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OPERATORS THAT ARE POINTS OF SPECTRAL CONTINUITY 

John B. Conway* and Bernard B. Morrel 

In th is paper a character izat ion is obtained of those 
bounded operators on a Hi lber t  space at which the spectrum is 
continuous, where the spectrum is considered as a function 
whose domain is the set of a l l  operators with the norm topology 
and whose range is the set of compact subsets of the plane with 
the Hausdorff metric. Simi lar character izat ions of the points 
of cont inu i ty  of the Weyl spectrum, the spectral radius, and 
the essential spectral radius are also obtained. 
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Let B(H) denote the a lgebra o f  bounded l i n e a r  operators  

on a separable complex H i l b e r t  space H . I f  A e B(H) , then 

~(A) = { I  ~ ~ : I - A is  not i n v e r t i b l e }  denotes the spectrum 

of  A , wh i le  r (A)  = max { l l  I : I G ~(A)} denotes the spec t ra l  

radius o f  A . I f  S is the c o l l e c t i o n  of  compact subsets of  

equipped w i th  the Hausdorf f  m e t r i c ,  then ~ : B(H) ÷ S is  a 

mapping from one met r i c  space onto another .  

A wel l -known example due to Kakutani ( [ 1 3 ] ,  So lu t ion  87) 

gives a sequence o f  n i l p o t e n t  ope ra to rs ,  i . e . ,  operators  whose 

spectrum is the s ing le ton  {0} , which converges to an opera to r  

whose spectrum is the closed un i t  d i sk ,  {z : ]z I ~ I }  . This 

example shows tha t  d and r both have po in ts  o f  d i s c o n t i n u i t y  

and i t  leads one to ask: "What are the po in ts  o f  c o n t i n u i t y  o f  

(or  r )?" In th i s  paper,  we cons ider  and answer both o f  the 

quest ions above as we l l  as several  o ther  r e l a ted  ones. 

Recal l  t ha t  i f  Bo(H) is  the idea l  o f  compact operators  

on H and ~ : B(H) ÷ B(H)/Bo(H ) is  the natura l  p r o j e c t i o n  

map, then the essen t ia l  spectrum of  A is def ined by ~ (A) = 
e 

d (~(A) )  and the essen t ia l  spec t ra l  radius is def ined by 

re(A ) = m a x { l l l  : i e ~ (A)} The po in ts  o f  c o n t i n u i t y  o f  
e 

r e : B(H) ÷ [0 ,  ~) are cha rac te r i zed  in t h i s  paper as we l l  as 

the po in ts  of  c o n t i n u i t y  of  the Weyl spectrum ~ : B(H) ÷ S 
w 

def ined by dw(A) = n{o(A + K) : K e Bo(H)} . 

Let F denote the Fredholm operators  and SF the c o l l e c -  

t i o n  of  semi-Fredholm operators  in B(H) [ I I ] .  

Let P±(A) = { I  6 ~ : I - A e SF and ind(1 - A) # 0 } ,  

where ind(T)  is  the index o f  an opera to r  T in SF def ined 

by ind(T)  = d im[ker  T] - d im[ker  T*]  . Let dO(A) be the co l -  
P 

l e c t i o n  o f  i s o l a t e d  eigenvalues o f  A fo r  which the correspond- 

ing spec t ra l  p r o j e c t i o n  (v ia  the Riesz func t i ona l  ca lcu lus )  has 



Conway et a l .  L76 

f i n i t e  rank. For each A in B(H)  , O/e(A) and ~re(A) de- 

note the l e f t  and r i gh t  spectrum of ~(A) in B ( H ) / B o ( H )  . 

So, ~e(A) = g /e (A )U  gre(A) • F ina l l y  put gO(A) = ~ ( A )  U 

[~/e(A) Ng re (A ) ]  • In Theorem 3.1 i t  is shown that 

: B(H)  ÷ S is continuous at A i f  and only i f  every non- 

empty r e l a t i v e l y  open subset of ~O(A)~[P+(A)]- contains a 

component of g(A) . 

The character izat ion of the points of con t inu i t y  of o 
W 

(Theorem 3.6) is couched in s im i la r  terms. To characterize 

the points of con t inu i t y  of r and r (Theorems 2.6 and 
e 

2.15), cer ta in aux i la ry  scalar-valued funct ions that are re- 

lated to P+(A) and gO(A) are introduced. 

To be sure, th is  paper has i t s  predecessors. Newburgh 

[18] seems to be the f i r s t  to have systemat ical ly  invest igated 

the con t inu i t y  of the spectrum. He showed that the spectrum 

of an element of  a Banach algebra is upper semicontinuous and 

that the spectrum is continuous at any element wi th t o t a l l y  

disconnected spectrum. In addi t ion,  he showed that the spec- 

trum is continuous on an abelian Banach algebra. Moreover, 

he proved that i f  a sequence of operators {A n } in B(H) con- 

verges to A and each A n sa t i s f i es  a growth condi t ion on i t s  

resolvento then {g(An)} converges to ~(A) in S . I t  is a 

co ro l la ry  of th is  las t  resu l t  that  i f  A + A and each A is 
n n 

normal, then g(An) ÷ g(A) in S . Newburgh also proves several 

resul ts  concerning the con t inu i t y  of the spectrum of closed 

operators. Newburgh's paper does not seem to be well known and 

the l i t e r a t u r e  contains several papers that reprove some of his 

resu l ts .  

Some extensions and refinements of Newburgh's resu l ts  for  

closed operators can be found in [5]  and [16].  
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This paper is organized in three sect ions.  In sect ion one 

the no ta t ion  is introduced and some p re l im inary  resu l ts  are pre- 

sented. In sect ion two several sca lar -va lued funct ions on 

B(H) are in t roduced,  t h e i r  semicont inu i ty  proper t ies  are d is-  

cussed, and these resu l t s  are used to determine points of  con- 

t i n u i t y  o f  the spectra l  radius and the essent ia l  spectra l  

rad ius.  In sect ion three the points o f  c o n t i n u i t y  o f  the set 

valued maps ~ and ~w are character ized.  

~I Notat ion and Pre l im inar ies  

For a subset X o f  the complex plane, X- denotes i t s  

c losure,  i n t  X i t s  i n t e r i o r ,  and ~X = X- ~ [~ \X] -  i t s  bound- 

ary.  I f  c > 0 , l e t  (X)~ = {z e ~ : d i s t ( z ,X )  < ~} For 

in ~ and c > 0 , B(~;E) denotes the ba l l  of  radius 

centered at ~ . F i n a l l y ,  [ ]  denotes the empty set.  

A l l  H i l b e r t  spaces considered here are separable. In addi-  

t i on  to the no ta t ion  given in the i n t r o d u c t i o n ,  l e t  Pn(A) = 

{~ e o(A) : ~ - A e SF and ind(~ - A) = n} fo r  n ~ ~U  {_+~} . 

Hence, P+(A) = U{Pn(A) : n ~ O} 

Several facts concerning the l e f t  essent ia l  spectrum and 

the Weyl spectrum can be found in [ I I ] .  Among them is the f o l -  

lowing resu l t  due to Schechter [19] .  

I . I  THEOREM. ~w(A) = ~e(A) U P+(A) . 

The fo l l ow ing  resu l t  is undoubtedly known but the authors 

are unable to f ind  a reference for  i t .  In any case the proof  

fo l lows eas i l y  from resu l ts  o f  [ I I ] .  

1.2 PROPOSITION. I f  A G B(H) , then 

~e(A) = [ ~ l e ( a ) ( ~ r e ( a ) ]  U P+~(A) U P_~(A) . 
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I t  fo l lows from the preceding p ropos i t i on  tha t  

~P+(A) ~Oze(A)  A qre(A) . 

1,3 PROPOSITION. l_f_f C is a component of  Oze(A) N Ore(A) 

and C N [P_+(A)]- = [ ]  , then C i s  a compon_ent of  Oze(A) , 

Ore(A) , and ~e(A) . 

Proof. Let D be the component o f  Oe(A) such tha t  C ~  D . 

By Propos i t ion 1.2, 

D = {D n [qze(A) F lore(A) ]  } U {D n P_~(A)} 

Let K = D fl [O£e(A) N ~re(A) ]  ; so e i t he r  K = C or K is 

not connected. I f  K f a i l s  to be connected, then K = K 1 U K 2 , 

where K 1 and K 2 are d i s j o i n t  compact sets that  C ~ K  1 ~ (C)g 

wi th 0 < c < ~dist(C,P_+(A)-) ( [12 ] ,  16.15), 

d i s t (K  I , P ~ ( A ) )  > 0 , and so 

d is t (K  I ,K 2 U [D N P ~ ( A ) ] )  > 0 . 

Since D = K 1 U {K 2 U [D N P÷~(A)]} is connected and K 1 is non- 

empty, i t  must be that  K 2 = D N p_4~(A) = [ ]  . Thus D = C , 

and C is a component o f  oe(A) . The other  cases f o l l ow  s imi-  

l a r l y .  

Denote by % the c o l l e c t i o n  of  compact subsets o f  ~ and 

by S 1 the c o l l e c t i o n  o f  a l l  bounded subsets of  (~ . One can 

def ine the Hausdorff metr ic  on %1 ( [ 9 ] ,  p. 205), but the d is -  

tance between two elements o f  S 1 is pos i t i ve  i f  and only  i f  

t h e i r  closures are unequal. So th is  metr ic  is a t rue metr ic  

only i f  i t  is r e s t r i c t e d  to S . Nevertheless i t  is a pseudo- 

metr ic  on S 1 . Also the distance between the empty set  and any 

nonempty bounded set is 1 . I f  (X,p) is a metr ic  space and 

i f  f : X ÷ S 1 is a func t ion ,  then f is said to be u_ppez_r 

( lower) semicontinuous at x 0 i f ,  fo r  each e > 0 , there is a 

6 > 0 such tha t  p(X,Xo) < ~ impl ies f ( x )  ~ ( f ( x o ) )  E 
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( r e s p e c t i v e l y ,  f (Xo)  ~ ( f ( X ) ) c )  One can show t h a t  f is  

cont inuous at x 0 i f  i t  is  both upper and lower semicont inuous 

at x 0 . 

The f o l l o w i n g  r e s u l t  i s  we l l  known. 

I . ~  LEMMA. (a) ~ : B(H) ~ S i s  upper semicont inuous.  

(b) o e : B(H) ~ S i s  upper semicont inuous.  

(c) l_~f -~ ~ n ~ = , Pn : B(H) ÷ S 1 is  lower semicon- 

t i nuous .  

(d) P+ : B(H) ÷ S 1 i s  lower semicont inuous.  

Proof .  Parts (a) and (b) f o l l o w  from [18 ] .  To prove ( c ) ,  l e t  

A k ÷ A , l e t  c > 0 , and l e t  K be a compact subset o f  Pn(A) 

such t ha t  Pn(A) ~ (K) E Since ind(~ - Ak) + ind(~ - A) = n 

f o r  each ~ in K , an e lementary argument y i e l d s  t~e e x i s t -  

ence o f  an i n t e g e r  n O such t h a t  ind(~ - Ak) = n f o r  a l l  

in K and a l l  k ~ n O . Thus, Pn(A) c (K) c ~ (Pn(Ak))E f o r  

k 2 n o . Part  (d) f o l l ows  s i m i l a r l y .  (Both par ts  (c) and (d) 

can be obta ined from Theorem l o f  [ 1 4 ] . )  • 

I f  A e B(H) and X is  a subset o f  ~(A) t ha t  is both 

open and closed in  o(A) , l e t  E(X;A) denote the correspond- 

ing spec t ra l  p r o j e c t i o n  ( [ l O ] ,  p. 572), 

l I (z - A ) - I dz  E(X;A) = ~ r 

f o r  an a p p r o p r i a t e  cho ice o f  contour  r . 

The next lemma w i l l  be used very o f ten  in t h i s  paper. The 

essence o f  i t s  p roo f  can be found in the l i t e r a t u r e  ( e . g . ,  in 

[ 1 8 ] ) ,  but i t  is  s ta ted  and proved here fo r  the convenience o f  

the reader .  

1.5 LEMMA. Suppose tha t  A n ÷ A in B(H) . 
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(a) l__f_f C is a component o_f_f ~(A) and U is an open set 

con ta in in  9 C , then there is an in teger  n O such tha t  fo r  

n ~ n O , U contains a component o f  ~(An) . 

(b) l_f_f C is a component o__ff ~e(A) and U is an open 

set conta in ing  C , then there is an in teger  n O such tha t  fo r  

n t n O , U contains a component o f  ~e(An) . 

Proof. The fo l l ow ing  proof  works fo r  any Banach algebra,  so 

tha t  on ly  part  (a) is  proved. 

By 16.15 of  [12 ] ,  ~(A) = X 1U X 2 where X 1 and X 2 are 

d i s j o i n t  nonempty compact sets w i th  C ~ X 1 ~ U  . Choose 

E > 0 such tha t  (X l )  E n (X2) ~ = [ ]  and (XI) E ~ U  . Let n 1 

be an in teger  such tha t  fo r  n t n I , ~(An) ~ (~(A))~ (Lemma 

1.4 (a ) ) .  Thus, (XI) ~ n ~(A n) is both open and closed in  

~(An) i f  n ~ n I . I t  fo l lows tha t  E((XI )  ~ n ~(An);A n) ÷ 

E((XI)  ;A) and hence there is an in teger  n O ~ n I such tha t  

fo r  n ~ n o , E((XI )  c n ~(An);A n) ~ 0 . Hence, 

(XI)  ~ N o(A n) ~ [ ]  fo r  n ~ n o ; since (XI) ~ n o(A n) is  both 

open and closed in  o(An) , (XI)  ~ must contain a component 

of  o(A n) . I  

For the convenience of  the reader,  the f o l l ow ing  r e s u l t  

from [4 ]  (Theorem 3.1) is  s tated.  This theorem w i l l  be used 

f r equen t l y .  

1.6 THEOREM (Apostol and Mor re l ) .  I f_f ~ is  a nonempty subset 

o f  ~ and A e ~(H), then there ! ~ a  sequence {A n } of  oper- 

ators in 8(H) such tha t  o(An) ~ f o r  ever~ n and 

I IA - Anl I ÷ 0 i_f and only i_f_f: 

(a) P+(A) ~ ~ ; 

(b) Every component o_f_f oO(A) meets 6- 
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§2 The Con t inu i t y  o f  the Spectral Radius 

I f  A e B(H) , then the spectral  radius o f  A is def ined 

by r(A) = max{I~ I : ~ ~ ~(A)} . I t  is wel l  known tha t  

I / n  I / n  
r(A) = I ~  l i A n l l  = i n f  I IAn l l  

n 

The f i r s t  o f  these e q u a l i t i e s  asserts that  r is the pointwise 

l i m i t  of  a sequence o f  continuous funct ions from B(H) i n to  

[O,~) ( v i z . ,  A + l l A n i l l / n )  . Thus the set of  points of  con- 

t i n u i t y  of r is a set o f  the second category.  That r has 

d i s c o n t i n u i t i e s  fo l lows from the aforementioned example o f  

Kakutani ( [13 ] ,  So lu t ion  87). 

The second of  the above e q u a l i t i e s  asserts that  r is the 

infimum of  a sequence of  continuous func t ions ,  and hence tha t  

r is upper semicontinuous. 

To charac ter ize  the points o f  c o n t i n u i t y  o f  r i t  is 

necessary to in t roduce several new funct ions from B(H) i n to  

E O , ~ )  . 

DEFINITION. I f  A ~ B(H) and P+(A) = [ ]  , def ine ~(A) = 0 

i f  P+(A) I [ ]  , l e t  B(A) = sup{I~l : ~ e P+(A)} 

2.1 LEMMA. The funct ion B : B(H) ÷ [0,~) is lower semicon- 

t inuous.  

This fo l lows from Theorem 1 of  [14] and the fact  that  

{T e SF : ind T ~ O} is open in B(H) . 

DEFINITION. I f  A e B(H) , def ine 6(A) e [0,~) by 

B(A) = s u p { i n f { i ~  I : ~ G C} : C is a component o f  

{e (A) U ~ ( A ) }  . 

F i n a l l y ,  def ine m(A) by m(A) = max{@(A),B(A)} 
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2.2 LEMMA. The f unc t i on  5 : B(H) ÷ [0 ,~ )  is  lower  semicon- 

t i nuous .  

Proof .  I t  must be shown t h a t  {A e B(H) : B(A) > o} is  open 

f o r  each p >_ 0 . I f  t h i s  is f a l s e ,  then there  is  an A in  

B(H) and a sequence {An} from B(H) such t ha t  

6(A n) <_ p < 6(A) and l lan - A l l  ÷ 0 as n ÷ ~ . Let  

P < Pl < 6(A) and put U = {z : I zl > pl  ] . From the d e f i n i -  

t i o n  o f  5(A) , the re  is  a component C o f  oe(A) U {Op(A) tha t  

is  conta ined in  U . I f  C ~dOp(A), then C is  a component o f  

~(A) and, by Lemma 1.5,  there  is  an n o such t ha t  f o r  n >_ n O , 

U conta ins  a component C n o f  ~(A n) . Since C = {~} f o r  
0 A some ~ in ~p( ) , i t  is  easy to see t ha t  f o r  s u f f i c i e n t l y  

0 
l a rge  n , C n = {k n} f o r  some k n in  ~p(A n) . Hence, 

5(An) >- ikn I > Pl ' a c o n t r a d i c t i o n .  I f  C is  a component o f  

oe(A) , then Lemma 1.5 (b) imp l i es  t h a t  U conta ins  a component 

o f  oe(A n) f o r  s u f f i c i e n t l y  l a rge  n , and hence ~(An) >- Pl ' 

a c o n t r a d i c t i o n .  I 

2.3 COROLLARY. The f u n c t i o n  m : B(H) + [0 ,~ )  is  lower  semi- 

con t inuous .  

DEFINITION. For A in  8(H) de f i ne  So(A) and ~, (A)  by 

~o(A) = s u p { i n f { ! ~  I : Z ~ C} : C = a component o f  
~O(A)} . 

~ , (A)  = s u p { i n f { I k  I : k G D} : D = a component o f  

~(A)}  . 

2.4 LEMMA. ~,(A) ~ 6(A) ~ ~o(A) . 

Proof .  We on ly  prove t ha t  6 , (A)  S ~(A) , s ince the p roo f  o f  

the o the r  h a l f  is  s i m i l a r .  Suppose 5, (A)  > p > 0 ; i t  must be 

shown t h a t  ~(A) ~ p . Let  D be a component o f  o(A) such 

tha t  i n f { l ~  1 : k G D} > p and l e t  k 0 ~ D such t h a t  I~Ol 



Conway et  a l .  183 

equals t h i s  in f imum. So IkOl > p and XO 6 9 D c  Do(A) 

dOp(A) U [ a l e ( A )  [I a r e ( A ) ]  . I f  DcaOp(A)  then D = {XO } is  
0 A a component o f  de(A) U ap( ) and so 6(A) > p . I f  

~ D c a £ e ( A )  11 d re (A)  ~ a e ( A  ) , l e t  C = the component o f  de(A) 

such t h a t  XO e C . I t  f o l l o w s  t ha t  C ~  D . Hence, JXO] = 

i n f { ! x j  : X e D} <_ i n f { I ~  i : X e C} <_ ~(A) and ~(A) > p . t  

Note t h a t  the i n e q u a l i t i e s  in  Lemma 2.4 may be s t r i c t .  Let 

~)= {z  : I zl < I }  and U = {z  : 1 < I zl < 2} ; l e t  s be the 

u n i l a t e r a l  s h i f t  o f  m u l t i p l i c i t y  1 and l e t  T be m u l t i p l i c a t i o n  

by z on A2(U) , the space o f  square i n t e g r a b l e  a n a l y t i c  func -  

t i o n s  on U . I f  A = S e T $ T $ . . . .  then 6 , (A )  = 0 , 

~(A) = 1 , and ~o(A) = 2 . 

2.5 LEMMA. ~(A) = max{~ (A) ,60 (A) }  . 

Proof .  By Lemma 2 .4 ,  6(A) <_ 60(A) so ~(A) <_ ~o(A) - 

max{~ (A) ,80 (A) }  . I f  ~o(A) = B(A) , then c l e a r l y  so(A ) <_ ~(A) . 

So suppose t h a t  ~o(A) = Co(A) > B(A) . Let 80(A) > p > B(A) 

and l e t  C be a component o f  oO(A) such t h a t  

i n f { I x  I : X 6 C} > p . Thus C fl [P+ (A ) ] -  = [ ]  . Hence, C is  
0 A e i t h e r  a component o f  dp( ) o r ,  by P r o p o s i t i o n  1 .3 ,  C is  a 

component o f  de(A) ; t h a t  i s ,  C is  a component o f  

~e (A) U ~Op(A) . Hence 6(A) > p and so 60(A) _< ~(A) . There-  

f o r e ,  ~o(A) _< ~(A) and e q u a l i t y  o b t a i n s . ~  

2.6 THEOREM. The spec t ra l  rad ius  is  con t inuous  a t  A i f  and 

on ly  i f  r (A )  = ~(A) . 

Proof .  Suppose t h a t  r (A )  = ~(A) and t h a t  A ÷ A . Since r 
n 

i s  upper semicont inuous and ~ is  lower  semicont inuous and 

_< r , r (A )  = ~(A) <_ l im  i n f  ~(An) _< l im  sup r (A n) _< r (A )  . 

The re fo re ,  r (A )  = l im r (A n) . 
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Now suppose tha t  r(A) > ~(A) and choose p such that  

r(A) > p > ~(A) . Let D = {z e C : Izl  ~ O} • Since ~(A) < p , 

Lemma 2.5 impl ies tha t  P+(A) ~ D  and that  every component of  

cO(A) meets D . By the resu]~ o f  Apostol and Morrel (Theorem 

1.6) ,  there is a sequence {A n } in B(H) such that  q(A n) ~D  

for each n and IIAn - All + 0 as n ÷ ~ Thus ,  r(An) S p 

for each n and r(A) ~ lim r(An) . U  

REMARK. I t  is possible to show that ~ is continuous at A 

i f  and only i f  r is continuous at A (that is,  r(A) = ~(A)) . 

The proof of this fact necessitates improving the results of 

Apostol and Morrel [4] and w i l l  appear elsewhere. 

2.7 COROLLARY. I f  ~,(A) = r(A) , then r is continuous at 

A . 

2.8 COROLLARY. I f  A is a normal operator, then r is con- 

tinuous at A i f  and only i__ff r(A) = ~,(A) . 

Proof. I f  A is normal, then P+(A) = ~ and, since H is 

separable,  ~(A) = GO(A) ; so ~(A) = ~,(A) . l  

2.9 COROLLARY. Every isometr~ i s  a p o i n t  of  c o n t i n u i t ~  o_f_f r . 

Proof.  I f  A is an isometry then, by the Wold-von Neumann de- 

composi t ion,  A : S $ W , S , or  W3where S is a u n i l a t e r a l  

s h i f t  and W is a un i t a ry  operator .  In any case 60(A) = 1 

so tha t  ~(A) = r (a )  = 1 .BB 

2.10 COROLLARY. I f  o(A) i s  t o t a l l y  disconnected, then r i s  

continuous at A . I n  p a r t i c u l a r ,  r is continuous at each 

compact opera tor .  

Proof.  I t  is c lea r  tha t  ~,(A) = r ( A ) . ~  

Coro l l a ry  2.10 fo l lows from resu l t s  in [18] where i t  is 

shown tha t  o : B(H) ÷ S is continuous at  each operator  wi th  

t o t a l l y  disconnected spectrum. 
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We now charac ter ize  the points o f  c o n t i n u i t y  o f  the essen- 

t i a l  spectra l  radius def ined by re(A) = max{!~ I : ~ 6 ae(A)} • 

Many of  the proofs here are s i m i l a r  to the proofs o f  the analo-  

gous facts used to charac te r ize  the points o f  c o n t i n u i t y  of  r . 

When th i s  is the case, the appropr ia te  proof  w i l l  be referenced 

and the d e t a i l s  o f  the proof  w i l l  be l e f t  to the reader, 

DEFINITION. For an operator  A in B(H) , def ine 

60e(A) = s u p { i n f { j z  I : ~ e C} : C = a component o f  

~£e(A) n are(A)}  , 

de(A) = sup { i n f { I ~ I  : ~ e D} : D = a component o f  

ae(A)} , 

and ae(A) = max{B(A),de(A)} . 

2.11 LEMMA. d is lower semicontinuous. 
e 

2.12 COROLLARY. m is lower semicontinuous. e 

2.13 LEMMA. de(A) S doe(A) . 

The proof of  Lemma 2.11 is s i m i l a r  to tha t  of  Lemma 2.2, 

whi le  that  of  Lemma 2.13 fo l lows that  o f  Lemma 2.4. 

2.14 LEMMA. ae(A) = max{B(A),doe(A)} . 

Proof. Let moe(A) = max{B(A),5oe(A)} . By Lemma 2.13, 

me(A) S moe(A) . The other ha l f  of  th is  i n e q u a l i t y  is proved 

as the corresponding fac t  in Lemma 2 . 5 . ~  

2.15 THEOREM. The essent ia l  spectral  radius is continuous at 

A i f  and only i f_f me(A) = re(A) . 

Proof. As in the proof  of  Theorem 2.6,  i f  me(A) = re(A) , then 

r e is continuous at A . So suppose tha t  ~e(A) < p < re(A) 

and put D = {z e ~ : Izl S P} • According to Theorem 4 of  [20] 

(a lso see [ 17 ] ) ,  there is a compact operator  K on H such 
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t h a t  ~(A + K) : ~w(A) . So ~(A + K) : ~e(A) U P+(A) by 

Theorem I . I  and the f a c t  t h a t  ~e and P+ are i n v a r i a n t  under 

compact p e r t u r b a t i o n s .  Now dO(A + K) = a le (A )  II { r e ( A )  and 

so every  component o f  ~O(A + K) meets D by Lemma 2.14.  Since 

P+(A + K) = P+(A) ~ D , Theorem 1.6 i m p l i e s  the re  i s  a sequence 

{A n} o f  bounded ope ra to r s  on H such t h a t  a(A n) ~ D f o r  a l l  

÷ A + K So A K ÷ A and ,s i nce  ae(A n - K) = n and A n " n 

~ e ( A n ) ~ D  , re(A n - K) = re (An)  5 p f o r  a l l  n . Hence, r e 

is  not  con t inuous  a t  A . ~  

REMARKS. As was the case f o r  the po in t s  o f  c o n t i n u i t y  o f  m , 

r e f i nemen ts  o f  the r e s u l t s  o f  Aposto l  and Morre l  [ 4 ]  may be used 

to  show t h a t  m e i s  con t inuous  a t  A i f  and on ly  i f  r e i s  

con t inuous  a t  A . I t  i s  a lso  p o s s i b l e  to  show t h a t  B i s  con- 

t i nuous  a t  A i f  and on ly  i f  B(A) = re (A)  • N o t i c e ,  however,  

= ~ e ( l  i s  con t inuous  t h a t  B(1) 0 < 1 = r e ( 1 )  = ) , so t h a t  r e 

a t  I , but  B is  no t .  

2.16 COROLLARY. I f  A is  a normal o p e r a t o r ,  then r e i s  con- 

t i nuous  a t  A i f_f an___dd on ly  i_ff 6e(A) = re (A)  . 

2.17 COROLLARY. r i s  con t inuous  a t  everj_ i s o m e t r y .  
e 

2.18 COROLLARY. I f  ~e(A) i s  t o_ ta l ] ~  d i sconnec ted ,  then r e 

is  con t inuous  a t  A . 

Th is  sec t i on  concludes w i t h  a d i scuss ion  o f  the r e l a t i o n -  

sh ip  between the po in t s  o f  c o n t i n u i t y  o f  r and r e 

2.19 PROPOSITION. I f  r e is  con t inuous  a t  A , then r i s  

con t inuous  a t  A . 

Proof .  I f  re (A)  : r (A )  , then r (A )  = re (A)  : me(A) S ~(A) 

r (A )  , so r i s  con t inuous  a t  A . Suppose re (A)  < r (A)  , 

and l e t  X C a(A) such t h a t  lXI = r (A )  . Then 

e ~ ( A ) ~ o e ( A ) .  U ~ ( A )  . But re(A ) < r (A )  i m p l i e s  t h a t  
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~ ge(A)  , and so,  k @ {~ (A )  . That i s ,  {k }  i s  a component v 0 
o f  ~e(A) U ~p(A) . T h e r e f o r e ,  5(A) = I~I = r (A)  , and so,  r 

i s  con t inuous  a t  A by Theorem 2 . 6 . ~  

The converse o f  P r o p o s i t i o n  2.19 is  not  t r u e .  In f a c t ,  

l e t  A = T 8 D , where T i s  m u l t i p l i c a t i o n  by the independent  

v a r i a b l e  on L 2 [ 0 , 1 ]  and D is  the d iagona l  o p e r a t o r  w i t h  
1 

e n t r i e s  { I  + ~ ]n= l  ' each w i t h  m u l t i p l i c i t y  one. Then ~(A) = 

r (A )  = 2 , re (A)  = 1 , but me(A) = 6e(A) = 0 . 

I t  i s  p r e c i s e l y  the presence o f  po in t s  in  a~(A) in  the 
F 

p reced ing  example t h a t  makes A a p o i n t  o f  c o n t i n u i t y  o f  r . 

2.20 PROPOSITION. I f  A ~ B(H) and a~(A) = [ ]  and r i s  

con t inuous  a t  A , then r i s  con t inuous  a t  A . 
e 

Proo f .  Since r i s  con t inuous  a t  A , m(A) = r (A )  . As in  

the p roo f  o f  P r o p o s i t i o n  2.19,n i f  re (A)  < r (A )  , then r (A )  

is  a t t a i n e d  a t  a p o i n t  in  a~(A) . Since i t  i s  assumed here 
w 

t h a t  a~(A)~ = [ ]  , i t  must be t h a t  re (A)  = r (A )  Thus, i f  D 

m(A) = B(A) , then ~(A) = me(A) = re(A ) and r e is  c o n t i n u -  

ous a t  A . O the rw i se ,  by Lemma 2 .5 ,  60(A) = r (A )  . So i f  

E > 0 , t he re  i s  a component C o f  ~0(A) = a le (A  ) fl a re(A ) 

such t h a t  J~l > r (A }  - e = re(A ) - c f o r  a l l  ~ in  C . 

Thus, a0e(A) = re (A)  , and so,  by Lemma 2.14,  me(A ) = re(A ) 

and r i s  con t inuous  a t  A . ~  
e 

3 The Poin ts  o f  C o n t i n u i t y  o f  the Spectrum 

Recal l  t h a t  S denotes the c o l l e c t i o n  o f  compact subsets 

o f  ~ f u rn i shed  w i t h  the Hausdor f f  m e t r i c .  

3.1 THEOREM. I f  A ~ B(H) , then the f o l l o w i n g  a r e  l o g i c a l l y  

e q u i v a l e n t  s t a temen ts .  

(a)  ~ : B(H) ÷ S i s  con t inuous  a t  A . 
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(b) Fo___[r e ac_h I i n  G(A) \ [P+(A) ] -  and c > 0 ,  the ba l l  

B(~;~) contains a component o f  ~O(A) . 

(c) I f  {C i : i 8 I}  are the components of  GO(A) and i f  

fo r  each i i n  I a po in t  ~i  is chosen from C i , then 

G(A) = [P+(A) U {~i  : i e I } ] -  . 

(d) I f  { z j  : j ~ J} is the c o l l e c t i o n  of  points in 

GO(A) such tha t  { { z j }  : j ~ J} is the c o l l e c t i o n  of  t r i v i a l  

components of  GO(A) , then 

[P_+(A) U { z j  : j e J } ] -  = ~(A) . 

Before proving th i s  theorems some of  i t s  consequences w i l l  

be examined. Notice t ha t  cond i t i on  (b) says tha t  each po in t  

in  ~ (A ) \ [P+ (A ) ] -  is  approachable by points in ~O(A) . This 

y i e l ds  the f o l l ow ing  c o r o l l a r y .  

3.2 COROLLARY. I f  G : B ( H ) ÷  % is cont inuous at A , then 

i n t  Po(A) = [ ]  . 

Proof. Po(A) = { I  e G(A) : A - i is  Fredholm and ind(A - ~) 

0 A th = O} consis ts  of  Gp( ) together wi the i n t e r i o r  of  Po(A) . 

Observing tha t  Po(A) c~G(A) \ [P+(A) ] -  ~ tha t  

[ i n t  Po(A)] N GO(A) = [ ]  , and apply ing par t  (b) o f  Theorem 

3.1,  we see tha t  i n t  Po(A) = [ ]  . I  

By the work of  Douglas and Pearcy [7 ]  and Aposto l ,  Foias, 

and Voiculescu ( [ I ] ,  [ 2 ] ,  and [ 3 ] ) ,  an operator A is b iquas i -  

t r i a n g u l a r  i f  and only i f  P_+(A) = [ ]  . (Also see [ 8 ] . )  In 

p a r t i c u l a r ,  every normal operator is  b i q u a s i t r i a n g u l a r .  

3.3 COROLLARY. I f  A is a b i q u a s i t r i a n ~ u l a r  operator ,  then 

th__ 9 f o l l ow ing  statements are l o g i c a l l ~  equ iva len t .  

(a) o : B(H) ÷ S is cont inuous at A . 

(b) For each 1 i n  ~(A) and c > 0 , B(~;~) contains 

a component o f  gO(A) . 
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(c) l_ff CC i : i e I} are the components of gO(A) and i f  

for each i i__n_n I ~ 9oint ~i is chosen from C i , then 

{~i : i 6 I} = ~(A) . 

(d) l_f_f { z j  : j e J} is the c o l l e c t i o n  of  po in ts  in ~(A) 

such tha t  { { z j }  : j ~ j }  is  the c o l l e c t i o n  of  t r i v i a l  components 

oi = gO(A) , then { z j  : j e J } -  = ~(A) . 

3.4 COROLLARY. [18] .  I f  A G B(H) and o(A) i s  t o t a l l y  dis-- 

connected, then o is  cont inuous at  A . 

Any operator w i th  t o t a l l y  disconnected spectrum must have 

P+(A) = [ ]  and hence is b i q u a s i t r i a n g u l a r .  In f ac t ,  any oper- 

a tor  A fo r  which ~(A) has a dense c o l l e c t i o n  of  t r i v i a l  com- 

ponents must be b i q u a s i t r i a n g u l a r  and a po in t  o f  c o n t i n u i t y  of  

. 

I t  should be mentioned tha t  there are several compact sub- 

sets of  ~ tha t  have a dense c o l l e c t i o n  of  t r i v i a l  components 

but which are not t o t a l l y  disconnected. For example, 

k l  K = { (x ,O)  : 0 ~ x ~ I }  U { (~,E)  : 0 ~ k ~ n} 

Proof o f  Theorem 3.1. The fac t  tha t  (b) impl ies (d) was shown 

the authors by t h e i r  col leagues J. Ewing, P. R. Halmos, B. 

Halpern, and R. Ku lkarn i .  I t  fo l lows in a ra ther  s t r a i g h t -  

forward way from the fac t  tha t  in  a compact metr ic  space a com- 

ponent is  the i n t e r s e c t i o n  of  the closed and open sets tha t  

contain i t .  (See 16.15 of  [ 12 ] . )  The de ta i l s  are l e f t  to the 

reader. C lea r l y  (d) impl ies (c) and i t  is easy to see tha t  (c) 

impl ies (b).  

(a) impl ies (c) .  Suppose tha t  (c) f a i l s ;  tha t  i s ,  there 

ex is ts  a set o f  points {~i : i e I }  w i th  ~i in  C i such 

tha t  K = [P+(A) U {~i  : i e I } ] -  ~ ~(A) . Since P+(A) ~ K 

and each component o f  gO(A) meets K , the r e s u l t  o f  Apostol 

and Morrel (Theorem 1.6) impl ies there is a sequence of  
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operators {A n} with O(An)c  K for  each n and I IA n - All + 0 

as n ÷  ~ C lea r l y ,  {o(An)} does not converge to o(A) . 

(b) imp l ies  (a) .  Suppose A n ÷ A and c > 0 . By Lemma 

1.4, there is an in teger  n I such that  fo r  n t n I , 

P+(A) ~ (P±(An))E/2 and 

~(A n) ~ (~(A)) c • 

By condi t ion (b) (see the argument for  Coro l la ry  3.2) ,  

o(a)  : {O(a) U P+(A) . I f  ~O(A)\(P+(A))e/2 = [ ]  , then 

~(A) = ~O(A) U P : ( A ) ~  (P±(A))e/2 ~ iP±(An))s ~ ( { ( A n ) )  c ; i f  

oO(A)~(P~(A)) /2~ 17 , then l e t  ~l . . . . .  Am ~ °O(A)\(P±(A))~/2 

be such that  

m 

~ (A)~ (P+(A) )c /2~  U B(Xk;E/4) • 
- k = l  

Let C k be a component of oO(A) that  is contained in 

B(Lk;e/4) . So C k n P+(A)- : ~] . By Proposi t ion 1.3, C k 

is a componer~t of  qe(A) or an iso la ted point  in ~ ( A )  . By 

Lemma 1.5, there is an in teger  n O ~ n I such that  for  n ~ n O 

and 1 ~ k ~ m , B(Xk ;J4)  contains a component of  oe(An) 

or of  ~(An) . In e i ther  case, ~(A)~(P±(A))~/2 ~ (~(An))~/2 

i f  n 3 n O . Therefore, 

o(A) = ~O(A) U R+(A) 

[~(A) \ (P±(A))  /2 ]  U (P±(A))c/2 

(~(An)) / 2 U (P±(An)) e 

(~(An)) e • 

This completes the proof. I 

As a f i na l  app l ica t ion  of Theorem 3.1 (more p rec ise ly ,  of  

Coro l la ry  3.3 or 3.4) ,  the fo l lowing co ro l l a r y  is presented. 
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= then i t  is not in general t rue tha t  Recall that  i f  A ~ = I  An ' 

a(A) = [Un= 1 a (An) ] -  • 

3 . 5  COROLLARY. I f  A ___is a compact operator  and A = ~n:l  An ' 

then a(A) = [nUl a(An) ] -  . 

Proof. Because A is compact, each A must be compact and 
n 

i A n [ i  ÷ 0 . Hence, A is the l i m i t  o f  the sequence 

(A 1 ~ . . . 8 An} Since a is  continuous at A and 

e(A 1 $ • • • ~ A n ) = a(A I )  U • • • U a(A n) , the resu l t  f o l l o w s . ~  

Next we w i l l  charac ter ize  the points o f  c o n t i n u i t y  o f  the 

Weyl spectrum. Only a cond i t ion  analogous to (b) in Theorem 3.1 

above w i l l  be s ta ted;  the t o p o l o g i c a l l y  equ iva lent  cond i t ions 

analogous to parts (c) and (d) o f  Theorem 3.1 w i l l  not be given. 

3.6 THEOREM. The Weyl spectrum a w is continuous at  A i_f_f 

and only i_f_f fo r  every k i__n_n aw(A) \ [P± (A) ] - (=ae (A) \ [P~ (A) ] - }  

and f o r  every e > 0 , there is a component o__f_f ae(A) that  is 

contained in B(~;a) . 

Proof. Suppose there is a ~ in ae(A)~P+(A)- and an a > 0 

such that  B(~;a) does not contain a component o f  ae(A) . 

Then D = ~ B ( ~ ; a )  meets each component of  a (A) and 
e 

P+(A) ~ D  . By Theorem 4 o f  [20] there is a compact operator  K 

such tha t  a(A + K) = aw(A) = P±(A) U ae(A) . Thus P+(A + K) = 

P+(A) ~ D  and D meets each component o f  aO(A + K)-= 

aZe(A ) n are(A) : ae(A)~P+(A) By the resu l t  o f  Apostol and 

Morrel (Theorem 1.6) ,  there is a sequence of  operators {A } 
n 

_ ~ A + K Hence with a(An) c D fo r  each n and A n 

aw(A n - K) ~ D and i t  is c lea r  that  ~w is not continuous at  

A . 

For the converse, suppose ~w(A)~P±(A)- s a t i s f i e s  the 

stated cond i t i on .  Let A ÷ A and l e t  a > 0 . By Lemma 1.4, 
n 

there is an in teger  n I such that  fo r  n ~ n I , 
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oe(An ) ~ (oe(A)) ~ 

and P±(A) ~ (P+(An))c/2 . 

As in  the proof of  Theorem 3.1,  i f  ~e(A)~(P~(A))~/2 = [ ]  , 

then ~w(A) ~ (P±(A)) / 2 ~ (P±(An)) ~ ~ (~w(An))c fo r  n t n I • 

Otherwise, choose ~ I '  " " " ' ~m in ~e(A)~IP±(A))c /2  such 

tha t  
m 

~e(A) \ (P+(A) )c /2~_ U B(~k;~/2) • 
- k = l  

By (b) there is  a component C k o f  ~ (A) tha t  is contained 
' e 

i n  B(~k;~/2) . By Lemma 1.5,  there is an in teger  n 2 ~ n I such 

tha t  fo r  n t n? , B(Lk;~/2) contains a component of  Oe(A n) ; 

thus B(~k;~/2 ) ~ (~e(An))~ . Therefore,  i f  n ~ n 2 , 

~w(A) C ~ e ( A ) \ ( P ± ( A ) ) ~ / 2  U (P±(A))E/2 

(Oe(An)) ~ U (P±(An)) ~ 

= (~w(An))~ . 

This shows tha t  ~ is  lower semicontinuous at A . w 

To complete the proof again use the Stampfl i  r e s u l t  ( [ 17 ] ,  

[20 ] )  to obta in  a compact operator K such that  ~(A + K) = 

~w(A) . Since A n + K÷  A + K there is  an in teger  n O ~ n 2 

such tha t  i f  n ~ n O , ~(A n + K) ~ (~(A + K))~ . Therefore,  

i f  n ~ n o , then 

~w(An) = ~w(An + K ) c ~ ( A  n + K ) ~  (~(A + K))~ = (~w(A))~ . 

This completes the proof .  I 

In general ,  there is  no i nc l us i on  r e l a t i o n  between the points  

of  c o n t i n u i t y  of  o and those of  ~w " For example, l e t  ~n,k = 

(I + ~) exp(2~i k/n) f o r  1 ~ k < n and n ~ I Let N be the 

diagonal operator whose eigenvalues are ~ = {~n,k : 1 ~ k ~ n , 

n ~ I }  , each eigenvalue having i n f i n i t e  m u l t i p l i c i t y .  Hence, 
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~(N) = ~e(N) = £ U 8D . Let  S be the u n i l a t e r a l  s h i f t  o f  

m u l t i p l i c i t y  one and put  A = S ~ S* 8 N . Then Ow(A) = Oe(A ) = 

& U ~D , P+(A) = [ ]  , Po(A) = D ,  and a (A)  = & U D- 

By Theorem 3 .6 ,  ~ is  con t inuous  a t  A bu t ,  by C o r o l l a r y  3 .2 ,  
w 

a is  not cont inuous a t  A . 

For ano ther  example,  l e t  M be the d iagona l  o p e r a t o r  w i t h  

e igenva lues  & = {mn,k : l . !  k < n , n ~ l }  , where each e igen-  

va lue has m u l t i p l i c i t y  one. Then ~(M) = ~D U £ , ~w(M) = D D ,  

and P+(M) = [ ]  . Here, ~ is  con t inuous  a t  M but a w i s  no t .  
- 

3.7 PROPOSITION. I f  o w is  con t inuous  a t  A and i n t  Po(A) = [ ]  , 

then a is  con t inuous  a t  A . 

Proof .  Suppose An + A and e > 0 . Let  n I be an i n t e g e r  such 

t h a t  f o r  n ~ n I , 

o(A n) ~ (o(A)) s , 

Ow(A n) ~ (~w(A))~ , 

and ow(A) c (Ow(An)) ~ . 

By the hypothes is ,   IAI : o IAI  U  OIAI • Since 
0 - 0 

[ ~ p ( A ) ]  ~ap(A)  c Oe(A) ~ A)~(Ow(~))  s c o n s i s t s  o f  a f i n i t e  F 
number o f  po in t s  X 1 . . . . .  X m An a p p l i c a t i o n  o f  Lemma 1.5 

y i e l d s  the e x i s t e n c e  o f  an i n t e g e r  n O 3 n I such t h a t  

{X 1 . . . . .  X n} ~ (~(An) )  s f o r  n ~ n O I 

3.8 PROPOSITION. I f  A e 8(H) such t h a t  o~(A) = [ ]  and o 

is  con t inuous  a t  A , then o w is  con t inuous  a t  A . 

Proof .  The c r i t e r i o n  s t a t e d  in  Theorem 3.6 w i l l  be used to show 

t h a t  Ow i s  cont inuous  a t  A . I f  X 6 0 e ( A ) \ [ P ± ( A ) ] -  and 

E > 0 , then Theorem 3.1 i m p l i e s  t h a t  f o r  every e > 0 , t he re  

is  a component C o f  o0(A) such t h a t  C C B ( X ; e )  Since 
0 

Op(A) = [ ]  , o0(A) = Ole(A) n Ore(A ) , and so, by P r o p o s i t i o n  

1 .3 ,  C is  a component o f  Oe(A) . Thus ~w is  cont inuous a t  

A . I  
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The examples preceding Propos i t ion 3.7 show that  these l as t  

two resu l ts  are, in some sense, the best possib le fo r  r e l a t i n g  the 

points o f  c o n t i n u i t y  o f  ~ and a 
w 

3.9 COROLLARY. I f  A C B(H) an__dd a(A) = ~w(A) , then a i__ss 

continuous at A i 4 and only i f  aw is continuous a t  A . 

3.10 COROLLARY. I f  Ae  8(H) and ~w is continuous at A , 

then there is a compact opera to r  K such that  ~ is continuous 

at A + K . 

Proof. Let K be a compact operator  such that  ~(A + K) = ~w(A) 

( [17 ] ,  [20 ] ) .  Since ow(A) = aw(A + K) , A + K is a po in t  of  

con t i nu i t y  o f  aw . But ~(A + K) = ~w(A) so Coro l la ry  3.9 

a p p l i e s . l  

The next question tha t  presents i t s e l f  is "What are the 

points o f  c o n t i n u i t y  o f  the essent ia l  spectrum?" This question 

w i l l  be i nves t i ga ted  in a forthcoming paper. I t  w i l l  be shown 

tha t  i f  ~ is continuous at A then so is a 
e w 

3.11 PROPOSITION. I f  a is continuous at A , then so is a e w 

Proof. Suppose A n ~ A and ~ > 0 . Let n I be an in teger  

such tha t  fo r  n ~ n I , 

~e (A) ~ (~e(An))~ 

and P~(A)~  (P~(An)) ~ . 

Let K be a compact operator  such that  a(A + K) = aw(A) ( [17]  

and [20 ] ) .  Let n O ~ n I be such tha t  for  n 3 n O , 

{(An + K) ~ (a(A + K))e . Therefore,  

: _ = ( ~ w ( A ) )  ~w(An) ~w(An + K) ~ (a(A + K ) )  c 

and 

qw(A) : P+(A) U qe (A) ~ (P+(A)) U (qe(An))c = (ow(An)) c 
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This comple tes  the p r o o f . ~  

I f  A i s  b i q u a s i t r i a n g u i a r ,  then P+(A) = ~ and so Ow(A) = 

~e(A)  . Hence, Oe (o r  ~w ) i s  con t i nuous  a t  A i f  and o n l y  i f  

eve ry  r e l a t i v e l y  open subse t  o f  ~e(A)  c o n t a i n s  a component o f  

~e(A)  • 

The converse  to  P r o p o s i t i o n  3.11 i s  f a l s e  as the f o l l o w i n g  

example i l l u s t r a t e s .  For a bounded r e g i o n  G in  ~ , l e t  A2(G) 

denote  the  space o f  a n a l y t i c  f u n c t i o n s  on G t h a t  are  square 

i n t e g r a b l e  w i t h  r e s p e c t  to  area measure.  Le t  G 1 = 

{z G C : 0 < Re z < 1 and 0 < Im z < I }  and G 2 = 

{z  E ~ : l < Re z < 2 and 0 < Im z < l }  . Le t  S k = m u l t i -  

p l i c a t i o n  by z on A2(G k) f o r  k = l ,  2 . So ~(S k) = Gk , 

~e(Sk)  = ~G k , and i nd (~  - Sk) = - l  f o r  ~ i n  G k . I f  

A = S l ~ S 2 , then Ow i s  con t i nuous  a t  A by Theorem 3 .6 .  

But ,  qe i s  no t  c o n t i n u o u s  a t  A To see t h i s ,  l e t  G 3 = 

{z  ~ ~ : 0 < Re z < 2 , 0 < Im z < l }  and l e t  S 3 = m u l t i p l i -  

c a t i o n  by z on A2(G3 ) . Le t  C = { l  + i y : 0 ~ y ~ l }  and 

l e t  N be a normal o p e r a t o r  w i t h  ~(N) = oe(N)  = C . I t  f o l l o w s  

from the work o f  Brown, Doug las ,  and F i l l m o r e  [ 6 ]  t h a t  t h e r e  i s  

a u n i t a r y  o p e r a t o r  U and a compact o p e r a t o r  K such t h a t  

A = U(S 3 ~ N)U - l  + K . By the r e s u l t  o f  Apos to l  and Mor re l  

(Theorem 1 . 6 ) ,  t h e r e  i s  a sequence o f  o p e r a t o r s  {Tn} such t h a t  

~(Tn)  = { I }  f o r  each n and I ITn - N i l  ÷ 0 as n ÷ ~ . ~e t  

A n = U(S 3 ~ Tn)U- l  + K . Then A n ÷ A as n ÷ ~ . But 

oe(A)  = ~G l U 3G 2 , w h i l e  oe(An)  = oe(S 3) U oe(T n) = ~G 3 f o r  

a l l  n . Hence, { ~ e ( A n ) }  does no t  converge  to  oe (A)  - 

An i n t e r e s t i n g  f a c t  i s  t h a t  A = S l ~ S 2 ~ S 2 i s  a p o i n t  

o f  c o n t i n u i t y  o f  o e i f  S l and S 2 a re  d e f i n e d  as i n  the  

p reced ing  pa rag raph .  
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One can ask whether the r e s t r i c t i o n  of  o or ~ to c e r t a i n  
e 

subsets of  B(H) is cont inuous. For example, is the r e s t r i c t i o n  

o f  ~ to the set  o f  normal opera tors  continuous? The answer is 

yes and was obta ined by Newburgh [18]  as a consequence o f  a more 

general f ac t .  The reader can consu l t  [18]  f o r  the d e t a i l s .  

~4 Concludin 9 Remarks 

I t  is easy to show tha t  r , r e , o , and ~w are con t inu-  

ous on a dense G6 . In f a c t ,  t h i s  fo l lows immediate ly  from the 

resu l t s  in t h i s  paper and the Aposto l -Morre l  model in [ 4 ] .  The 

re fe ree  has also po in ted out  t ha t  r e , a w , and ~ are 

d iscont inuous on a dense F This fo l l ows  from the proof  o f  

Theorem 4 in [15 ] .  

Several o f  the resu l t s  o f  t h i s  paper hold in a more general 

s e t t i n g .  In f a c t ,  v i r t u a l l y  a l l  the i m p l i c a t i o n s  tha t  do not  use 

the Aposto l -Morre l  r e s u l t  (Theorem 1.6) hold f o r  operators  on a 

Banach space. Indeed, most o f  these i m p l i c a t i o n s  invo lve  on ly  the 

basic p rope r t i es  of  the Riesz func t i ona l  ca lcu lus  and the con t inu-  

i t y  o f  the index.  These concepts and t h e i r  p rope r t i e s  are v a l i d  

not only in B(H) , but a lso in many Banach a lgebras.  The only 

reason tha t  we are forced to r e s t r i c t  our a t t e n t i o n  to B(H) is  

the ex is tence of  Theorem 1.6. I t  would be i n t e r e s t i n g  to see par-  

t i a l  extens ions o f  (1.6)  to Banach spaces, 



Conway et a l .  197 

I .  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9, 

I0. 

I I .  

12. 

13. 

References 

C. Apostol,  C. Foias, and D. Voiculescu, "Some resul ts  on non- 
quas i t r iangu lar  operators", I I ,  Rev. Roum. Math. Pures et Appl . ,  
18 (1973), 159-181. 

C. Apostol,  C. Foias, and D. Voiculescu, "Some resul ts  on non- 
quas i t r iangu lar  operators",  111, Rev. Roum. Math. Pures et 
Appl . ,  18, (1973), 309-324. 

C. Apostol, C. Foias, and D. Voiculescu, "Some resul ts  on non- 
quas i t r iangu lar  operators", IV, Rev. Roum. Math. Pures et A pp! . ,  
18 (1973), 487-514. 

C. Apostol and B. Morrel, "On uniform approximation of oper- 
ators by simple models, " Indiana Univers i ty  Math. J . ,  26 (1977), 
427-442. 

N. J. Bezak and M. Eisen, "Cont inu i ty  propert ies of operator 
spectra",  Canad. J. Math., 29 (1977), 429-437. 

L. G. Brown, R. G. Douglas, and P. A. Fi l lmore,  Unitary e__quiva- 
lence modulo the compact 9perators and extensions of C*-algebras, 
Proc. of  a Conference on Operator Theory, Ha l i fax ,  Springer- 
Verlag Lecture Notes in Mathematics, vol .  345 (1973). 

R. G. Douglas and C. Pearcy, "A note on quas i t r iangu lar  oper- 
ators" ,  Duke Math. J . ,  37 (1970), 177-188. 

R. G. Douglas and C. Pearcy, Invar ian t  subspaces o__f_f nonquasi- 
t r i angu la r  operators, Proc. of a conference on operator theory, 
Springer-Verlag Lecture Notes in Mathematics, vol .  345, pp. 
13-57. 

J. Dugundji, Topology, A l lyn  and Bacon, Inc . ,  Boston (1966). 

N. Dunford and J. Schwartz, Linear operators, Part I ,  In ter -  
science, New York (1958). 

P. A. F i l lmore,  J. G. Stampfli and J. P. Wil l iams, "On the 
essential  numerical range, the essential spectrum, and a prob- 
lem of  Halmos", Acta Sci. Math. (Szeged), 33 (1972), 179-192. 

L. Gillman and M. Jer ison, ~ o f  Continuous Functions, D. 
Van Nostrand Co., Inc . ,  Princeton-~1960). 

P. R. Halmos, A H i l b e r t  Space Problem Book, D. Van Nostrand 
Co., Inc . ,  Princeton (1967). 



Conway et al. 198 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

P. R. Halmos and G. Lumer, "Square roots of operators, I I " ,  
Proc. Amer. Math. Soc., 5 (1954), 589-595. 

D. A. Herrero, "On mult icycl ic operators", Integra! Eq. and 
Operator Theor#, ~ (1978), 57-I02. 

T. Kato, Perturbation Theor~ for Linear Operators, Springer- 
Verlag, New York (1966). 

J. S. Lancaster, "L i f t ing  from the Calkin algebra", Indiana 
University Ph.D. Dissertation, 1972. 

J. D. Newburgh, "The variat ion of spectra", Duke Math. J., 
18 (1951), 165-176. 

M. Schechter, 'Ilnvariance of the essential spectrum", Bull. 
Amer. Math. Soc., 71 (1965), 365-367. 

J. G. Stampfli, "Compact perturbations, normal eigenvalues, 
and a problem of Salinas", J. London Math. Soc., 9 (1974), 
165-175. 

John B. Conway 
Indiana University 
Bloomington, Indiana 47405 

Bernard B. Morrel 
IUPUI 
1201 E. 38th Street 
Indianapelis, Indiana 46205 

Submitted: April i0, 1979 


