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Combined Influence of Hall Effect, Ion Slip, Viscous Dissipation 
and ]oule Heating on MHD Heat Transfer in a Channel 
V. Javeri, Berlin 

Abstract. To investigate the combined influence of Hall effect, ion slip, viscous dissipation and Joule heating 
on the fully developed laminar MHD channel heat transfer, the exact solution of the energy equation is derived 
assuming a constant wall heat flux, finely segmented electrodes and a small magnetic Reynolds number. It is 
concluded that there can be a substantial difference, depending upon Hart mann number, electric field intensity 
and Brinkman number, between the Nusselt number considering the Hall effect and that neglecting it. Represent- 
ative results are presented in diagrams and in tables. 

Z u s a m m e n f a s s u n [ .  Um d e n  Gesamte in f lu l~  d e s  H a l l - E f f e k t s ,  I o n e n s c h l u p f e s ,  d e r  v i s k o s e n  D i s s i p a t i o n  and  J o u l e -  
s c h e n  E r w ~ i r m u n g  au f  d ie  l a m i n a r e  W ~ i r m e i i b e r t r a g u n g  in e i n e m  M H D - K a n a l  zu  u n t e r s u e h e n ,  i s t  d ie  e x a k t e  L6-  
s u n g  d e r  E n e r g i e g l e i c h u n g  a b g e l e i t e t ,  wobe i  m a n  k o n s t a n t e  W ~ r m e s t r o m d i c h t e  an  d e r  K a n a l w a n d ,  u n e n d l i c h  r e in  
s e g m e n t i e r t e  E l e k t r o d e n  und  k l e i n e  m a g n e t i s e h e  R e y n o l d s - Z a h l  a n n i m m t .  E s  i s t  f e s t g e s t e l l t ,  dal~ a b h ~ n g i g  yon  
d e r  H a r t m a n n - Z a h l ,  e l e k t r i s c h e n  F e l d s t ~ i r k e  uud  B r i n k m a n - Z a h l  e i n  w e s e n t l i c h e r  U n t e r s e h i e d  zwischer~ d e r  N u s -  
s e l t - Z a h l ,  d ie  den  H a l l - E f f e k t  b e r i i c k s i c h t i g t ,  und  d e r ,  d ie  ihn  v e r n a c h l i i s s i g t ,  b e s t e h e n  k a n n .  T y p i s c h e  E r g e b -  
misse  s i nd  in  den  B i l d e r n  und  T a b e l l e n  d a r g e s t e l l t .  
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channel cross section 

magnetic induction 

Brinkman number 

electric field 

Eckert number 

Hartmann number 

Nusselt number 

Peclet number 

Prandtl Number 

heat generation function, Eq. (12) 

Reynolds number 

temperature 

half channel height 

specific heat at constant pressure 

mass fraction of unionized particles 

specific enthalpy 

current density 

pressure 

heat flux 

time 

v e l o c i t y  

c a r t e s i a n  c o o r d i n a t e  

Hall parameter 

ion slip parameter 

Dirac delta function 

dynamic viscosity 

thermal conductivity 

magnetic permeability 

v kinematic viscosity 

0 mass density 

0 e charge density 

a electrical conductivity 

shear stress tensor 

dissipation function 

Subscripts 

c c o n d u c t i o n  

j Joule h e a t i n g ,  Eq. (14)  

m mean value 

mag magnetic 

q heat flux, Eq. (14) 

ref reference value 

v viscous dissipation, Eq. (14) 

w wall 

x,y,z cartesian coordinate direction 

Superscripts 

vector 

+ substantial quantity, Eqs.(2) and (3) 

' reduced quantity, Eqs. (9c) and (I0) 

dimensionless quantity, Eq. (10) 
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I. Introduction 

The asymptotic fully developed temperature distribu- 

tion corresponding to the classical Hartmann velocity 

profile for the magnetohydrodynamic (MHD) channel flow 

was derived for the first time by Perlmutter and Siegel 

[I]. In their analysis, the internal heat generation due 

to viscous dissipation and Joule heating was included and 

the constant wall heat flux was assumed. Their analysis 

is valid only for the fluids, which have a non-tensor elec- 

trical conductivity throughout the channel. 

In an MHD device t~sing partially ionized gases, the 

approximation of a constant electrical conductivity of the 

working medium is not reasonable. In this case, one has 

to consider the influence of the tensor conductivity due to 

Hall effect and ion slip on the velocity field. For example, 

if solid electrodes are used in an MHD generator, then a 

Hall current will be produced in the flow direction with a 

subsequent reduction in the effective electrical conducti- 

vity and power density. Further, the usual viscous velo- 

city profile in the flow direction will interact with Hall 

currents to cause transverse velocities. 

Eraslan [2] solved the energy equation numerically, 

where he considered the combined effect of viscosity and 

tensor conductivity on velocity field in a flat channel, as- 

sumed the constant wall temperature and neglected the 

temperature gradient in the flow direction. 

In a previous paper, Javeri [4] derived the velocity 

and temperature distributions in a closed form for an 

MHD channel flow, where the influence of viscosity, Hall 

effect and ion slip on the hydrodynamic fields was inves- 

tigated. Javeri [4] assumed a constant wall heat flux and 

neglected the internal heat generation completely. 

The purpose of this paper is to extend the analysis of 

Javeri [4] and to explore the combined influence of Hall 

effect, ion slip, viscous dissipation and Joule heating on 

the temperature field and heat transfer in a flat channel. 

Including this combined influence, the exact solution of 

the energy equation is derived for the boundary condition 

of second kind for temperature. 

where the substantial quantities are 

E + : 

J =Jc  = j - 0 e ' V  

(2) 

(3) 

and the dissipation function is 

"ij(%/%)" (4) 
i j 

F o r  t he  c o m p o n e n t s  of t he  s h e a r  s t r e s s  t e n s o r  one  c a n  

w r i t e  

'~ij = "q( bv i /b •  + b v j / b x i )  - (2/3)-~ 8.. d i v v .  (5)  1.] 

The generalized Chin's law for weakly ionized fluids ex- 

presses the current density in terms of electromagnetic 

fields. It is derived by Sutton and Sherman [3] as 

j~ = mE - ~ -  ( B e / B ) ( ~  c X B ) +  f 2 [ ~ e B I [ ( B / B ) ( B J c / B ) - j ~ ] .  

(6 )  

This  v e r s i o n  of O h m ' s  law c o n s i d e r s  t he  a n i s o t r o p y  of 

e l e c t r i c a l  c o n d u c t i v i t y .  The f i r s t  t e r m  on t he  r i g h t  s i d e  

of Eq .  (6)  g i v e s  t he  i n f l u e n c e  of e l e c t r i c  f i e ld .  The s e -  

cond  t e r m  c o n s i d e r s  t he  Hal l  e f f ec t .  The l a s t  t e r m  i n -  

t r o d u c e s  ion s l i p .  The ion s l i p  t e r m  i s  o b v i o u s l y  i m p o r -  

t an t  f o r  s l i g h t l y  i o n i z e d  g a s e s  f o r  wh ich  t he  m a s s  f r a c -  

t i on  of u n i o n i z e d  p a r t i c l e s ,  f, i s  n e a r l y  equa l  to un i ty ,  

when  t he  m a g n e t i c  f i e ld  i s  i a r g e .  

It i s  c l e a r  t h a t  i t  wi l l  be  e x t r e m e l y  d i f f i cu l t  to s o l v e  

t he  e n e r g y  E q .  (1)  in i t s  g e n e r a l  f o r m .  C o n s e q u e n t l y ,  

s o m e  s i m p l i f i c a t i o n s  m u s t  be  i n t r o d u c e d ,  if  one  i s  to 

p r o c e e d  at  a l l .  

2.2. Simplified Equations 

The MHD channel under study is shown in Fig.1. To de- 

termine the temperature field from Eq. (I), the follow- 

ing limitations are introduced. 

2. Analysis 

2.1. Generalized Equations 

For the physical model, which is formulated by Sutton 

and Sherman [3], the energy equation, which describes 

the heat transport and is to be solved here, is given by 

Dh Dp div(~ grad T) + ~ + E + j+ O ~ - D t  = " , (1)  

Ey Vy 2~ 

Fig. I. MHD channel under investigation 
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Geometrical Assumptions 

G1. The channel is of constant cross section. 

G2. The channel lengthin x direction and the channel 

breadth in y direction are much greater than the 

channel height in z direction. 

G3. The electrodes in y direction are segmented in- 

finitely finely in order to allow an axial electric 

field to develop so that no net axial current will 

flow. 

Fluid Dynamic Assumptions 

F1. The laminar flow and the temperature field are 

steady and fully developed. 

F2. The fluid properties are constant. 

F3. The Lorentz force is the only external force influ- 

encing the fluid motion. 

F 4. The pressure work is not considered in the energy 

equation. 

E l e c t r o m a g n e t i c  A s s u m p t i o n s  

E l .  The channel  wal l s  in z d i r e c t i o n  a r e  ideal  i n s u l a -  

t o r s .  

E2. The scalar electrical conductivity is constant. 

E3. The flow is free from charge density. 

E4. The applied magnetic field is uniform and is much 

greater then the induced magnetic field~ 

Re << 1. 
mag 

To summarize, we have 

= Bx, By, Bz; Bx, By <<B z = B 0 = const. ~ (7a) 

] = Jx '  Jy '  0; (Tb) 

v = Vx, vy,  0; (7c)  

= E = c o n s t . ,  E : c o n s t . ,  E . (Td) x y z 

Us ing  Eq .  (7 ) ,  the  g e n e r a l i z e d  Ch in ' s  law (6) m a y  

be expanded  into i t s  c o m p o n e n t s  as  

Jx : a '  [ ( E x  

jy = ~ '  [ ( E y  

w h e r e  

8 2 

8'  

+ VyB o) - B 

-VxB 0) + 8 

(Ey  - V x B 0 ) ] / 8 4 ,  (8a)  

(E x + V yBo) ] / B  4, (8b)  

= f 2 8 e ( B 0 / B )  $ I ( B 0 / B  ' 

= 8 e ( B 0 / B ) ,  S 3 = ~ ,  B 4 

: S2/(1  + S t ) ,  ~,' : ~, / ( t  +S~).  

= 1 ~ 8 `2 

(9a)  

(9b) 

(9c)  

It is seen that the presense of ion slip reduces the elec- 

trical conductivity ~ and Hall parameter 82 by a factor 

(1 +81). For easy treatment of governing equations, the 

following dimensionless quantities are introduced: 

: x / c ,  y = y / o ,  Z = z/c, P0 = p ( ~  = 0 ) ' T 0 : T ( x  = 0 , z ) ,  

Vx = V x / V x , m '  Vy = V y / V x , m '  Vx, m : ( l / A ) -  f VxdA , 
A 

2 
Tre f = Cqw/X , H =(T-T0)/Tref, p: (p-p0)/(0Vx,m) , 

(10a) 

Yx = J x / ( ~ ' V x ,  mB0 ) '  Yy = J y / ( a ' V x ,  mB0 ) '  

Ex = E x / ( V x , m B 0  ) '  ~ = E y / ( V x , m B 0 ) '  

Re = Vx, m e / V ,  P r  = VpCp/k, Pe  = R e P r ,  

Ec = V2x, m/(CpTref) , Br ~- EcPr, 

Ha = cB 0 ~ , H a '  = cB0~]~'~-~ , Re m a g  

(10b) 

= CVx~mUr~. 

Considering these dimensionless quantities and res- 

pecting the restrictions mentioned, the simplified ener- 

gy Equation can be derived from the generalized energy 

Eq.  (1) as  

P e v x ( b H / b x )  = (b2H/bz  2) + E c P r [ Q  v + (Ha ' )2Qj j ] .  (11) 

The func t ions ,  which e x p r e s s  the  in t e rna l  hea t  g e n e -  

r a t ion  due to v i s c o u s  d i s s i p a t i o n  and Jou le  hea t ing ,  a r e  

g iven  by ( fo r  c o n s t a n t s  s e e  append ix)  

% : ( d ~ x / d [  ) 2 + ( dCZy./d{ ) 2 

: (I/2) (Ha6/B s) [cosh(2Har~ ) _ cos(2Haiz ) ], (12a) 

Qj = { x ( K x  + Vy) + j y ( E y -  Vx) = (yx)2  

: ( 1 / 8 4 ) [ ( ~ -  x + ~y)2  + (Ey  - Vx)2 ] .  

+ (yy)a 

(12b) 

Employing the Eqs. (8) and (I0), the dimensionless 

current densities can be written as 

Yx : (1 /B4) [ (gx  + Vy) - 8'(Ky - Vx)],  (13a) 

J'y = (1/[B4)E(E- x + Vy)[B' + (E-y - Vx) ] .  (13b)  

The solution of Eq. (II) is the nucleus of the present pa- 

per and is derived in the following section. 
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2.3. Solution of the Energy Equation 

The analysis is simplified by the fact that the energy Pe b__ 
bx 

Eq. (II) is a linear partial differential equation. Hence, 

the solution can be found as three smaller parts, which 

are combined to build the complete temperature field. Pe b_~_ 
�9 bx 

By superposition the total solution is given by 

T(.~,[) = T'q(~,~) + T'v.(~,~ ) + ~ ( ~ , 5 ) .  (14) 

In Eq. (14),  ~ defines the t empera tu re  distribution, q 
which takes into account the specified uniform heat flux 
qw at the channel walls but does not consider any kind 

of internal heat generation within the fluid. ~v descri- 

bes the temperature distribution, which is causedby the 

viscous dissipation only. ~i expresses the temperature 

distribution, which is created by the Joule heating only. 

Both T and T. do not consider the heat transfer at 
v j 

channel walls. The separation of the total temperature 

field (14) into smaller parts does not onlysimplifythe 

analysis but also allows to estimate the contribution of 

each part. From Eqs.(ll) and(14), three partial dif- 

ferential equations can be obtained: 

bTq/bX) = ( b2Tq/bZ 2), (15a) Pe~x( 

Pe~Cx(bYv/bX ) : ( b 2 L / b z 2 )  + EoPrQv,  (15b) 

PeVx(bTj/bx ) = (b2Tj/bz 2) + E c P r ( H a ' ) 2 Q j .  (15c) 

To solve the Eq. (15), the following conditions are ap- 

plied: 

Condition for constant wall heat flux: 

Izl : 1 : (bTq/bZ) : 1. (16a) 

Condition for zero  heat t r ans fe r  at channels walls:  

izl = 1 : ( bL /bz )  = (bgj /bz)  : 0. (16b) 

Symmetry  condition : 

: 0 : (~q/~) : ( ~ / ~ )  : ( ~ / ~ )  : 0. (16c) 

Condition for fully developed temperature distribution: 

(bT'q/b~) = cons t . ,  (bTv/bx) : cons t . ,  ( b g j / b ~ ) : c o n s t . .  
(16d) 

Condition for an overall  energy balance:  

1 

j~ ~/qdTZ = 1, (16e) 
0 
1 - 1 

0 0 
1 1 

Pe b f "~/ jdz : E c P r ( H a ' ) 2  f %dz. (16g) 
bx 0 0 

The velocity field, which is to be inserted into the Eq. 

(15), was derived by Javeri [4] from the Navier Stokes 

equation of motion as (for various constants see appen- 

dix) 

~x = (WlZi  - W2Zr  + W 3 ) / B s '  (17a) 

,~y : ( -  VlZ i - V2Z r + V3)/•  s, (17b) 

where 

Z r = cosh(Har~)Cos(Haiz) ,  (170) 

Z i = sinh (HarZ)Sin (HaiR). (17d) 

This velocity field satisfies the conditions: 

[~I  = l : ~ x  = ~ y - - ~  

= 0 : ( ~ , ~ x / ~ )  = ( ~ , ~ y / ~ )  = 0 ,  

1 1 

~x,m = f  ~x d~ : 1' "~y,m : f  gyd~ 
0 0 

(18a) 

(18b) 

: o. ( 1 8 c )  

Before proceeding further, an expression for the axial 

electric field is needed. It is determined by requiring 

the condition for no net axial current flow, i.e. 

i 

fJ 
0 

dz = O. (19a) 
x 

From Eqs. (13) and (18), the result is readily found to 

be 

--S x = B ' ( % -  1 ) .  ( 1 9 b )  

To determine the axial temperature gradients,the en- 

ergy Eq. (15) is integrated over the channel cross sec- 

tion (for different constants see appendix) : 
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K q :  Pe(bTq/bX) : 1, (20a) 

I 

K v = P e ( b T v / b X ) / ( E c P r ) =  ~v,m : ~  Qv d~ 
0 

: (Ha6/Bs) (I/4)(Shr2/Har - Sii2/Hai) , (20b) 

I 
: ( H a ' ) 2 % , m :  ("a')2f 

0 
= H20{E3-2%+ (Ha3/Bs)I( I/4)(Shr2/Har+Sii2/Hai )- 

- (2 /Ha 3) (CrD 1+ CiD 2) + Crl  }}. (20c) 

Respecting the conditions (16),  one can deduce from the 
energy Eq. (15),  after  an extensive calculation,  t h e t e m -  
pera ture  distr ibution as follows (for  constants see  appen- 
dix) : 

Tq : x / P e  + Fq, (21a) 

T v / ( E c P r )  : K v ( x / P e + F q )  - 

- [ H a s ( Z t 3 / H 1 3 + Z 1 4 / H 1 4 ) / ( 8 B  s ) - C 2 ]  , 

(21b) 

Tj / (EcPr) : Kjx/Pe +(Kj+2%H20)Fq-H20{E3,~2/2 + 

+(Ha3/B s) [ (I/8) (ZI3/H 13-ZI4/H14) _ 

I' 
(2~c) 

where 

Z13 : c~  Z14 = cos (2Haiz ) ,  (21d) 

%zi_  4Zr)/ l _ % .  (21e) 

Defining the fluid mean temperature as 

I 

f ~xd[  
y 0 

, (22) 
x,m 

one can derive from Eq. (21), the following expressions 

for the mean temperature 

T : [1 . E e P r ( K  v + Kj)]  (.x/Pc) m 

Tq,m : x /Pe ,  L , m / ( E c P r )  : Kv(X/Pe) ,  

T],m/(EcPr ) : K j ( x / P e ) .  

(23a) 

(23b) 

(23c) 

The Nusselt number, which describes the heat transfer 

at channel walls, is given by 

Nu = Cqw/[~(T w-T m 

: I/(% - ~m ) , 

where 

)] = e ]bT/bZjw/ (T  w-Tin )  

(24a) 

(%-gin)= (%-Tm)q+ (%-Tm)v+ (%-Tin) j. (24b) 

All the three terms on the right side of Eq. (24b) can 

be determined from the Eqs. (21) and (23). Since the 

closed form solution of temperature field (21) is very 

complicated, it is advisable to check its correctness. 

Therefore, the energy Eq. ( 15 ) was integrated numeri- 

cally as follows: 

1 

Yq : x /Pe  + Fql  - f  FqlTJxdZ, (25a) 
0 

Tv, / (EcPr)  = Kv(X/Pe) + Fvl 

%/(EoPr) : Kj(x /Pe )  + Fjl 

where 

Fql :f (z - ~')~x(~')d~ 
0 

Fvl :~ (z - z')[Kv~x({' 
0 

0 

' : Integration variable. 

1 

- f FvlgxdZ, (25b) 

0 

I 

- ~ Fjl~xd~,  (25c) 
0 

(25d) 

-~v([)~d[, (2~e) 

(Ha)2%({ ', ( Sf) 

The comparison between the temperature field (21) 

and that according to Eq. (25), which were evaluated for 

a sample setof parameters: Ha'= 6, 8'= 2 andE- =I/2, 
Y 

indicated an excellent agreement. 

3. Result 

In section 2.3, the temperature field is determined as 

a function of x/Pe and z as well as of parameters Ha', 
', ~_., and EcPr. .Y 
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In Table I ,  the functions, which describe the fluid 

motion andtheheat transfer, are given for two limiting 

cases ~'-~0 and ~'-,co keeping Ha' = const. The axial 

velocity profile changes from Hartmann type at 3 ' -* 0 

to a Poiseuille type at ~' ~ co. 

Table I. Hydrodynamic fields andcurrent densities at 
[~'*0 and 5' ~ co for Ha' = const. 

Function ~ l  -'--I' 0 ~'.r ~(~ 

~• hl(Cl-g I ) 43/2)(1-  ~2) 

- I t c ( ~ / ~ [ )  h~ [Ha ' / (Ha ' -sq /o l ) -Ey  ] 3+h}(1-~y) 

Vy, Ox 
o o 

~ (~y-~x) (2r 

Qv [h~sinh(Ha'z)/ho]2 9~2 

~j (2~-~x)2 ( 2 - ~ )  2 

Tq-~/~e f l  - dd (6~2-#r 

Tv/(EcPr) a2[x/Pe+.(f~-d~)]-(f2-d 2) 3~/Pe + 9f4/8 

T$/(EcPr) b~x/Pe + (b3+2Eyh~)(f~-d ~) [Ha'(~y-1)] 2" 

- h3(r3-a 3) [~/2e + f J 8 ]  

c I = cosh(Ha'); c 2 = (cI)2; s I = sinh(Ha'); s 2 = sinh(2Ha'); 

s 3 = sinh(3Ha') ; e 2 ~ (Ey)2; h o = Ha'cl-sl; h I = Ha'/ho; 

rq = c 1 ('f/3+4/h3)-2(2+h3)sl/h#; r 2 = s2/h5-1; 

r5 = ( c l s2 - s3 /3 - s l ) /Ha ' ;  &1 = h 2 ( c l r l / 2 - r 2 / h 3 ) / 2 ;  

d 2 = hlh2h3[r3/(8h3)-rl/4]/2 ; 

d3 = hl {e2rq/2+h2[r1(1+2c2)/4-2clr2/h3+r3/(Sh3)]} /2; 

a 2 = h2h3r2/2 ; b 3 = h312e2-4Ey+h2(1+2c2-~s2/hs)]/2; 

gl = cosh(Ha'[); g2 = cosh(2Ha'~); fl = h1(cflz2/2-gl/h3); 

f2 = h2h3[g2/(8h3)-~2/43; f4 = 2~2 - ~r - 11/55; 

Sincethe influence of Ha' and B' on the temperature 

distribution T is already discussed by Javeri [4], the 
q 

attention is paid mainly to the viscous dissipation and 

Joule heating. To assess the influence of Ha' and [~' on 

the viscous dissipation, which does not depend upon %, 

the distribution of viscous dissipation and the tempera- 

ture profile caused by it are presented in Fig. 2 for an 

arbitrarily selected value of Ha' = 6. The axial tempera- 

ture gradient and the difference between the wall and mean 

temperature due to the viscous dissipation are given in 

Fig. 3 as well as in Table 2 as a function of Ha' and [~'. 

Since the transverse gradient of the axial velocity, which 

determines the viscous dissipation significantly, is in the 

vicinity of the channel walls far greater than that in the 

middle of the channel, the majorpart of the viscous dissi- 

pation is confined in the magnetic boundary layer near 

] 

,o~ Hd =6 1 
/ 40 . . . . . .  ~ ' : 2  

- - - - - -  i3'-"- 0 

20 

01 
1Z - ~  

o._ 

.8 ,~_s  - 
I 

C 

- '80  .2 

/ / .- 

/ 
/ 

/ 
/ 

/_ 
/ 

/ 

f -  
/ 

J / "  " f  
/ Z  

.z, .6 .8 1. 

Fig.  2. Viscous diss ipat ion and t empera tu re  profi le  caused 
by it for Ha'  = 6; Eqs . (12 )  and (21) 

u3 
% 

) 

- n  

I 
z, 8 12 He' 16 

Fig.  3. ( b T . / b x ) / ( E c P r )  and ( T , - Y ~ ) ~ / ( E c P r )  = 
f e t ( H a ' , [ ~ ' ) ;  Eqs.  (20) and (21) 
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t h e  c h a n n e l  w a l l s .  Th i s  m e a n s  an a u g m e n t a t i o n  of t h e h e a t  

f lux  n e a r  t h e  w a i l s .  F r o m  F i g s . 2  and  3 a s  wel l  a s  f r o m  

T ab l e  2 one  c a n  c o n c l u d e :  

fect of Ha' and ~ ' on the Joule heating, the distribution 

of Joule heating and the temperature profile originated 

by it are illustrated in Fig. 4 for an arbitrarily selected 

~x p r o f i l e  (~Tv/~x~ (T - ~m)  v 

bends to EcPr EcPr 

Ha' = const. Poiseuille decreases decreases 

~' increases type 

iIa' increases liar tmann increases increases 

~' = const, type 

Table 2. Axial temperature gradient and difference be- 
tween the wall and mean temperature due to vis- 
cous dissipation 

(@Tv/a~)/(zc~r) 

Ha' ~' = 0 2 4 ~0 20 oc 

5 2 5.06655 

4 3.55252 
6 4.51929 

qO 6.17284 
16 9.10222 

2 .879928 .771429 
4 1.14049 ] 
6 1.45~94 
10 2.10397 
16 5.09623 

5.01697 5.00526 5.00090 5.00025 
5.21187 3.07720 5.01421 5.00565 
5.710d3 3.52521 5.06926 3.0d820 
5.11824 4.32812 3.45866 3.15259 
7.40160 6.12535 4.5581d 3.67351 

(Tw-Tm)v/(EcPr) 

.799616 .780194 .77293~ .771809 

.922494 .827392 .781814 .774086 
1.14458 .947576 .809847 .781578 
1.85927 1.33876 .969720 .832975 
2.43658 1.95724 1.38425 1.054~4 

In general, the effect of B' on the shape of the axial 

velocity profile and on the viscous dissipation can be no- 

ticed clearly, as Ha' increases. The results indicate 

that the significant error may be introduced in the pre- 

diction of the quantities, which express the heat trans- 

port, for large Ha', if 8' is neglected in the analysis, 

for instance, 

(b~ ' v /bX) (Ha '  = 1_0, ~' - , 0 )  

( b ~ / b ~ ) ( H a '  = 10, 8' ~oo)  
= 2 . 0 6 ,  

(T w - T m ) v ( H a '  = I0 ,  8' -* O) 

(T w - T m ) v ( H a '  = i 0 ,  8 '  "*co)  
= 2 . 7 2 .  

It i s  m o r e  d i f f i cu l t  to  a s s e s s  t he  t e m p e r a t u r e  d i s t r i -  

b u t i o n  due  to the  J o u l e  h e a t i n g  b e c a u s e  it i s  a f u n c t i o n  of 

Ha ' ,  # ' and  E y .  To s a v e  p l a c e  h e r e ,  t h e  a t t e n t i o n  i s  d e -  

d i e a t e d  to two s p e c i a l  c a s e s  of E- . They  a r e  E" = 0 ( s h o r t  
Y Y 

c i r c u i t )  an d  E- = 1 ( o p e n  c i r c u i t ) .  To u n d e r s t a n d  t he  e l -  
Y 

~0 

-u? I \ \ 
,o ~ / -*o ',, / 
,y_z 

)1 Yk I 
/_~ &_~_ / \ 

0 .2 .4 .6 .8 2 

i / 

"'-----l____ 

=3 

Hd= 6 / "  
- -  13'~o~ / / 

L~ . . . . . . .  i f=2  - - ; / ~  
. . . .  f f-~0 / 

,~E l ' / 
/ I 

t Ey = 1 i /  . . . .~,-f""- 

Fig. 4. Joule heating and temperature profile caused by 
i t  fo r  H a '  : 6 ;  E q s .  (12)  and  (21)  
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value of Ha' = 6 and for E = 0 and E = ~. In case of 
Y Y 

short circuit situation and ~ ' = 0, the Joule heating is al- 

most equally distributed all over the channel ; for [~ ' -~ co 

it tends to a constant value. In case of open circuit con- 

dition and ~ ' = 0, the major part of the Joule heating is 

confined in the vicinity of the channel walls. Thus it acts 

as a wall heat flux; for ~ ' -~oo it tends to zero. In Fig. 5 

and in Table 3, the axial temperature gradient due to 

#oule heating according to Eq. (20) is given. For short 

Table 3. Axial temperature gradient and difference be- 
tween the wall and mean temperature due to 
Joule heating 

(8~;/~)/(Ec?=) 
Ha' ~' = 0 2 # 10 20 co 

Y 

2 #.65588 #.15261 4.0#639 #.00790 4.00199 4 
# 17.7960 16.5260 16.1760 16.0313 16.0080 16 
6 38.8806 36.9#69 36.3556 36.0688 56.0d78 36 

10 104.9~8 101.707 100.714 100.171 100.048 100 
16 26~.964 258.784 257.188 256.321 256.106 256 

2 1.65588 1.15261 1.0#639 1.00790 1.00199 1 
# 5.79605 4.5260# #.17596 4.03130 #.00796 
6 11.8806 9.94692 9.35555 9.06882 9.01779 9 
10 29.9583 26.7067 25.7156 25.1706 25.0478 25 
16 71.964# 66.7857 65.1884 6~.3209 6#.1059 64 

.5 

2 .65588# .152612 .046385 .007901 .00199# 0 
# 1.79605 .526035 .175955 .031302 .007956 0 
6 2.88061 .9#6917 -3555#9 .06882# .017792 0 

10 #.9~827 1.7067# .71~567 .170550 .0#7755 0 
16 7.96z~# 2.78571 1.18839 .52087# .105928 0 

(~w-Tm)j/(EcPr) 

2 -.161910 .218035 .30##12 .336277 .3#1195 .3a2857 
# -.#96#62 .67256# ~.11809 1.32481 1.35951 1.37143 
6 -.851906 1.0510# 2.13868 2.8802~ 3.03150 ~.08571 

10 -1.54385 1.547#3 3.79356 6.82~04 8.025~6 8.57143 
16 -2.55895 2.19337 5.70505 11.7693 16.9911 21.9#29 
2 -.086714 .041515 .072007 .083362 .085120 .08571z~ 
4 -.26585~ .097148 .252216 .326069 .338563 .342857 
6 -.451922 .088932 .467314 .70056~ .752709 .771429 
1.0 -.805162 -.008~0 .668825 1.60352 1.974~6 2.1#286 
16 -1.31635 -.15989 .860137 2.62652 4.10107 5.48571 

-5 

2 .138876 .030906 .009312 .001581 .000399 0 
4 .425972 .110708 .0357#8 .006277 .001592 0 
6 .748030 .212317 .073997 .013856 .003564 0 

10 1.#1o89 .#3#699 .163002 .035040 .009609 0 
16 2.#1142 .7829@1 .308663 .07190~ .021862 0 

circuit situation, this quantity is nearly independant of 

of ~ ', e.g. 

: 10, . O) 

O, H a  : 10,  * = )  
: :!_. 05.  

In case of open circuit condition, the axial temperature 

gradient (bTj/bx) depends upon [~' distinclty. In Fig. 6 as 

well as in Table 3, the difference between the wall and mean 

temperature due to Joule heating according to Eq. (21) 

is presented. With the help of Fig. 4, one can understand 

the curves of Fig.6. For Ha ' = const, and short circuit 

condition, the Joule heating near the wall increases as 

[5 ' increases. For open circuit situation and Ha ' = const., 

the Joule heating near the wall decreases as ~ ' increas- 

es. 

12 

4- 

"7_ 
l 

4 'J  

Ey = 0 

f ~  

~y= 

�9 

12 Ha' 16 

Fig. 6. (Tw - ~m)j/(EcPr) = fct(Ha', [ ',gy) ; Eq.(21) 

The solution derived and the results presented in this 

paper can be employed to decide which of the two arts of 

the internal heat generation is important and to estimate 

[~ ', beyond which one can practically set ~ ' equal to in- 

finity, for a given combination of parameters Ha ' and 

E. 
Y 

To calculate the Nusselt number according to Eq. (24), 

one must also know the value of the dimensionless group 

EcPr. The complete presentation of the Nusselt number 

for the different values of the parameters Ha ', [~ ', 
Y 

and EcPr would enlarge this paper significantly. Accord- 

ingly, to obtain a general survey of the combined influen- 

ce of these four parameters on the heat transfer at the 

channel walls, the Nusselt number is illustrated in Fig.7 

for the extreme values of [~ ' and for the special values 

of E . From Fig.7 one can deduce that a substantial er- 
Y 

ror can be introduced in the prediction of the Nusselt 

number, depending upon Ha', [~ ', E- arid EcPr~ if the 
Y 

Hall effect is completely neglected. Table 4 shows the 

Nusselt number for the limiting values of [~ ' and for the 

sample values of Ha', E and EcPr and gives a gene- 
y 
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ral view about the magnitude of the possible maximum 

error in the determination of Nusselt number, if the Hall 

1.5 

0 
0 

Ec.Pr 1 
n'~,  o .2 .s 

=II M L M / "  

/ /  
t "  

i~-- // 

@! �9 ........ 

& 8 12 16 

F i g . 7 .  1/(T'w - ~ ) = f c t ( H a  I, ~ I , E - y )  E c P r )  ; Eq .  (24)  

effect is not c o n s i d e r e d .  Form Table 4, one can learn: 

greater the deviation between the ratio of extreme Nus- 

selt numbers and unity, greater the influence of the re- 

duced Hall parameter [~ ' on the heat transfer at the chart- 

T a b l e  4. Ra t i o  of N u s s e l t  n u m b e r  at ~' ..e 0 to N u s s e l t  
n u m b e r  at  B ' "* co 

[~u(S' -- o)]/[~u(~' -- ~)] 

Ha' ~ EcP:~ 
Y 

0 0.2 ..... 0 . 5 1 . 0 

1o 

0 

l l 2.27532 
2. 05862 

1 = I . - l o  5 

= 1.246 

= I .  609 

I. 32839 

= 0.850 

1.99226 

= 4-. 690 

= o. 586 

= 2.0#5 

= o.713 

= ?. 69? 

1 .%754  
= 0.406 

= 2.426 

= 0.62? 

= lO.55 

= 0. }22 

neI wails. It can be noted that this ratio, depending upon 

Ha', E- and EcPr, can exceed the range limitedby 0.1 
Y 

and I0. 

Finally, it is concluded that the Halt effect and ion 

slip have significant influence on the limiting, fully de- 

veloped heat transfer conditions in an MHD channel, and 

the analysis of the problem by neglecting these effects 

may result in considerable error in the solutions repre- 

senting the actual physical conditions. 

4. A p p e n d i x  

The c o n s t a n t s ,  wh ich  a p p e a r  in  the  v e l o c i t y  and  t e m p e -  

r a t u r e  f i e l d s  and  d e p e n d  u p o n  the  p a r a m e t e r s  Ha ' ,  B 

and %, are listed below. 

V [~3 I + ~'2; [~4 I + B'2 

f r  = ~ ( 1 / 2 ) ( [ 3  + 1)'~ [ i  = ~ 1 / 2 ) ( B  3 - 1F~ 

- = , - = ( ~ ) 2 ,  
E x B ( % - 1 ) ; E  1 " E 2 =  ( % ) 2 ;  E3 : E l + E 2  ; 

Ha r = H a ' B r / B 3 ~  Ha i = H a ' # i / f l 3 ;  H13 = ( H a r ) 2 .  

H14 ( H a l ) 2  = 

H l l  = 9 H 1 3 + H 1 4 ;  H12 = H 1 3 + 9 H 1 4  ~ Ha 3 = H 1 3 + H 1 4 ~  

Ha 4 = I-t13 - H14 

Ha 5 = 2 H a r H a i ,  Ha 7 (Ha3 )3~  Ha 6 ( H a 3 ) 2  

Ha 8 = 2Har~  Ha 9 = 2Hai~ H20 = ( H a ' ) 2 / 8 4 [  

D r = H a r ( H 1 3 - 3 H 1 4 )  ] D i = H a i ( 3 H 1 3 - H 1 4 )  

C r = c o s h ( H a r ) C O S ( H a i )  ~ C i = s i n h ( H a r ) s i n ( H a i )  ~ 

S r = s i n h ( H a r ) C O S ( H a i )  ; S i = c o s h ( H a r ) s i n ( H a i )  ~ 

Shr  2 = s i n h ( H a s )  ~ Sii  2 = s i n ( H a 9 )  

Ch r  2 = c o s h ( H a s )  ; Col  2 = c o s ( H a 9 )  

Sr2  = S h r 2 C o i 2 ;  Si2 = C h r 2 S i i 2 ;  

Si3 = c o s h  ( 3 H a r ) s i n ( H a i )  ; S t3  = s i n h ( 3 H a r ) e o s ( H a i )  ; 

Sr4  = s i n h ( H a r ) C O S ( 3 H a i )  ~ Si4 = c o s h ( H a r ) s i n ( 3 H a i )  

B r = H a r C  r - Ha iC  i - Sr~ B i = H a r C  i + Ha iC  r - S i ;  

( B r ) 2  ( B i ) 2  ( O r ) 2  C i ) 2  B s : + ; C r l  : + ( ; 

T r = D r C r  - D i C i l  Ti = D r C i  + D i C r [  
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W 1 = V 2 = B r H a  i - H a r B i ;  W 2 = V 1 = H a r B  r + H a i B i ;  

W 3 = W2C r - W l C i ;  V 3 = V1C i + V 2 C r ;  

S 1 = V I H a  4 + V 2 H a s ;  S 2 = V2Ha  4 - V 1 H a s ;  

S 3 = C i l i a  4 + C r H a 5 ;  S 4 = C r H a  4 - C i l i a 5  ; 

D 1 = Ha r S r  + H a i S i ;  D2 = H a r S i  - H a i S r ;  

F 1 = B s H a 3 ;  F 2 = W 3 H a 3 / 2  ; F 3 = H a i B  r + H a r B i ;  

F 4 ~- H a r B  r - H a i B i ;  

R10 

R 3 = 

R 4 = 

R 5 -- 

= ( H a 4 C  i - H a 5 C r ) / H a  6 - ( D r  S i - D i S r ) / H a 7  ~ 

R 1 = D a / H a  3 - 2R10 ~ 

R20 = (Ha4C r + HasCi)/Ha 6 - (DiS i + DrSr)/Ha 7 

R 2 = DI/Ha 3 - 2R20 ; 

[Shr2/ila8-1- (HarSr2+I-IaiSi2) / (2Ha3) + Sii2/Ha 9]/4 

[ (HarSr2.HaiSi2) / (2Ha3) +Shr 2/Has+Sii2/Ha9 + I]/4 

( H a r S i 2  - H a i S r 2 ) / ( 8 H a 3 )  ; R 6 = 1 /3  ~ R 7 = D 2 / H a  3 

R 8 = D 1 / H a  3 

F51  = F 2 W 1 R  1 - F 2 W 2 R  2 - F 3 W l R  3 + F 4 W 2 R 4 1  

F52 = (F3W 2 - F4WI)R 5 + W3(F2R 6 - F3R 7 - F4R 8) 

F s - (Fsl + FSZ)/(II%B2s), 

G 1 = [ ( 3 H a r S i 3  - H a i S r 3 ) / H l l  - D 2 / H a 3 ] / 2  ~ 

G 2 -- [ ( H a r S i 4  - 3 H a i S r 4 ) / H 1 2  - n 2 / H a 3 ] / 2 ;  

G 3 = [ ( 3 H a r S r 3  + H a i S i 3 ) / H l l  + D 1 / H a 3 ] / 2 ;  

G 4 -- [(HarSr4 + 3HaiSi4)/H12 + D1/Ha3]/2 ; 

G 5 = Shr2/Ha 8 

G 6 = Sii2/Ha9 ~ G 7 = WIR I - W2R 2 + W3R6~ 

G 8 = WIR 3 - W2R 5 + W3R 7~ G 9 = WIR 5 - W2R 4 + W3R 8 

U 1 = WIG 1 - W2G 3 + W3G 5~ U 2 = WIG 2 - W2G 4 + W3G 6 

C 2 = ( 1 / 8 ) ( H a 6 / B  2) ( U 1 / H 1 3  + U 2 / H 1 4  ) [ 

C31 = E3G7/2  + 2Ex[V3GT/2  - (S1G 8 + S2G9) /Ha6~ /Bs ;  

C32 = ( U 1 / H 1 3 - U 2 / H 1 4 ) / 8 - 2 ( S 3 G 8 + S 4 G 9 ) / H a 6 + C r l G ? / 2 ~  

C 3 = (C31 + H a 3 C 3 2 / B s ) / B  s .  
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