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REMARKS ON SCHRODINGER OPERATORS

WITH VECTOR POTENTIALS®

Tosio Kato

Three selfadjoint realizations HO > H > H' of the
formal Schrddinger operator in R™ with a singular vector
potential b(x) and a singular scalar potential q(x) are
constructed through gquadratic forms, corresponding to the

minimal, intermediate, and maximal forms. It is shown that

. 2 1 _

if b € Lloc and 0 < g € L}oc , then H0 = H and the
pointwise domination [e_tHuI < etAIu] holds for t > 0
and u € L2. If in addition b € LP with some p > m ,

loc
then H' = H holds.

1. Introduction.

Consider the formal Schrodinger operator in rR® .

m
(T) T = =(V-ib(x))%4q(x) == J (d_-ib_(x))% +q(x) ,

L k k

k=1
where dk = d/dxk s b = (bl”"’bm) is a real vector-
valued function, and q 1is a real scalar-valued function

m

on R,

T . .
“This work was partially supported by NSF Grant
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2 KATO

It was shown by Simon [5] that under certain condi-
tions, a selfadjoint realization H of T in H = L2(Rm)
can be constructed with the property, among others, that

iy

(P) |e~tHu[ etA]u| a.e. pointwise on R ,

where t > 0, u € H, and A denotes the cancnical realiza-

tion in H of the Laplacian (with domain D(A) = HZ(Rm),

the Sobolev space). Simon assumes, for example, that

b e Lioe , div b =0 and g = 0, for m = 3, but conjec-
tures that b € Lioc would suffice. (See [5] for various
consequences of (P). See also Schechter [3] and Simon [4]

for the essential selfadjointness of T .)

In what follows we shall prove (P) under the

assumptions
2 m,m
(ALD) b g Lloc(R )
(A2) 0<qgell M
- loc ?

thus verifying Simon's conjecture. Note that we assume

nothing about div b .

The definition of H is by no means trivial in this
case, however, and several different choices are possible.

We define H through quadratic forms (as Simon does), but

this statement 1is still vague. To be more precise, it is

convenient to define a linear operator D' from H to 5@ by
(1.1) D'u = Vu - ibu .

The domain D(D') of D' consists of all u € H for which
the right member of (1.1), taken in the distribution sense,
belongs to ﬂm . It is essential here that bu € L%oc by

(A1) so that (1.1) makes sense as a distribution.

It is easy to see that D' thus defined is a densely
defined, closed operator from H to §w . Thus

104



KATO
(1.2) B' = D'*p"
is selfadjoint in H . We then define
(1.3) H' = B' + q (form sum),

which means that H' is the selfadjoint operator associated

with the densely defined, closed quadratic form
(1.1 htlul = Iprul? + 1g1/ 2,02

with domain D(h') = D(D') N Q(ql/z), where q is regarded

as a nonnegative selfadjoint operator in H .

The quadratic form h' may be called the maximal form
assoclated with T . We define the minimal form h0 as
the closure of the restriction of h' to domain CB(Rm),
and the associated operator H, . There is another form

0
h of practical interest, such that

(1.5) thhch' 5

h 1is obtained from h' by restricting its domain to

DD N Q(ql/Z), where D is the closure of the restriction
of D' to Cg . In other words, h 1is obtained by first

letting u € CE in (1.4), closing the two forms on the
right separately and then taking the sum, whereas hO is

obtained by closing the sum for u € Cg . The operator H

associated with h may thus be written
(1.5) H=B+ q, B = DD ,

with D as defined above. Note that D is the minimal,

and D' is the maximal, operator for V-ib ,

We note that (1.5) implies

(1.7} Hy 2 H2> H'
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n KATO

in the sense of order relation for semibounded operators
(see {1, Chapter 61).

If b and ¢ are well-behaved, the three operators
HO’ H, and H' are identical. 1In general, there is no
obvious reason why this should be the case. (cf. [1,
Chapter 6, Section 1.61]).

The main results to be proved in this paper are

THEOREM I. HO = H .
THEOREM II. (P) is true for H .

We have no results regarding H' wunder the assumptions
(Al), (A2), but we have

THEOREM ITI. If (Al) is replaced by the stronger condition

P m.m Tt — 1] -
that b € Lloc(R ) for some p > m, then H' = H = Hy -

REMARK 1,1. 1In [5] Simon sets gq = 0 and chooses H
(rather than H') as the definition of the Hamiltonian.
To prove (P), however, he assumes that b € L;OC(RS)3 H
then H' = H is true by Theorem III,

REMARK 1,2, Theorems I to IIL can be extended to the case
when q 1is nonreal but satisfies |Im q| < M Re q € L%oc(Rm)
instead of (A2), where M < » 1is a constant. In this case
the operator q 1is m-sectorial (see [1, Chapters 5,61),

and the forms hO’ h, h' can be defined as above with
obvious modifications. The proofs given below are valid in
this case too, due to a generalization of the product form-

ula by Simon (see [2]).

The proofs of the theorems are given in the following
sections. After a preliminary study of the operator D
(section 2), we first prove Theorem II when ¢q = 0 (so that
H = B) (section 3), and then in the general case using the

Trotter product formula (section 4). Theorem I is proved
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KATO 5

using Theorem II (section 5). Theorem III is proved in the

last section.

2. The operator D.

It is important to know when a given u € H is in
D(D) .

LEMMA 2.1, Let ue€HnH_ (&M nLY (™ so that
v = Vu - ibu € Lioc If ve g? , then u € D(D) and

Du=v .

Proof. The assumption implies that wu € D(D'). We first
truncate u by setting u, = ¢nu s, n=1,2,..., where
¢n(x) = ¢(x/n) and ¢ € Cg(Rm) with ¢ = 1 identically
near the origin. Then u, >u in H and D'un =

¢nv + (V¢n)u +v in H
u_ € D(D).

n- =2

Hence it suffices to show that

wos U has the properties that

w e BHER™ N L®(R™), with compact support.

Thus it suffices to show that any such w is in D(D).

Let w_ = J.w, where JE ig the Friedrichs mollifier, so
that w_€ CE(Rm) with a common compact support,

]Wsl < M < » pointwise, and w, W in HL@®™) as e+ 0 .
We have also Ww. T W a.e. pointwise along some sequence

e =€, > 0. Thus ng - Vw and bws + bw in Em along
the sequence. (The latter follows by dominated convergence
theorem.) Hence D'w8 = D'w in E@ . Since

w, € CE'C D(D), we conclude that w € D(D),

3. The operator B.

THEOREM 3.1. (P) is true for H replaced by B .

Proof. This is known if b is smooth, say b € Cl(Rm);
see [5] for the proof. We shall prove Theorem 3.1 by a
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6 KATO

limiting process, approximating b with a sequence bn of

smooth functions such that

(3.1) b > b in L2 (™

loc s BT e

Let D and B = D’D  be defined as above with b re-
placed by b_ . Since (P) is true for H replaced by Bn
as remarked above, Theorem 3.1 will follow if we can show

that e tBn , o~tB strongly as n + « . As is well known,
for this it suffices to prove

LEMMA 3.2. (1+Bn>‘l » (1+B)"1 strongly, n -+ = .

Since H(1+Bn)-lﬂ <1 , it suffices to show that

(3.2) u = (1B 7HE 5 (14B)7IE

n n
for all f in a dense set in H . Thus we may assume that
fein L. . The proof will be given in several steps.
LEMMA 3.3, fu I < 0fll , ID u I < KFF , and {u_|
———— n - nn - —_— n

< g8 <M< o pointwise, where g € H n L* is independent

of n
Proof., (3.2) implies

(3.3) f= (l+Bn)un .

Hence

12 12

= +
(f,un) “un Ianur1

because Bn = D;;Dn . The first two inequalities in the
lemma follow immediately. To prove the last one, we note
that the results of [5] apply to B, . Hence (see [5, equa-
tion (8)1)

lu | = [(1+Bn)'lf| < (1-0)7YF] = g €H N1 pointwise;

note that g &€ L*® because f € L® .
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_ .1 om
LEMMA 3.4.  {u } is bounded in Hy (R")

Proof. We have Vu_ = D u_ + ib_u by (1.1). In view of
—— n nn nn

Lemma 3.3 and the fact that the L2-norm on any bounded set
in R™ of the b" are bounded by (3.1), the lemma follows
immediately.

LEMMA 3.5. {un} contains a subsequence (hereafter denoted

again by {un}) such that there is u € ErﬁH%OC(Rm)r\Lm(Rm)

with the properties: wup »u in H as well as a.e. point~

wise, and u = u in H} (R™). ( = denotes weak
—_— — n — loc

convergence. )

Proof. In view of Lemma 3.4, one can use the diagonal pro-
cess to extract a subsequence {un} weakly convergent in
1 1 2

Hloc toa u¢€ Hloc . This implies u - u in Lloc

strongly, by Rellich's theorem. Since [unI <g €HnNL”

by Lemma 3.3, we have u € H N LY and u »u in H.

LEMMA 3.6. b u_ - bu in L2 (RM™

e n n — loc

Proof. We have b_u_ - bu = {(b_-blu_ + b(u_-u) . Since
. 2 .

]unl <M, (b -b)u + 0 in L;__ by (3.1). Since

2

loc by dominated

]b(un—u)] < 2M|b| , b(un—u) -0 in L

convergence.
LEMMA 3.7. u = (1+B)™%f .

Proof. Let ¢ € C?(Rm). (3.3) implies

(3.4) (£,6) = (u_,%) + (D_u_,D_¢) ,
n nn’’n
But
(3.5) Dn¢ = V¢ - ibn¢ > V¢p - ib¢ = D¢ in

I,

by (3.1). Similarly
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. . . 2
= - Y -
Dnun Vun lbnun vu ibu in Lloc
by Lemmas 3.5 and 3.5. Hence
lvu - ibul, < lim inf 1D u | < Ff£h
Q - nn -
1)+
where | II‘Q denotes the L2-norm on a bounded set o c R .

Since this is true for any such § , we have Vu - ibu & E?.

%oc n LY , it follows from Lemma 2.1 that

u € (D) with Du = vu - ibu . Thus

Since u € H

(3.8) DuDued in LI .
Since ¢ and the Dn¢ have a common compact support, it
follows from (3.4-8) that (f,$) = (u,¢) + (Du,D¢). Since
this is true for all ¢ € C;
conclude that Bu = D*Du  exists and equals f-u . Hence
(14B)u = £ and u = (1+B)™'F . This completes the proof

of Lemma 3.2 and Theorem 3.1.

, which is a core for D, we

4. The operator H.

We can now complete the proof of Theorem II. Since
H =B+ g, a general convergence theorem for the Trotter

product formula given in [2] can be applied to give

4.1 ety = lim rg—(t/n)Be—(t/n)q]nu R uEH .
-

Lemma 4.1. For s >0 and n = 1,2,..., we have

(4.2) I(e_SBe_Sq)nu] < enSA]u[ pointwise .

Proof. By induction, (4.2) is obvious for n = 0. Suppose
_SBe_Sq)nu

it is true for an n . Then, writing v = (e s

I(e_SBe—Sq)n+lul = |e—SBe—qu| < eSA!e_qu]

< eSAlvl < esA(ensA|u() - e(n+l)SA|u|
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where we have used Theorem 3.1, the positivity preserving

property of eSh twice, and (4.2) (induction hypothesis).

Lemma 4.1 shows that the vector following lim sign in
(4.1) is dominated by etAIuI pointwise. Hence (P)

follows as required.

5. The operator HO .

We now prove Theorem I. It suffices to show that
hO = h , and this is true if (and only if) h has a core
contained in D(h,). We shall show that E = (l+H)_lC§(Rm)
is such a core. Obviously E is a core for H, hence for

h too. It remains to show that E € Q(ho).

Let u € E , so that u = (1+H)"%f for some f € Cg .

Then

(5.1) lul 2 (1-0)71f] € B n L2@E)

by Theorem II, which implies such a pointwise domination by
[5]. Then we can repeat the arguments used in the proof of
Lemma 2.1 to construct, by truncation and mollification, a

sequence {w_ } such that

(5.2) w €C., w.+w and Dw_ =+ Dw in H .
n 0 n n 2

On the other hand, we have u & D(H) C D(h) C E(ql/z)
so that ql/zu € H . Recalling that the W have been con-
structed by truncation and mollification from u, which is a
bounded function by (5,1), we see easily by dominated con-

vergence theorem that

H

(5.3) ql/z(wn—u) -+ 0 in H
by going over to a subsequence if necessary. (Here the fact
that ql/zu € H is essential for truncation, and u € L%

is essential for mollification.)
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10 KATO
It follows from (5.2-3) that

nlw_-ul = IDGe ~wd1? + 192G w12 > o

Since w, € CE , this proves u €& Q(ho) as required.

6. The operator H'

We now prove Theorem III. It suffices to show that
P
D' ¢D (so that D' = D). Let u € D(D").

We truncate u to u, o= ¢nu as in the proof of
Lemma 2.1. Then wu ~» u and D'u > D'u in H . Thus it
suffices to show u € D(D.

WoEou has the property that it has compact support
and we€ H , D'w € H . We shall show that all such w are
in D(D). We have

D . _ }
vw=Dw+dibw€ LT, pTh=oThaph

2 2

because D'w € L“, b € Lgoc , W& L

support. It follows from the Sobolev imbedding theorem that

and w has compact

where 8 = m~ % - p_l > 0 , provided P, < ® . This argu-

ment can be repeated 'mt31 we have

P - - -
Vw € L2 s WE L 0 » Py L. 2 1o m 1

if m2>3, we L' for any v < if m = 2, and w€ L%
if m= 1.

Now we mollify w to w, as in thepgroof of Lemma Z.L
Then Vw_ + Vw in H and wg »w in L ~, hence bw€+ bw
in 1% where s % = po—l +pd o= 2™l _ 9 so that bw_ -+ bw
in H too (with slight modifications for m ¢ 2). Thﬁs
D'we > D'w in H. Since W, € CE and w_ » w in H, we have

proved that w € D(D).

112



XATO

[
[

REFERENCES

[1] Xate, T.: Perturbation theory for linear operators,
Second Edition, Berlin-Heidelberg-New York, Springer
1978,

[2] Xato, T.: Trotter's product formula for an arbitrary
pair of selfadjoint contraction semigroups, Advances
in Math., to appear.

[3] Schechter, M.: Essential self-adjointness of the
Schrddinger operator with magnetic vector potential,
J. Functional Anal. 20 (1975), 93-104,

(4] Simon, B.: Schrddinger operators with singular
magnetic vector potentials, Math. Z. 131 (1973),
361-370.

[5] Simon, B.: KXato's inequality and the comparison of

semigroups, to appear.

Tosio Kato

Department of Mathematics
University of California
Berkeley, CA. 94720, USA

113



