where c is the cardinality of the continuum, and for each unbounded sequence {Sn} with the set of the different
partial limits of cardinality vy, there exists a regular matrix that sums the sequence {Sn}, but does not sum
any divergent sequence with the set of different partial limits of cardinality different from v,
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BEHAVIOR OF SOLUTIONS OF FUNCTIONAL AND
DIFFERENTIAL-FUNCTIONAL EQUATIONS WITH
SEVERAL TRANSFORMATIONS OF THE INDEPENDENT VARIABLE

G. A, Derfel! UDC 517,948

In this paper which deals with the same subject as [1-5], we study the behavior (at the origin) of the solu-
tions of the functional equation

I m
2 2 ajhpﬂkf (@;p) =0, @
j=0 k=0

where the aji are complex constants, and o5 and Bj are real numbers suchthatl =ay<ay<...<apj0=

By < By <...<Bm. For Eq. (1) to contain a deviating argument, it will be assumed in the following that there
exist quantities 0 = k; and k; = m such that qy, = 0, alk, * 0. Whereever it is not stipulated otherwise, we
shall consider solutions of Eq. (1) defined in a punctured neighborhood of the origin (0 < Ip! < r), such a solu-
tion being a complex-valued function f(p) of a real variable p that is defined and continuous for 0 < Ip| < ayr,
and that causes Eq. (1) to be an identity for any 0 < [p|<r,

If the By are rational numbers and the aj are multiplicatively commensurable, i.e., aj = qrj, where q > 1
and the rj are rational, then Eq. (1) reduces to a so-called g-difference equation that has been studied in {6, 7].

With the aid of Theorems 1 and 2 below, it is possible to extend certain results of the theory of gq-dif-
ference equations to an equation of the form (1),

These results are applied (Theorem 3) to the proof of the existence of fast decreasing (at infinity) solu-
tions of the differential-functional equation

i m
Yy (x) = 2 2 bipy™ (A;x), @
=0 fi=0

where the b]-k are complex constants, and the Aj are real, with
1< hy<< oo <<y @3)
(it is assumed that there exists a 0 = j; =< [/ such that by, # 0).

Let us introduce the necessary notations and definitions. By kj we shall denote the smallest index k such
that a;; = 0. In the plane we plot the points with coordinates (In @j, Bkj). The Newton diagram of these points
is defined by the characteristic polygonal line L of Eq. (1), By p we shall denote the tangent of the angle of in-
clination of the extreme right segment of the characteristic polygonal line L (i.e., ¢ is the angular coefficient of
the straight line on which this segment lies).

Theorems 1 and 2 that follow are characterizing the behavior of the solutions of Eq. (1) at the origia.
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THEOREM 1, Ifp =0, then Eq. (1) has in a neighborhood 0 < |p| < r of the origin a one-parameter family
of solutions of the form

m\Vm 4
B) {4)

Foy=Cro X ey o ()0

Vi eVg=0
! sino;
where the series is convergent for |pl < r; ¢ is a root of the quasipolynomial g(s) =Z ape ,ando + Pyt t
=0

VmBm is not a root of g(s) for any natural vy, . . ., vpy; the coefficient ¢y, o can be taken arbitrarily.

Theorem 2 yields a necessary and sufficient condition of existence of a solution that is bounded at the
origin foru # 0.

THEOREM 2. 1) If ¢ >0, then Eq. (1) has at least one nontrivial solution bounded at the origin, More-
over, there exists a solution that has in a neighborhood of the origin a bound

Fp) | <Cexp{—w, Inipl}, O0<L|p|<r ®)
with a positive C and any pu, < p /2.

2) If u < 0, then Eq. (1) has a unique solution f(p) = 0 bounded at the origin. If the solution f(p) has in a
neighborhood of the origin a bound

[T <Cexp{uIn?|pl},  0<C|p|<<r ©)
with a positive C and py <—0.5u In®(@; /a1 y) /In’ aj, then f(p) will vanish identically.
Proof of Theorem 1. By reducing (if necessary) all the terms of Eq. (1) by the common multiplier pﬁ,

where B =0minlf>k, , it is always possible to achieve that at least one point of the characteristic line L should
sis

lie on the x axis. Hence if u = 0, then it can be assumed without loss of generality that the extreme right seg-
ment of the line L lies on the x axis, i.e.,

a, #0 (1)

0

and there exists a j,=0, ...,/ — 1 such that
ai"O#O; g, =0 forany j=0,..,j,—I. ®)
Let us write aj = e’} and substitute (4) into (1). For the quantities ¢, ,, vy Ve hence obtain the difference

eguation

i

CERN: R T i [V Bitre AV =Byt b Vi B IV
[Z)ame ]CV‘ ..... v, + 2 {Eame h R mrmi e =0 (9)
1= k=1 j=0

with initial conditions

=0, for V1>0,...,vk=0,...,vm>0. (10

c
VipeoVg [se eV

For the ¢ occurring in (4), let us now take a number such that
: aY; 11
Dage ' =0; (11)
j=0

1
+viBit vy Ba) Yy
Eam@m bt Ym0, 12)

i=0

if at least one of the numbers v, . .., vy, is nonzero. For proving the existence of such a o, let us note that

L
according to (7) and (8) the quasipolynomial g(s) = Za,-ge " has infinitely many roots, all of them being located
j=0
in a strip d; = Res = d, that is parallel to the imaginary axis ([8, Sec. 12.5]). By assuming that d, is an exact
infimum, and dy an exact supremum of the real parts of these roots, we find that there exists at least one root
8 = ¢ such that d, — Reo < 8. This root evidently satisfies the conditions (11) and (12),

It follows from (9), (10), and (1) that the coefficient ¢y, o can be taken as desired. If ¢,,, , o has been

selected, then Eq. (9) makes it possible to determine the CUiyeneslm for which



Vibeo v, =1 v >20,..,v,>20 (13)
{by virtue of (12) they are uniquely determined].
After finding all the Copyenirlmm whose multiindex (vy, ..., vy) belongs to the (m — 1)-dimensional sim-

~1
plex Sgl ={vy;=0,..., vz 0l +. ooty = k}, it is possible to determine [uniquely, by virtue of (12)]
with the aid of Eq. (9) all the ¢,  for which (v, ..., vpy) € Spn ={vi=0, o om=0lv L+

v = k + 1}, In this case we have the bound

Vit v
{cv,vm‘<M(mD) " v =>0,... sV 20, 14)

where M = |cg .. ol, D being a positive number,

For proving (14), we shall prove the validity of the inequality

|CV """" V/nlgDZ[CVx vp—1,.., er’ v12‘0""'\’m>0‘ (15)
h=t
Indeed,
! (6+viBrt... 4+, Bp )
Lo(vp s vm) = | Fape
j=0
1
_ lazo ||ecv’ [ e(VszTA..—i-le'le! | 4 Z ki__oe(c+vxﬁx+...+vmﬁm)(v,_w_‘.)' (16)
i=0 e
If the number v +. ..+ vpuBm > R is sufficiently large, then the last factor in (16) will be larger than i /2

and, therefore,

BatrtVmb 1
Lo (Viy ceny Yp) > DR,e(V BtV mm.where Dy = 5 la, |l eowl. {17)

But if w481 +.. .+ vmBm = R, then

Lo ('Vl, e 'Vm) - Dv““.'vme(VlﬁH"---'f‘Vmﬁm)Vl’ (18)
and it follows from (12) that D, , == 0. Let us denote

D1 = min (Dvl ..... Vm? DR) >0.
V120, ¥y 20Vt AV By SRY

It then follows from (17) and (18) that

(Vifst VBV
»

Lﬂ(vl""'vm)>D1e V1>0, ..-,'Vm>0. (19)

Moreover,
! {
£04-viBit V=Dt FVmPmlV) OV (ViBit FVRBg-t e AV mBm 1V, (Vistore-+VmBm IV
Ly (Vi ooy V) =Izafhe l <Zlaih”e e | <Dy i 20)
=0

i=0

{
where D, = z{aik i ew"| . Hence, formula (15) will follow from (19) and {20).

j=0

Let us assume that the bound {14) holds for all (v, ..., vy that belong to the simplex s-t " By virtue

of the induction hypothesis, the initial conditions (10), and the inequality (15), we then conclude that for all
(Viy o o vy Yy € S{S_‘li we have lc,,l, .. .,le = Dm(mD)KM = (mD)k+1 M., Thus we have proved (14), By virtue of

the fact that (14) shows that the series in (4) is convergent in a neighborhood of the origin |p| < r, we have o
completely proved Theorem 1.

Proof of Theorem 2. Let f(p) be a solution of Eq. (1). Let us write

— _u’_lnz

fo)y=e * g @1)
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Then the function g(p) will satisfy the equation

i

3 S aw” F B g, 22

=0 k=0

where, as before, y; = Ina;. This equation is of the same type as (1), Its characteristic polygonal line L' can
be obtained from the characteristic polygonal line L of Eq. (1) by a transformation ¥: (y, 8) — (y, B8 —uy) of the
{v, B) plane into itself, If a segment of L lies on a straight line 8 = ny + b with an angular coefficient 5, then
the corresponding segment of L' will lie on a straight line g8 = (n —u)y + b whose angular coefficient is smaller
by a quantity p. In particular, the extreme right segment of the polygonal line L' will be horizontal, Hence
Eqg. (22) will satisfy the conditions of Theorem 1, and this equation will have a solution of the form (4). Thus
the assertion 1 of Theorem 2 follows directly from 21).

Below we shall prove that if a function f(p) satisfies Eq. (1) and it has a bound (6) at least for 0 < p < r,
then this yields f(p) =

If 4 <0, then it can be assumed without loss of generality that

F}hl

m}——y‘ for !=0,...,l,—l (23)

a, 0, q = 0,

{as above, k]- is the smallest subscript k such that ajk; # 0). Hence

Brj =28 =—p(no—Ina,_), (24)
and in a sufficiently small neighborhood 0 = p < r of the origin we have the inequalities
m
‘ 2 azkpﬁk l> ';— la,b; 25)
k=0
n m
!Za,kp“"|<la,-k,-lpﬂk"‘1+ y Zj:]pﬁ" Pri| < Dy,
=0 hehj+
i=0,0,i—1, 26)

where Dy =2 maxl la;|. Let us denote

a;(p) = ( Zm ajkpﬂk)/ i alkpﬁ") v biri(p) =g (’%\) ,

h=0 h=0

27)
gm =aye, 0<<E <..<§<], j=0,..,i—1,
then we obtain from (1) the bound
1
[Fn) < Elbi ) F &2l 28)
=1
and by virtue of {25) and (26) we have
[bj(p)| << Dypt. 29)
Let 0 < pg < r, let us denote I, = [E/™'p,, Eipl, M, =max|f(p),, n=0,1,..., and let us prove the inequality
p€ly
o
M, > D"exp {~— %lnz Oil“ nz} M,, (30)

where D is a positive number, For this purpose let us note that for any 0 < p<pyandn =0, 1,... it is pos-
sible [by iteration of (28)] to estimate the value of the function f at the point p in terms of the value of this func-~
tion in the interval I, with the aid of the inequality
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i

[Fp) | < Z by, (p) by, €, p) e by € - Bye_yP) F &, -+ EiD) s (31)
e,

where the sum is taken over all possible collections j; =1, . ,h1i=1, , S such that Ejl' . .gjsp € I,. The
subscript s in the right-hand side of (31) reaches its minimum value sy, for €]1 .+ . =g =&, and its maxi-
mum value s, for &h . =§ = ¢, For p € I, we hence obtain
Ing
smin =hn-— 1; Smax\( + ‘)lngr (32)

The sum in (31) consists of not more than lsmax terms each of which has in accordance with (29) a bound
52
1, () by, () . By, Gy o B uP) F By, o Bru) | D3 5, )" oo By, oo By0) My SDS™E7 g, @3)
with a positive Dy, From (31), (32), and (33) it follows that

S
M, < DE’ M,. (34)
By replacing in (34) the quantities 6 and £; by the values from (24) and (27), we obtain the sought inequality (30).

Let us note that for p € I, we have
(Inp —Inpy)/Ing —1<n << (Inp—In po)/In§;. (35)

Moreover, for any nontrivial solution f(p) of Eq. (1) we have My = 0. Therefore, assertion 2 of Theorem 2
follows from (30), (35), and the relation ¢ =1 /0y,

By virtue of Part 1 of Theorem 2 we can prove the following theorem,

THEOREM 3. If condition (3) holds, then for any positive ¢ and uy; < m/@1In2y) Eq. 2) will have a non-
finite solution defined on the entire axis and having a bound
[y (0| <Cexp{—p, In2 (1 + | x|}, — 00 <X < 0. (36)

In [5] we have proved Theorem 3 under the additional assumption of multiplicative commensurability of
7\]- ({5, Theorem 1.4]). The method of proof used in the present paper makes it possible to get rid of this re-
striction.

Proof of Theorem 3. After having proved Theorem 2, we can complete the proof of Theorem 3 in the
same way as the proof of [5, Theorem 1.4]. Therefore, we shall outline here only the scheme of the proof,

The sought nonfinite solution of Eq. (2) that satisfies (36) and the additional initial conditions y® (0) = o,
k=0,..., m—1 can be obtained with the aid of the Laplace transform, For this purpose the function

fp) = é yx)e ™ dx (37)
must satisfy the equation
! m—1
i o)+ ¥ Yenrtt (f) =0 38)
j=0 k=0

with constants Cik- Fquation (38) is an equation of the form (2), and in this case we have u = m/lnA;, By virtue
of Part 1 of Theorem 2, Eq, (38) has a nontrivial solution in a neighborhood of the origin that satisfies (5). It
is easy to see that this solution can be analytically continued in the entire complex plane with a cut along the
negative real axis in such a way that the bound (5) is retained in the cut neighborhood of the origin (0 < Ip!| < r;
—7m <argp < 7). Moreover, the inequality

1 ()| <Crexp{—m,In?[plh |pl>r —n<argp<m, (39)

is also satisfied; here C, and u, are positive constants. It follows from (37), (5), and (39) that y (x) satisfies
{36).
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By an analysis similar to that used in the proof of Theorem 3 (based on Part 1 of Theorem 2), it is easy
to see that the condition of multiplicative commensurability of the transformations of the argument can be
dropped also in [5, Theorem 4.2].

The solution y &) constructed in the proof of Theorem 3 satisfies not only (36), but also the estimate
y(x) < Cexp{—p,In?| x|}, —o0o<<x<Too, with some 0 <p; = puy (see [4, Theorem 3]).
5 3

Under the conditions of Theorem 1 there exist solutions of Eq. (1) that cannot be written in the form (4)
(see [6]).
LITERATURE CITED

1, A, N. Sharkovskii, "On the uniqueness of the solutions of differential equations with deviating argument,”
Mat, Fiz,, No. 8, 167-172 (1970).

2. V. M. Polishchuk and A, N, Sharkovskii, "General solution of linear differential-difference equations
of neutral type," in: Differential-Difference Equations [in Russian], Naukova Dumka, Kiev (1971}, pp.
126-139,

3. T. Kato and J. McLeod, "The functional-differential equation y'(x) = ay (Ax) + by &)," Bull. Am. Math,
Soc., 77, No. 6, 891-937 (1971).

4. G. A. Derfel', "Asymptotic properties of the solutions of some linear functional-differential equations,"
Dokl. Sem. Inst. Prikl, Mat. Tbil. Univ., No, 12/13, 21-23 (1978),

5. G. A, Derfel', "Asymptotic properties of the solutions of differential equations with a linearly trans-
formed argument,” Author's Abstract of Candidate's Thesis, Physicomathematical Sciences, Thilisi
{1977).

6. C. R. Adams, "Linear g-difference equations," Bull., Am, Math, Soc., 37, No. 6, 361-400 (1931),
7. W, Trjitzinsky, "Analytic theory of linear g-difference equations," Acta Math,, 61, 1-38 (1933).
8. R. Rellman and K. Cooke, Differential-Difference Equations, Academic Press, New York (1963),

SYLOW 2-SUBGROUPS OF THE COUNTABLE ALTERNATING GROUP

Yu. V., Dmitruk UDC 519,44

In this paper we describe the structure of the Sylow 2-subgroups of the countable alternating group, i.e.,
the group of all even permutations of a countable set which move only finitely many points. The representation
of Sylow p-subgroups of finite symmetric groups as polynomial tableaux introduced in [3] plays an important
role in our description; it generalizes in a natural way to the case of countable permutation groups.

Let V be a k-dimensional vector space over the field F, with p elements; let S(V) and A(V) be the sym-
metric and alternating groups of degree pk acting on the set V; let ey, e, ..., ek be some fixed basis for V,
Let V; be the subspace of V spanned by the vectors ey, €, ...,¢, i=1,2,..., k¥, ={0}cV,c.. <V, =V
is the flag consisting of the subspaces Vj. The group of all permutations in S(V) preserving this flag (term-hy-
term) and inducing the identity permutation on each quotient Vi /V; is a Sylow p-subgroup of the symmetric
group S(V) =8, k. It was shown in [3] that this group (which we denote by Ppk below) has a convenient represen-
tation by sets of truncated polynomials of the type

a=lay, (%) s G (Xy X ooy Xm1)]s a)

where the ajxy, x5, .. .,%j_1) € Fp[xi, X9, . » .5 X]-1] are truncated polynomials, i.e., representatives of mini-
mal degree of the coset class moduio the ideal I = (xg)-xx, Xy T Xgs .. .qX{.; " Xj_g). The tableau (1) corre-
sponds to the permutation in S(V) given by t ~ta = (t, + a;, ty + ay(t), . . ., tig + agltiy . . . ,tk.1)), wheret =
(ti, t3, . . ., t)) is a point in the space V. The product of two tableaux with coordinates aj{x;, X3,. .., xj~;) and

by (%1, X35 « . ., Xj_1), respectively, is the tableau with coordinates

0; (X7, Xop oor s Xi1) + by (X3 F Gy X5+ a5 (x7)s o5 Xy @i (Xg, o Xin))y

2
i=1,2,..,k @
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