

Birkhäuser Verlag Basel

Integral Equations and Operator Theory Vol. 1/l 1978

REMARKS ON SCHRODINGER OPERATORS WITH VECTOR POTENTIALS*

Tosio Kato

Three selfadjoint realizations $H_0 \geq H \geq H'$ of the formal Schrödinger operator in R^m with a singular vector potential $b(x)$ and a singular scalar potential $q(x)$ are constructed through quadratic forms, corresponding to the minimal, intermediate, and maximal forms. It is shown that if $b \in L^2_{loc}$ and $0 \le q \in L^1_{loc}$, then $H_0 = H$ and the pointwise domination $|e^{-tH}u| \leq e^{t\Delta}|u|$ holds for $t \geq 0$ and $u \in L^2$. If in addition $b \in L^p_{loc}$ with some $p > m$, then $H' = H$ holds.

1. Introduction.

Consider the formal Schrodinger operator in R^m :

(T)
$$
T = -(\nabla - ib(x))^2 + q(x) = -\sum_{k=1}^{m} (d_k - ib_k(x))^2 + q(x)
$$
,

where $d_k = d/dx_k$, $b = (b_1,...,b_m)$ is a real vectorvalued function, and q is a real scalar-valued function on R^m .

*This work was partially supported by NSF Grant MCS 76-04655.

It was shown by Simon [5] that under certain conditions, a selfadjoint realization H of T in $H = L^2(R^m)$ can be constructed with the property, among others, that

(P)
$$
|e^{-tH}u| \leq e^{t\Delta}|u|
$$
 a.e. pointwise on \mathbb{R}^m ,

where $t \geq 0$, $u \in H$, and Δ denotes the canonical realization in H of the Laplacian (with domain $D(\Delta) = H^2(R^m)$, the Sobolev space). Simon assumes, for example, that $b \in L_{1,\infty}^+$, div $b = 0$ and $q = 0$, for $m = 3$, but conjectures that $b \in L_{\tt loc}^-$ would suffice. (See [5] for various consequences of (P). See also Schechter [3] and Simon [4] for the essential selfadjointness of T .)

In what follows we shall prove (P) under the assumptions

$$
b \in L^2_{loc}(R^m)^m ,
$$

$$
(A2) \t 0 \le q \in L^1_{\text{loc}}(\mathbb{R}^m) ,
$$

thus verifying Simon's conjecture. Note that we assume nothing about div b .

The definition of H is by no means trivial in this case, however, and several different choices are possible. We define H through quadratic forms (as Simon does), but this statement is still vague. To be more precise, it is convenient to define a linear operator D' from H to H^{m} by

$$
(1.1) \t\t\t\tD'u = \nabla u - ibu
$$

The domain $D(D')$ of D' consists of all $u \in H$ for which the right member of (i.I), taken in the distribution sense, belongs to $\mathbf{H}^{\mathbf{m}}$. It is essential here that $\mathbf{b}\mathbf{u}\in \mathbb{L}^{\mathbf{m}}_\mathtt{loc}$ by (Al) so that (1.1) makes sense as a distribution.

It is easy to see that D' thus defined is a densely defined, closed operator from H to H^m . Thus

KATO

$$
(1.2) \t\t B' = D'*D'
$$

is selfadjoint in H . We then define

$$
(1.3) \t\t H' = B' + q \t\t (form sum),
$$

which means that H' is the selfadjoint operator associated with the densely defined, closed quadratic form

(1.4) h'[u] = IID'ull 2 + llql/2ul12

with domain $p(h') = p(p') - p(q^{1/2})$, where q is regarded as a nonnegative selfadjoint operator in H .

The quadratic form h' may be called the maximal form associated with T. We define the minimal form h_0 as the closure of the restriction of h' to domain $C_0^{\infty}(\mathbb{R}^{\mathbb{m}})$, and the associated operator H_0 . There is another form h of practical interest, such that

$$
(1.5) \t\t\t h_0 \subset h \subset h'
$$

h is obtained from h' by restricting its domain to $D(D)$ \cap $D(q^{1/2})$, where D is the closure of the restriction of D' to C_0^{∞} . In other words, h is obtained by first letting $u \in C_0^{\infty}$ in (1.4), closing the two forms on the right separately and then taking the sum, whereas h_0 is obtained by closing the sum for $u \in C_0^{\infty}$. The operator H associated with h may thus be written

$$
(1.6) \tH = B + q , \tB = D^*D ,
$$

with D as defined above. Note that D is the minimal, and D' is the maximal, operator for V-ib

We note that (1.5) implies

(i.7) H 0 ~ H ~ H'

in the sense of order relation for semibounded operators (see [i, Chapter 6]).

If b and q are well-behaved, the three operators H_0 , H, and H' are identical. In general, there is no obvious reason why this should be the case. (cf. [i, Chapter 6, Section 1.6]).

The main results to be proved in this paper are

THEOREM I. $H_0 = H$.

THEOREM II. (P) is true for H.

We have no results regarding H' under the assumptions $(A1)$, $(A2)$, but we have

THEOREM !II. If (AI) is replaced by the stronger condition that $b \in L_{\tau,\alpha}^r(K^m)$ for some $p > m$, then $H' = H = H_0$.

REMARK 1.1. In [5] Simon sets $q = 0$ and chooses H (rather than H') as the definition of the Hamiltonian. To prove (P), however, he assumes that $b \in L_{\text{loc}}^{+}(\mathbb{R}^{\times})^{\vee}$; then H' = H is true by Theorem III.

REMARK 1.2. Theorems I to III can be extended to the case when q is nonreal but satisfies $|\texttt{Im } q| \leq M$ Re $q \in \texttt{L}_{\texttt{loc}}^{-}(\mathbb{R}^{m})$ instead of $(A2)$, where $M < \infty$ is a constant. In this case the operator q is m-sectorial (see [1, Chapters 5,6]), and the forms h_0 , h, h' can be defined as above with obvious modifications. The proofs given below are valid in this case too, due to a generalization of the product formula by Simon (see [2]).

The proofs of the theorems are given in the following sections. After a preliminary study of the operator D (section 2), we first prove Theorem II when q = 0 (so that H = B) (section 3), and then in the general case using the Trotter product formula (section 4). Theorem I is proved

106

4 KATO

using Theorem II (section 5). Theorem III is proved in the last section.

2. The operator D.

It is important to know when a given $u \in H$ is in $D(D)$.

LEMMA 2.1. Let $u \in H \cap H_{1,0,0}(K) \cap L_{1,0,0}(K)$ so that $v = Vu - ibu \in L_{loc}^{\bullet}$, <u>If</u> $v \in H^{\bullet}$, then $u \in L(D)$ and **Du = V** .

Proof. The assumption implies that $u \in D(D')$. We first truncate u by setting $u_n = \phi_n u$, n = 1,2,..., where $\phi_n(x) = \phi(x/n)$ and $\phi \in C_0^{\infty}(\mathbb{R}^m)$ with $\phi = 1$ identically near the origin. Then $u_n \rightarrow u$ in H and D'u = ϕ_{π} v + (V ϕ_{π})u → v \pm n H $^{\circ}$. Hence it suffices to show that $u_n \in \underline{D}(D)$.

 $w = u_n$ has the properties that $w \in H^1(\mathbb{R}^m) \cap L^{\infty}(\mathbb{R}^m)$, with compact support.

Thus it suffices to show that any such w is in $D(D)$. Let $w_{\varepsilon} = J_{\varepsilon} w$, where J_{ε} is the Friedrichs mollifier, so that $w_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^m)$ with a common compact support, $|w_{\varepsilon}| \leq M < \infty$ pointwise, and $w_{\varepsilon} \to w$ in $H^1(\mathbb{R}^m)$ as $\varepsilon \to 0$. We have also $w_c + w$ a.e. pointwise along some sequence $\varepsilon = \varepsilon_n \to 0$. Thus $\nabla w_\varepsilon \to \nabla w$ and $b w_\varepsilon \to b w$ in \underline{H}^m along the sequence. (The latter follows by dominated convergence theorem.) Hence $D'w_{\varepsilon} \rightarrow D'w$ in \underline{H}^m . Since $w_c \in C_0^\infty \subseteq \underline{D}(D)$, we conclude that $w \in \underline{D}(D)$.

3. The operator B.

THEOREM 3.1. (P) is true for H replaced by B .

Proof. This is known if b is smooth, say $b \in C^1(\mathbb{R}^m)$; see [5] for the proof. We shall prove Theorem 3.1 by a

108

 \lim inting process, approximating by with a sequence $\frac{b}{n}$ of smooth functions such that

(3.1)
$$
b_n \to b
$$
 in $L_{loc}^2(\mathbb{R}^m)^m$, $n \to \infty$.

Let D_n and $B_n = D_n^m D_n$ be defined as above with b replaced by b_n . Since (P) is true for H replaced by B_n as remarked above, Theorem 3.1 will follow if we can show that e^{-tB_n} + e^{-tB} strongly as $n \rightarrow \infty$. As is well known, for this it suffices to prove

LEMMA 3.2.
$$
(1+B_n)^{-1} \div (1+B)^{-1}
$$
 strongly, $n \to \infty$.
Since $||(1+B_n)^{-1}|| \le 1$, it suffices to show that

(3.2)
$$
u_n = (1 + B_n)^{-1} f \rightarrow (1 + B)^{-1} f
$$

for all f in a dense set in H . Thus we may assume that $t \in H \cap L^{\infty}$. The proof will be given in several steps.

 $\frac{LEMMA}{3.3}$, $\|u_n\| \le \|1\|$, $\|D_n u_n\| \le \|1\|$, and $\|u_n\|$ $\leq g \leq M < \infty$ pointwise, where $g \in H \cap L^{\infty}$ is independent of n .

Proof. (3.2) implies

(3.3)
$$
f = (1 + B_n)u_n
$$
.

Hence

$$
(f, u_n) = ||u_n||^2 + ||v_n u_n||^2
$$

because $B_n = D_n^n D_n$. The first two inequalities in the lemma follow immediately. To prove the last one, we note that the results of [5] apply to B_n . Hence (see [5, equation (8)])

$$
|u_n| = |(1 + B_n)^{-1}f| \le (1 - \Delta)^{-1}|f| \equiv g \in H \cap L^{\infty} \text{ pointwise};
$$

note that $g \in L^{\infty}$ because $f \in L^{\infty}$.

$$
^{\rm 6}
$$

KAT0

LEMMA 3.4. $\{u_n\}$ is bounded in $H_{\text{loc}}^+(R^m)$

Proof. We have V u = D_n u + ib u by (1.1). In view of Lemma 3.3 and the fact that the L^2 -norm on any bounded set in R^m of the b^n are bounded by (3.1) , the lemma follows immediately.

LEMMA 3.5. $\{u_n\}$ contains a subsequence (hereafter denoted again by $\{u_{n}\}\)$ such that there is $u \in H \cap H^{-}_{\{0\}}(R^{m}) \cap L^{m}(R^{m})$ with the properties: u n ÷ u in H as well as a.e. pointwise, and $u_n \rightarrow u$ in $H^1_{\text{loc}}(R^m)$. (\rightarrow denotes weak convergence.)

Proof. In view of Lemma 3.4, one can use the diagonal process to extract a subsequence $\{u_n\}$ weakly convergent in H_{loc}^+ to a $u \in H_{\text{loc}}^+$. This implies $u_n \rightarrow u$ in $L_{\text{loc}}^$ strongly, by Rellich's theorem. Since $|u_n| \le g \in H \cap L^{\infty}$ by Lemma 3.3, we have $u \in H \cap L^{\infty}$ and $u_n \to u$ in H. **-- n --**

LEMMA 3.6. $b_n u_n \rightarrow bu$ in $L^2_{1\cap C}(\mathbb{R}^m)^m$.

Proof. We have $b_n u_n - bu = (b_n - b)u_n + b(u_n - u)$. Since $|u_n| \leq M$, $(b_n-b)u_n \to 0$ in L_{100}^2 by (3.1). Since $|b(u_n-u)| \le 2M|b|$, $b(u_n-u) \to 0$ in L^2_{100} by dominated convergence.

LEMMA 3.7. $u = (1+B)^{-1}f$.

Proof. Let $\phi \in C_0^{\infty}(\mathbb{R}^{\mathbb{m}})$. (3.3) implies

(3.4) (f, ϕ) = (u_n, ϕ) + (D_nu_n, D_n ϕ) . But (3.5) $D_n \phi = \nabla \phi - ib_n \phi \rightarrow \nabla \phi - ib \phi = D \phi \text{ in } H^m$ by (3.1). Similarly

$$
D_n u_n = \nabla u_n - i b_n u_n \rightarrow \nabla u - i b u \text{ in } L^2_{loc}
$$

by Lemmas 3.5 and 3.6. Hence

$$
\|\triangledown u - i \mathrm{bul}_\Omega \leq \liminf_{n \to \infty} \|\mathbb{D}_n u_n\| \leq \|f\| \quad ,
$$

where \mathbb{I} \mathbb{I}_{Ω} denotes the L²-norm on a bounded set $\Omega \subset \mathbb{R}^m$. Since this is true for any such Ω , we have ∇u - ibu $\in \underline{H}^m$. Since $u \in H_{loc}^1 \cap L^{\infty}$, it follows from Lemma 2.1 that $u \in D(D)$ with $Du = \nabla u - ibu$. Thus

$$
\mathbf{D}_{n}\mathbf{u}_{n} \Delta \mathbf{D}\mathbf{u} \in \underline{\mathbf{H}}^{m} \quad \text{in} \quad \mathbf{L}_{\text{loc}}^{2}
$$

Since ϕ and the D_n ϕ have a common compact support, it follows from $(3.4-6)$ that $(f,\phi) = (u,\phi) + (Du,D\phi)$. Since this is true for all $\phi \in C_0^\infty$, which is a core for D, we conclude that $Bu = D^*Du$ exists and equals $f-u$. Hence $(1+B)u = f$ and $u = (1+B)^{-1}f$. This completes the proof of Lemma 3.2 and Theorem 3.1.

4. The operator H.

We can now complete the proof of Theorem II. Since $H = B \uparrow q$, a general convergence theorem for the Trotter product formula given in [2] can be applied to give

$$
(4.1) \qquad e^{-tH}u = \lim_{n \to \infty} \Gamma e^{-(t/n)B} e^{-(t/n)q} J^{n}u \qquad u \in \underline{H}
$$

Lemma 4.1. For $s \ge 0$ and $n = 1, 2, \ldots$, we have

$$
(4.2) \qquad | (e^{-sB}e^{-sq})^nu | \leq e^{ns\Delta} |u| \qquad \text{pointwise}.
$$

Proof. By induction. (4.2) is obvious for n = 0. Suppose it is true for an n. Then, writing $v = (e^{-sB}e^{-sq})^n$ u,

$$
|(e^{-sB}e^{-sq})^{n+1}u| = |e^{-sB}e^{-sq}v| \le e^{s\Delta}|e^{-sq}v|
$$

$$
\le e^{s\Delta}|v| \le e^{s\Delta}(e^{ns\Delta}|u|) = e^{(n+1)s\Delta}|u|,
$$

llO

KATO 9

where we have used Theorem 3.1, the positivity preserving property of $e^{S\Delta}$ twice, and (4.2) (induction hypothesis).

Lemma 4.1 shows that the vector following lim sign in (4.1) is dominated by $e^{t\Delta}|u|$ pointwise. Hence (P) follows as required.

5. The operator H_0 .

We now prove Theorem i. It suffices to show that $h_0 = h$, and this is true if (and only if) h has a core contained in $\underline{D}(h_0)$. We shall show that $\underline{E} = (1+H)^{-1}c_0^{\infty}(\mathbb{R}^m)$ is such a core. Obviously E is a core for H, hence for h too. It remains to show that $E \in D(h_0)$.

Let $u \in E$, so that $u = (1 + H)$ ff for some $f \in C_0^{\infty}$. Then

$$
(5.1) \qquad |u| \leq (1-\Delta)^{-1} |f| \in \underline{H} \cap L^{\infty}(\mathbb{R}^m)
$$

by Theorem II, which implies such a pointwise domination by [5]. Then we can repeat the arguments used in the proof of Lemma 2.1 to construct, by truncation and mollification, a sequence ${w_n}$ such that

(5.2) $w_n \in C_0^{\infty}$, $w_n \to w$ and $Dw_n \to Dw$ in H.

On the other hand, we have $u \in \underline{D}(H) \subseteq \underline{D}(h) \subseteq \underline{D}(q^{1/2})$ so that $q^{1/2}u \in H$. Recalling that the w_a have been constructed by truncation and mollification from u, which is a bounded function by (5.1), we see easily by dominated convergence theorem that

(5.3) $q^{1/2}(w_n-u) \rightarrow 0$ in H,

by going over to a subsequence if necessary. (Here the fact that $q^{1/2}u \in H$ is essential for truncation, and $u \in L^{\infty}$ is essential for mollification.)

111

It follows from (5.2-3) that

$$
h[w_n-u] = ||D(w_n-u)||^2 + ||q^{1/2}(w_n-u)||^2 \to 0
$$

Since $w_n \in C_0^{\infty}$, this proves $u \in D(h_0)$ as required.

6. The operator H'

We now prove Theorem III. It suffices to show that D' C D (so that $D' = D$). Let $u \in D(D')$.

We truncate u to $u_n = \phi_n u$ as in the proof of Lemma 2.1. Then $u_n \nightharpoonup u$ and $D^{\dagger}u_n \nightharpoonup D^{\dagger}u$ in \underline{H} . Thus it suffices to show $u_n \in L(D)$.

 $w = u_n$ has the property that it has compact support and $w \in \underline{H}$, $D'w \in \underline{H}$. We shall show that all such w are **in** D(D). We have

$$
\nabla w = p'w + ibw \in L^{p_1}
$$
, $p_1^{-1} = 2^{-1} + p^{-1}$,

because $D'w \in L^2$, $b \in L^p_{loc}$, $w \in L^2$ and w has compact support. It follows from the Sobolev imbedding theorem that

$$
w \in L^{p_2}
$$
, $p_2^{-1} = p_1^{-1} - m^{-1} = 2^{-1} - \theta$

where θ = m $^-$ - p $^+$ > 0 , provided p,< $^{\infty}$. This argument can be repeated 11ntil we have

$$
\forall w \in L^2 , w \in L^{P_0} , p_0^{-1} = 2^{-1} - m^{-1}
$$

if $m \geq 3$, $w \in L^T$ for any $r \leq \infty$ if $m = 2$, and $w \in L^{\infty}$ if $m = 1$,

Now we mollify w to w_{ε} as in the proof of Lemma 2.1. Then $\forall w_a \rightarrow \forall w$ in H and $w_c \rightarrow w$ in L phence bw \rightarrow bw in L where $s - 1$ = p₀ $+ p + 2 - 9$ so that bw \rightarrow bw in H too (with slight modifications for $m \leq 2$). Thus $D'w_{c} \rightarrow D'w$ in H. Since $w_{c} \in C_{0}^{\infty}$ and $w_{c} \rightarrow w$ in H, we have proved that $w \in D(D)$.

REFERENCES

- [1] Kato, T.: Perturbation theory for linear operators, Second Edition, Berlin-Heidelberg-New York, Springer 1976.
- [2] Kato, T.: Trotter's product formula for an arbitrary pair of selfadjoint contraction semigroups, Advances in Math., to appear.
- [3] Scheehter, M.: Essential self-adjointness of the Schrödinger operator with magnetic vector potential, $\,$ J. Functional Anal. 20 (1975), 93-104.
- L4」 Simon, B.: Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), $36\bar{1} - 370$.
- [5] Simon, B.: Kato's inequality and the comparison of semigroups, to appear.

Tosio Kato Department of Mathematics University of California Berkeley, CA. 94720, USA