where c is the cardinality of the continuum, and for each unbounded sequence $\{S_n\}$ with the set of the different partial limits of cardinality γ , there exists a regular matrix that sums the sequence $\{S_n\}$, but does not sum any divergent sequence with the set of different partial limits of cardinality different from γ .

LITERATURE CITED

- 1. V. F. Vlasenko, "Summation of bounded divergent sequences with finite and infinite sets of partial limits," Mat. Zametki, 26, No. 4, 575-581 (1979).
- 2. R. Cooke, Infinite Matrices and Sequence Spaces, Dover, New York (1966).

BEHAVIOR OF SOLUTIONS OF FUNCTIONAL AND DIFFERENTIAL-FUNCTIONAL EQUATIONS WITH

SEVERAL TRANSFORMATIONS OF THE INDEPENDENT VARIABLE

G. A. Derfel'

UDC 517,948

In this paper which deals with the same subject as [1-5], we study the behavior (at the origin) of the solutions of the functional equation

$$\sum_{i=0}^{l} \sum_{b=0}^{m} a_{jk} p^{\beta_k} f(\alpha_j p) = 0, \tag{1}$$

where the a_{jk} are complex constants, and α_j and β_j are real numbers such that $1 = \alpha_0 < \alpha_1 < \ldots < \alpha_l$; $0 = \beta_0 < \beta_1 < \ldots < \beta_m$. For Eq. (1) to contain a deviating argument, it will be assumed in the following that there exist quantities $0 \le k_1$ and $k_2 \le m$ such that $a_{0k_1} \ne 0$, $a_{lk_2} \ne 0$. Whereever it is not stipulated otherwise, we shall consider solutions of Eq. (1) defined in a punctured neighborhood of the origin (0 < |p| < r), such a solution being a complex-valued function f(p) of a real variable p that is defined and continuous for $0 < |p| < \alpha_l r$, and that causes Eq. (1) to be an identity for any 0 < |p| < r.

If the β_k are rational numbers and the α_j are multiplicatively commensurable, i.e., $\alpha_j = q^{rj}$, where q > 1 and the r_i are rational, then Eq. (1) reduces to a so-called q-difference equation that has been studied in [6, 7].

With the aid of Theorems 1 and 2 below, it is possible to extend certain results of the theory of q-difference equations to an equation of the form (1).

These results are applied (Theorem 3) to the proof of the existence of fast decreasing (at infinity) solutions of the differential-functional equation

$$y^{(m)}(x) = \sum_{j=0}^{l} \sum_{k=0}^{m} b_{jk} y^{(k)}(\lambda_{j} x),$$
 (2)

where the bik are complex constants, and the λi are real, with

$$1 < \lambda_0 < \dots < \lambda_l \tag{3}$$

(it is assumed that there exists a $0 \le j_1 \le l$ such that $b_{j_10} \ne 0$).

Let us introduce the necessary notations and definitions. By k_j we shall denote the smallest index k such that $a_{jkj} \neq 0$. In the plane we plot the points with coordinates $(\ln \alpha_j, \beta_{kj})$. The Newton diagram of these points is defined by the characteristic polygonal line L of Eq. (1). By μ we shall denote the tangent of the angle of inclination of the extreme right segment of the characteristic polygonal line L (i.e., μ is the angular coefficient of the straight line on which this segment lies).

Theorems 1 and 2 that follow are characterizing the behavior of the solutions of Eq. (1) at the origin.

Karaganda State University. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 34, No. 3, pp. 350-356, May-June, 1982. Original article submitted November 28, 1980; revision submitted December 2, 1981.

<u>THEOREM 1.</u> If $\mu = 0$, then Eq. (1) has in a neighborhood 0 < |p| < r of the origin a one-parameter family of solutions of the form

$$f(p) = Cp^{\sigma} \sum_{\nu_1, \dots, \nu_m = 0} c_{\nu_1, \dots, \nu_m} (p^{\beta_1})^{\nu_1} \dots (p^{\beta_m})^{\nu_m}, \tag{4}$$

where the series is convergent for |p| < r; σ is a root of the quasipolynomial $g(s) = \sum_{i=0}^{l} a_{j0} e^{\sin \alpha_j}$, and $\sigma + \nu_1 \beta_1 + \ldots + \nu_n \beta_n + \ldots + \alpha_n \beta_n + \alpha_n \beta_n + \ldots + \alpha_n \beta_n + \alpha_n \beta_n + \ldots + \alpha_n \beta_n + \alpha_n \beta_$

 $\nu_{\rm m}\beta_{\rm m}$ is not a root of g(s) for any natural $\nu_1,\ldots,\nu_{\rm m}$; the coefficient $c_0,\ldots,0$ can be taken arbitrarily.

Theorem 2 yields a necessary and sufficient condition of existence of a solution that is bounded at the origin for $\mu \neq 0$.

THEOREM 2. 1) If $\mu > 0$, then Eq. (1) has at least one nontrivial solution bounded at the origin. Moreover, there exists a solution that has in a neighborhood of the origin a bound

$$|f(p)| \le C \exp\{-\mu, \ln^2|p|\}, \qquad 0 \le |p| < r \tag{5}$$

with a positive C and any $\mu_1 < \mu/2$.

2) If μ < 0, then Eq. (1) has a unique solution $f(p) \equiv 0$ bounded at the origin. If the solution f(p) has in a neighborhood of the origin a bound

$$|f(p)| \le C \exp{\{\mu_2 \ln^2 |p|\}}, \quad 0 < |p| < r$$
 (6)

with a positive C and $\mu_2 < -0.5\mu \ln^2(\alpha_I/\alpha_{I-1})/\ln^2\alpha_I$, then f(p) will vanish identically.

Proof of Theorem 1. By reducing (if necessary) all the terms of Eq. (1) by the common multiplier p^{β} , where $\beta = \min_{0 \le j \le l} \beta_{k_j}$, it is always possible to achieve that at least one point of the characteristic line L should

lie on the x axis. Hence if $\mu = 0$, then it can be assumed without loss of generality that the extreme right segment of the line L lies on the x axis, i.e.,

$$a_{l_{\bullet}} \neq 0 \tag{7}$$

and there exists a $i_0 = 0, \ldots, l-1$ such that

$$a_{i,0} \neq 0; \ a_{j0} = 0 \quad \text{for any} \quad j = 0, \dots, j_0 - 1.$$
 (8)

Let us write $\alpha_j = e^{\gamma_j}$ and substitute (4) into (1). For the quantities c_{ν_1, \dots, ν_m} we hence obtain the difference equation

$$\left[\sum_{j=0}^{I} a_{j0} e^{(\sigma + \mathbf{v}_{1}\beta_{1} + \dots + \mathbf{v}_{m}\beta_{m})\mathbf{v}_{j}}\right] c_{\mathbf{v}_{1},\dots,\mathbf{v}_{m}} + \sum_{k=1}^{m} \left\{\sum_{j=0}^{I} a_{jk} e^{[\sigma + \mathbf{v}_{1}\beta_{1} + \dots + (\mathbf{v}_{k} - 1)\beta_{k} + \dots + \mathbf{v}_{m}\beta_{m}]\mathbf{v}_{j}}\right\} c_{\mathbf{v}_{1},\dots,\mathbf{v}_{k} - 1,\dots,\mathbf{v}_{m}} = 0$$
(9)

with initial conditions

$$c_{\mathbf{v}_1,\dots,\mathbf{v}_{k-1},\dots,\mathbf{v}_m} = 0, \text{ for } \mathbf{v}_1 \geqslant 0,\dots,\mathbf{v}_k = 0,\dots,\mathbf{v}_m \geqslant 0.$$
 (10)

For the σ occurring in (4), let us now take a number such that

$$\sum_{i=0}^{I} a_{j0} e^{\sigma \mathbf{v}_{j}} = 0; \tag{11}$$

$$\sum_{i=0}^{l} a_{i0} e^{(\sigma + \mathbf{v}_1 \beta_1 + \dots + \mathbf{v}_m \beta_m) \mathbf{v}_i} \neq 0, \tag{12}$$

if at least one of the numbers ν_1, \ldots, ν_m is nonzero. For proving the existence of such a σ , let us note that according to (7) and (8) the quasipolynomial $g(s) = \sum_{j=0}^{l} a_{j0} e^{sv_j}$ has infinitely many roots, all of them being located

in a strip $d_2 \le \operatorname{Re} s \le d_2$ that is parallel to the imaginary axis ([8, Sec. 12.5]). By assuming that d_1 is an exact infimum, and d_2 an exact supremum of the real parts of these roots, we find that there exists at least one root $s = \sigma$ such that $d_2 - \operatorname{Re} \sigma < \beta_1$. This root evidently satisfies the conditions (11) and (12).

It follows from (9), (10), and (11) that the coefficient $c_0, \ldots, 0$ can be taken as desired. If $c_0, \ldots, 0$ has been selected, then Eq. (9) makes it possible to determine the c_{ν_1}, \ldots, ν_m for which

$$\mathbf{v}_1 + \dots + \mathbf{v}_m = \mathbf{l}; \quad \mathbf{v}_1 \geqslant 0, \dots, \mathbf{v}_m \geqslant 0 \tag{13}$$

[by virtue of (12) they are uniquely determined].

After finding all the c_{ν_1,\ldots,ν_m} whose multiindex (ν_1,\ldots,ν_m) belongs to the (m-1)-dimensional simplex $S_k^{m-1} = \{ \nu_1 \geq 0,\ldots,\nu_m \geq 0 | \nu_1 + \ldots + \nu_m = k \}$, it is possible to determine [uniquely, by virtue of (12)] with the aid of Eq. (9) all the c_{ν_1,\ldots,ν_m} for which $(\nu_1,\ldots,\nu_m) \in S_{k+1}^{m-1} = \{ \nu_1 \geq 0,\ldots,\nu_m \geq 0 | \nu_1 + \ldots + \nu_m = k+1 \}$. In this case we have the bound

$$|c_{\mathbf{v}_1,\dots,\mathbf{v}_m}| \leq M (mD)^{\mathbf{v}_1+\dots+\mathbf{v}_m}, \qquad \mathbf{v}_1 \geqslant 0,\dots,\mathbf{v}_m \geqslant 0, \tag{14}$$

where $M = |c_0, ..., 0|$, D being a positive number.

For proving (14), we shall prove the validity of the inequality

$$|c_{v_1,\dots,v_m}| \leq D \sum_{k=1}^m |c_{v_1,\dots,v_k-1,\dots,v_m}|, \ v_1 \geqslant 0,\dots, v_m \geqslant 0.$$
 (15)

Indeed,

$$L_0(\mathbf{v}_1,\ldots,\mathbf{v}_m) = \Big| \sum_{j=0}^l a_{j0} e^{(\sigma + \mathbf{v}_1 \beta_1 + \ldots + \mathbf{v}_m \beta_m) \mathbf{v}_j} \Big|$$

$$= |a_{l_0}| |e^{\sigma \gamma_l}| |e^{(v_1 \beta_1 + \dots + v_m \beta_m) \gamma_l}| 1 + \sum_{l=0}^l \frac{a_{l-l,0}}{a_{l_0}} e^{(\sigma + v_1 \beta_1 + \dots + v_m \beta_m) (\gamma_l - \gamma_{l-l})}.$$
(16)

If the number $\nu_1\beta_1 + \ldots + \nu_m\beta_m > R$ is sufficiently large, then the last factor in (16) will be larger than i/2 and, therefore,

$$L_0\left(\mathbf{v_1},\ldots,\mathbf{v_m}\right) > D_R e^{(\mathbf{v_1}\beta_1+\ldots+\mathbf{v_m}\beta_m)\mathbf{v_l}}, \text{ where } D_R = \frac{1}{2} \left| a_{\mathbf{t_0}} \right| \left| e^{\sigma\mathbf{v_l}} \right|. \tag{17}$$

But if $\nu_1\beta_1 + \ldots + \nu_m\beta_m \leq R$, then

$$L_0(\mathbf{v}_1,\ldots,\mathbf{v}_m) = D_{\mathbf{v}_1,\ldots,\mathbf{v}_m} e^{(\mathbf{v}_1\beta_1+\ldots+\mathbf{v}_m\beta_m)\mathbf{v}_l},$$
(18)

and it follows from (12) that $D_{\nu_1,\ldots,\nu_m} \neq 0$. Let us denote

$$D_1 = \min_{\substack{\{\mathbf{v}_1 \geqslant 0, \dots, \mathbf{v}_m \geqslant 0 | \mathbf{v}_i \beta_1 + \dots + \mathbf{v}_m \beta_m \leqslant R\}}} (D_{\mathbf{v}_1, \dots, \mathbf{v}_m}, D_R) > 0.$$

It then follows from (17) and (18) that

$$L_0(\mathbf{v}_1, \dots, \mathbf{v}_m) \geqslant D_1 e^{(\mathbf{v}_1 \beta_1 + \dots + \mathbf{v}_m \beta_m) \mathbf{v}_l}, \quad \mathbf{v}_1 \geqslant 0, \dots, \mathbf{v}_m \geqslant 0.$$

$$\tag{19}$$

Moreover,

$$L_{k}(\mathbf{v}_{1},\ldots,\mathbf{v}_{m}) = \Big|\sum_{i=0}^{l} a_{jk} e^{\mathbf{f}^{\sigma+\mathbf{v}_{1}\beta_{1}+\ldots+(\mathbf{v}_{k}-1)\beta_{k}+\ldots+\mathbf{v}_{m}\beta_{m})\mathbf{v}_{l}}\Big| \leqslant \sum_{i=0}^{l} |a_{jk}| e^{\sigma\mathbf{v}_{j}} \|e^{(\mathbf{v}_{1}\beta_{1}+\ldots+\mathbf{v}_{k}\beta_{k}+\ldots+\mathbf{v}_{m}\beta_{m})\mathbf{v}_{l}} \| \leqslant D_{2} e^{(\mathbf{v}_{1}\beta_{1}+\ldots+\mathbf{v}_{m}\beta_{m})\mathbf{v}_{l}}, \tag{20}$$

where $D_2 = \sum_{i=0}^{l} |a_{jk}||e^{\sigma \gamma_j}|$. Hence, formula (15) will follow from (19) and (20).

Let us assume that the bound (14) holds for all (ν_1,\ldots,ν_m) that belong to the simplex S_k^{m-i} . By virtue of the induction hypothesis, the initial conditions (10), and the inequality (15), we then conclude that for all $(\nu_1,\ldots,\nu_m)\in S_{k+1}^{m-i}$ we have $\{c_{\nu_1,\ldots,\nu_m}\}\leq D_m(mD)^kM=(mD)^{k+1}M$. Thus we have proved (14). By virtue of the fact that (14) shows that the series in (4) is convergent in a neighborhood of the origin $\{p\}$ r, we have o completely proved Theorem 1.

Proof of Theorem 2. Let f(p) be a solution of Eq. (1). Let us write

$$f(p) = e^{-\frac{\mu}{2}\ln^{4}p} g(p). \tag{21}$$

Then the function g(p) will satisfy the equation

$$\sum_{j=0}^{l} \sum_{k=0}^{m} a_{jk} e^{-\frac{\mu}{2} \gamma_{j}^{2} \rho^{\beta_{k} - \mu \gamma_{j}}} g(\alpha_{j} \rho), \tag{22}$$

where, as before, $\gamma_j = \ln \alpha_j$. This equation is of the same type as (1). Its characteristic polygonal line L' can be obtained from the characteristic polygonal line L of Eq. (1) by a transformation F: $(\gamma, \beta) \rightarrow (\gamma, \beta - \mu \gamma)$ of the (γ, β) plane into itself. If a segment of L lies on a straight line $\beta = \eta \gamma + b$ with an angular coefficient η , then the corresponding segment of L' will lie on a straight line $\beta = (\eta - \mu)\gamma + b$ whose angular coefficient is smaller by a quantity μ . In particular, the extreme right segment of the polygonal line L' will be horizontal. Hence Eq. (22) will satisfy the conditions of Theorem 1, and this equation will have a solution of the form (4). Thus the assertion 1 of Theorem 2 follows directly from (21).

Below we shall prove that if a function f(p) satisfies Eq. (1) and it has a bound (6) at least for $0 , then this yields <math>f(p) \equiv 0$.

If $\mu < 0$, then it can be assumed without loss of generality that

$$a_{l_0} \neq 0, \ a_{j_0} = 0, \ \frac{\beta_{k_j}}{\ln \alpha_l - \ln \alpha_l} \geqslant -\mu \text{ for } j = 0, ..., l-1$$
 (23)

(as above, k_j is the smallest subscript k such that $a_{jk_j} \neq 0$). Hence

$$\beta_{k_i} \geqslant \delta = -\mu \left(\ln \alpha_i - \ln \alpha_{l-1} \right), \tag{24}$$

and in a sufficiently small neighborhood $0 \le p < r$ of the origin we have the inequalities

$$\left| \sum_{k=0}^{m} a_{lk} p^{\beta_k} \right| > \frac{1}{2} |a_{l_0}|; \tag{25}$$

$$\left| \sum_{k=0}^{m} a_{jk} p^{\beta_k} \right| \leq |a_{jk_j}| p^{\beta_{k_j}} \left| 1 + \sum_{k=k_j+1}^{m} \frac{a_{jk_j}}{a_{jk_j}} p^{\beta_k - \beta_{k_j}} \right| \leq D_1 p^{\delta},$$

$$i = 0, \dots, l - 1,$$
(26)

where $D_1 = 2 \max_{\substack{j=0,\dots,l\\k=0,\dots,m}} |a_{jk}|$. Let us denote

$$a_{j}(p) = \left(\sum_{k=0}^{m} a_{jk} p^{\beta_{k}}\right) / \sum_{k=0}^{m} a_{l_{k}} p^{\beta_{k}}, \quad b_{j+1}(p) = a_{j} \left(\frac{p}{\alpha_{l}}\right),$$

$$\xi_{j+1} = \alpha_{j} / \alpha_{l}, \quad 0 < \xi_{1} < \dots < \xi_{l} < 1, \qquad j = 0, \dots, l-1,$$
(27)

then we obtain from (1) the bound

$$|f(p)| \le \sum_{i=1}^{l} |b_{i}(p) f(\xi_{j}p)|,$$
 (28)

and by virtue of (25) and (26) we have

$$|b_j(p)| \leqslant D_2 p^{\delta}. \tag{29}$$

Let $0 < p_0 < r$, let us denote $I_n = [\xi_1^{n+1} \rho_0, \xi_1^n \rho_0]$, $M_n = \max_{p \in I_n} |f(p)|$, n = 0, 1, ..., and let us prove the inequality

$$M_n \geqslant D^n \exp\left\{-\frac{\mu}{2} \ln^2 \frac{\alpha_{l-1}}{\alpha_l} n^2\right\} M_0, \tag{30}$$

where D is a positive number. For this purpose let us note that for any 0 and <math>n = 0, 1, ... it is possible [by iteration of (28)] to estimate the value of the function f at the point p in terms of the value of this function in the interval I_n with the aid of the inequality

$$|f(p)| \leq \sum_{\substack{i_1, \dots, i_s = 1 \\ \xi_{i_t} \dots \xi_{i_s} p \in I_n}}^{I} b_{i_t}(p) b_{i_s}(\xi_{j_t} p) \dots b_{j_s}(\xi_{j_t} \dots \xi_{j_{s-1}} p) f(\xi_{j_t} \dots \xi_{j_s} p) |,$$
(31)

where the sum is taken over all possible collections $j_i = 1, \ldots, l$; $i = 1, \ldots, s$ such that $\xi_{j_1} \ldots \xi_{j_S} p \in I_n$. The subscript s in the right-hand side of (31) reaches its minimum value s_{\min} for $\xi_{j_1} = \ldots = \xi_{j_S} = \xi_l$, and its maximum value s_{\max} for $\xi_{j_1} = \ldots = \xi_{j_S} = \xi_l$. For $p \in I_n$ we hence obtain

$$s_{\min} = n - 1; \quad s_{\max} \leq (n + 1) \frac{\ln \xi_{\rm I}}{\ln \xi_{\rm I}}.$$
 (32)

The sum in (31) consists of not more than l^{S} max terms each of which has in accordance with (29) a bound

$$|b_{j_1}(p)b_{j_2}(\xi_{j_1}p)\dots b_{j_s}(\xi_{j_s}\dots\xi_{j_{s-1}}p)f(\xi_{j_s}\dots\xi_{j_s}p)| \leqslant D_2^s p^{\delta}(\xi_{j_s}p)^{\delta}\dots(\xi_{j_s}n)^{\delta}M_n \leqslant D_3^{s_{\max}}\xi_l^{\frac{\sigma}{2}s_{\min}^2}M_n$$
(33)

with a positive D_3 . From (31), (32), and (33) it follows that

$$M_0 \leqslant D_4^n \xi_\ell^{\frac{\delta}{2}n^2} M_n. \tag{34}$$

By replacing in (34) the quantities δ and ξ_I by the values from (24) and (27), we obtain the sought inequality (30).

Let us note that for $p \in I_n$ we have

$$(\ln p - \ln p_0) / \ln \xi_1 - 1 \le n \le (\ln p - \ln p_0) / \ln \xi_1.$$
(35)

Moreover, for any nontrivial solution f(p) of Eq. (1) we have $M_0 \neq 0$. Therefore, assertion 2 of Theorem 2 follows from (30), (35), and the relation $\xi_1 = 1/\alpha_L$.

By virtue of Part 1 of Theorem 2 we can prove the following theorem.

THEOREM 3. If condition (3) holds, then for any positive c and $\mu_3 < m/(2 \ln \lambda l)$ Eq. (2) will have a non-finite solution defined on the entire axis and having a bound

$$|y(x)| \le C \exp\{-\mu_3 \ln^2(1+|x|)\}, \quad -\infty < x < \infty.$$
 (36)

In [5] we have proved Theorem 3 under the additional assumption of multiplicative commensurability of λ_j ([5, Theorem 1.4]). The method of proof used in the present paper makes it possible to get rid of this restriction.

<u>Proof of Theorem 3.</u> After having proved Theorem 2, we can complete the proof of Theorem 3 in the same way as the proof of [5, Theorem 1.4]. Therefore, we shall outline here only the scheme of the proof.

The sought nonfinite solution of Eq. (2) that satisfies (36) and the additional initial conditions $y^{(k)}(0) = 0$, $k = 0, \ldots, m-1$ can be obtained with the aid of the Laplace transform. For this purpose the function

$$f(p) = \int_{\Sigma}^{\infty} y(x) e^{-px} dx \tag{37}$$

must satisfy the equation

$$p^{m}f(p) + \sum_{j=0}^{l} \sum_{k=0}^{m-1} c_{jk} p^{k} f\left(\frac{p}{\lambda_{j}}\right) = 0$$
(38)

with constants c_{jk} . Equation (38) is an equation of the form (2), and in this case we have $\mu \ge m/\ln \lambda_l$. By virtue of Part 1 of Theorem 2, Eq. (38) has a nontrivial solution in a neighborhood of the origin that satisfies (5). It is easy to see that this solution can be analytically continued in the entire complex plane with a cut along the negative real axis in such a way that the bound (5) is retained in the cut neighborhood of the origin $(0 < |p| < r; -\pi < \arg p < \pi)$. Moreover, the inequality

$$|f(p)| \le C_4 \exp\{-\mu_4 \ln^2 |p|\}, |p| > r, -\pi < \arg p < \pi,$$
 (39)

is also satisfied; here C_4 and μ_4 are positive constants. It follows from (37), (5), and (39) that y(x) satisfies (36).

By an analysis similar to that used in the proof of Theorem 3 (based on Part 1 of Theorem 2), it is easy to see that the condition of multiplicative commensurability of the transformations of the argument can be dropped also in [5. Theorem 4.2].

The solution y(x) constructed in the proof of Theorem 3 satisfies not only (36), but also the estimate $|y(x)| \le C \exp{\{-\mu_s \ln^2 |x|\}}, -\infty < x < \infty$, with some $0 < \mu_5 \le \mu_3$ (see [4, Theorem 3]).

Under the conditions of Theorem 1 there exist solutions of Eq. (1) that cannot be written in the form (4) (see [6]).

LITERATURE CITED

- 1. A. N. Sharkovskii, "On the uniqueness of the solutions of differential equations with deviating argument," Mat. Fiz., No. 8, 167-172 (1970).
- 2. V. M. Polishchuk and A. N. Sharkovskii, "General solution of linear differential-difference equations of neutral type," in: Differential-Difference Equations [in Russian], Naukova Dumka, Kiev (1971), pp. 126-139.
- 3. T. Kato and J. McLeod, "The functional-differential equation $y'(x) = ay(\lambda x) + by(x)$," Bull. Am. Math. Soc., 77, No. 6, 891-937 (1971).
- 4. G. A. Derfel', "Asymptotic properties of the solutions of some linear functional-differential equations," Dokl. Sem. Inst. Prikl. Mat. Tbil. Univ., No. 12/13, 21-23 (1978).
- 5. G. A. Derfel', "Asymptotic properties of the solutions of differential equations with a linearly transformed argument," Author's Abstract of Candidate's Thesis, Physicomathematical Sciences, Tbilisi (1977).
- 6. C. R. Adams, "Linear q-difference equations," Bull. Am. Math. Soc., 37, No. 6, 361-400 (1931).
- 7. W. Trjitzinsky, "Analytic theory of linear q-difference equations," Acta Math., 61, 1-38 (1933).
- 8. R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New York (1963).

SYLOW 2-SUBGROUPS OF THE COUNTABLE ALTERNATING GROUP

Yu. V. Dmitruk UDC 519.44

In this paper we describe the structure of the Sylow 2-subgroups of the countable alternating group, i.e., the group of all even permutations of a countable set which move only finitely many points. The representation of Sylow p-subgroups of finite symmetric groups as polynomial tableaux introduced in [3] plays an important role in our description; it generalizes in a natural way to the case of countable permutation groups.

Let V be a k-dimensional vector space over the field F_p with p elements; let S(V) and A(V) be the symmetric and alternating groups of degree p^k acting on the set V; let e_1, e_2, \ldots, e_k be some fixed basis for V. Let V_i be the subspace of V spanned by the vectors e_1, e_2, \ldots, e_i , $i = 1, 2, \ldots, k$; $V_0 = \{0\} \subseteq V_1 \subseteq \ldots \subseteq V_k = V$ is the flag consisting of the subspaces V_i . The group of all permutations in S(V) preserving this flag (term-by-term) and inducing the identity permutation on each quotient V_{i+1}/V_i is a Sylow p-subgroup of the symmetric group $S(V) = S_{pk}$. It was shown in [3] that this group (which we denote by P_{pk} below) has a convenient representation by sets of truncated polynomials of the type

$$a = [a_1, a_2(x_1), \dots, a_k(x_1, x_2, \dots, x_{k-1})],$$
(1)

where the $a_i(x_1, x_2, \ldots, x_{i-1}) \in F_p[x_1, x_2, \ldots, x_{l-1}]$ are truncated polynomials, i.e., representatives of minimal degree of the coset class modulo the ideal $I = (x_1^p - x_1, x_2^p - x_2, \ldots, x_{i-1}^p - x_{i-1})$. The tableau (1) corresponds to the permutation in S(V) given by $t \rightarrow ta = (t_1 + a_1, t_2 + a_2(t_1), \ldots, t_k + a_k(t_1, \ldots, t_{k-1}))$, where $t = (t_1, t_2, \ldots, t_k)$ is a point in the space V. The product of two tableaux with coordinates $a_i(x_1, x_2, \ldots, x_{i-1})$ and $b_i(x_1, x_2, \ldots, x_{i-1})$, respectively, is the tableau with coordinates

$$a_{i}(x_{1}, x_{2}, ..., x_{i-1}) + b_{i}(x_{1} + a_{1}, x_{2} + a_{2}(x_{1}), ..., x_{i-1} + a_{i-1}(x_{1}, ..., x_{i-2})),$$

$$i = 1, 2, ..., k.$$
(2)

Kiev State University. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 34, No. 3, pp. 356-360, May-June, 1982. Original article submitted December 15, 1980.