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0. Introduction and summary

Nowadays it is very common to use time-sampled data to analyse
or control an object fluctuating continuously in time. This seems to be
motivated by the recent developments of digital methods serving for
these purposes. In relation to such procedures there are many papers
which treat the noise or error due to quantization ([4], [5]). The effect
of time-sampling on the spectral properties is also well-known as folding
or aliasing for the case where the fluctuation of object is represented
by a stationary stochastic process and the timings are performed with-
out error. As to the cases where timing-errors are present we have
seen yet little quantitative description of their effects on the spectral
properties of the time-sampled data [3]. In the present paper we treat
this problem for the case where the timing is independent of the original
process and the intervals between sampling-time points form a stationary
process., After the general discussion of this case we treat two special
types of time-sampling in more details. The first corresponds to the case
where, though it is intended to sample the record at the time points which
are the integral multiples of a constant time 4¢, the deviations of the
sampling-time points from the preassigned ones are present and form a
purely random process, i.e., they are random variables which are mutually
independent and follow one and the same probability distribution. The
second corresponds to the case where the sampling-time points form a
renewal process, i.e., the interval lengthes between successive sampling-
time points form a purely random process. The results of our analyses
show clearly how the timing-error affects the power spectral distribution
function of the time-sampled data. The effects are essentially non-linear
but the time-sampling of the first type may be described as a low-pass
filter with an inner white noise source. We can see further that in
practical applications even the time-sampling procedures of the second
type may sometimes act approximately as a low-pass filter with an inner
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white noise source. These results seem to give a mathematical explan-
ation of the fact, mentioned by D. T. Ross in [3], that the time-sampl-
ing was sometimes vaguely (and incorrectly) considered to be a filtering.
By using the continuous records of the outputs of accelerometers mounted
on the frame and on the front axle of an automobile we illustrate these
theoretical results by numerical examples. These records were obtained
by the members of the research department of the Isuzu Motor Company
and were presented to the author by Mr. Itiro Kanesige of the department
for the purpose to develop the statistical research of the relations be-
tween vehicular oscillations and road surfaces. When we were reading
these records using a rule we had to face two main sources of error.
The one was the error in the horizontal position of the rule and the
other was that due to quantization. The results of our investigation
described in this paper enable us to make a quantitative evaluation of
the effect of the reading-errors on the forms of the power spectral
distribution functions of these time-sampled data.

1. Spectral properties of sampled-data.

We shall here consider a strictly stationary real stochastic process
{2(t, ®); —oo <t< oo} with continuous time parameter ¢. It is assumed
that
a.l. the process has zero-mean and finite second order moments,

a.2. almost all sample functions of the process have finite limit from
the right,

x(t+, w):lilm (s, @)
sit

for all ¢, and
a.3. the process is continuous in the sense of mean square,

ligoE{[ x(s, w)—x(t, w) '} =0 .

It is fairly obvious that in almost every physical realizations of stochastic
processes these conditions are satisfied. To see further that the con-
dition a.3. really does not seriously restrict the generality of the process,
the reader is recommended to consult the book [1] by J. L. Doob.
Here we take another strictly stationary stochastic process {4z, (w);
—oo<n<o} defined on the same w space as x(t, w) process and with
discrete time parameter n, We define 7,(w) by the followings;
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T(w)=¢&(w)
Tn(w) - Tn—l(w) = ATn—l(w)
where ¢(w) is a random variable. Now we define a sequence of w func-
tions {, ,(w); —oo <m< e} as follows;
2. Jw)=u(T (®), w) if Prob {'; t,(0")=7,(w)} >0
=2(T (w)+, @) otherwise.

We can see that the function z. ,(®) is well defined by the assumption
a.2. To see that {x, ,(®); —co <n<w} forms a stochastic process we adopt
the following discrete approximation procedure described in [2]. Denote
by S. the set of values which some 7, takes with positive probability.
Obviously S, is at most enumerably infinite. For each positive integer
g choose finitely many points

aﬁ‘”<a§"’< <a(q)
in such a way that first ¢ point of S, enumerated in some order are

a$P’s and that every points in the interval [—gq, ¢] is within distance
1/g of some a{® and +oco and 0 are some a{”’s. Define the stochastic

process {T(w); —oo <n<o} by

@ (w)=a® if T (w)<al®
=a{? if @, <t (w)<a®
=0 if f,,(w)>a§;;).

If we define
z. @ (w)=2(t(w), ) ,

it is obvious that x.w ,(®) is a measurable ® function, i.e., a random

variable and
lim .« (w)=2. (©)

q-roo

holds with probability 1. Hence x. ,(w) is a random variable. Hereafter
we shall sometimes omit the variable @ in the expression of random vari-
ables. Now consider a set {m,; v=1, 2, ---, k} of arbitrary finite number
of integers satisfying the relation m,<m,<-+-<m; and a set {&,;v=
1,2, .-+, k} of real numbers. Then we have

Prob {#.@ pm <Eny T, KEpyy <00y Bt o, <En }
= > Prob{x(a,)<En, 2(a,)<En, -0, x(ajk)ggmk an

Updpeendy
Ty =0y Ty =0,y 000, Toh =0y }
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where a;, denotes ag‘f for v=1,2, ...,k and the summation is taken
over all the possible arrangements (j,, 4, ---,Jx) where j, is one of
1,2, +++,m,). Denote by ¢p@(\;, Ny ==y Ny; My, My, +++, m;) the charac-
teristic function of (X.@ 4, @@ gy oo, T @,,) and by D P(Npy Mgy w00,
Nl @y @y oo ey @55 May My, ==+, M) the conditional characteristic function
Of (@ 4y Te@ gy * 2+, x,mmk) conditioned by the random variables
(z';,‘g:, z‘i;f;, oo, z',(g;). Then we have
¢(Q)(7\'U >\'2, M) 7\%; Mgy Mgy =0 v, mk)

= Z ¢(Q)(>\'17 7\'2, ey >\’k, ajly ajz! c0ty ajk; Myy My, ¢, mlc)

Uppdgernrsd)

x Prob (z‘i,‘,{’:aj , z'f,‘;;———a}z, e T =ay ).
Denote by é(\i, Ny »+ -, Ny My, My, +++, M) the characteristic function of

(®emys Teomgy 77 x,,mk). Then we have

D1y Ngy v o0y Mgy My, My, »» =, My)=lim DV(Ngy Mgy w00y Ny Mgy My =00, My) o

q—roo

Hereafter we shall restrict our attention to the case where {r,(w)} and
{x(t, w)} are mutually independent. For this case we can put
¢(Q)()\‘17 >"2y R >"lc Iajlv a’jz’ ] ajk; Mgy Mgy * 0, mk)
=‘i'(7h, Az ooy Ags Qyis Qygyy =00 a’jk)

where (A, Ay, o vy N Gy, @y, 000, 0 ,k) denotes the characteristic function
of (x(a,, w), x(ay, ®), ---, 2(a, , ®)). From the continuity assumption
a.3. for the z(¢) process it follows that Yr(ny, Ny +v, N5 0y, 0y, <++, ay)
is continuous in (a,, a,, +++, @, ). Obviously hm Ti8(w)=1,(w) with proba-
bility 1 and thus the finite dimensional distribution of (T, T, - 0y Ti))
converges to that of (7, Tp, * ’ka) as g—o. Thus taklng into ac-
count the boundedness of Yr(A; Ay =+, N5 @y, ay, <0 v, a,k) we have

DNgy Ngy =0y gy Mgy My, o0, My)
ZS‘PO\’D )\‘2! try >"Ic’ a/jly ajzy R ajk)dpml,mz."',mk(ajly a/jzy sty a’jk)

where P, oo (@5, @y =00, 05 )=Prob (7, <a;, Tm,<a,, -, Ty, <ay).
From the strict stationarity of the x(t) process
YO Ny ==y N @y By » o0, 0
can be represented in the form
Oy Ay <o+, Mgy Qg = Qg Qg — iy <0 %y Oy — 0y )

and we have
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SNty Ny * 00y Nigs Mgy My, =+ =, M)
:S#’(M, NAgy v oy Ags bz; bsy M) blc)dP(mz—ml,mrmZ,---,mk—mk_l)(bzr bs; tt Y bk)
where

P(mz—ml.ma—mz, "°,mk—mk_1)(b27 bav ) blc)

=Prob {T,,— T, <bsy Ty — T, <bs, + -, T, — T

mk_lsbk} M
Taking into account of the strict stationarity of the Az, process we can

see from this equation that P, m,-my++em 3, and so the characteristic

K ME -1
function ¢\, N,y < ¢ ¢, My; My, My, +++, My), is completely determined by the
differences m;—m,-, (7=2,3, -+, k). Thus the process {z..(®)} is seen

to be strictly stationary. Taking into account the inequalities

XV
)\;( XV

YNy Mgy w0y Ng; Qypy Qjpy =0y aj,c)‘ <E| x(ajv) |<o

PO Ky =+ i By -0, )| S 0(a, )(a,) | <07

where o’=FE|x(t)|’, we get

0
o,

¢()\’1r 7\'27 *Ty )“k; a/jli ajz, * ach)

0
:S o 1l’(xly Aoy o0y Ags Qypp Ayyy =0y ajk)del,mz,"‘,mk(ajly Wy * 0y ajk)

62
NN,

Sy Ay =005 Ny By Rjpy * 0%y aj,c)

62
:S 67& 6X "P‘(Xl, 7\}2, R XIG; ajl’ a’Jz’ vty ahg)dpmymz,--.mk(a]l? ajzi tee adk)
wO Ny

and
E{z. (0)}=0,

o) = E{, (@), ()} =§R<an+k—an>dPn,n+,c(am rs)
=|R@aP.@)

where R(7t)=FE{x(t+7, w)x(t, w)} and P, (t)=Prob (t,—7,<7). Clearly

this last relation holds for any k positive or negative and we have
p(0)=0".

Thus %., process is stationary also in the wide sense, i.e., has finite

second order moments.
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Obviously this x., process is a mathematical representation of the
sequence of data which are time-sampled by using the timing impulses
situated at the time points 7,. The purpose of the present paper is to
study the spectral properties of this %, , process.

Now we have

o(k)= SR(T)dP(m(T):S [S

(t) ¢2)]

:Sm[S(r)emjrdp"“(f)}dp(f)
=[eunap(n)

where P(f) is the power spectral distribution function of the x(f) process,
continuous from the right and with p(—)=0, P(w)=0% and

e dP(f) [LPw (@)

¢k(f)=SveTdP(k)(T) .

As the x(t) process is real we can assume that P(—f)=0"—P(f) holds
at the continuity points of P(f) and we have

p=] 9LNAP()=2] Re@ NEP(H)+PO—PO-) "

This shows that o(k) is obtainable as an output power of some (imagi-
nary) filter with signed power transfer function 2Re(¢,(f)) under the
input {x(¢)}. Now we can evaluate the power spectrum of the «. , process
by using some smoothing process or a filter. Take a convergence factor
or a sequence of real numbers ¢, such as

c=1,

Cy=0Cx
and

i lep|<oo .

K= oo

We define the smoothing function corresponding to the sequence {c.}

h(f):k § ckemiw .

= =00

Obviously A(f) is a real continuous even periodic function with period
1 and

(" s

* Re(¢x(f)) denotes the real part of ¢x(f).
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Here we further assume that h(f)>0, i.e., the sequence ¢, is positive
definite. Now we shall represent by P.(f) the power spectral distri-
bution function of the x,, process, which is continuous to the right,
monoton non-decreasing and with lim P.(f)=0, P.(3)=0¢®. Then we have
fo—1/2
co + oo 1/2
2 ckp(k)e—mlcf___ Z e—zxtkfckx eZnikf’dPT(fr)
k k -1/2

=—co = =00

:Sllz [ i cke-mmf—f”]dl’,(f')

—1f2l k=~oco
[ nr=rarasy .
Define

P =" Mr=FIPA,

then AxP(f) is continuous with respect to f and
|" eppar=|" ap(=o.
~1/2 —1/2

Now consider a set [{c{”; —o<k<};n=1,2,3, --+] of convergence
factors {c{®} with the corresponding smoothing functions 2™(f) for
which

lim rh‘"’( Fdf=1

n-—roo

holds for any a and B satisfying —i<a<0<B<%. Then we have
from the eveness of A™(f)

lim S P R(f)df=lim Y’ h(f)df=34
n—oa J0 o Jo
and for o' and B’ such that 0¢ [«’, 8] and —{<a’<B' <% we have

lim r'km)dfzo .

n-soo

Now for x and y satisfying —3<2x <y<4 we have

tim |"wsP(ndf=tim T wocr—rrapr Jas

n—roo n—rco

[ s

=4[(P.(y)— P(y—))+(PA(2)— P(x— )]+ P.(y—)— P.(x)
where P.(x—)=P,(x)=0 by definition for x=—3}, and
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n—0o

lim Sm/ h% P f)df=0*=P.(3) .
Thus we have

lim lim (Sl’z dP.( f)—S” h<n>*P,(f)df): lim lim Smh(n)*P,(f)df
Y11/2 n—ow ~1/2 ~1/2 y11/2 noe Jy
:PT(%)—PT(%_) .

For the continuity interval [z, y] of P,(x) we have

lim Syh‘"’*Pr(f)de Py)—Pu(v) ,

n—co

and thus for z in (—4%, %)

lim lim S”hm)*}z( F)df=P2)—P.(e—) ¥
ylz noo Jx
zlz

Further if
lim A% P.(f)=9(f)

T—r00

almost everywhere and
1/2 R
| bnar=o
—1{2

then we have dP.(f)=p.(f)df .*®
Here we shall derive concrete results for two types of 7, process.
1. First we shall consider the case where absolute clock pulses are
available and timing-errors (deviations of sampling-time points from the
corresponding true clock pulses) form a purely random process. In this
case we have
T,=ndt+e, and Adr,=e,.,—¢&,+ 4t

where 4t is a fixed non-negative constant and ¢,’s are mutually
independent random variables following one and the same distribution.
We shall call this procedure time-sampling of purely random type.
As
Titn—Tn="Cp+n—Entkdl

holds, we have for k+0
*) The symbol lim denotes lim where x and y are taken to satisfy z<z<y.
ylz y—x—0
H
#4) Hereafter wez ;hall use the notation dP(f) to denote the measure function deter-
mined by P(f). When P(f) is absolutely continuous and with density function p(f) then
we write dP(f)=p(f)df.
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$F)= (e aPy (D) =7 (1)

where

¢(f)=E{exp (2rife,)} .
Thus

p0)=0'=|"_dP(y)
and for k+0

ot)={"_e=114(1) PaP()

Here we shall disregards the trivial case where A4t=0 and ¢,=0 with
probability 1. If we represent by d|¢[*P(f) the aliased form of
d|d(f)|PP(f) for the folding frequency 1/(24t), i.e.,

d1¢PPAH= 5 a|e(2+1)| P(Z+7)
then we have for k0

eIl | g PP f) -

1/(24¢)

o=

1/(241)

From this expression we can at once see that dP.(f) is given by the
following

aP(f)=d | P(L)+[ | a-14(r) Pari jar .

Of course we can easily obtain this results by exactly following the
smoothing procedure described in the preceding section. For practical
applications expressions such as

p(lc):Sllj;te“’”’“"‘fdP;"( ) =eer, —2,—1,0,1,2, -+,

aP(f)=dig PN+ | A=10(r) DaP( i,

for —1/(24t)< f<1/(24t), will be better suited. This last relation clearly
shows the effect of timing error on the power spectrum. If there is no
timing error we have ¢(f)=1 and dP#(f)=dP,(f). Thus time-sampling
causes aliasing.®™ When the timing-errors are present and are not lattice

*) As to the use of the word ‘‘aliasing’ see [1]. From the above expression of aliased
form of a spectral function we suppose that it will be more natural to consider that the
aliased form is obtained by ‘‘piling up’’ the sliced spectrum rather than by ‘‘folding’’,
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valued we have |¢(f)[’<1 for f+#0. Further when the distribution
function of error ¢, has probability density function we have lim | ¢(f) |=
0. Thus we can see that the time-sampling of purely Il*faiﬁaom type
usually acts as a low-pass filter with an inner white noise source. The
power of this white noise is the same as that of the higher frequency
component excluded by the filter from the original x(t) process.

Estimation of the term Sjw(1~l¢( £)DAP(f).

It will be desirable to get an estimate of the term
4" Q=14 PEP() -

If such an estimate is available, by subtracting it from the estimate of
dP?(f) we can estimate d|¢ [*P,(f) which will be a good estimate of
dP(f) for f near zero, for proper 4t and ¢(f). Now consider two
mutually independent readings of the same x(¢) process. We shall re-
present them as x. , and %, with

Typ=ndtte .,

Typ=ndt+e,,
where {e,} and {e,,} represent timing-errors which form mutually
independent purely random processes with one and the same finite

dimensional distribution. Then we can see by using the result for time-
sampling of purely random type with 4t=0 that

B %y n—#y0 =20~ ER (e, —5,.))
holds where
ER(—e,)=F|_exp {2riea—a)f}dPU)=|_|8(7) FdP(s) .

Thus 4(x. ,—2.,,) is an unbiased estimate of
|" a-1snmere)

and by using the sample mean of the variable for sufficiently large
number of n’s we can practically estimate the desired quantity.

2. Next we shall consider the case where the interval lengthes
between successive sampling time points form a purely random process.
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This is the case where only relative clock pulses are available. Interval
length from the former sampling time point 7,_, is strictly measured
and when it reaches preassigned value 4¢ next observation is made about
z(t) but with timing-error ¢,. We shall call this procedure the time-
sampling of renewal type. In this case 7,=7,.,+4dt+e¢, and ¢g,’s are
assumed to form a purely random process. Notice that when we are
not considering the operation in real-time 4t+e, may take negative
values.

Now if we define
&(f)=E{exp [2mif (4t +¢,)]}
we have
() =9"(Sf) for k>0
=¢~H(—f) for k<0,

and

ok)={"_pu( AP .

To evaluate the power spectral distribution function of x,, process we
shall use the convergence factors {c{®} defined by

o = ¢¥i

where 0<¢,<1 and lime,=1.

Here we want nfom mention a theorem which is well known in the
theory of functions and stated as follows; suppose u(f) is a function
defined for f in —4<f<1 and is integrable [—34, £]. Then if w(f) is

continuous at f=f, the function

N 1/2 \ 1—p2
u(r, f )“S_mu(f/ [1—re—=-1"]2 af
defined for » and f’ satisfying 0<r<1, —3i<f'<$%, converges to u(f,)
as re”’’ tends to €™, A direct consequence of this theorem is that
by the present definition of our {¢{} the functions
n Z _ 1-Je, |
(n) . (n) 2xikf )
h®(f)= 2 oi’e “Ti—emig,
have the properties which we have postulated in §1 as necessary for
A™(fYs to serve for our present purpose. Now we define
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K, (¢, f, f,):ki'mcs‘mqs’“(f,)e“gﬂ”

__I-jed(P
[T—e e, 9(F) T

Then if we use the representation

Hf)=rem (0<r<l, —h<s'<d)
we have
ot 1= S ems-ntogy_A=lea?
o | 1—e ¢/ =5¢ o' |?
K., f, f)=0
and

S]_/j/an(‘i)! J f,)df: (cn’r’)ozl .

Now we shall define for ¢(f")=r"e""" (0<r'<1, —3i<s'<})and f (—3<
f<3)

1|2 p

14
I 1 —g=2mitf =8 ot Iz when 7 <1’

K, f, f)=

=0 when »'=1
and for # and y satisfying —3i<z<y<}
T o(f)=1 when =1 and z<s'<y

=1 when r'=1 and s'=2 or s'=y
=0 otherwise.

Then by taking into account the results of the above-mentioned theorem

we can get for z and y satisfying —i<x<y<i

tim K, 7, 0 =Toan ol )+ | K (81 £, £

and for x and ¥ satisfying —3<z<y<3
Y

lim {"wsP(ar=lim (" |7 Koo, £,0)aP( Jar
=lim S“’ [SZKn(qS, £ f’)df]dP(f')

=§°_°jc;,ﬂ,¢<f')dP(f')+ (11" x@ 5.r9apm ar

Thus we have
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P.(3)—P.(4—)=0"~lim lim S hO*P(f)df

Y112 noe J-1/2
== [1m T s+ K@ 5, 725 0P()

-l yT1/2
={" ZnalrraP(r)

where X.,,4(f)=1 if and only if ¢(f)=e™ and =0 otherwise. If we
further define

Lol f)=Um deno(f) - for s+ 4

zts

:yllif_r}mi[ﬂlz.y]@(fl) for s=-}
we have for s in [—4, 4]
P.(o)=P(s—)=|" Zal#EP(F) .

We shall hereafter analyse these results in more details. There are
three classes of ¢(f’). The first is composed of those ¢(f’) for which
[¢(f) =1 holds for all f’. The second is composed of those ¢(f’) for
which the minimum of the absolute values of those f’ (s0), for which
[#(f")|=1 hold, takes some positive value f, which depends on ¢. The
third is composed of those ¢(f’) for which |¢(f’)|=1 holds only at
f'=0. When ¢(f’) is of the first class it can be represented in the form

¢(f’) =627rif'dz'

by some real constant 47 and corresponds to the time-sampling with
the length 47 of sampling interval and without timing-error. Hereafter
we shall disregard the trivial case where 47=0 holds. Now we have

K¢, f, f)=0
and for # and y satisfying —i<ae<y<i}

tim | W4 P(£)AF =" T PP

{P(yﬁi”)”(ﬁ”—) P(%%)”(“Z”—)}
2 - .

2 2

Ve — oo

This is the formula showing the folding or alaising. The line spectra
of this case are given by
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Pr(s)—PT(s—):v=iw{P< S;;”)—P( SAJFT” —)} for —3<s<4.

If the original P(f) has a density function p(f) then we have

aP(H= £ (=2 ]ar .

e 4t

As for ¢(f') of the second class we can express it in the form

& f')=exp {2ni(£>so}{ i Dy, €XP {ka(ﬁ)ﬂ
Jo Lalals Jo

where s, is such that —3<s, <% and p,=Prob {di+e,=f;'(s,+k)}. In
this case |¢(f’)|=1 holds only at f'=vf, v=---,—1,0,1, ---) where
O(fy=e*%. When s,#0 the line spectra are obtained by properly re-
scaling the ordinates of the spectra obtained by piling up the line
spectra at f=vf, (v=---, —1,0,1, --+) of P(f) sliced at the frequencies
(e+3(folso) (t=-+-+, —1,0,1, - +),i.e., P(s)— P,(s—)=sum of line spectra
of P(f) at vf’s where yf,=(¢+38)(f/s,) holds for some integer p.*
When s,=0 the line spectrum is present only at the origin, or the total
power of line spectra at f=yf,’s of the original P(f) is transformed into
continuous of the d.c. (direct current) component of z.,. Now the
power part of the P.(f) is seen to have a density function

[" K@ 5 090P() .

Thus when P(f) has a density function p(f) we have

1= l_l ¢(f,) Jz 4 4
ap(9)=| |- B nar fis

When ¢(f') belongs to the third class there may be a line spectrum in
P.f) only at the origin and it is equal to that of the line spectrum of
the original P(f') at f'=0. Thus in this case only the power of the
d.c. component of the original process is preserved as line spectrum and
becomes the power of the d.c. component of the time-sampled process.
Thus if only the d.c. component is absent in the original process we
always have absolutely continuous spectrum given by

_[(7 116U gpp
ar.(p=| |1 O ap Jar

*) When there is line spectrum in P(f) at f=(u+3)(fo/se) it must be piled up at s=}
in P f).
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From these results we can see that the present sampling procedure
distributes the power dP(f') at f', of the original process, over
the range [—3<f<4] following the distribution function given by
{@—=1() 1N 1—e (") )}df. The distribution function given by
{A—1(f) 1D 1—e$(f') |2} df should be interpreted as o(f—s")df for
¢(f)=1.e"" (—3<s'<3) where 6(f—s') denotes the Dirac’s 8-function
and for this frequency f’ our time-sampling procedure acts as if there
were no timing-errors.* The distribution given by {(1—|¢(f”) [)/|1—
e " (f") I’Ldf gives the spectral distribution of randomly phase modulated
sinusoidal sequence {exp [2nif’<ndt+§] e,(w))]; M=eee, —1,0,1; ¢ } .
An analogous interpretation is also poé;ible for the case of the time-
sampling of purely random type and we can see that our present sampl-
ing procedures are essentially non-linear. Taking into account the fact
that {(1—|¢(f) 1D/ 1—e*Y¢(f') )} df tends to the uniform distribution
as [¢(f)]|—0 and tends to the Dirac’s §-function as [¢(f’) |—1, we can
see that the power dP(f’) is conserved near the s’ when #' of ¢(f')=
r'e®™*" is nearly equal to 1 and spread all over the range when 7' is nearly
equal to 0. When the distribution function of the sampling-time interval
is absolutely continuous we have

[ $(f) =0 (If'|—e0)
and we can see that the power at the higher frequencies is spread
nearly uniformly all over the frequency range of P.(f), while the power
near the zero frequency is conserved near the zero frequency.

Thus from the results in this and the preceeding paragraphs we can
see that in practical applications of time-sampling procedures of these
two types, if in the original process there is some power at some
separated very high frequency band, the time-sampling may appear as
a low-pass filter with an inner white noise source. This fact will show
why time-sampling was sometimes considered to be a filtering while it
is essentially a folding which is non-linear.

2. Numerical example**

Here we shall illustrate the results in the preceeding section by
some numerical examples. The estimates of the spectral density functions

*) Obvious modification is necessary for s'=--3.
#%) In this section we shall sometimes use the notations of random variables to re-
present one of their realizations so long as it does not introduce serious ambiguities.
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illustrated in this section were obtained by the following numerical

procedure;

a) given a time sampled data {z.,;n=1,2, --+, N} we computed C(k)’s
k=0,1,2,--+, h)

C(k)= (Zvwa e, n>

N _ _ 1 X
where %, ,=2.,—. and x,=—ﬁ2xm,

fnel

b) then the transforms p(f) of this {C(k)} where computed for f=
(j/h)(]‘/z) (.720, 1’ 2; ] h)

(% %) C(0)+2ZC(k) cos(J}fc 7)+C(h) cos (47)

c) these p(f)’s were then further smoothed to give our estimate p(f)
for f=(j/n)1/2) (§=0,1,2, -++, h)

p(9 ;) 0.2 (Jhl 1)+054('

/ fypofiptd

where

~( 1 1 1 N 1\_./h—1 1

W(—gg)=2(G5) o o(F5g) =" 5) -
Taking into account of the symmetricity of the present p(f) we have
considered the values of P(f) only for positive f. As to the analytical
details of the present numerical procedure the reader is recommended
to consult the paper [1] by Blackman and Tukey. In the following
we shall denote the value of p(f)/C(0) simply as p(f). In Fig. 1 the
p(f) of a time-sampled data {z,, n=1,2,---, N} is shown where
N=530 and ~=60. The data was read from a continuous record of a
typical oscillation of the frame of an automobile running over a gravel
road. Here 7,=7,+ndt and 4t was taken to be 1/50 sec. In this data
there may be some errors in z, but we shall disregard it now as our
concern here is with the comparison of this p(f) with other p(f)’s which
were obtained from the present data by some artificial random sampling
procedures which will be described in the following.

Fig. 2 shows the effect of timing-error of purely random type. The

crosses show the p(f) of the data {x!,} which was time-sampled from
the primary data {x.,} and
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Fig. 2. Effect of time-sampling of Fig. 3, Effect of pure folding.
purely random type.
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r
xv,v'—wr,2v+ev

where {¢,} is a purely random process such that

Pr {&, =} :5_‘2;_)%

for integer ¢ in the range —4<p¢<4. Here N=263 and h=30. In
Fig. 2 the dots show the theoretically expected values of p(f) which
were obtained by using the results of the preceding section and the
o(f) of Fig. 1 in place of the true value of p(f) of {x.,}. We can see
a fairly good agreement. In the present example we have

) =S )5

and its values are plotted, being multiplied by a constant factor 10, for
f=3/2h=3/120 (7=0,1,2, ..., 60) in Fig. 1.
Fig. 3 shows the p(f) which corresponds to the case where &,=0

and #!,=x,, and illustrates the pure folding. By comparing Fig. 2
with Fig. 3 we can clearly see the effect of timing-error. We have
further made an experiment of the estimation of the term

| a—lenmape .
By another independent reading we obtained {xI’,} and got

1

1 1 263 o 2]—
2[263 2 (@, —ar))" 1=0.308 < C(0) of x.,, .

Now we can see

%E(xi,v—wi,’yf = R(0)— 5 B(O) 5 Pr {e,= -k} Pr {e,= 1)

holds where R(k)=FE{x,.%...r}. We computed another estimate of
LE(x! ,—2L) by putting C(k) of {x.,} in place of R(k) in the above
formula and it was found to be 0.327xC(0). This last value was used
to draw the doted curve of Fig. 2. Thus the present result suggests
that for the time-sampling of purely random type, if there is some
power at some separated very high frequency band in the original process
and the timing-errors are continuously distributed and their range is
sufficiently small compared with the wave length of the lower frequency
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band but sufficiently big compared with the wave length of that high
frequency band, then by using the estimate of

|"a-1et)marcs)

described in the former section we may obtain a better estimate of
p(f) of the original process. Fig. 4 and 5 show the effect of this cor-
rection procedure. There are also presented the order (1/12)(C(0)™")
of quantization noise which is assumed approximately to be a white
noise. p(f)’s in Figs. 4 and 5 were obtained from the data which were
read by using a rule, at each timing mark which were 1/100 sec. apart
each other, from the continuous records of the outputs of an accelero-
meter of strain gauge type mounted on the front axle of an automobile
running at the speed of 30 km/h and 60 km/h respectively. Here N=
500, =50 for Fig. 4 and N=250, h=50 for Fig. 5. We have felt some

10.0
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i
. n
correction for |
timing-error

correction for (
timing- error i

I

b
¥
- - il
correction for

0 quantizing-error

correction for
quantizing-error

00

00! T — I e —
ot — f ol ’ 05 a0l —f ol 05

(50CRS) (50CPS)

Fig. 4. Spectrum of vertical acceleration Fig. 5. Sepectrum of vertical aceeleration

of a front axle (at 30km/h). of a front axle (at 60 km/h).



164 HIROTUGU AKAIKE

uncertainty in measuring these data due to the existence of components
of very high frequency which might be 100 or 400 cycle per second or
higher. We have considered that the uncertainty is mainly due to the
fluctuations of the horizontal position of the eye or the rule. As the
precise timing marks were available at each 1/100 second such readings
will correspond to the time-sampling of purely random type. We can
see from the present results that there are more power at higher fre-
quencies in the case of Fig. 5, and this has increased the difficulty in
reading the corresponding data. We can see further that timing-error
causes little effect on the estimates of p(f) in absolute value. But
taking into account of the fact that the present estimate p(f) keeps
nearly the same relative accuracy all over the range of f, we have to
pay attension, for p(f) at low levels, to the bias of white noise type
due to timing-error besides that due to quantization.

In Fig. 6 is illustrated a p(f) of a time-sampled data obtained from
the former {z,,} by a time-sampling procedure of renewal type. The
crosses show the values of p(f) of {xIi}

xi,lv:xr,slnz-ru-q-ay l):l, 2, «o-, N

where {¢,} jis a purely random proeess and

Pr {¢,=1}=Pr {¢,=3} =%
Pr{e,=2}=4%.

Here N=268 and ~=30. The dots represent approximations to the
theoretically expected values of p(f) and were obtained by approximately
applying the theoretical result of the preceding section to the p(f) of
{z..}. We can see a fairly good agreement in this case too.

In Fig. 7 are illustrated the values of C(k)/C(0) which were used
for the computations of p(f)’s of Figs. 1, 2 and 6. The Figs. 1, 2, 3
and 6 show how the present time-sampling procedures act like low-pass
filters.

In the present section we have not discussed the sampling variations
of our estimates. We did so as our main concern in this section was
with the analysis of the biases of our estimates and not of the variances.
The discussion of the sampling fluctuations of our estimates is possible
at least for the Gaussian case and the reader is recommended to con-
sult the paper [1] for that purpose,
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