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O. Introduction and summary 

Nowadays i f i s  very  common to use time-sampled data  to analyse 

or control an object f luctuating continuously in time. This seems to be 

motivated by the recent  developments of digital methods serving for 

these purposes. In relation to such procedures there  are many papers 

which t rea t  the noise or error due to quantization ([4], [5]). The effect 

of time-sampling on the spectral properties is also well-known as folding 

or aliasing for the case where the fluctuation of object  is represented 

by a s ta t ionary stochastic process and the timings are performed with- 

out  error. As to the cases where timing-errors are present  we have 

seen ye t  little quant i ta t ive  description of their effects on the spectral 

properties of the time-sampled data  [3]. In the present  paper we t rea t  

this problem for the case where the t iming is independent  of the original 

process and the intervals be tween  sampling-time points form a s ta t ionary 

process. Af te r  the general discussion of this case we t rea t  two special 

types  of t ime-sampling in more details. The first corresponds to the case 

where,  though it is intended to sample the record at the time points which 

are the integral  multiples of a constant  time z/t, the  deviations of the 

sampling-time points from the preassigned ones are present  and form a 

purely random process, i.e., they  are random variables which are mutual ly  

independent and follow one and the same probability distribution. The 

second corresponds to the case where the sampling-time points form a 

renewal process, i.e., the interval  lengthes be tween  successive sampling- 

t ime points form a purely random process. The results  of our analyses 

show clearly how the t iming-error affects the power spectral  distribution 

function of the time-sampled data.  The effects are essentially non-linear 

bu t  the time-sampling of the  first type  may be described as a low-pass 

filter with an inner white noise source. We can see fur ther  tha t  in 

practical applications even the time-sampling procedures of the  second 

type  may sometimes act approximately as a low-pass filter with an inner 
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white noise source. These results seem to give a mathematical  explan- 

ation of the fact ,  mentioned by D. T. Ross in [3], tha t  the  time-sampl- 

ing was sometimes vaguely (and incorrectly) considered to be a filtering. 

By using the continuous records of the outputs  of accelerometers mounted 

on the frame "and on the front axle of an automobile we il lustrate these 

theoretical  results  by numerical examples. These records were obtained 

by the members  of the research depar tment  of the Isuzu Motor Company 

and were presented to the author by Mr. Itiro Kanesige of the depar tment  

for the purpose to develop the statist ical  research of the relations be- 

tween vehicular oscillations and road surfaces.  When we were reading 

these records using a rule we had to face two main sources of error. 

The one was the error in the horizontal position of the rule and the 

other  was that  due to quantization. The results  of our investigation 

described in this paper enable us to make a quant i ta t ive  evaluation of 

the effect of the reading-errors on the forms of the power spectral 

distribution functions of these time-sampled data.  

1. Spectral properties of sampled-data. 

We shall here consider a strictly stat ionary real stochastic process 

{x(t, w); - c o  < t < ~ o }  with continuous time parameter  t. I t  is assumed 

tha t  

a.1. the process has zero-mean and finite second order moments,  

a.2. almost all sample functions of the process have finite limit from 

the right, 

x(t + ,  w) = lim x(s, o9) 

for all t, and 

a.3. the process is continuous in the sense of mean square, 

lim E{I x(s, w)-x( t ,  w)X ~} = 0  . 
S - t ~ O  

It  is fairly obvious tha t  in almost every physical realizations of stochastic 

processes these conditions are satisfied. To see fur ther  tha t  the con- 

dition a.3. really does not seriously restr ic t  the general i ty  of the process, 

the reader is recommended to consult the book [1] by J. L. Doob. 

Here We take another strictly s tat ionary stochastic process {~/v~(w); 

- - ~ < n < ~ }  defined on the same w space as x(t, w) process and with 

discrete time parameter  n. We define v,(w) by the followings; 
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r0(og)= (og) 

where ~(o9) is a random variable. Now we define a sequence of o9 func- 

tions {x~,~(og) ; -oo<n<oo} as follows; 

x~.n(og)=x(r,~(og), o9) if Prob {o9'; r~(og')=v~(og)} > 0  

-~ x(rn(og) +,  o9) otherwise.  

We can see tha t  the function x:.~(og) is well defined by the assumption 

a.2. To see that  {x~,~(og); - oo < n <  oo} forms a stochastic process we adopt 

the following discrete approximation procedure described in [2]. Denote 

by S: the set  of values which some v, takes with positive probability. 

Obviously S~ is at  most enumerably infinite. For each positive integer  

q choose finitely many points 

ai~) <a~) < . .  �9 <a~ ~) 
q 

in such a way  tha t  first q point of S: enumerated  in some order are 

a~) 's  and tha t  every points in the interval [ - q ,  q] is within distance 

1/q of  s o m e  a~ ~) and +_co and 0 are s o m e  ~)' aj s. Def ine  t h e  s t o c h a s t i c  

process {r~q)(og);--o0 < n < o o }  by 

v(,q)(og) = a~ q) if vn(o9)~a~ ~) 

----a~ ~) if ~j_~"(~) < r~(og) < a~ ~ ) _  

= 0 if vn(o9) > a~). 

If we define 
o9), 

it is obvious tha t  x~(~)~(og) is a measurable o9 function, i.e., a random 

variable and 

lim x~(q).~(og) = x~.n(og) 

holds with probability 1. Hence x~n(o9) is a random variable. Herea f t e r  

we shall sometimes omit the  variable o9 in the expression of random vari- 

ables. Now consider a set  {m~; 9=1 ,  2, - - - ,  k} of arbi t rary  finite number  

of integers sat isfying the relation m l ~ m ~ ' . "  ~m~ and a set { ~ ;  ~=  

1, 2, . - . ,  k} of real numbers.  Then we have 

Prob {x~(~) ~ _ < ~ ,  x~)  m<_~ m, . . . ,  x~(~),~_<~} 

= ~ Prob { x ( a j i ) _ ~  ~, x(aj~)<~,~, . . . ,  x(aj~)~_~,~ and 
(J l , J2 , . . . ,  J~) 

T ( q ) - - ~  "~(q)--~.  , , , .  ' ~ (q ) - -a .  
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where aj~ denotes- (q)  for 9=1 ,  2, . . .  k and the summation is taken 

over all the  possible ar rangements  (Jl, J~, "" ", J~) where  j~ is one of 

(1, 2, . . . ,  nq). Denote by r X2, . . . ,  ~ ;  m ,  m ,  . . . ,  m~) the charac- 

teristie function of (x~(q),~, x~(~)~, . . . ,  x~(q)~) and by #~)(~, ~ ,  . . . ,  

X~ [ aj~, aj~, . . . ,  a~; m ,  m ,  - . - ,  m~) the  conditional characterist ic function 

of (x~(~)~, x~(~)~, . . . , x~(~)~)  conditioned by the random variables 

(r ~) v ~q~ . .  v(~)~ Then we have 

r ~2, . . . ,  )~; m ,  m ,  . . . ,  m~) 

= ~ r )~, . . . ,  X~ [ a~, aj~, . . . ,  aj~; m ,  m~, . . . ,  m~) 
( J l ,  J2 ,  . . .  , jk  ) 

• Frob [~(q)-a T ( q ) - - a  �9 �9 �9 T ( q ) - - a  ~ 

Denote by ~b()~, ~2, . . - ,  X~; m ,  m~, . . . ,  m~) the characterist ic function of 

( x ~ , x : ~ , . . . , x ~ ) .  Then we have 

gb()~l, )~2, " ' ' ,  )~; ml,  m2, " ' ' ,  m~)=lim ~b(~)(~, )~, " ' ,  )~; m ,  m ,  . . . ,  m~). 

Hereaf te r  we shall restr ic t  our a t tent ion to the case where {v~(w)} and 

{x(t, o))} are mutually independent.  For this case we can put  

~b(~)()~, ~ ,  . . . ,  ~ l a~, a~, . . . ,  a~;  m ,  m ,  . . . ,  m~) 

=~()~,  ~ ,  . - . ,  ~ ;  a~, a~, . . . ,  a~) 

where ~,()~, ~:, . . - ,  )~; a~, a~.~, . . . ,  a~) denotes the characterist ic function 

of (x(a~, w), x(a~, w), . . . ,  x(a~, o9)). From the continuity assumption 

a.3. for the x(t) process it follows tha t  ~,()~1, ~ ,  " " ,  )~; a~, a~, . . . ,  a~,) 

is continuous in (a~, a~, . . . ,  a~). Obviously lim v(,~)(w)=%(o~) with proba- 
q ~  

bility 1 and thus the finite dimensional distribution of ~v (~) v (~) v(~)~ 

converges to tha t  of (v~, v~,  . , . ,  v ~ )  as q-~o~. Thus taking into ae- 

count the boundedness of ~ ( ~ ,  ) ~ , . . . ,  ~ ;  a~,, a~, . . . ,  a~) we have 

r k2, . . . ,  ~ ;  m ,  m~, . . . ,  m~) 

= I ~ ( ~ ,  ~, . . . ,  ~;  a~, a~, . . . ,  a~,)dP~,,~ . . .~(a~,  a~,, . . . ,  a~,) 

where P ~ , ~ . . . ~ ( a ~ ,  a~, . . . ,  a ~ ) = P r o b  (v,~ga~, vm ~_ a~, . . . ,  v~ ~_a~). 
From the str ict  s ta t ionar i ty  of the x(t) process 

~-(~, )~, . . . ,  )~; a~, a~, . . . ,  a~) 

can be represented in the form 

and we have 
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~b(~1, ~s, " " ,  ~ ;  ml, m . . - . ,  m~) 

=I~(~1,  X~, . . . ,  ~ ;  b2, b~, . . . ,  b~)dP(,~,~_~,m_,,~ ... ~ _,~_~)(b2, b ,  . . . ,  b,) 

where  

P(m~-ml,m~_m2 ,...,m_m~_i)(bs, b~, " ' ' ,  b~) 

: Prob {v~--  v~  < b2, ~ m -  v ~  < b~, - - . ,  ~.~-- ~,_~ _< b~} . 

Taking into account of the str ict  s ta t ionar i ty  of the  z/v~ process we can 

see f rom this equation t ha t  P(~- ,*~,~- ,~2, ' "~ , -~ , -~) ,  and so the  characteris t ic  

funct ion qb(>~, ~2, " " ,  ~ ;  m ,  ms, . . . ,  m~), is completely de te rmined  by the  

differences m~--mj_~  ( j = 2 ,  3 , . . - ,  k). Thus  the  process {x:..(oJ)} is seen 

to be s t r ic t ly  s tat ionary.  Taking into account  the  inequalities 

g E ]  x(aj~) l g a  

t o2 

where a S = E l  x ( t ) r ,  we get  

0 ..)~, 

: I ~ - ~ ( ~ 1 ,  )~s, " " ,  )~; aj I, a~2, " " ,  a j ~ ) d P , . , , m , . . . ~ ( a j  1, % ~ , ' " ,  aj~) 

~ r  )~s, "" ", )~; a~,  a~,  �9 � 9  a~)  

= ~ ( ~ ,  ?~s, " " ,  ~,~; a~,  a~s, . . . ,  a ~ ) c l P ~ , , ~ , . . . ~ ( a ~ ,  a~,  . . . ,  a ~ )  

and 

p(k)  =-- E {x . . . .  ~(w)x~, ~(w)} = f R(a~ + ~ - a~)dP,~,n + ~(a,,, a,~+ 

= IR(v)dP(~)(v)  

where R ( v ) = E { x ( t + r ,  ~o)x(t, w)} and P(~)(r)=Prob(v~-v0_<v).  Clearly 

this last relation holds for any k positive or negat ive and we have 

p ( 0 ) = a  s . 

Thus x:,~ process is s ta t ionary also in the  wide sense, i.e., has finite 

second order  moments .  
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Obviously this x:~ process is a mathematical  representa t ion of the  

sequence of data  which are t ime-sampled by using the t iming impulses 

s i tuated at  the time points vS. The purpose of the present  paper is to 

s tudy  the spectral properties of this x,,~ process. 

Now we have 

p(k)= IR(v)dP(~)(v)= I(~)II(,)e~f~dP(f)ldP~)(~ ") 

= Idp~(f)dP(f) 

where P( f )  is the power spectral distribution function of the x(t) process, 

continuous from the right and with p ( - ~ ) = 0 ,  P ( ~ ) = a  ~, and 

dp~(f) = Ie~**~dP(~)(v) . 

As the x(t) process is real we can assume tha t  P ( - f ) = a ~ - P ( f )  holds 

at  the continuity points of P(f )  and we have 

I(,)+~(f)dP(f)=21~ + Re(d~(f))dP(f)+ P(O)- P(O- ) .*) p(k)= 

This shows tha t  p(k) is obtainable as an output  power of some (imagi- 

nary) filter with signed power t ransfer  function 2Re(r the  

input  {x(t)}. Now we can evaluate the power spectrum of the x., .  process 

by using some smoothing process or a filter. Take a convergence factor  

or a sequence of real numbers  c~ such as 

c o : l  , 

and 

We define the smoothing function corresponding to the sequence {c~} 

h ( f ) =  ~ c~e 2~* . 

Obviously h(f)  is a real continuous even periodic function wi th  period 

1 and 

*) Re(r denotes the real part of r 
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Here we fu r the r  assume tha t  h(f)~_O, i.e., the sequence c, is positive 

definite. Now we shall represent  by P d f )  the power spectral distri- 

bution function of the x~,~ process, which is continuous to the  right,  

monoton non-decreasing and with lim Pal f ) = 0 ,  Pd �89  Then we have 
f ~ - l / 2  

e~p(k)e-~"~s= ~ e-~=~se~ ( f ' )  

Define 

l'1/~ [- ~ -] 
= l  [ ~ c~e-~s - s ' ) |dP~( f  ') 

J - 1 / 2 L ~ = - ~  J 

I" 1/2 
= l-~r~ h ( f - f ' ) d P d f ' )  " 

h * P d f ) =  I~ii h ( f  - f ' ) d P d f ' )  , 

then h , P ( f )  is continuous wi th  respect to f and 

I 
I /2 f l / ~  , 

_~j h*P~(f)df  --= ~_~i dP~(f') = a '~ . 

Now consider a set [{c~=); - ~  < k < ~ } ;  n = l ,  2, 3, - . . ]  of convergence 

factors  {c2 ")} wi th  the  corresponding smoothing functions h(~)(f) for 

which 

,~lim I~h(")(f)df =1 

holds for any a and 13 sat isfying -~___a<O</~<�89 Then we have 

from the eveness of hC~)(f) 

i s l imI~ d 1 lira h(~)(f)df= ( f )  f = ~  
n ~  J O  n ~  ot 

and for a '  and ~' such tha t  0 r  [a',/~'] and - ~ _ a ' < ~ ' < � 8 9  we have 

,im 

Now for x and y sat isfying - -~Nx  < y < ~  we have 

lim 3Y'* Pxs)es= s>xs,)_leS 

IP )+] = / Him ( f - f '  dP~(f') 
J - i / 2 L n ~  

= ~ [(PdY) - P : ( Y -  )) + (Pdx) - Pdx  - ))] § P~(y-  ) - Pdx) 

where P d x - ) = P ~ ( x ) = O  by definition for x = - ~ ,  and 
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t'1/2 
lim ]_~/2h('~), P~( f  ) d f  = a 2 =  P:(�89 . 

Thus we have 

lira lim h ( ' ) , P : ( f ) d f  = lim lira 
y ~ l l 2  n ~  112 / y l l l 2  n ~  

----P~(�89189 . 

For the continuity interval [x, y] of P:(x) we have 

I v ( f ) d f  (y) ( ) lim h(~),P~ =P~ - P ~  x , 
n ~  x 

and thus for z in ( - �89  ~) 

lim lira ( f ) d f  = P ~ ( z ) -  P : ( z -  ) .*) 
y ~ z  n ~  
z ' ~ z  

Fur the r  if 

almost everywhere and 

lim h<~),P~(f) = io(f)  

i 1/~ "~ 'd  ~ a s A 

_I/2PA]) J =  

then we have d P : ( f ) - ~ ( f ) d f .  **) 

Here we shall derive concrete results for two types of v~ process. 

1. First  we shall consider the case where absolute clock pulses are 

available and timing-errors (deviations of sampling-time points from the 

corresponding true clock pulses) form a purely random process. In this 

case we have 

where ~/t is a fixed non-negative constant and s~'s are mutually 

independent random variables following one and the same distribution. 

We shall call this procedure time-sampling of purely random type. 

As 

holds, we have for k~O 

*) The symbol lira denotes lim where x and y are taken to satisfy x<z<y. 
y ~ z y - x ~ O  
~ z  

**) Hereafter  we shall use the notation dP(f) to denote the measure  funct ion deter- 

mined by P ( f ) .  When  P ( f )  is absolutely continuous and with density function p(f) then 

we write dP(f)=p(f)df. 
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where 

Thus 

and for k r  

~p~(f) = Ie~'~1"dP(~)(v) = e : , ~ q  r  I s 

r  = E{exp  (27~ife.)} . 

f ~  

Here we shall disregards the trivial case where zl t=0 and z , = 0  with 

probability 1. If  we represent  by d]r the aliased form of 

d i e ( f )  ]~P(f) for the folding f requency l/(2zlt), i.e., 

v +  ~p v 

then we have for k~O 

p(k) = j-11(~,) 

From this expression we can at once see tha t  d P d f )  is given by the 

following 

Of course we can easily obtain this results  by exact ly  following the 

smoothing procedure described in the preceding section. For practical 

applications expressions such as 

1"1/2~t 
p(k)=  ~ e"~t~dP[ ' ( f )  k . . . .  , - 2 ,  - 1 ,  O, 1, 2, . . . ,  

J-~12at 

for -- 1/(2z/t)___ f < 1/(2~t), will be be t te r  suited. This last relation clearly 

shows the effect of timing error on the power spectrum. If there  is no 

t iming error we have ~b( f )= l  and d P ~ ( f ) = d P a ( f ) .  Thus time-sampling 

causes aliasing. *) When the timing-errors are present  and are not lattice 

*) As to the use of the word "aliasing" see [1]. From the above expression of aliased 
form of a spectral function we suppose that it will be more natural to consider that the 
aliased form is obtained by "piling up" the sliced spectrum rather than by "folding".  
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valued we have [ r  for f r  Fu r the r  when the distribution 

function of error e. has probability densi ty function we have lim [ r  

0. Thus we can see tha t  the time-sampling of purely random type 

usually acts as a low-pass filter wi th  an inner white noise source. The 

power of this white noise is the  same as t ha t  of the  higher f requency 

component excluded by the filter from the original x(t) process. 

Estimation of the term I~ (1--f r  

It  will be desirable to get  an est imate of the te rm 

~tf~ ( 1 - f ~ ( f ) D d P ( f ) .  

If  such an est imate is available, by subtract ing it from the  est imate of 

dP~t(f) we can est imate d]r  which will be a good est imate of 

dP( f )  for f near  zero, for proper z/t and r  Now consider two 

mutual ly  independent  readings of the same x(t) process. We shall re- 

present  them as x~,. and x~,~ with  

%,~ =n~t + ~,~ 

where {z,,.} and {s~,~} represent  t iming-errors which form mutually 

independent  purely random processes with one and the same finite 

dimensional distribution. Then we can see by using the result  for time- 

sampling of purely random type with  zlt=O tha t  

holds where  

ER(s~,~- z~ .) = E I~_~ exp { 27:i(s.-- z2 ~) f } d P( f ) = I~_~ [ r  

Thus ~(x~,.-x~,.)  ~ is an unbiased est imate of 

f~ (1--f~(f)  I~)dP(f) 

and by using the sample mean of the variable for sufficiently large 

number  of n 's  we can practically est imate the desired quant i ty .  

2. Next  we shall consider the  case where the interval lengthes 

be tween successive sampling time points form a purely random process. 
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This is the case where only relative clock pulses are available. Interval  

length from the former sampling time point %_i is str ictly measured 

and when it reaches preassigned value At next  observation is made about  

x(t) but  with t iming-error s~. We shall call this procedure the time- 

sampling of renewal type.  In this case %=v~_~+At+s~ and s~'s are 

assumed to form a purely random process. Notice that  when we are 

not considering the operation in real-time At+z~ may take negative 

values. 

Now if we define 

we have 

and 

5b(f) = E {exp [27rif(At § s~)] } 

r 1 6 2  for k > 0  

= r  for k < 0 ,  

P(k)= I~_ r  . 

To evaluate the power spectral distribution function of x~,. process we 

shall use the convergence factors  {c~ n)} defined by 

c ( n ) - - C I ~ I  
Ic - -  it  

where  0 < c ~ < 1  and l i m c . = l .  

Here we want  to mention a theorem which is well known in the  

theory  of functions and s ta ted  as follows; suppose u ( f )  is a function 

defined for f in - � 8 9  and is integrable [=�89 �89 Then if u ( f )  is 

continuous at  f = f 0  the function 

r ~/~ 1 -- r ~ 
u(r, f')-= l_ll2u(f) t l_re_~.z_z ,  ) ]2 d r ,  

defined for r and f '  sat isfying O < r < l ,  - � 8 9 1 8 9  converges to u(fo) 
as re ~'~" tends to e*'~% A direct consequence of this theorem is tha t  

by the present  definition of our {c~ ~)} the functions 

~-~  I 1--e-~1c~ [5 

have the properties which we have postulated in w 1 as necessary for 

h(~)(f)'s to serve for our present  purpose. Now we define 
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K.(ck, f ,  f ' ) =  ~ c(.~)ck~(f')e -~=*~s 

_ 1 - - [  c . c k ( f '  ) [~ 
[1--e-2~*Ic~r ') [~ 

Then if we use the representation 

r  2~' ( O < r ' < l  , 

we have 

and 

- ~ < s '  ~) 

K~(r f ,  f ' )  = ~ e-~**(~-~')(c~r') '~l- 1--I c.r' I ~ 
k = - ~  [ 1 - - e - 2 ~ " 1 - ~ ' J c ~ r  ' j~ ' 

K~(~, f ,  f ' )  >_ 0 

i ~12 K~(dp, f ,  f ' )d f=(c~r ' )~  . 
-1/2 

Now we shall define for q~(f')=r'e 2~w (O<r'<_l,  - � 8 9 1 8 9  and f ( -4_< 

f___a) 

K(ck, f , f ' ) =  1 - - [ r ' p  when r ' ( 1 ,  
[1--e-2..~-~') r' [~ 

= 0  when r ' = l  

and for x and y sat isfying - ~ < x ( y  ( �89 

Zt.,~l,~(f')=l when r ' = l  and x < s ' < y  

=~* when r ' = l  and s '=x  or s '=y  

= 0 otherwise. 

Then by taking into account the results of the above-mentioned theorem 

we can get  for x and y sat isfying - �89 < x  < y  < 

Y ' d  ' K lim K~(~b, f ,  f ) f=ZF.,~j,~(f )+ (ok, f ,  f ' ) d f ,  

and for x and y sat isfying - X < x ~ ' o . w z  

=lira K~(~, f ,  f '  d P ( f ' )  

= § �9 

Thus we have 
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I' Pd�89189  lim h(~)*Pdf)df 
yTI]2 n ~  -1]2 

I-iim S'I') Sl 

where ~ Z m , ~ ( f ) = l  if and only if r  ~* and = 0  otherwise.  If  we 

fur ther  define 

Z~ ~ ( f ' )= l im ZE.,y~,~(f') for s r  •189 
y ~ s  
x T s  

- -  l i m  - -- Z~-m.~],~(f ) for s =  --~ 
y ~ -112 

we have for s in [--�89 ~] 

p,(s)- 

W e  shall hereaf te r  analyse these results  in more details. There are 

three classes of r  The first is composed of those r  for which 

I r  I = 1  holds for all f ' .  The second is composed of those r  for 

which the minimum of the absolute values of those f '  ( r  0), for which 

I r  hold, takes  some positive value f0 which depends on ~b. The 

third is composed of those r  for which I r  holds only a t  

f ' = 0 .  When r  is of the first class it can be represented in the form 

r  ~-*s'~ 

by some real constant  Av and corresponds to the t ime-sampling with 

the length Az of sampling interval and wi thout  t iming-error.  Herea f t e r  

we shall disregard the trivial case where  Av=0  holds. Now we have 

' 0 K(~, f ,  f ) =  

and for x and y sat isfying -- �89 < x < y < �89 

A v \-A-v-v/+ P \  zl v 

=~--~L 2 - 2 " 

This is the formula showing the folding or alaising. The line spectra  

of this case are given by 
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P~(s)-PT(s--)= \ z1"r / \ A'r 

If  the original P(f)  has a densi ty function p(f) then we have 

As for r of the second class we can express it in the form 

�9 f !  ~ t 

where so is such tha t  -~<So<_~ and p~=Prob  {~tt+z~=fo~(so+k)}. In 

this case [ ~ ( f ' ) J = l  holds only. at  f '=~fo (9 . . . .  , - 1 ,  O, 1, . . - )  where  

r  When solO the line spectra  are obtained by properly re- 

scaling the ordinates of the spectra obtained by piling up the line 

spectra at  f=~fo (9 . . . .  , - 1 ,  O, 1 , . . . ) o f  P(f)  sliced at  the frequencies 

(p+�89 (/~ . . . .  , - 1 ,  O, 1, . . . ) ,  i.e., P~(s)-P~(s-)=sum of line spectra 

of P(f)  at  ~fo's where :~f~=(/2+s)(fo/s,) holds for some integer  /~.*) 

When s0=O the line spectrum is present  only a t  the origin, or the total  

power of line spectra at  f = ~ f 0 ' s  of the original P(f)  is t ransformed into 

continuous of the d.c. (direct current)  component of x .... Now the 

power par t  of the P~(f) is seen to have a densi ty function 

I~_ K(dp, f,  f ' )dP(f ' )  . 

Thus when P(f)  has a densi ty function p(f) we have 

1--J r  J~ p( f , )d f , ld f .  

When r  belongs to the third class there  may be a line spectrum in 

P~(f) only a t  the origin and it is equal to tha t  of the line spectrum of 

the original P(f ')  at  f ' - - 0 .  Thus in this case only the power of the  

d.c. component of the original process is preserved as line spectrum and 

becomes the power of the d.c. component of the time-sampled process. 

Thus if only the d.c. component is absent  in the original process we 

always have absolutely continuous spectrum given by 

dP~(f )=[I~ j l _ e - ~ , ~ b ( f , ) l  ~ dP(f ' ) ld f  " 

*) W h e n  t h e r e  is l ine s p e c t r u m  in P( f )  at  f~-(t~§ it  m u s t  be piled up  a t  s = � 8 9  

in P,(f). 
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From these results we can see tha t  the present  sampling procedure 

distr ibutes the power dP(f') at  f ' ,  of the original process, over 

the range [ - ~ < f _ < ~ ]  following the distribution function given by 

{ ( 1 - [ r  [0/[ 1-e-2~'z~b(f ') [~}df. The distribution function given by 

{(1--] r  1--e-~'1r ') I~}df should be in terpreted as a(f-s ' )df  for 

r  2~"" ( - ~ < s ' < ~ )  where a(f-s')denotes the Dirac's ~-function 

and for this f requency f '  our time=sampling procedure acts as if there  

were no timing-errors. */ The distribution given by {(1-1r 
e - ~ 1 r  ') I~}df gives the spectral distribution of randomly phase modulated 

)] t sinusoidal sequence exp 2~if' n ~ t + ~  ~j(co) ; n  . . . .  , - 1 ,  O, 1~ . . . .  . 
L [_ \ J=l 

An analogous interpretation is also possible for the case of the time- 

sampling of purely random type and we can see that our present sampl- 

ing procedures are essentially non-linear. Taking into account the fact 

that {(i--Ir l-e-~1r ') 12}dr tends to the uniform distribution 

as Ir -~0 and tends to the Dirac's ~-funetion as I~(f')I --d, we can 

see that the power dP(/') is conserved near the s' when r' of ~(f')-- 

z'e 2='s' is nearly equal to i and spread all over the range when r' is nearly 

equal to O. When the distribution function of the sampling-time interval 

is absolutely continuous we have 

i r  I-+0 ( ; f ,  [-+oo) 

and we can see that  the power at the  higher frequencies is spread 

nearly uniformly all over the f requency range of P~(f),  while the power 

near the zero f requency is conserved near the zero frequency.  

Thus from the results in this and the preceeding paragraphs we can 

see tha t  in practical applications of t ime-sampling procedures of these 

two types,  if in the  original process there  is some power at  some 

separated very  high f requency band, the time-sampling may appear as 

a low-pass filter with an inner white  noise source. This fact  will show 

why time-sampling was sometimes considered to be a filtering while it 

is essentially a folding which is non-linear. 

2. Numerical  example **/ 

Here we shall i l lustrate the results  in the  preceeding section by 

some numerical examples. The es t imates  of the spectral densi ty functions 

*) Obvious modification is necessary  for  s ' - - +  ' - -  2 - -  

**) In this section we shall somet imes  use the notat ions of random var iables  to re- 

present  one of their  realizations so long as it does not  introduce ser ious  ambiguit ies .  
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illustrated in this section were obtained by the following numerical 

procedure; 

a) given a time sampled data {x~..; n = l ,  2 , . . . ,  N} we computed C(k)'s 

(k=0, 1, 2, . . . ,  h) 

where ~ , ~ = x ~ , ~ - ~  and ~ =  ~ x~,~, 
n - 1  

b) then the transforms ~(f)  of this {C(k)} where computed for f =  

(j/h)(1~2) (j=O, 1, 2, . - . ,  h) 

�9 = C ( 0 ) + 2  F~ C(k) cos  ~ +C(h) cos  ( j ~ ) ,  
Jz~ l  

these ~(f) ' s  were then further  smoothed to give our estimate p(f) 
for f =(j/h)(1/2) (j=O, 1, 2, . . . ,  h) 

. w ) + 0 . 5 4 ~ ( _ . _ ~ + 0 . 2 3 ~  ( 2"+1 p(2".1'~=0.23~(2"--1 1 2" 1 1 t ,~ -7 )  t, h z \ h  2 /  h "-2/ 

c) 

where 

( 1 1   ,h+l h _ l  1 
P\ h 2 P~ h h 2 

Taking into account of the symmetricity of the present p(f) we have 

considered the values of P(f )  only for positive f .  As to the analytical 

details of the present numerical procedure the reader is recommended 

to consult the paper [1] by Blackman and Tukey. In the following 

we shall denote the value of p(f)/C(O) simply as p(f). In Fig. 1 the 

p(f)  of a time-sampled data {x~.~; n = l ,  2, . . . ,  N} is shown where 

N=530 and h=60. The data was read from a continuous record of a 

typical oscillation of the frame of an automobile running over a gravel 

road. Here v~=Vo+nAt and L/t was taken to be 1/50 sec. In this data 

there may be some errors in v~ but we shall disregard it now as our 

concern here is with the comparison of this p(f) with other p(f) ' s  which 

were obtained from the present data by some artificial random sampling 

procedures which will be described in the following. 

Fig. 2 shows the effect of timing-error of purely random type. The 

crosses show the p(f)  of the data {x~,~} which was time-sampled from 

the primary data {x~.~} and 
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where {s~} is a purely random process such tha t  

Pr  {~ =/~} = 5-- [/~ I 
25 

for integer  /~ in the range - 4 ~ / ~ < 4 .  Here N=263  and h=30.  In 

Fig. 2 the dots show the theoretically expected values of p(f) which 

were obtained by using the results of the preceding section and the 

p(f) of Fig. 1 in place of the t rue value of p(f) of {x~..}. We can see 

a fairly good agreement .  In the present  example we have 

~__ sin57cf ~ , 

and its values are plotted, being multiplied by a constant  factor  10, for 

f=j/2h=j1120 ( j = 0 ,  1~ 2, . . . ,  60) in Fig. 1. 

Fig. 3 shows the p(f) which corresponds to the case where s~-0  

and x~=x~,~ and illustrates the pure folding. By comparing Fig. 2 

with Fig. 3 we can clearly see the effect of t iming-error.  We have 

fu r the r  made an experiment  of the estimation of the te rm 

I7 (1-ir l~)dP(f). 

By another  independent  reading we obtained {xf7~ } and got 

l I t 2 - -  1 1 ~(x~,~--x~,~ -0 .308•  of x~,~ . 

Now we can see 

1E(x;,~-x;;~)"= R(O)-~ R(]c) ~ Pr {~=/x+k}  Pr  {~=/s} 
2 ~ 

holds where R(k)=E{x~,x~,+~}. We computed another  est imate of 

~E(x~,~-x~i~) 2 by put t ing C(k)of {x~,~} in place of R(k) in the above 

formula and it was found to be 0.327 • C(0). This last value was used 

to  draw the doted curve of Fig. 2. Thus the present  result  suggests 

tha t  for the time-sampling of purely random type, if there  is some 

power at some separated very high f requency band in the original process 

and the t iming-errors are continuously distr ibuted and their  range is 

sufficiently small compared with the wave length of the lower frequency 
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band but sufficiently big compared with the wave length of that high 

frequency band, then by using the estimate of 

I:( 1--I r  I=)dP(f) 

described in the former section we may obtain a better estimate of 

p(f) of the original process. Fig. 4 and 5 show the effect of this cor- 

rection procedure. There are also presented the order (1/12)(C(0) -1) 

of quantization noise which is assumed approximately to be a white 

noise, p(f) 's  in Figs. 4 and 5 were obtained from the data which were 

read by using a rule, at each timing mark which were 1/100 sec. apart 

each other, from the continuous records of the outputs of an accelero- 

meter of strain gauge type mounted on the front axle of an automobile 

running at the speed of 30 km/h and 60 km/h respectively. Here N =  

500, h=50 for Fig. 4 and N=250,  h=50 for Fig. 5. We have felt some 

OF 

\ co r~c t~on  for l ~ ims 

corr@c~[on fo r  
~uan~[zLng-error 

O01 
1.O 

~or 
Ol r ror  

~v, , ~ , l  for  
quani~z~ng-error 

QOI I . . . . . .  ' O011 . . . . . . . . . . .  
Qot - ~  ~ ' ' o.~ . . . .  6.5 o os ~ o.1 d f -  

(50C.~s (50C,RS,) 

Fig. 4. Spectrum of vertical  acceleration Fig. 5. Sepectrum of vertical  acceleration 
of a front axle (at 30kin/h). of a front axle (at 60 kin/h). 
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uncer ta in ty  in measuring these data  due to the existence of components 

of very  high f requency which might  be 100 or 400 cycle per second or 

higher. We have considered tha t  the uncer ta in ty  is mainly due to the 

fluctuations of the horizontal position of the eye or the rule. As the 

precise timing marks were available at  each 1/100 second such readings 

will correspond to the time-sampling of purely random type.  We can 

see from the present  results tha t  there  are more power at higher fre- 

quencies in the case of Fig. 5, and this has increased the difficulty in 

reading the corresponding data.  We can see fu r ther  tha t  t iming-error 

causes little effect on the es t imates  of p(f) in absolute value. But  

taking into account of the fact  tha t  the present  es t imate  p(f) keeps 

nearly the same relative accuracy all ove r  the  range of f ,  we have to 

pay attension, for p(f) at  low levels, to the bias of white noise type  

due to t iming-error besides tha t  due to quantization. 

In Fig. 6 is i l lustrated a p(f) of a time-sampled data obtained from 

the former {x~,~} by a time-sampling procedure of renewal type.  The 

crosses show the values of p(f) of {x~,~} 

x H - x  v = l ,  2, N 
7 , ~ - -  r , ~ i + g 2 + ' ' ' + ~ y  " " " ~  

where  {e~} js a purely random process and 

Pr  {s~=l} = P r  [e~=3} = }  

Pr  {z~ = 2} = ~ .  

Here N = 2 6 8  and h=30 .  The dots represent  approximations to the 

theoretically expected values of p(f) and were obtained by approximately 

applying the theoretical  result  of the  preceding section to the  p(f) of 

{x~,n}. We can see a fairly good agreement  in this case too. 

In Fig. 7 are i l lustrated the values of C(k)/C(O) which were used 

for the computations of p ( f ) ' s  of Figs. 1, 2 and 6. The Figs. 1, 2, 3 

and 6 show how the present  time-sampling procedures act like low-pass 

filters. 

In the  present  section we have not discussed the sampling variations 

of our est imates.  We did so as our main concern in this section was 

with the analysis of the biases of our est imates and not of the variances. 

The discussion of the sampling fluctuations of our est imates is possible 

at  least for the Gaussian case and the reader  is recommended to con- 

sult the paper [1] f~r tha t  purpose. 
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