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OPERATORS THAT ARE POINTS OF SPECTRAL CONTINUITY

John B. Conway* and Bernard B. Morrel

In this paper a characterization is obtained of those
bounded operators on a Hilbert space at which the spectrum is
continuous, where the spectrum is considered as a function
whose domain is the set of all operators with the norm topology
and whose range is the set of compact subsets of the plane with
the Hausdorff metric. Similar characterizations of the points
of continuity of the Weyl spectrum, the spectral radius, and
the essential spectral radius are also obtained.
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Let B(H) denote the algebra of bounded linear operators
on a separable complex Hilbert space H . If A e B(H) , then
o(A) ={x e : A - A is not invertible} denotes the spectrum
of A, while r{A} = max{{A] : 2 € o(A)} denotes the spectral
radius of A . If S 1is the collection of compact subsets of
C equipped with the Hausdorff metric, then ¢ : B(H) + 8 is a
mapping from one metric space onto another,

A well-known example due to Kakutani ([13], Solution 87)
gives a sequence of nilpotent operators, i.e., operators whose
spectrum is the singleton {0} , which converges to an operator
whose spectrum is the closed unit disk, {z : Jz| < 1} . This
example shows that ¢ and r both have points of discontinuity
and it leads one to ask: "What are the points of continuity of
g f(or r )?" In this paper, we consider and answer both of the
questions above as well as several other related ones.

Recall that if BO(H) is the ideal of compact operators
on H and ™ : B(H) > B(H)/BO(H) is the natural projection
map, then the essential spectrum of A 1is defined by Ue(A) =
o(m(A)) and the essential spectral radius is defined by
ro(A) = max{|X] : A e Oe(A)} . The points of continuity of
re B(H) » [0,2) are characterized in this paper as well as
the points of continuity of the Weyl spectrum Oy B(H) = S

defined by UW(A) =Mo(A+K) : Ke BO(H)}

Let F denote the Fredholm operators and SF the collec-
tion of semi-Fredholm operators in B(H) [11].

Let P, (A) ={reC:Xx-Ag€SF and ind(r - A) # 0},
where 1ind(T) 1is the index of an operator T in SF defined
by ind(T) = dim[ker T] - dim[ker T*] . Let OS(A) be the col-
lection of isolated eigenvalues of A for which the correspond-
ing spectral projection (via the Riesz functional calculus) has
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finite rank. For each A 1in B(H) , gze(A) and o, (A) de-
note the left and right spectrum of x(A) in B{(H)/B (H) .
50, 0(A) = 0,g(A) U o, (A) . Finally put o"(a) = 0<A> !

[GZE(A) N Ore(A)] . In Theorem 3.1 it is shown that
g : B(H) ~ S 1is continuous at A if and only if every non-
empty relatively open subset of oO(AY\[P+(A)]' contains a

component of o{A)

The characterization of the points of continuity of o,
(Theorem 3.6) is couched in similar terms. To characterize
the points of continuity of r and re (Theorems 2.6 and
2.15), certain auxilary scalar-valued functions that are re-

lated to P,{A) and gO(A) are introduced.

o
To be sure, this paper has its predecessors. Newburgh
[18] seems to be the first to have systematically investigated
the continuity of the spectrum. He showed that the spectrum
of an element of a Banach algebra is upper semicontinuous and
that the spectrum is continuous at any element with totally
disconnected spectrum, In addition, he showed that the spec-
trum is continuous on an abelian Banach algebra. Moreover,
he proved that if a sequence of operators {A} in B(H) con-
verges to A and each An satisfies a growth condition on its
resolvent, then {g(An)} converges to of{A) in S . It is a
corollary of this last result that if An -+ A and each An is
normal, then g(An) » g{A} in S . HNewburgh alsc proves several
results concerning the continuity of the spectrum of closed
operators. Newburgh's paper does not seem to be well known and
the literature contains several papers that reprove some of his

results.

Some extensions and refinements of Newburgh's results for

closed operators can be found in [5] and [16].
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This paper is organized in three sections. In section one
the notation is introduced and some preliminary results are pre-
sented. In section two several scalar-valued functions on
B(H) are introduced, their semicontinuity properties are dis-
cussed, and these results are used to determine points of con-
tinuity of the spectral radius and the essential spectral
radius. In section three the points of continuity of the set

valued maps ¢ and o, are characterized.

§1 Notation and Preliminaries

For a subset X of the complex plane, X  denotes its
closure, int X its interior, and 3X = X~ 0 [€\X]  its bound-
ary. If >0, let (X)8 ={zel : dist{z,X) < e} . For
A in € and ¢ > 0, B{x:e) denotes the ball of radius ¢
centered at A . Finally, [ denotes the empty set.

A11 Hilbert spaces considered here are separable. In addi-
tion to the notation given in the introduction, let Pn(A) =
Zeog(h) :x-AgsS and ind(x - A) =n} for ne ZU {i=}
Hence, P (A) = U{Pn(A) :n # 0}

Several facts concerning the left essential spectrum and
the Weyl spectrum can be found in [11]. Among them is the fol-
lowing result due to Schechter [19].

1.1 THEOREM. o (A) = oe(A) U Pt(A) .

The following result is undoubtedly known but the authors
are unable to find a reference for it. In any case the proof
follows easily from results of [11].

1.2 PROPOSITION. If A € B(H)} , then

0g(A) = Do) Mo, (AT U P, (A) UP_(A) .
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It follows from the preceding proposition that

aPi(A) S0y (A) Mo (A) .
1.3 PROPOSITION. If C is a component of GZE(A) n Ure(A)

and ¢ N[P.(A))" = [J, then C is a component of o,,(A) ,

5ofh) . and o (A) . B

Proof. Let D be the component of oe(A) such that C D .
By Proposition 1.2,

D= (0 Ny (A) No M) U (D NP, (A)

Let K=0D10 [Gﬁe(A) n Ure(A)] 3 so either K =C or K is

not connected. If K fails to be connected, then K = K1 U K2 ,
where K, and1 K, are disjoint compact sets that € Ky g (C)€
with 0 < ¢ < idist(C,Pt(A)_) ({121, 16.15).

dist(Kw,P+w(A)) > 0, and so

dist(K],K2 uifpn ij(A)]) >0 .

Since D = K1 U {K2 ulon P,.(A)]} is connected and Ky is non-
empty, it must be that K, =D NP _(A) =[] . Thus D=¢C,
and C 1is a component of oe(A) . The other cases follow simi-

Tarly.

Denote by S the collection of compact subsets of € and
by 31 the collection of all bounded subsets of € . One can
define the Hausdorff metric on 5, ({91, p. 205), but the dis-
tance between two elements of S1 is positive if and only if
their closures are unequal. So this metric is a true metric
only if it is restricted to S . Nevertheless it is a pseudo-
metric on S1 . Also the distance between the empty set and any
nonempty bounded set is 1 . If (X,p) is a metric space and
if f: X+ 38 fisa function, then f ds said to be upper
(Tower) semicontinuous at Xy if, for each ¢ > 0 , there is a
§ > 0 such that p(X,XO) < § implies f(x)c (f(xo))E
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(respectively, f(xo) o (f(x))e) . One can show that f is
continuous at Xg if it is both upper and lower semicontinuous

at XO .
The following result is well known.

1.4 LEMMA. (a) o : B(H) ~ S is upper semicontinuous.

(b} o_ : B(H) -~ S is upper semicontinuous.
{¢) If ~=w<nge, P, B(H) > 54 is lower semicon-

tinuous.

(d) », : B{H) ~ 84 is Tower semicontinuous.

Proof. Parts (a) and (b) follow from [18]. To prove (c), let

Ak A, let £> 0, and et K be a compact subset of Pn(A)
such that Pn(A) c (K)E . Since ind(} - Ak) + ind(Ax - A} = n
for each ) in K , an elementary argument yields the exist-
ence of an integer ny such that 1ind{} - Ak) =n for all X
in K and all k > ng - Thus, Pn(A) c (K ¢ (Pn(Ak))E for
k > ny - Part (d) follows similarly. (Both parts (c) and (d)
can be obtained from Theorem 1 of [14].) @

If AeB(H) and X is a subset of o(A) that is both
open and closed in o(A) , let E(X;A) denote the correspond-
ing spectral projection ([10], p. 572),

E(XGA) = gj—ﬂ—f (z - &) N4z ,
r

for an appropriate choice of contour T .

The next lTemma will be used very often in this paper. The
essence of its proof can be found in the literature (e.g., in

[18]), but it is stated and proved here for the convenience of
the reader.

1.5 LEMMA. Suppose that An + A in B{H) .
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(a) If € is a component of o(A) and U is an open set

containing C , then there is an integer o such that for

U contains a component of oA ) .

n> n. ,
-0
(b) If C is a component of oe(A) and U is an open

set containing C , then there is an integer "o such that for

nxng o, U contains a component of oe(An) .

Proof. The following proof works for any Banach algebra, so

that only part (a) is proved.

By 16.15 of [12], o(A) = X] u X2 where X, and X, are
disjoint nonempty compact sets with C c X] = U . Choose
e > 0 such that (X1)a n (Xz)e =[] and (X])E cU . Let "
be an integer such that for n > ny s o(An) ;‘(G(A))E (Lemma
1.4 (a)). Thus, (X1)E n o(An) is both open and closed in
U(An) if n» ny - It follows that E((X1)€ n g(An);An) >
E((XW)E;A) and hence there is an integer ng z Ny such that
for n 3 ng s E((X1)E n g(An);An) # 0 . Hence,
(X])E n o(An) # [0 for nzny s since (X1)€ n g(An) is both
open and closed in o(An) , (X1)A must contain a component

of 5(/—\ ) ‘

n

For the convenience of the reader, the following result
from [4] (Theorem 3.1) is stated. This theorem will be used
frequently.

1.6 THEOREM (Apostol and Morrel). If A is a nonempty subset
of € and A e B(H), then there is a sequence {A '} of oper-
ators in B(#) such that o(A ) <4 for every n and
[|A - A ]| >0 if and only if:
(a) P(A)cas
(b) Every component of ¢

O(A) meets A



Conway et al. 181

§2 The Continuity of the Spectral Radius

If A€ B(H) , then the spectral radius of A s defined
by r(A) =max{|a] : A € o(A)} . It is well known that

n 1/n " 1/n
eA) = i [1AT] = i AT

The first of these equalities asserts that r is the pointwise
limit of a sequence of continuous functions from B(H) into
[0=) (viz., A~ 1[Ani|]/n) . Thus the set of points of con-
tinuity of r s a set of the second category. That r has
discontinuities follows from the aforementioned example of
Kakutani ([13], Solution 87).

The second of the above equalities asserts that r 1is the
infimum of a sequence of continuous functions, and hence that

r is upper semicontinuous.

To characterize the points of continuity of r it is
necessary to introduce several new functions from B(H) into
[0.) .

DEFINITION. If A g B(H) and P,(A) = [J , define 3(A) = 0 ;
if P(A) # . let a(A) =sup{[a] : 1 &P, (A)

2.1 LEMMA. The function p : B(H) > [0,») 1is lower semicon-

tinuous.

This follows from Theorem 1 of [14] and the fact that
{Te S :ind T # 0} 1is open in B(H) .

DEFINITION. If A g B(H) , define 4(A) e [0,») by
§CA) = sup{inf{{x] : A € C} : C 1is a component of
0
o,(A) v op(A)} .

Finally, define a(A) by ofA) = max{p(A),8(A)}
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2.2 LEMMA. The function & : B(H) » [Ow) is lower semicon-
tinuous.

Proof. It must be shown that {A g B(H) : §(A) > o} s open
for each p > 0 . If this is false, then there is an A in
B(H) and a sequence A} from B(H) such that

(A Y < o< s(A) and ]|An -All +0 as n+o , let

n
o< py<6(A) andput U ={z: |z| > oy} . From the defini-

tion of &(A) , there is a component C of oe(A) U cg(A) that
is contained in U . If C §§<30(A), then € 1is a component of

s(A) and, by Lemma 1.5, there is an ny such that for nzny,
U contains a component Cn of o(An) . Since C = {3} for
some A in gg(A) ,it is easy to see that for sufficiently

0
p(An) . Hence,
) > 1xn1 >0y 52 contradiction. If € 1is a component of

large n , Cn = {xn} for same An in ¢
(A,
ge(A) , then Lemma 1.5 (b) implies that U contains a component
of oe(An) for sufficiently large n , and hence 6(An) 2 0y >
a contradiction.

2.3 COROLLARY. The function o : B{H) + [0.,=) 1is lower semi-

continuous.

DEFINITION. For A in B(H) define SO(A) and 8,(A) by

5O(A) S sup{inf{|a] : » € C} : C = a component of
o (AN}

6x(A) = sup{inf{|A}| : A € D} : D = a component of
a(A)}

2.4 LEMMA. &,.{(A) < s(A) < sO(A) .

Proof. We only prove that §,(A) < &(A) , since the proof of
the other half is similar. Suppose &.(A) > o> 0 ; it must be
shown that &{A) » o . Let D be a component of o(A) such

that inf{{x| : » ¢ D} > o and let ;e D such that {xoi



Conway et al. 183

equals this infimum. So 1A0| >p and A € 3D c 30(A) <
0 0 _ .
op(A) U [OZe(A) n Ore(A)]O' If D g;op(A) then D = {AO} is
a component of ge(A) U op(A) and so §(A) > p . If
= (
5D g;oze(A) N Ore(A) g(je(A) , let C = the component of ce\A)
such that ;e C . It follows that Cg D . Hence, EAO]

inf{{A] A €Dl < inf{{A] : A e C} < s(A) and 6(A)>p . B

Note that the inequalities in Lemma 2.4 may be strict. Let
D={z:|z] <1} and U={z:1¢ |z] < 2} ; et S be the
unilateral shift of multiplicity 1 and let T be multiplication
by z on AZ(U) , the space of square integrable analytic func-
tionson U . If A=S@&TOTE ..., then §.(A) =0

§(A) =1, and 5O(A) =2 .

2.5 LEMMA. ofA) = max{g(A),éO(A)} .

Procf. By Lemma 2.4, &(A) < 50(

A) so afA) < ag(h)
max{g(A),85(A)} . If a (A) = g(A

B

{

) =
} , then clearly ag (A) < afA)
(R) . Let 5O(A) > p > B(A)
and et € be a component of ¢ (A) such that

inf{jaA] : 2 eC>p . Thus CN [P+(A)]_ =[] . Hence, C is
either a component of oO(A) or, by—Proposition 1.3, € is a

So suppose that o.(A) = §,.(A) >
0 O 0

component of ce(A) ; that is, C s a component of

oe(A) U gg(A) . Hence &(A) > p and so 50(A) < 6(A) . There-
fore, uO(A) < alA) and equality obtains. |l

2.6 THEOREM. The spectral radius is continuous at A if and

only if r(A) = «(A) . -

Proof. Suppose that r(A) = o(A) and that An - A . Since r
is upper semicontinuous and o is lower semicontinuous and
asr, r(A) = qlA) < lim inf u(An) < 1im sup r(An) < r(A) .
Therefore, r(A) = lim r(An) .
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Now suppose that r{(A) > a{A) and choose p such that
r(A)>po>alA) . Let D={zeC:|z] <p} . Since a(A) <o,
Lemma 2.5 implies that P+(A) <D and that every component of
oO(A) meets D . By the resuit of Apostol and Morrel (Theorem
1.6), there is a sequence {An} in B(H) such that c(An) <D
for each n and |[|A - A[] ~0 as n~><w . Thus, r(A,) <o
for each n and r{A) # lim r(An) .8

REMARK. It is possible to show that o is continuous at A
if and only if r 1is continuous at A (that is, r(A) = a(A))
The proof of this fact necessitates improving the results of
Apostol and Morrel [4] and will appear elsewhere.

2.7 COROLLARY. If s8,(A) =r(A) , then r is continuous at
A .

2.8 COROLLARY. If A is a normal operator, then r 1is con-
tinuous at A if and only if r(A) = §,(A) .

Proof. If A 1is normal, then P+(A) = [ and, since # is
separable, ¢(A) = oO(A) s 50 alA) = 8,(A) .0

2.9 COROLLARY. Every isometry is a point of continuity of r .

Proof. If A 1is an isometry then, by the Wold-von Neumann de-
composition, A =S@W, S ,or W,where S is a unilateral
shift and W 1is a unitary operator. In any case aO(A) =1

so that o(A) =r(A) =1 .

2.10 COROLLARY. If of(A) is totally disconnected, then r is
continuous at A . In particular, r 1is continuous at each

compact operator.

Proof. It is clear that &,(A) = r{a) .

Corollary 2.10 follows from results in [18] where it is
shown that o : B(H) = S 1is continuous at each operator with
totally disconnected spectrum.
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We now characterize the points of continuity of the essen-
tial spectral radius defined by re(A) =max{|x| : A € oe(A)} .
Many of the proofs here are similar to the proofs of the analo-
gous facts used to characterize the points of continuity of r .
When this is the case, the appropriate proof will be referenced
and the details of the proof will be left to the reader.

DEFINITION. For an operator A in B(H) , define

5Oe(A) = sup{inf{|x] : A € C} : C = a component of
n
OZe(A) Ore(A)} ,
5E(A) = sup{inf{[a] : » € D} : D = a component of
Oe(A)} s
and ae(A) = max{B(A),6e(A)} .

2.11 LEMMA, Se is lower semicontinuous.

2.12 CORCLLARY. Gy is Jower semicontinuous.

Oe(A) ’

The proof of Lemma 2.171 is similar to that of Lemma 2.2,
while that of Lemma 2.13 follows that of Lemma 2.4.

(A)} .
Proof. Let qu(A) maxtB(A),SOe(A)} . By Lemma 2.13,

ae(A) < aoe(A) . The other half of this inequality is proved

as the corresponding fact in Lemma 2.5. W

2.13 LEMMA. se(A) <8

2.14 LEMMA. ae(A) = max{B(A),SOe

2.15 THEOREM. The essential spectral radius is continuous at

A if and only if ue(A) = re(A) .

Proof. As in the proof of Theorem 2.6, if ue(A) = re(A) , then
ro s continuous at A . So suppose that ae(A) <p< re(A)
and put D ={ze € : [z] <o} . According to Theorem 4 of [20]

(also see [17]), there is a compact operator K on H such
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that oA + K) = GW(A) . So ofA +K) = oe(A) uPp,.(A) by

Theorem 1.1 and the fact that Ta and P+ are 1n§ar1ant under

compact perturbations. Now OO(A +K) = BKE(A) fl Ore(A) and

0
(

so every component of o (A + K) meets D by Lemma 2.14. Since

P.(A+K) =P (A)= D, Theorem 1.6 implies there is a sequence
{An} of bounded operators on H such that o(An) <D for all
n and A +A+ K. So A - K->A andsince o (A - K) =

n n s e'’'n
ce(An) <D, re(An -K)=r
is not continuous at A . W

e(An) < p for all n . Hence, "
REMARKS. As was the case for the points of continuity of a ,
refinements of the results of Apostol and Morrel [4] may be used
to show that &g is continucus at A if and only if T is
continuous at A . It is also possible to show that 28 is con-
tinuous at A if and only if g(A) = re(A) . Notice, however,
that B(I) =0<1 = re(I) = ae(I) , so that re is continuous
at I , but g8 1is not.

2.16 COROLLARY. If A 1is a normal operator, then r, is con-

tinuous at A if and only if ée(A) = re(A) .

2.17 COROLLARY. r_ is continuous at every isometry.

e
2.18 COROLLARY. If oe(A) is totally disconnected, then v,
is continuous at A .

This section concludes with a discussion of the relation-

ship between the points of continuity of r and r

e
2.19 PROPOSITION. If r_  1is continuous at A , then r is

- e —

continuous at A .

Proof. If re(A) = r(A) , then r{A) = re(A) = ue(A) < alA) <
r{A} , so r 1is continuous at A . Suppose re(A) < r(p) ,
and Tet X € o(A) such that |[a] = r{A) . Then

A e so(h) g oegA) U og(A) . But re(A) < r(A) implies that
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X é ce(A) , and so, A € oO(A) . That is, {A} 1is a component
of oe(A) u OS(A) . Therefore, §(A) = [A] = r(A) , and s0, r

is continuous at A by Theorem 2.5. W

The converse of Proposition 2.19 is not true. In fact,
let A=T7 8D, where T ds multiplication by the independent
variable on L2[0,1] and D is the diagonal operator with
entries {1 + %&2=1 , each with multiplicity one. Then §(A) =
r(A) =2, re(A) =1, but ue(A) =8 (A)y=0.

It is precisely the presence of points in og(A) in the
preceding example that makes A a point of continuity of r .

2.20 PROPOSITION. If A € B(H} and sg(A) =[] and r is
continuous at A , then o is continuous at A .

Proof. Since r is continuous at A , af(A) = r(A) . As in
the proof of Proposition 2.19, if re(A) < r{A) , then r(A)
is attained at a point in GO(A) . Since it is assumed here
that oO(A) =[] , it must be that re(A) = r{(A) . Thus, if

a(A) = 8(A) , then 3(A) = ue(A) = re(A) and re is continu-
ous at A . Otherwise, by Lemma 2.5, GO(A) = r(A) . So if
e >0 , there is a component C of oO(A) = Oﬁe(A) n Ore(A)
such that |x] > r{A) - ¢ = re(A) - ¢ forall x» in C .
Thus, oOe(A) = r (A} , and so, by Lemma 2.14, o (A) = r (A)

e e e
and T is continuous at A . W

3 The Points of Continuity of the Spectrum

Recall that S denotes the collection of compact subsets
of € furnished with the Hausdorff metric.

3.1 THEGREM. If A € B(H) , then the following are logically
equivalent statements.

(a) o : B(H) » S is continuous at A .
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) For each A in o(ANIP,(A)]" and e > 0, the ball

(b
e} contains a component of QO(A) .

(¢) If {C,:1gl} are the components of o A) and if
each i in I a point Ay is chosen from C; » then

o(A) = [P (A)u (a; = Te D]

B(xs

O

(d)y 1If {zj : je Jd} is the collection of points in
gO(A) such that {{zj} : Je dy is the collection of trivial
components of gO(A) , then

[Pt(A) uiz;=de A1 =o(A) .

Before proving this theorem, some of its consequences will
be examined. Notice that condition {b) says that each point
in o(A)\[P+(A)]' is approachable by points in 5O(A) . This
yields the following corollary.

3.2 COROLLARY. If o : B(H) - S is continuous at A , then
int Po(A) = [0 .

Proof. PO( Y= {xeol(A) : A-2 is Fredholm and ind(A - A)

= 0} consists of ¢ (A) together with the interior of P, (A) .
Observing that Py (ANIP (AT, that

[int PO(A)] no (A) = [] , and app1y1ng part {b) of Theorem

3.1, we see that int PO(A) = .8

0
p 0(
(A) =

By the work of Douglas and Pearcy [7] and Apostol, Foias,
and Voiculescu ([17, [2], and [3]), an operator A 1is biquasi-
triangular if and only if P_(A) = 1. (Also see [8].) In
particular, every normal operator is biguasitriangular.

3.3 COROLLARY. If A 1is a biquasitriangular operator, then
the following statements are logically equivalent.

{a) o : B(H) + 8 is

(b) For each A in o(A) and e> 0, B(x;e) contains
a component of oD(A) .

continuous at A .
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() If {(C,: 1€ 1} are the components of s9(m) and if
©

in I apoint i, 1s chosen from C, , then

for each
Dy ie 7 =o(A) .
(d) If {zj : je J} is the collection of points in o(A)

such that {{zj} : J e J} is the collection of trivial components
of o(A) , then (2,139 <o) .

3.4 COROLLARY. [18]. If Ae B(H) and o(A) is totally dis-
connected, then o 1is continuous at A .

Any operator with totally disconnected spectrum must have
P+(A) = [ and hence is biguasitriangular. In fact, any oper-
ator A for which o(A)} has a dense collection of trivial com-
ponents must be biquasitriangular and a point of continuity of
g .

1t should be mentioned that there are several compact sub-
sets of € that have a dense collection of trivial components

but which are not totally disconnected. For example,
K=1{(x,0) : 0gxg1}u( ,l—):Osksn}

Proof of Theorem 3.1. The fact that (b) implies (d) was shown

the authors by their colleagues J. Ewing, P. R. Halmos, B.
Halpern, and R. Kulkarni. It follows in a rather straight-
forward way from the fact that in a compact metric space a com-
ponent is the intersection of the closed and open sets that
contain it. (See 16.15 of [12].) The details are left to the
reader. Clearly (d) implies (c) and it is easy to see that {c)
implies (b).

(a) implies (c). Suppose that (c) fails; that is, there
exists a set of points {xi i eI} with Ai in Ci such
that K =[P (A) u (A, : 1eI}] #o(A) . Since P (A) K
and each comBonent of cO(A) meets K , the result of Apostol

and Morrel (Theorem 1.6) implies there is a sequence of
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operators {A} with o(A )< K for each n and [[A - A[[ >0
as n- o ., Clearly, {o(An)} does not converge to o(A) .

(b) implies (a). Suppose A - A and e > 0 . By Lemma

1.4, there is an integer n such that for n>» ny s

+ = t'n‘e
o(A) e (of

A .

€
By condition (b) (see the argument for Corollary 3.2),
o(a) =% up,m) . 18 GCAN(P,(A))_,, = O 5 then

o(A) = o (A) U P R) & (Py(M), = (P,(R)), & (s(A)), s if

QAN (), O . then Tet Ay, .. 2oy € o (ANPLA), ),
be such that

B(Ak;s/4) .

m
G(A)\(P__‘:(A))E/z =1 kl;]'[

Let Ck be a component of oO(A) that is contained in
B(Ak;€/4) . So €N P,(A)" = [0 . By Proposition 1.3, Cy
is a component of oe(AS or an isolated point in cg(A) . By

Lemma 1.5, there is an integer n. : N such that for n>n

0-—
and 1 ¢ kgm, B(xk;a/4) contains a component of oe(An)
or of G(An) . In either case, G(A)\(Pi(A))e/2 g;(o(An))e/2

if n>n Therefore,

0

0
o(A) = o°(A) U P, ()

= olANP, () )p] U (PR
(oA _sp U (PL(A))

in

€

This completes the proof. W

As a final application of Theorem 3.1 {(more precisely, of
Corollary 3.3 or 3.4), the following corollary is presented.
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Recall that if A = éﬁ An , then it is not in general true that
a(A) = [Uyq o(An)] .
3.5 COROLLARY. If A is a compact operator and A =8 _. A ,

then o(A) = [nE] o(An)]-

Proof. Because A 1is compact, each An must be compact and
'iAn{i > 0 . Hence, A 1is the 1imit of the sequence
{A] .. .86 An} . Since ¢ is continuous at A and

g(A1 8 .. .8 An) = g(A]) Uu.-.uU o(An) , the result follows.B

Next we will characterize the points of continuity of the
Weyl spectrum. Only a condition analogous to (b) in Theorem 3.1
above will be stated; the topologically equivalent conditions
analogous to parts (c) and {d) of Theorem 3.1 will not be given.

3.6 THEOREM. The Weyl spectrum o is continuous at A if

and only if for every x in Ty

and (ANLP,( (NP, (A)] )
and for every ¢ > 0 , there i _§_§_ omponent gf_ oe(A) that
contained in B(xse) .

Proof. Suppose there is a A 1n ANP,(A)" and an e > 0
such that B();e) does not contain a component of oe(A) .
Then D = C\B(i;e) meets each component of oe(A) and
P.(A)= D . By Theorem 4 of [20] there is a compact operator K
such that o(A + K) = 0 (A) = P,(A) Uo (A) . Thus P (A +K) =
P,(A) =D and D meets each Eomponent of oO(A +K) =

oée(A) No (A (ANP,(A) . By the result of Apostol and
Morrel (Theorem 1. 6), there is a sequence of operators {An}
with o(An) =D for each n and An + A+ K . Hence

ow(An - K)c D and it is clear that 6, 1s not continuous at
A

For the converse, suppose SW(A)\P+(A)- satisfies the
stated condition. Let An > A and Tet € >0 . By Lemma 1.4,
there is an integer " such that for n > ny s
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e''n e €
and Pt(A) c (Pj(An))g/Z .

As in the proof of Theorem 3.1, if GE(A)\(Pt(A))E/Z [
then GW(A) c (Pi(A))e/Z c (Pf(An))g c <OW(AH))€ for n> n
Otherwise, choose Ay, . . . , A in oe(A) (Pir(A))e/2 such
that

m
Oe(A)\(Pi‘(A))E/ZC‘ kti] B(r,5e/2) .

By (b), there is a component Ck of ce(A) that is contained
in B(Xk;s/Z) . By Lemma 1.5, there is an integer n, > " such

that for n 2 Ny s B(Xk;s/Z) contains a component of Oe(An) ;
thus B(Ak;e/Z) c (oe(An))E . Therefore, if n>n

A) 2 o (AN(PLAY) o U (PLLA))

2 s

GW(

This shows that 9 is lower semicontinuous at A .

To compiete the proof again use the Stampfli result ([17],
[20]) to obtain a compact operator K such that O(A + K) =
oW(A) . Since An + K+ A+ K there is an integer g > n,
such that if n 2 ng ., o(An + K) = {o(A + K))s . Therefore,

if n>n then

O )

o, () =0 (A + K co(A +K g (o{a+K) = (0

("), .

W
This completes the proof. W

In general, there is no inclusion relation between the points
of continuity of ¢ and those of Gw . For example, let @n’k =
(1 + %J exp(2mi k/n) for 1 <k<n and n>1 . Let N be the
diagonal operator whose eigenvalues are A4 = {un K 1<k<n,

B

n > 1} , each eigenvalue having infinite multiplicity. Hence,
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g(N) = ge(N) =payabD . Let S be the unilateral shift of
multiplicity one and put A =S 8 S* 8 N, Then OW(A) = Oe(A) =
tyab, p(A) =101, Py(A) = D, and o(AY =AUy D7

By Theorem 3.6, Ty is continuous at A but, by Corolliary 3.2,

¢ is not continuous at A .

For another example, let M be the diagonal operator with
eigenvalues 4 = {un,k :1.<k<n, n>1} , where each eigen-
ab u b, GW(M)= s,
and P+(M) = {] . Here, o is continuous at M but o, is not.

n

value has multiplicity one. Then o(M)

3.7 PROPOSITION. If o
then ¢ 1is continuous a

is
w =
t A

Proof. Suppose An - A and >0 . Let n, be an integer such

1
that for n > nyos
o(h) € (s(A))_,
o,(Ay) S (o, (R)) . s
and OW(A) —'(OW‘AH))E

By the hypothesis, o(A) = OW(A) U og(A) . Since
0 - 0 0 R .
[op(A)] \op(A) c Oe(A) , cp(AY\(GW(A))E consists of a finite
number of points k], e Xm . An application of Lemma 1.5
2 such that
})  for ngno'.l
h

yields the existence of an integer n

Dy oo ) e (G(An .

3.8 PROPOSITION. If A g B(H) such that GS(A) =[] and o©

is continuous at A , then o, 1is continuous at A .

Proof. The criterion stated in Theorem 3.6 will be used to show
that o, s continuous at A . If 2 € oe(A)\[Pi(A)]' and

e > 0 , then Theorem 3.1 implies that for every e > 0 , there
is a component € of oO(A) such.that C ©B{i;e) . Since
GS(A) =0. OO(A) = OZe(A) n Ore(A) , and so, by Proposition
1.3, C 1is a component of oe(A) . Thus % is continuous at

AR

continuous at A and int PO(A) =0,
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The examples preceding Proposition 3.7 show that these last
two results are, in some sense, the best possible for relating the

points of continuity of ¢ and Oy
3.9 COROLLARY. If AgB{H) and o(A) = oW(A) » then o is
continuous at A if and only if Oy is continuous at A .

3.10 COROLLARY. If Ae B(H) and o, is continuous at A ,
then there is a compact operator K such that ¢ 1is continuous
at A+ K.

Proof. Let K be a compact operator such that o(A + K) = cw(A)
({171, [20]). Since GW(A) = gw(A +K) , A+ K is a point of
continuity of Gy But g(A + K) = gW(A) so Corollary 3.9
applies. B

The next question that presents itself is "What are the
points of continuity of the essential spectrum?" This question
will be investigated in a forthcoming paper. It will be shown
that if O is continuous at A then so is Oy

3.11 PROPOSITION. If o is continuous at A , then so is o©

e —— W .

Proof. Suppose An + A and e >0 . Let " be an integer

such that for n > Ny s

and PR (P ))_ -

Let K be a compact operator such that o(A + K) = OW(A) (0177
and [20]). Let ngz M be such that for n > ng
o(An + K) < (oA + K))a . Therefore,

G (An) = ow(An +K) o (o{A + K))E = (OW(A))

W £

and

q (A = PLA) U o (A) € (PUAD) U (o (A)), = (o, (A)D),
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This completes the proof. B

If A 1is biquasitriangular, then P _(A) =[] and so ow(A) =

+
ge(A) . Hence, g (or Iy } is continuous at A if and only if
every relatively open subset of oe(A) contains a component of
ce(A) .

The converse to Proposition 3.11 is false as the following
example illustrates. For a bounded region G in € , et AZ(G)
denote the space of analytic functions on G that are square
integrable with respect to area measure. Let G1 =

{zelC:0<Rez<1 and 0<Imz< 1} and G, =

{zegl:1<Rez<?2 and 0<Imz< 1} . Let 2Sk = multi-
plication by z on AZ(Gk) for k=1,2. So g(Sk) = G; .
oe(Sk) = aGk , and ind() - Sk) = -1 for » in Gk . If
A=5S8S then o, is continuous at A by Theorem 3.6.

But, 1ge ?s not continuous at A . To see this, let G3 =

{zel :0<Rez<2, 0<Imz< 1} and let S3 = multipli-
2(G3) . Let C={1+1y:0<y< 1} and

let N be a normal operator with g(N) =g (N) = ¢ It follows

e
from the work of Brown, Douglas, and Fillmore [6] that there is

cation by z on A

a unitary operator U and a compact operator K such that

A = U(S3 8 N)U'] + K . By the result of Apostol and Morrel
(Theorem 1.6), there is a sequence of operators {T,} such that
G(Tn) = {1} for each n and ][Tn - N >0 as no e, let
A, =U(S; 8 T U+ K. Then A »A as now. But

n
og(R) = 3Gy U 36, , while o (A ) = o (S5) U 5a(T,) = 865 for
all n . Hence, {ge(An)} does not converge to ge(A) .

An interesting fact is that A = S] & S2 £} 52 is a point

of continuity of T if S] and S2 are defined as in the
preceding paragraph.
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One can ask whether the restriction of o or %% to certain
subsets of B(H) is continuous. For example, is the restriction
of ¢ to the set of normal operators continuous? The answer is
yes and was obtained by Newburgh [18] as a consequence of a more
general fact. The reader can consult [18] for the details.

§4 Concluding Remarks

It is easy to show that r , fa s O and 9 are continu-

ous on a dense Gé . In fact, this follows immediately from the
results in this paper and the Apostol-Morrel model in [4]. The
referee has also pointed out that Pe s O 3 and o are

discontinuous on a dense Fc . This follows from the proof of
Theorem 4 in [15].

Several of the results of this paper hold in a more general
setting. In fact, virtually all the implications that do not use
the Apostol-Morrel result (Theorem 1.6) hold for operators on a
Banach space, Indeed, mast of these implications involve only the
basic properties of the Riesz functional calculus and the continu-
ity of the index. These concepts and their properties are valid
not only in B(H) , but also in many Banach algebras. The only
reason that we are forced to restrict our attention to B(H) is
the existence of Theorem 1.6. It would be interesting to see par-

tial extensions of (1.6) to Banach spaces.



Conway et al. 197

1.

12.

References

C. Apostol, C. Foias, and D. Voiculescu, "Some results on non-
quasitriangular operators", II, Rev. Roum, Math. Pures et Appl.
18 (1973), 159-181.

C. Apostol, C. Foias, and D. Voiculescu, "Some results on non-
quasitriangular operators", 1II, Rev. Roum. Math. Pures et
Appl., 18, (1973), 309-324,

C. Apostol, C. Foias, and D. Voiculescu, "Some results on non-
quasitriangular operators", IV, Rev. Roum. Math. Pures et Appl.,
18 (1973), 487-514.

C. Apostol and B. Morrel, "On uniform approximation of oper-
ators by simple models, "Indiana University Math. J., 26 (1977),
427-442,

N. J. Bezak and M. Eisen, "Continuity properties of operator
spectra”, Canad. J. Math., 29 (1977), 429-437.

L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equiva-
lence modulo the compact operators and extensions of C*-algebras,

Proc. of a Conference on Operator Theory, Halifax, Springer-
Verlag Lecture Notes in Mathematics, vol. 345 (1973).

R. G. Douglas and C. Pearcy, "A note on quasitriangular oper-
ators", Duke Math. J., 37 (1970), 177-188.

R. G. Douglas and C. Pearcy, Invariant subspaces of nonquasi-
triangular operators, Proc. of a conference on operator theory,
Springer-Verlag Lecture Notes in Mathematics, vol. 345, pp.
13-57.

J. Dugundji, Topology, Allyn and Bacon, Inc., Boston (1966).

N. Dunford and J. Schwartz, Linear operators, Part 1, Inter-
science, New York (1958).

P. A, Fillmore, J. G. Stampfli and J. P. Williams, "On the
essential numerical range, the essential spectrum, and a prob-
Tem of Halmos", Acta Sci. Math. (Szeged), 33 (1972), 179-192.

L. Gillman and M. Jerison, Rings of Continuous Functions, D.
van Nostrand Co., Inc., Princeton (1960).

P. R. Halmos, A HiTbert Space Problem Book, D. Van Nostrand
Co., Inc., Princeton (1967).




Conway et al. 198

14, P. R. Halmos and G. Lumer, "Square roots of operators, II",
Proc. Amer. Math. Soc., 5 (1954), 589-595.

15. D. A. Herrero, "On multicyclic operators", Integral Eq. and
Operator Theory, 1 (1978), 57-102.

16. T. Kato, Perturbation Theory for Linear Operators, Springer-
Verlag, New York (1966).

17. J. S. Lancaster, "Lifting from the Calkin algebra", Indiana
University Ph.D. Dissertation, 1972,

18. J. D. Newburgh, "The variation of spectra", Duke Math. J.,
18 (1951), 165-176.

19. M. Schechter, "Invariance of the essential spectrum", Bull,
Amer. Math. Soc., 71 (1965), 365-367.

20. J. G, Stampfli, "Compact perturbations, normal eigenvalues,
and a problem of Salinas", J. London Math. Soc., 9 (1974),
165-175,

John B, Conway Bernard B, Morrel

Indiana University TUPUI

Bloomington, Indiana 47405 1201 E. 38th Street

Indianapolis, Indiana 46205

Submitted: April 10, 1979



