - BKx). In order that Gx £ L it is necessary 

and sufficient that its second component is obtained from the 

first by applying the operator K, i.e., -C2x - BKx = KCIKX. 

Therefore GL c L if and only if 

(F -) KCIK + BK + C 2 = 0. 

By multiplying this equation from the right by CI, we get (5.1). 

Converseley, if (5.1) holds, then FC I = 0, and if ~ = ~, then 

F= 0. 

5.2. For further progress in the investigation of the 

quadratic equation L(Z) = 0 we need some facts from the geometry 

of spaces ~0 with J-metric and the theory of operators (J-self- 

adjoint) in such spaces. 

The subspace L(c~ 0) is called J-non-negative if 

(J~ ~) ~ 0 for all ~ 6 ~. It is called maximal ~-non-negative 

if it is not a proper part of any other J-non-negative subspace. 

The following proposition holds true (see[3!, 2-3], and 

also [4]). 
O 

5.1 . In order that some subs~ace L c ~0 will be maximal 

J-non-negative it is necessar[ and sufficient that it has an 
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angular operator K with IlK II~ i. 

The space L ~ ~0 is called J-isotropic if (J~, ~) = 0 for 

all ~ E i. 

If ~ c ~0 is a subspace with angular operator K, then the 

J-isotropioness of L means that (Kx, Kx) =(x, x) (x E ~i ), i.e., 

it means that K is an isometric operator. 

If H is a bounded J-self-adjoint operator, acting in ~0' 

then every root space $i' corresponding to a non-real eigen-value~ 

is J-isotropic.~ A more general proposition states that every two 

root spaces $1(H) and $ (H) of the operator H with ~ ~ ~ are 

J-orthogonal, i.e., if ~ ~ ~ (in particular,~ = I ~ ~), then 

(J~, ~) = 0 for ~ C $~(H) and ~ C $ (H). This statement is a 

direct generalitzation of well-known propositions from linear 

algebra [25, 30, I0, 20]. From these propositions it follows 

that if A is some set of non-real eigen-values of the operator H, 

not containing any pair of conjugated complex numbers, then the 

linear span $ of the root spaces £1(H) with i £ A is an isotropic 

space. Clearly the closure ~ will be a J-isotropic subspace too. 
l) 

The following theorem holds true [20, 14] 

O 

5.2 Let H be ~ bounded J-self-adjoint operator havin~ 

the compact component ZmH = (H - H*)/2i, and let ~0(H)= A U ~ be 

a decomposition ~f its non-real spectrum ~0(H) into disjoint 

parts A and ~ which are symmetri q with respect to the real axis. 

Then there exists a maximal ~-no~-negative subspace ~A(~0 ) with 

the following prpperties: 1 ) H L A c L A and 2 ) the non-real 

part of the spectrum of the restriction of the operator H t~o ~A 

coincides with A. 

Every such subspace ~ has another similar property: 

I) This theorem of H. Langer has to be considered as a general- 
ization of a well-known theorem of L.S. Pontryagin [30] (see also 
[I0]) on self-adjoint operators in spaces ~ . A simnler proof of 
Langer's theorem and a simultaneous generalmzatmon has been glven 
by M.G. Krein [14]. This result allows to generalize the fund- 
amental theorem i.I also. We remark that LangerTs theorem in its 
complete version [20 - 21] also allows to prove the validity of 
theorem I.I in the case that B is an unbounded self-adjoint 
operator. 
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o 

3 ) L A contains an~ root s ss~ $1(H) corresponding t_~o I C A: 

With the aid of this theorem the following theorem 5.1, 

which is fundamental for what follows, can be proved without 

great difficulty. 

THEOREM 5.1. Le___~t B : B (E R), C C $ and C>9. Then for 

an~ decomposition of the non-real spectrum a0(L) of the pencil 

L(1) = 121 + IB + C into two disjoint parts A and ] : g0(L)wA, 

situated s~mmetricall~ with respect to the real axis, the equat- 

ion L(Z) = 0 has a root ZA(6o$ =) Possessing the following prop . - 
O ~ m 

erties: I ) ZAZ A S C and 2 ) the non-real part of the s~ectrum 

g(Z A) coincides with A. 

Fo__~r any I C A the o~erator Z A and the ~enci~ L have the 

same Jordan chains. 

If the s lstem of Jordan chains of the en~ L, correspond- 

in~ t__oo all p_£ssible I 6 A~ is complete i_n_n ~ t~e_~n the o root Z i is 

defined in a un~e ~a_~ b_i i th__~e ~ i and 2 . In that case 

(~.~) 121 + B + c : (II - z~)(II - zA), 

where B : - Z A : ZA, C = Z A Z A . 

PROOF. It has been remarked in ~2 already that the operator 

H defined in Z by the equation (2.4) is J-self-adjoint, and 

according to (2.2) its imaginary component ImH is compact~ in 

addition ~(H) = ~(L) and consequently ~@(H) =~ (L). 
o o @ 

On the basis of the propositions 5.1 and 5.2 there corresponds 

to H an invariant subspace LA~with angular operator K A such that 

IIK A II~ l,all root spaces It(H) with I C A are in ~A' and on L A 

the restriction of H has a non-real spectrum coinciding with A. 

According to Lemma 5.1 we shall have for the operator 

Z A : KAC½ : 

2 
Z A + BZ A + C = 0. 

AslIK A 11 ~ i, it follows that IIZAXll ~ II C½x II , i.e. ZAZ A ~ C. 

Let us examine the spectrum of the obtained root ZA(6$ ). 

Let l 0 (~ 0) be some eigen-value of Z A and ~0' Tl' .... 'Yp-I a 

Jordan chain corresponding to 10: 
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(5.3) ZAW 0 = ~070 , ZAY j = X0W j + Yj-I (j = i, ..., p-l). 

According to lemma 3.1 the vectors ~0' ~I' "'''~p-I form a 

Jordan chain of the pencil L for the value 10, and then, accord- 

ing to lemma 2.1, the vectors (2.5) will form a Jordan chain of 

the operator H for the same value 10 . The vectors (2.5) can be 

written in the form 

(1.4) 

C ½ ~. 
] 

z A ~j -- KA C ½ ~j 
(j = 0, l,...,p-l), 

and therefore they belong to the subspace L A. Therefore, if 

10 6 ~(Z A) is non-real, it follows that 10 E A. Conversely, let 

10 £ A and let Y~, ~I' "'''~p-I be some Jordan chain of the 

pencil L, corresponding to the value 10~ Then the sequence (2.5) 

will be a Jordan chain of the operator H, corresponding to the 

value 10 . As 10 £ A, the vectors of the chain (2.5) will belong 

to L A and their components will be connected by means of the 

angular operator KA, i.e., we have 

KAC½ ~0 : ~0~0 ' KAC½~j = 10~j + ~j-i (j = I, 2 ..... p-l). 

So the vectors ~0' YI' "'°'~p-i form a Jordan chain of the op- 

erator ZA, corresponding to the value 10 . This completes the 

proof of the first statement of the theorem. The second state- 

ment will also be proved if we show that every root Z A of the 
O O 

equation L(Z) = 0, which has the mentioned properties I and 2 , 

is obtained by the formula Z A = KAC½ , where K A is an angular 

operator with IIK A II~ I of some invariant subspace of the~operator 

H, on which the non-real spectrum of the restriction of H co- 

incides with A. 

If we analyze the previous arguments we find that they 

contain the following general conclusion. 

5.3 . Let ~ b__~e some invariant subspace of the operato r H 

with angular operator K. Then the spectrum of the non-zero 
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eisen-values of the root Z = KC ½ of the equation L(Z) coincides 

with the analo$ous spectrum of the restriction of H on L. 

And what is more, from any Jordan chain of either H or Z we 

can get by explicit formulae a Jordan chain of the other operator, 

where both chains correspond to one and the same eigen-value. 

Therefore it remains to prove that if Z is some root of the ,0 
equation L(Z) = 0, possessing the property Z0Z 0 $ C, then 

Z 0 = KoC½, where K 0 is an angular operator~ of some subspace L0, 

which is invariant with respect to H, and with IIK 0 II S i. This 
½ ~ - 

property means that llZ0xll $ IIC x II (x E H) and, as ~(C ½) = N, 

from this follows the existence of a unique operator K 0 (6 ~) 

with IIK 0 II<= i such that Z0x = K0 C½x (x E Z), i.e. Z 0 = KoC½. 

By lemma 5.i the subspace L = {x ~ K0x ; x E Z}~ having the 

angular operator K 0, will be invariant with respect to H. 

The third statement of theorem 5.1 holds true because of 

the general theorem 3.2. So the proof of the theorem is complete. 

REMARK 5.1. The third statement of the theorem means that 

in the expression Z A = KC~ the operator K is isometric and this 

in turn means that the subspace L(c ~0) with the angular operator 

K A is a maximal isotropic subspace in Z0" On the basis of what 

is said about isotropic subspaces on page 3 it is possible to 

convince oneself directly of -this fact. From the completeness of 

the system of root spaces $1(ZA) (I E A) it follows that L A is 

the linear closed hull of the root space system ~I(H) (I E A). 

As the moot Z A is compact the following consequenee holds: 

COROLLARY 5.1. If the set of non-real eisen-yalues of the 

Dencil L i_~s infinite, then the ~ 0 is its unique limit point. 

5.3. A theorem of H. Well [8, 7 : 2] yields a more 

precise result than is formulated in Corollary 5.1. According to 

that theorem for any operator Z E $ and any continuous function 

f(r) (0 < r < ~, f(0) = 0), such that the function f(e t) 

(-~ < t < ~) is downwards convex, the following inequality holds: 
n n 

f(l Ij(Z)I) < E f(sj(Z)) (n = i, 2, ...). 
j:i = j:l 
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Here {Aj(Z)} is a complete sequence of non-zero eigen-values, 

in order of decreasing absolute values (taking into account their 

algebraic multiplicity) (III(Z)I__>II2(Z)I__>...). If the function 

f(e t) is strictly convex and the sequence {lj(Z)} is infinite, 

then the relation 

o~ co 

z f(I~j(z)I), : z f(s.(Z)) 
j =i j =i ] 

assuming that the might side is finite is valid if and only if Z 
* * i) 

is a normal operator (Z Z = ZZ ). 

Let us apply the theorem of Weil to the operator Z i. As 

ZAZ A =< C it follows that Aj(ZAZ A) _5 Aj(C) (j = I, 2, ...) 

and consequently 

(5.5) sj(Z A) =< Aj(C ½) = ~ ]  (j = I, 2, ...) 

From this we obtain the first statement of the following 

theorem. 

THEOREM 5.2. If for the continuous function f(r) 

(O < r < ~, f(0) = 0) the corresponding function f(e t) (-=<t < ~) 

is downwards convex then the following relation holds for the root 

ZA, given by Theorem 5.1: 

n n 

(5.6) Z f(IAj(ZA)I) 5 E f(~'~) (n = i, 2 ...) 
j=l j:l ] ' ' 

and consequently, if the se__~uence {lj(ZA)} is infinite, then 

(5.7) Z f(I~j(ZA) I) S E f ( ~ .  
j:l - j:l 

If the function f(e t) is s~rictl~ convex and both sums in (5.7) 
o 

are finite and equal, then I ) the operators B and C are commut- 

o B2 o complete 2) normal ative, 2 ) = < 4 C and 3 ) the root Z A is a 

I) This addition to the theorem of Weil(which strictly speaking has 
been formulated by Weil only in application to matrices) can be 
found in the book [6]. 
2) A normal operator Z(E~) is called complete if it vanishes in 0 
only or, what is that same, if ]~ = ~. 
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operator for which 

( 5 . 8 )  Ixj(zA) I = ~ ( j  = 1 ,  2 . . . .  ) ,  
3 

10 o ........ _~ 
If the conditions and 2 are fulfilled, then for a given 

A always a root 

(5.9) Z A = ½(-B + i ~ )  

o 
can be found for which the condition 3 will be fulfilled. 

PROOF. If the sums in (5.7) are equal and finite and the 

function f(e t) is strictly convex, then it follows from (5.5) 

that 

(5.10) sj(Z A) = ~j(C½), i.e. Xj(ZAZ A) = ~.(C)(j =1,2,...) ' ] ' 

and 

oo co 

(5.Ii) Z f(l~j(ZA) I) = ~ f(s (Z A) ). 
j =i j=l J 

From (5.ii) it follows that Z A is a normal operator. 

As ZAZ A ~ C, it follows from (5.10) that ZAZ A = C. Taking 

into account that C > 0 we conclude that Z A is a complete normal 

operator for which the relation (5.8) is valid. From the comp- 

leteness of the normal operator Z A and the equality ZAZ A = C the 

factorization (5.2) follo~s so that B = - Z A - ZA, therefore the 

commutativity of Z A and Z A implies the commutativity of B and C. 

Simultaneously we get 
2 

4C - B 2 4ZAZ A (ZA + Z~)2 Z A Z = - = i ~ 0. 

So this proves the second statement of the theorem. 

Let us pass on to the third ~ statement. If the operators 

B and C are commutative, then in N an orthonormal basis {ej} I 

can be found, such that 
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(5.12) Cej : lj(C)ej, Bej : ujej (j : I, 2 .... ), 

and so 

(5.13) (4C - B2)ej = (4~j(C) - ~)ej (j : i, 2, ...). 

if 4C - B 2 > ~, then 41.(C) - 2 _-> 0 (j = !, 2, ...). Therefore, = 3 J 

Consequently the equation 

(5.14) 12 + ~jl + ~j(c) = 0 (j = l~ 2~ ...) 

will have either a double real root (=½U~) or a pair of non-real 

conjugated complex roots. In the first case the real root of the 

equation (5.14), and in the second ease the complex root which 

belongs to is denotes by Iu.. We form the normal operator Z A by 

ZAe j 10. e i ) As 2 + BZ A + C)e = 0, nutting = ] j (j - . . . .  2, . (Z A 3" 

2 + BZ A + C = 0; in view of the (j = i, 2, ...), it follows that Z A 

fact that ll0.1 = I.(C) it follows that (5.8) holds true. By 

defining in a corresponding way the operator J4C - B 2 with 
f-- 

alternating signs, it is easy to understand that the root Z A can 

be written in the form (5.9). 

This finishes the proof of the theorem. 

N ~) 
COROLLARY 5.2. Let {I (L)} I (N = < be a complete sequence 

of eigen values of the pencil L, lyin~ inside the upper half-plane 

and (tak_9~ into account their al~ebraic multiplicity) ordered 

according t__9o delcreasing moduli (II (L) I __> II2(L) I => .... ). Then 

n ± 

(5.15) z f(lli(L) l) _< Z f(/~) (n : I, 2, N), 
j =i ' ] ' j =i 3 "'" ' 

where f(r) (0 S r < ~, f(O) = O) is an arbitrary continuous 

function to which there i_~s a corresponding downwards convex 

function f(e t) (-~ < t < ~). 

I__E particular 

N 

(5.16) z f ( IX t (h )  l) ~ Z f ( ~ ' i " ~ - ~ )  
j:l ] - j:l ~ " 

If the function f(e t) i_~s strictly convex and the risht side 

i_~n (5.16) i~s finite, then in (5.16) the equality sisn holds true 
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if and ~ if the 9~erators B and C are commutative and 

4C - B 2 > 0. In that case N = ~ and Ilt(L) l = ~ (j=l,2 ..). 
-- 3 3 '" 

PROOF. Indeed, if we put A = {I~(L)}, then the sequence 
N 

{I~(L)} I will be a part of the sequence {Ij(ZA)} and the inequal- 
J 

-ities (5.15) will be consequences of the inequalities (5.6). 

If the function f(e t) is strictly convex and if in (5.16) 

the equality sign holds, then it is clear that N = =, 

{~(L)} 7~_ = {Ij(ZA)} ~_ and in (5.7) the equality sign holds. By 

what has been proved the latter implies the commutativity of B, 

C, the normality of the operator Z A and the relations (5.8). 

Let us choose in ~ an orthonormal basis {ej} I such that 

ZAe j = Ij(ZA)e j, ZAe j = ~j-~-~ej (j = l, 2 .... ). 

Then 

* 2ej Cej = ZAZAe j = IIj(ZA) I , Bej = -(Z A 

B2ej = 4[Re Ij(ZA)]2ej 

and consequently 

+ ZA)e j = -2 ReI.(ZA)ej,j 

(j = i, 2, ...), 

(5.17) (4C - B2)ej ={4 Ilj (ZA) I 2 -[Relj (Zi)J2}e j (j = I, 2,...) 

from which it follows that 4C - B 2 > 0. 

Conversely, if the operators B and C are commutative, then, 

by choosing an orthonormal basis {e~} such that the equalities 

(5.12) are valid, we have 

oo 

(5.18) (~21 + IB + C)x = ~ [I 2 + ~jl + l.(C)] (x, e.)e.. 
j:l 3 7 

If, in addition, 4C- B 2 > 0, then according to (5.17) 

41.(C) - U~ > 0 (j = i, 2, ...), and every equation 
J 

12 + ~jl + Ij(C) = 0 will have a pair of non-real conjugated com- 

plex roots: 
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x~ = ½[-~j _+ i/4x.(c)~ - ~ (j = I, 2 .... ). 

If for some ~0 ~ 0 and ~ = 10 we have L(IO)P 0 = O, then 

it follows from (5.18) that the number 10 coincides with one of 
+ 

the numbers I~, and if we assume for concreteness that Iml 0 > O, 

we have 

~0 = Z c.e. 
+ ]3 

~j=10 

It is clear that conversely for every ~0($0) of this form we 

shall always have L(10)~ 0 = 0. 

By means of (5.18) it is easy to verify that the pencil L 

has no adjoint vectors. So {I~(L)} = {I~}, and as [l~I = Ij(C) 

(j = i, 2, ...), this finishes the proof of the corollary. 

We remark that the function f(r) = r 2q (q > 0) has a 

corresponding strictly convex function f(e t) = e 2qt. Therefore 

for any q > 0 the following relation holds: 

(s.19) zl~t(L)J 2q < Sp c q. 
3 = 

If some q > 0 we have Sp C q < =~ then in (5.19) the equal- 

ity sign holds if and only if B and C are commutative and 

4C - C 2 > 0. 

§6. A weakly damped pencil. 

6.1. A pencil L is called w eak_~_~ damped if the following 

condition is fulfilled: 

2 
(6.1) (Bx, x) < 4(Cx, x)(x, x) for x ~ 0. 

Clearly the condition (6.1) is equivalent to the condition 

of positiveness of the expression (L(1)x, x) for any x { 0 and 

real I. In other words the condition (6.1) is equivalent to the 

positiveness of the operator L(1) = 12I + IB + C for any real I. 

We leave to the reader to prove that if C £ $~, then it 
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follows from the condition (6.1) that also B 6 $ and in addition: 

s~(B) < 4~.(C) (j : i, 2, ..., s.(B) = lb(B2)). 

The latter inequality is easily obtained on the basis of 

the minimax properties of the eigen-values of self-adjoint compact 

operators. In this connection the following proposition holds: 

o , 
6.1 . If B = B £ $ , C 6 $ , C > 0, then the condition 

<6.1) of bein~ weakly da~ i_~s equivalent to the condition of 

absence of real ei~en-values in the pencil L. 

Indeed, if (6.1) is fulfilled then for any real ~ the oper- 

ator L(~) is positive and consequently the pencil L has no real 

eigen-values. But if for some x ° $ 0 the inequality 

(Bx0, x0 )2 ~ 4(Cx0, x0)(x0, x 0) is fulfilled, then the set of 

those ~ for whieh there are x $ 0 such that (L(~)x, x) = 0 is not 

empty; it contains the points 

11, 2 = [-(Bx0, x 0) ± , x0 )2 - 4(Cx0,x0)(x 0, x0)]/(x0,x0). 

So according to a general theorem of P.H. M~ller [29] the 

pencil has a real eigen-value. 

We remark that if C E $ and the operators B and C are 

commutative, then the condition (6.1) is equivalent to the cond- 

ition 4C - B 2 > 0 (see also 6.3). Generally the latter condition 

is more restictive than the condition (6.1) (see remark 2.1). 

6.2. A compact operator Z will be called complete if the 

system of all its root spaces ~ (Z), corresponding to the non- 

zero eigen-va!ues is complete and the operator Z has the same 

property. 

If the operator Z is dissipative, Z E ~ and Sp(-ReZ) < 

then according to a theorem of M.S. Livs~e (applied once before 

in (2.5)): 

(6.2) - ~ Re ~.(Z) _< Sp(-ReZ), 
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where the equality sign is valid if and only if the system of 

root spaces ~I(Z) is complete in ~. But if this condition is 

satisfied, it is also satisfied for Z ; so in that case the 

system of spaces ~I(Z ) (I E ~(Z )) is also complete. For a 

dissipative operator Z we have always Z(Z) = Z(Z ), as for such 

operator the equation Zx = 0 is equivalent to the equations 
, 

(ReZ)x = (ImZ)x = 0, and hence to Z x = 0. So a dissipative op- 

erator Z(E $ ) is complete if Z(Z) = {0}, Sp(-ReZ) < ~ and in 

(6.2) holds the equality sign. 

In the following propositions it is assumed that in the 

pencil L the coefficient C E $ , C > 0. 

THEOREM 6.1. Let L be a weakly damped pencil with B ~ 0 

and Sp B < ~. Then the system of root spaces of the root Z A of 

the equation L(Z) = 0 is complete in ~ if and 9nl~ if 

(6.3) - Z Re I : Sp B. 

I£~(L) 

If this condition i__ss fulfilled for any choice of 

i (T U {0} = ~(L) wA) the roots Z A and ~ will be complete diss- 

ipative operators and will form a hair of solutions of the e u9~ 

tion L(Z) = 0. 

PROOF. Let us denote by R the projector which projects 

orthogonally on the linear closed hull ~ of all root spaces of 
^ 

the operator Z A. We put Z A = RZAR ; from RL(ZA)R = 0 we get 

^2 + BZ + C = 0, where B = RBR ~ C = RCR. easily that Z A A 

Theorem 3.2 is applicable to the pencil L(1) = 12I + IB + C and 

the root ZA' considered in ~. 

Hence 

+ : - < 0 
i : " 

^ 

So the operator Z A is dissipative and the application of the rel- 

ation (6.2) on Z gives 



KREIN et al 552 

(6.4) ( - Z Rel =) -2 I Rel ~ Sp B (~ SpB) 
~Ea(L) 16A - 

If the system of root spaces of the operator Z A is comp- 

lete, then R = I, RBR = B and according to a theorem of M.S. 

Livsic the equality sign holds true everywhere in (6.4). Conver- 

sely, if the equality sign holds in (6.3), then it follows from 

(6.4) that SpB = SpB, hence QBQ = 0 ( Q = I - R) and QB = BQ = 0. 

2 + BZ A + C = 0 on the Multiplying each term of the equation Z A 

left and the right by Q we get: QZ Q = - QCQ. But then QZ A Q = 
* * * 2 

- QCQ as well. As QZAQ = ZAQ , it follows that (ZAQ) = -QCQ. 
, ^± 

As the operator Z A has no non-zero eigen-value in QZ = ~ , any 

eigen-value of the operator ZAQ and therefore~ also any eigen-val- 

ue of the non-negative operator QCQ = - (ZAQ) 2 equals zero. 

Therefore QCQ = 0 and as by our hypothesis the operator C is 

positive it follows that Q = 0, R = I. 

As by assumption C > 0, it follows that the kernel Z(Z)={0} 

for any solution Z of the equation L(Z) = 0. 

So, if the condition (6.3) is fulfilled the operators Z A 

and ~ are complete and dissipative. They form a complete pair 

of solutions by Lemma 4.3 and Remark 4.1. 

This completes the proof of the theorem. 

A simple comparison of the Theorems 2.1 and 6.1 leads to 

the following conclusion. 

THEOREM 6.2. Let L be ~ we ak![ damped pencil for which 

0, Sp B < = and lim inf n21n(C) = 0. Then for any choice of B > 

A the roots Z A and Z~ are complete and dissipative oper@tors which 

form a complete pair of solutions of the equation L(Z) = 0. 

In addition we formulate the following propositions which is 

a complement to Theorem 2.2 (for ~ = I): 

THEOREM 6.3. Let L be a pencil for which B > 0, 4C - B 2 > 0 

and lim n21n(C) = 0. Then any solution Z 0 of the equation L(Z) = 0 

satisfying the condition Z0Z 0 $ C, is a complete and dissipative 

operator. For any choice of A the roots Z A and ~ form a comp- 

lete pair of solutions of the equation L(Z) = 0. 
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For the sake of brevity we omit the proof of this propos- 

ition. Let us comment upon the conditions of the theorem. 

As we know, the condition B 2 < 4C implies the pencil L is weakly 

damped. From this condition (like, as a matter of fact, from 

the condition of being weakly damped) it follows that 

I (B) < 21½(C) (n = i, 2, ...), and therefore if lim n21 (C) = 0, 
n = n n 

then lim nl (B) = 0. The latter condition is also fulfilled in 
n 

case the condition Sp B < ~ (B > 0) is satisfied, to which 

condition it is very near, though it is nevertheless somewhat 

we ake r. 

§7. A strongly damped pencil. 

7.1. The pencil L is called strongly damped if 

(7.1) (Bx, x) > 2 ~ (x, x) for x $ 0 • 

In this case the equation 

((L(1)x, x) = ) (x, x)12 + (Bx, x)k + (Cx, x) = 0 

(for any x ~ O) has two different negative roots 11, 2 = pf(x), 

where 

i 
(7.2) Pi(X) = 2(x, x) [-(Bx, x) ± 4(Bx, x) 2- - 4(Cx, x)(x, x)]. 

A 

It is clear that 

p_(x) < p+(x) < 0, p+(x)p_(x) = (Cx, x)/(x, x). 

If for some ~0 ~ 0 and a complex I 0 we have L(10)~ 0 = 0, 

then (L(10)~0, ~0) = 0, and therefore I 0 coincides with one 

number p±(~0 ) or with the other. From this the following 

proposition follows: 

O 

7.1 . Every ellen-value of ~ strongly damped pencil L i__ss 

negative. 

We shall introduce a series of general definitions for the 
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pencil L with B = B , C > 0. Let L(10)~ 0 : 0 (~0 ~ 0) , then 

there are three possible cases: the value of If0 12 can be equal, 

less or more than the quotient (C~ 0, ~0 ) / (~0' ~0 )" In 

correspondence to these cases the eigen-vector ~0 is called 

neutral, of the first kind or of the second kind. 

If 10 is non-real, then the eigen-vector ~0 clearly will be 

neutral. 

If all eigen-vectors corresponding to one and the same 

eigen-value 10 are of one and the same kind (first or second), 

then the eigen-value is called definite and, according to the case 

occuring it is either called an eigen-value of the first kind 

or of the second kind. 

If the condition (7.1) is satisfied, any eigen-vector ~0 will 

belong to one kind or the other, namely: it will be of the first 

kind if 10 = p+(~0) and of the second kind if 10 = p (~0). 

Let us put 

(7.3) ~>(L) = - sup p_(x), ~<(L) = - inf p+(x). 

It turns out that 

(7.4) p_(x) < p+(y) (x, y 6 ~ ; x, y ~ 0), 

hence 

(7.5) (0 <) ~<(L) _< e>(L). 

and therefore the following proposition holds true 

o 

7.2 Every eigen-value of a strongly dampe d pencil is 

definite; it is either _> - ~<(L) or < - ~>(L); if it is _> - ~<(L) 

and > - ~>(L), then it is of the first kind, but if it is _~ - e>(L) 

and < - ~<(L), then it is of the second kind. 

In the algebraic case (~ finite-dimensional) all statements 

mentioned above have been established before by R. Duffin [8]; in 

that case always ~<(L) < ~>(L). From this result the inequality 

(7.5) follows immediately, even in our case (~ infinite dimensional) 
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Indeed, let us denote by Z(0) the linear span of the pairs 

of elements x, y E N, x, y ~ 0 and by P the orthogonal projector 

projecting ~ on N(0) It is clear that the restriction L 0 of the 

pencil PLP in Z(0) is a strongly damped pencil again. For the 

corresponding functionals p~0) [8, Theorem 4] we have 
(0) (0) (0) 

p_ (x) < p+ (y); on the other hand p± (z) = p±(z) (z E N(0)). 

0 

7.3 If the condition (7.1) is satisfied the operator B is 

uniformly positive, 

( 7 . 6 )  (Bx, x) ~ ~<(L) (x, x) (x C N). 

Indeed, according to (7.2) and (7.3): 

(Bx, x) / (x, x) k -p_(x) > ~<(L) (x C N, x ~ 0)o 

7.2. In the previous conclusion, except in the condition 

(7.1), we used only the fact that C is a positive operator from 
I) 

If we suppose that the positive operator C E $~, then it is 

possible to state on the basis of Theorem 6.I that the equation 

L(Z) = 0 has a pair of solutions Z I and Z 2 -- -B - Z I for which 

ZlZ 1 __< c. 
For any x E ~, x ~ 0 we put 

q(x) = (BZlX, ZlX)/2tIC~ZlXlI'II ZlX II (> 1) .  

As for any x E 

((ZI2 + BZ I + C)x, ZlX) = 0, (BZIX, ZlX) = - (Z2x, ZlX) - (Cx, ZlX) 

and 

I (Cx, ZlX) ] _< II C½x II " ,C½ZlXll , 

l( z2x, ZlXlW : r(ZlZlZlX, x) r _< tt(ZlZ l)2zlxil, ir(ZlZ l)~x li__< 

_4 IC2ZIX H " UC~x R, 

l)The authors, however, have succeeded in generalizing in that 
ease a series of successive conclusions as well, which will be 
shown elsewhere. 
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I) it follows that 

(7.7) 

Hence 

(7.8) 

C½Zl i 2q(x) It C2ZlX II" IIZIX il : (BZIX , ZlX) < 211 HI- tf C~xll , 

I tl Zlx tt~ q-F{)It C½x ii (x 6 ~). 

~ )  , ((C - ZlZl)X , x) ~ (i - (Cx x)> 
q2(x) 

From the relation Z2Z 1 = C it follows that 

2 
ItC~x il = (ZIX, Z2x) ~ It ZIXlI" II Z2x LI . 

Comparing this with (7.7) we get 

II Z2x Ir ~ q(x)11C½x II 

0 (x E Z,x ~ 0). 

(x £ ~). 

Therefore 

(7.8) ((Z2Z 2 - C)x, x) > (q2(x) - i) (Cx, x) (X 6 N, x ~ 0). 

On the other hand it follows from Z 2 = - B - Z I that the 

positive operator H 2 = Z2Z 2 - C can be represented in the form 

H 2 = B 2 + T, where T E $ . 

Therefore, if Bis the greatest lower bound of the spectrum 

of the operator B 2 (~ > ~2CL)), then for any s > 0 the spectrum : < 
left to the point ~-s of the positive operator H 2 consists of a 

finite number of isolated eigen-values of finite multiplicity, 

which are positive because of (7.9). 

So the operator H 2 = Z2Z 2 - C is uniformly positive: 

m(H 2) = inf[(H2x , x) / (x, x)] > 0. 

At the same time we conclude that the operator Z 2 is cont- 

inuously invertible, as 

]tZ2x112 = (H2x,x) + (Cx, x) ~ (H2x , x) ~ m(H 2) JJx if 2(x 6 ~). 

Now the proof of the following fundamental theorem does not 

take us much trouble. 

i) Continuing this argument we can prove that 

it ZlX II _< (q(x) - /q2(x) - ]9 flC½xff. 
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THEOREM 7.1. For a strongly d ampe d pencil the following 

statements are true: 

O 

i ) the quadratiq ~uation L(Z) = 0 has one and on!y one root Z I with 

the property I) ~ ZIZ 1 ~ C ; 

o , 

2 ) the root Z 1 and the accompanyin_~ root Z 2 = - B - Z 1 are 

symmetrized by one and the same uniformly positiv e o perato ~ 

S = B + Z I + Z I = - (B + Z 2 + Z 2) = Z.~ - Z2; 

O 

3 ) the root Z 1 is similar to a negative compact 9perator; its 

spectrum lles on the s e ~  [ -e<(L), 0] ; the ellen-vectors 

(-values) of this root are exhaustin~z all the z encil's ei~en- 

vectors (-values) of the first kind} 

O 

4 ) the root Z 2 is similar to a negative bounded operator; its 

spectrum lies on the sesment I-fiB lJ-/IFCH, -~>(L)]; the eisen- 

vectors (-values) of this root are exhausting all the pencil,s 

eizen-veetors (-values) of the second kind; 

O 

5 ) the spectrum ~(L) : ~(Z I) U ~(Z2) ; 

O 

8 ) the roots Z I and Z 2 form a complete pair of opergtors. 

O 

PROOF. Temporarily ignoring statement i we continue the 

investigation of the root Z I (having the property ZIZ I < C) and 

the accompanying root Z 2 = - B - ZI, the existence of which is 

guaranteed by Theorem 5.I. 

Z 2 * , From + BZ + C = 0 it follows that (Z + Z + B)Z = Z Z - C. 

Putting Z -- Z k ( k = i, 2) we get 

(7.10) SZ k = - H k (k = i, 2; H k = (-l)k(ZkZk - C)). 

So each root Z k is symmetrized by the operator S: 

SZ k : ZkS (k = I, 2), 

and also by its operator Hk: 

(7.11) HkZ k : ZkH k -- - ZkSZ k = - ZkSZ k (k = i, 2). 

i) It is possible to prove that the accompanying root Z 2 : - B - Z I 
• . • > 

is completely deflned by its property Z2Z 2 = C. 
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The latter means that the operator Z k is symmetric with 

respect to the scalar product (x, Y)k = (HkX' y) (k = I, 2). 

As the operator H 2 is uniformly positive, the scalar product 

(x, Y)2 is topologically equivalent to the scalar product (x~ y) 

given in ~. With respect to the scalar product (x, Y)2 the 

operator Z 2 is a negative self-adjoint operator with the follow- 

ing spectral decomposition 
b 

(7.12) Z 2 = ! IdE2(1) , 
f 

a 

where, respectively, a and b are the smallest and the largest 

number respectively of the spectrum ~(Z2) , for which 

3 
(7.13) (-[ IIBII ~) -~BII-~II  CII~ a < b ~ - ~<(L). 

Let us explain where the inequalities (7.13) come from. 

As Z 2 = - B - Z 1 and Z 1 6 $ , the condensation spectrum of the 

operator Z 2 coincides with the condensation spectrum of the 

operator -B, and according to (7.6) the entire spectrum ~(-B) is 

contained in the interval (-~, -~<(L)). On the other hand every 

X 0 E d(Z 2) not belonging to the condensation spectrum of Z 2 is an 

eigen-value of the operator Z 2 of finite dimension, and if ~0 is 

a corresponding eigen-vector (Z250 = lO~O ), then 

iXo1211Toll 2 = II Z2~011 2 > ( C T 0 ~ 0 ) .  

So I0 is an eigen-value of the second kind of the pencil L, 

and therefore X0 ~ -~>~L). 

From Z 2 = - B - Z I it follows that IIZ2 II~II~ II + IIZIII and from * 
zig I ~ C and (7.1) we get 11Z111 ~IIC211 = #'~ ~ ½11B II. It still 

remains to remark that the number -a coincides with the norm 

IIZ211 2 = - inf[(Z2x, x) 2 / (x, x) 2 ], and as the operator Z 2 is 

symmetric with respect to the scalar product (., ")2 we have 

according to a general theorem [16]: -~ IIZ211 .~ 

~Z2H2 ½ * From (7.ii) it follows that G = H - = ~ -½z*~½ = G < 0 
~2-2-2 

and therefore it is possible to state that the operator Z 2 is 

similar to the self-adjoint negative operator G. 

Let us show that the operator S is uniformly positive. 

As S = -H2Z[Iit follows that 



KREIN et al 559 

m(H2 ) 
(sx, x) : - (H2z[1x, x) : -  Z[Ix, 2 2 

From (7.8) and (7.10) it follows that (SZIX , x) = (-HlX , x) < 0 

(x 6 ~, x ~ 0). 

So the root Z I is similar to a negative compact self-adjoint 

opere÷c~,. 

Consequently the root Z I possesses a system of eigen-vectors 

{~]i)}~- which form a Riesz basis in ~: 
3 ± 

ZI ~!I) : X(1)~!I) (j : I, 2 ) • , . . .  • 

3 3 3 

If ZI~ = X~ (~ ~ 0) then IxI 2 II~II 2 = II Zl~II 2 < (c~, ~). 

So all vectors ~!I) (numbers X! I)) are eigen-vectors (eigen-values) 
3 

of the first kind of the pencil L. 

As L(X) = (XI - Z 2) (lI - ZI), it follows that 

L-I(x) : (lI - ZI)-I(xI - Z~) -I , 

Taking into account that the operator Z 2 is similar to the 

operator Z 2 and therefore o(Z 2) = c(Z 2) and also that the inter- 

section of the spectra o(Z I) n c(Z 2) may consist of one point 

only (the minimal eigen-value of ZI), which always belongs to the 

spectrum ~(L), we conclude that ~(L) : ~(Z I) U ~(Z2). 

From this it follows already that the eigen-vectors (eigen- 

values) of the operator Z I are exhausting all eigen-vectors 

(eigen-values) of the first kind of the pencil L. 

As by what has been proved the eigen-vectors of the first 

kind form a complete system in ~, it follows that by the equations 

Z~ = X~ (~ is an eigen-vector of the first kind of the pencil L, 

X is the corresponding eigen-value) the root Z I with the property 

ZIZ I $ C is completely defined. 
o o 

So all statements I - 5 have been proved. It remains 
o o 

to remark that statement 6 is contained in statement 2 , accord- 

ing to which the operator S = Z I - Z 2 is uniformly positive. 

This completes the proof of the theorem. 

o 

REMARK 7.1. We remark that it follows from statement 6 

of theorem 7.1 that, if the condition (7.1) if fulfilled, then 

any twice continuously differentiable (in the strong sense) 
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solution v(t) of the equation 

~} + Bv + Cv = 0 

can be written in the following form: 

v = exp(tZl)X I + exp(tZ2)x 2. 

T~he elements x I and x 2 are uniquely defined by the initial 

conditions v 0 = x I + x 2 and v 0 ZIX I + Z2x 2 where v 0 v 0 £ 

may be given arbitarily. 

With the associated equation 

(7.14) CQ + By + v = 0 

the situation is different. 

In an generalized sense for any Xl, x 2 6 N the vector func- 

tion 

(7.15) v = exp(tz~l)xl + exp(tz~l)x2 

will be a solution of the equation (7.14). This solution will 

have one(or two) continuous derivatives if x I 6 [(Z I) 

(or x I 6 ~(ZI2)). If x I 6 [(ZI2) the vector function (7.15) will 

be a solution of the equation in the usual sense. If the cond- 

ition v 0 - Z2v ~ 6 [(Z I) is fulfilled, then the equation (7.14) 

will have a continuously differentiable solution of the form 

T • (7.14) satisfying the initial conditions v(0) = v0, $(0) = v 0 

REMARK 7.2. Fro~ ÷h~ uniform positiveness of the operator 

H 2 = ZIZ I - C and the equation Z2Z I = C it is not difficult to 

p2C. deduce that there exists a positive p < I such that ZIZ I 

But then ~I Zlli<= p ~  and consequently a => -NBII -p/ll C Ir 

so that in (7.13) the lower bound is never reached. 

REMARK 7.3. ~r the sake of brevity we omit propositions 

concerning the behavior of eigen-values of one kind or the other 

for a strongly damped pencil L under monotone alteration of the 

operator B (see the corresponding algebraic propositions in 

[8]). On the basis of these propositions, in particular for 
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sequences of eigen-values of the first kind of the pencil L 

(I~I)(L) :< 12(2)(L) =< ... (<0)) it is possible to obtain the 

following upper bound: 

liB I- / I B I  2 - 41 (C) 2 t  (C) 
- I(1)(L) > n = __ n 

n = 2 lIB II + - 41n(C) 

x (c) x (c) 
n (n = i 2 ) n [I + o(i)] > ~ , , 

|B II "'" 

and the following lower bound: 

21 (C) I (C) 
- I(!)(L) < n n 

n = ~ = ~ [i + o(I)] 

m(B) + /m2(B) - 41 (C) 
n 

which are valid beginning with those n for which 

41n(C) < m2(B) = inf[(Bx, x)/(x, x)] 2. 

If the operator B has the form 

(7.18) B = 8I + T (T 6 $ ), 

then the following asymptotic equality holds 

X (C) 
(7.17) I(1)(L ) _ n [I + o (i)] (n ÷ ~). 

n B 

REMARK 7.4. The authors will prove elsewhere that with 

some complications, the results of this section can be generalized 

to the case where instead of the condition of being strongly 

damped (7.1) the weaker condition that the operator B is uniformly 

positive is fulfilled or the even weaker condition contained in 

the requirement that the condensation spectrum of the operator 

B is positive. 

Among other things if the latter condition is fulfilled 

(and C > 0, C C $ ), then the pencil L always has no more than • 
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a finite number of non-real eigen-values. 

In particular this condition is fulfilled if B has the form 

(7.16) with any 8 > 0 and T 6 $ . In this case, even when the 

condition (7.1) of being strongly damped is violated, the asymp- 

totic formula (7.17) remains valid as soon as the following add- 

itional condition is fulfilled: 

ln+l (C) 
(7.18) lim I (C): I 

n-~o n 

REMARK 7.5. Recently it was proved by S.G. Krein [18] that 

the problem of small vibrations of a viscous fluid contained in 

an immovable vessel and having a free surface can be reduced to 

the equation 

(7.19) y = uGy + ~ Hy , 
U 

where G, H 6 $ , G > 0, H ~ 0~ U is a complex parameter (stemming 

from the expression v(<,~,~, t) = e-Zt~(~,~,~) for the velocity 

vector of a fluid particle with Euler coordinates ~,n,~). 

The substitution ~ = - l -I - a (a > 0) transforms the 

equation (7.19) into the following equation: 

12(a2G + aI + H)y + l(2aG + I)y + Gy = 0. 

Whatever the operator H = H (6~) may be (none of the 

conditions H E $ , H ~ 0 is necessary), for sufficiently large a 

the operator F = a2G + H + aI will be uniformly positive. By 

taking such a and by substituting in the equation (7.19) x = F~, 

we transform this equation into the equation La(1)x = 0, where 

L (I) = X2I + IB + C, a a 

B = F-½(2aG + I)F -½, C = F-½GF -½. 
a 

It is easy to understand that the obtained pencil L is 
a 
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I) 
strongly damped if and only if 

(7.20) 4(Gx, x) (Hx, x) < (x, x) 2 (x £ ~, x ~ 0). 

and that in this case all of the previous theory can be applied 

to (7.19). 

If in addition, H E $ , then the condition (7.16) is 

fulfilled for B a with B = i/a, and if kn+l(G)/In(G) ÷ i for n+~, 

then the condition (7.18) will be fulfilled for B and 
a 

kn(Ba)/In(G) ÷ I/a. 

All this allows one to obtain a series of essential 

extensions to the articles [i, 22]. For instance, in case the 

condition (7.20) and the conditions G, H 6 $ , G > 0 are fulfilled, 

it is possible to state that the equation (7.20) has a Riesz basis 

consisting of the eigen-vectors of the first kind 2) of the 

equation (7.19), and that for the corresponding complete sequence 
(i) (i) 

~I ~ ~2 ~ ... of eigen-values of the first kind of the equation 

(7.19) the following asymptotic formula holds true 

(1) 
~n : [i + o(i)] (n ÷ ~). 

n 

I) We remark that for H < 0 the condition (7.?0) is automatically 

fulfilled; and if H = H+ - H (H+ __> 0), then the condition (7.20) 

will e.g. be fulfilled for 4 ~Gn- ~H+ n ( i. 

2) It is not difficult to understand how to translate the notion 

of eigen-vector (-value) of the first or the second kind for the 

equation (7.19). 
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