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REMARKS ON SCHRODINGER OPERATORS 

WITH VECTOR POTENTIALS* 

Tosio Kato 

Three selfadjoint realizations H 0 ~ H ~ H' of the 

formal Schr~dinger operator in R m with a singular vector 

potential b(x) and a singular scalar potential q(x) are 

constructed through quadratic forms, corresponding to the 

minimal, intermediate, and maximal forms. It is shown that 

if b E L 2 and 0 < q E L I loc -- loc ' then H 0 = H and the 

pointwise domination le-tHuI ~ etAIu I holds for t ~ 0 

and u E L 2. If in addition b C L~o c with some p > m , 

then H' = H holds. 

i. Introduction. 

Consider the formal Schrodinger operator in R m : 

(T) 
m 

T : -(V-ib(x))2+q(x) :- [ (dk-ibk(X))2 +q(x) , 
k=l 

where d k = d/dx k , b = (bl,...,b m) is a real vector- 

valued function, and q is a real scalar-valued function 

on R m. 

*This work was partially supported by NSF Grant 
MCS 76-04655. 
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2 KAT0 

It was ~hown by Simon [5] that under certain condi- 

tions, a selfadjoint realization H of T in H : L2(R m) 

can be constructed with the property, among others, that 

(P) Ie-tHul ~ etAIu I a.e. pointwise on R m , 

where t ~ 0, u E ~, and A denotes the canonical realiza- 

tion in H of the Laplacian (with domain D(A) = H2(Rm), 

the Sobolev space). Simon assumes, for example, that 

C L~o °~ , div b = 0 and q = 0, for m = 3, but conjec- b 

tures that b E L 2 would suffice. (See [5] for various 
loc 

consequences of (P). See also Schechter [3] and Simon [4] 

for the essential selfadjointness of T .) 

In what follows we shall prove (P) under the 

assumptions 

(AI) b E L~oc(Rm)m , 

(A2) 0 A q E L~oc(Rm) , 

thus verifying Simon's conjecture. Note that we assume 

nothing about div b . 

The definition of H is by no means trivial in this 

case, however, and several different choices are possible. 

We define H through ~uadratic forms (as Simon does), but 

this statement is still vague. To be more precise, it is 

convenient to define a linear operator D' from H to H m by 

(i.i) D'u = Vu - ibu 

The domain D(D') of D' consists of all u E H for which 

the right member of (i.I), taken in the distribution sense, 

belongs to H m It is essential here that bu E L I by 
-- " loe 

(AI) so that (i.i) makes sense as a distribution. 

It is easy to see that D' thus defined is a densely 

defined, closed operator from ~ to H m . Thus 
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(1.2) B' = D'*D' 

is selfadjoint in H , We then define 

(1.3) H' = B' + q (form sum), 

which means that H' is the selfadjoint operator associated 

with the densely defined, closed quadratic form 

(1.4) h'[u] = IID'ull 2 + llql/2ul12 

with domain ~(h') = ~(D') ~ ~(ql/2), where q is regarded 

as a nonnegative selfadjoint operator in H . 
w 

The quadratic form h' may be called the maximal form 

associated with T . We define the minimal form h 0 as 

the closure of the restriction of h' to domain C~(Rm), 

and the associated operator H 0 . There is another form 

h of practical interest, such that 

(1.5) h 0 C h C h' ; 

h is obtained from h' by restricting its domain to 
~, i/2, 

~(D) ~ ~<q ~, where D is the closure of the restriction 

of D' to C O . In other words, h is obtained by first 

letting u E C~ in (1.4), closing the two forms on the 

right separately and then taking the sum, whereas h 0 is 

obtained by closing the sum for u 6 C O • The operator H 

associated with h may thus be written 

(1.6) H = B + q , B = D*D , 

with 

and 

D as defined above. Note that D is the minimal, 

D' is the maximal, operator for V-ib 

We note that (1.5) implies 

(i.7) H 0 ~ H ~ H' 
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4 KATO 

in the sense of order relation for semibounded operators 

(see [i, Chapter 6]). 

If b and q are well-behaved, the three operators 

H0, H, and H' are identical. In general, there is no 

obvious reason why this should be the case. (cf. [i, 

Chapter 6, Section 1.6]). 

The main results to be proved in this paper are 

THEOREM I. H 0 = H . 

THEOREM II. (P) is true for H . 

We have no results regarding H' under the assumptions 

(AI)~ (A2)~ but we have 

THEOREM !II. If (AI) is replaced by the stronger condition 

that b • L~oc(Rm)m for some p > m, then H' = H = H 0 . 

REMARK 1.1. In [5] Simon sets q = 0 and chooses H 

(rather than H') as the definition of the Hamiltonian. 

To prove (P) however, he assumes that b • L 4 (R3) 3 
' loc ; 

then H' : H is true by Theorem III. 

REMARK 1.2. Theorems I to III can be extended to the case 

when q is nonreal but satisfies 11m ql < M Re q • L I (R m) 
-- loc 

instead of (A2), where M < ~ is a constant. In this case 

the operator q is m-sectorial (see [i~ Chapters 5,6]), 

and the forms ho, h, h' can be defined as above with 

obvious modifications. The proofs given below are valid in 

this case too, due to a generalization of the product form- 

ula by Simon (see [2]). 

The proofs of the theorems are given in the following 

sections. After a preliminary study of the operator D 

(section 2), we first prove Theorem II when q = 0 (so that 

H = B) (section 3), and then in the general case using the 

Trotter product formula (section 4). Theorem I is proved 
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using Theorem II (section 5). Theorem III is proved in the 

last section. 

2. The operator D. 

It is important to know when a given u E H is in 

D(D) . 

LEMMA 2.1. Let u e ~ A H~oc(Rm) ] N Lloc(Rm) = so that 

v = Vu - ibu E L2 If v ~ H m , then u e D(D) and 
loc - -  -- 

Du = V . 

Proof. The assumption implies that u E D(D'). We first 

truncate u by setting u n = ~n u , n = 1,2,..., where 

~n(X) = ¢(x/n) and ~ E C~(R m) with ¢ = i identically 

u in H and D'u = near the origin. Then u n _ n 

~n v + (V~n)U ÷ v in H_ m Hence it suffices to show that 

u E D(D). 
n 

w = u n has the properties that 

w ~ HI(R TM) A L~(Rm), with compact support. 

Thus it suffices to show that any such w is in D(D). 

= Jew where Je is the Friedrichs mollifier, so Let w e 

that w e E C~(R m) with a common compact support, 

_ + w in HI(R m) as e + 0 lwsI < M < = pointwise, and w e 

We have also w s + w a.e. pointwise along some sequence 

e = E n ÷ 0. Thus Vwe + Vw and bwe ÷ bw in _H TM along 

the sequence. (The latter follows by dominated convergence 

theorem.) Hence D'w ÷ D'w in H m . Since 
S 

w e E C O C --D(D), we conclude that w ~ _D(D)" 

3. The operator B. 

THEOREM 3.1. (P) is true for H replaced by B . 

Proof. This is known if b is smooth, say b E CI(Rm); 

see [5] for the proof. We shall prove Theorem 3.1 by a 
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limiting process, approximating b with a sequence b of 
n 

smooth functions such that 

b in L~oc(Rm)m n + (3.1) b n 

Let D and B = D*D be defined as above with b te- 
n n n n 

placed by b n Since (P) is true for H replaced by B n 

as remarked above, Theorem 3.1 will follow if we can show 

that e -tBn + e -tB strongly as n ÷ ~ . As is well known, 

for this it suffices to prove 

LEMMA 3.2. 

Since 

(3.2) 

(l+Bn)-i ÷ (I+B) -I strongly, n ÷ 

i](l+B )-Ii1 < 1 , it suffices to show that 
n 

u = ( I + B ) - ! f  ~ ( l+B)- l f  
n n 

for all f 

f E H A L  ~ . 

in a dense set in ! . Thus we may assume that 

The proof will be given in several steps. 

LEMMA 3.3. flu II < llfl] , liD u ]] < ilfH , and I u I 
n -- n n -- n 

< g < M < ~ p ointwise, where g E H n L ~ is independent 

of n . 

Proof. (3.2) implies 

(3.3) f = (I+B)u 
n n 

Hence 

: It 2 (f,Un) IlUn112 + 11DnUn 

because B = D*D The first two inequalities in the 
n n n 

lemma follow immediately. To prove the last one, we note 

that the results of [5] apply to B n Hence (see [5, equa- 

tion (8)]) 

lUnl = I(l+Bn)-if I i (l-A)-llfl - g e H A L ~ pointwise; 

note that g E L = because f E L = 
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{u n} i s  bounded in  H I (R m) 
loe 

Proof. We have Vu : D u + ib u by (i.i). In view of 
n n n n n 

Lemma 3.3 and the fact that the L2-norm on any bounded set 

in R m of the b n are bounded by (3.1), the lemma follows 

immediately. 

LEMMA 3.5. {u n} contains a sub}equenee (hereafter denoted 

again by {Un}) such that there is u e ~NH[oo(Rm)A L~(R m) 

with the properties: u n ÷ u in H as well as a.e. point- 

wise, and u --~ u in H~ (Rm). ( -~ denotes weak 
n -- oc 

convergence.) 

Proof. In view of Lemma 3.4, one can use the diagonal pro- 

cess to extract a subsequence {u n} weakly convergent in 

H I to a u E H I This implies u ~ u in L~ 
loc loc " n loc 

strongly, by Rellich's theorem. Since lUnl s g 6 ~ A L ~ 

by Lemma 3.3, we have u ~ H N L ~ and u ~ u in H . 
-- n -- 

LEMMA 3.6. bnU n ~ bu __in L 21oc(Rm)m 

- + b(Un-U) Since Proof, We have bnU n bu : (bn-b)u n 

lUnl < M, (bn-b)u n 0 in L 2 -- + loc by (3.1). Since 

Ib(Un-U) I _< 2MIb I , b(Un-U) ÷ 0 in  L 21oc by dominated 

convergence. 

LEMMA 3.7. u = (l+B)-If 

Proof. Let ¢ E C0(Rm). (3.3) implies 

(3.4) (f,%) = (Un,%) + (DnUn,Dn %) . 

But 

(3.5) Dn% = V% - ibn~ ÷ V% - ib~ = D% in _H m 

Similarly by (3.1). 
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u = Vu - ib u -~ Vu - ibu in L 2 
Dn n n n n loc 

by Lemmas 3.5 and 3.6. Hence 

iIVu - ibui}~ < lim inf ]IDnUnll i llfll 
n+= 

where II II denotes the L2-norm on a bounded set ~ C R m 

Since this is true for any such ~ , we have Vu - ibu E H__ m. 

Since u E H I L ~ loc A , it follows from Lemma 2.1 that 

u C D(D) with Du = Vu - ibu . Thus 

-~ Du E H m in L 2 (3.6) DnUn -- loc 

Since ~ and the Dn% have a common compact support, it 

follows from (3.4-6) that (f,%) = (u,}) + (Du,D%). Since 

this is true for all % E C O , which is a core for D, we 

conclude that Bu : D*Du exists and equals f-u . Hence 

(l+B)u = f and u = (l+B)-if o This completes the proof 

of Lemma 3.2 and Theorem 3.1. 

4. The operator H. 

We can now complete the proof of Theorem II. Since 

H = B $ q , a general convergence theorem for the Trotter 

product formula given in [2] can be applied to give 

(4.1) e-tHu = lim [~-(t/n)Be-(t/n)q]nu , u e H 

Lemma 4.1. For s ~ 0 and n : 1,2,..., we have 

(4.2) l(e-SBe-sq)nul ! enSAlu ! pointwise . 

Proof. By induction. (4.2) is obvious for n = 0. Suppose 

it is true for an n . Then, writing v = (e-SBe-sq)nu , 

I(e-SBe-sq)n+lul = le-SBe-Sqvi ~ eSAle-Sqv 1 

eSAlvl ~ eSA(enSAlu I) : e(n+l)S£1u I , 
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where we have used Theorem 3.1, the positivity preserving 

property of e sA twice, and (4.2) (induction hypothesis). 

Lemma 4.1 shows that the vector following lim sign in 

(4.1) is dominated by etAiul pointwise. Hence (P) 

follows as required. 

5. The operator H 0 . 

We now prove Theorem i. It suffices to show that 

h 0 = h , and this is true if (and only if) h has a core 

contained in ~(h0). We shall show that [ = (I+H)-Ic[(R m) 

is such a core. Obviously E is a core for H, hence for 

h too. It remains to show that [ e [(h0). 

Let u E E , so that u = (l+H)-if for some f E C~ . 
U 

Then 

(s.1) lul _< (i-A)-llfF e H n L'(R m) 

by Theorem II, which implies such a pointwise domination by 

[5]. Then we can repeat the arguments used in the proof of 

Lemma 2.1 to construct, by truncation and mollification, a 

sequence {w n} such that 

. C 0 + w and Dw ÷ Dw in H (5 2) w n E ~ ' Wn n -- 

On the other hand, we have u E D(H) C D(h) C D(q I/2) 
ql/2 u -- _ _ 

so that E H . Recalling that the w n have been con- 

structed by truncation and mollification from u, which is a 

bounded function by (5.1), we see easily by dominated con- 

vergence theorem that 

(5.3) ql/2(Wn-U) ~ 0 in 

by going over to a subsequence if necessary. (Here the fact 

that ql/2u E ~ is essential for truncation, and u E L ~ 

is essential for mollification.) 
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It follows from (5.2-3) that 

h[Wn-U] ~ llD(Wn-U)112 + [lql/2(Wn-U)II 2 ~ 0 

Sinoe w n E C~ , this proves u e [(h 0) as required. 

6. The operator H' 

We now prove Theorem III. It suffices to show that 

D' C D (so that D' = D). Let u E D(D'). 

= % u as in the proof of We truncate u to u n n 

Lemma 2.1. Then u + u and D'u + D'u in H . Thus it 
n n -- 

suffices to show u E D(D). 
n 

w = u n has the property that it has compact support 

and w ~ H , D'w E H . We shall show that all such w are 

in D(D). We have 

Vw = D'w + ibw E L pl , pl-I = 2-i + p-i , 

because D'w E L 2 , b C L oc ' w E L 2 and w has compact 

support. It follows from the Sobolev imbedding theorem that 

P2 -i -i -i 2-i 
wE L ' P2 = Pl -m : -8 

where 8 : m-i -i - p > 0 , provided P2 < ~ 

ment can be repeated 11nt~1 w~ have 

This argu- 

Vw E L 2 P0 , w6 L -i = 2-i _ m-I 
'P0 

if m >_ 3, w E L r for any r < ~ if m = 2, and w E L ~ 

if m= i , 

Now we mollify w to w e as in the proof of Le~ma 2.1. 

Then Vw ÷ Vw in _H and w e ÷ w in L p0, hence bwe + bw 

in L s where s -I = p0 -I + p-1 = 2 -1 - 8 so that bw ÷ bw 

in H too (with slight modifieations for m & 2). Thus 

D'w + D'w in H. Since w E C O and w . w in H, we have 

proved that w E D(D). 
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