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Combined Influence of Hall Effect, Ion Slip, Viscous Dissipation
and Joule Heating on MHD Heat Transfer in a Channel

V. Javeri, Berlin

Abstract. To investigate the combined influence of Hall effect, ion slip, viscous dissipation and Joule heating

on the fully developed laminar MHD channel heat transfer, the exact solution of the energy equation is derived
assuming a constant wall heat flux, finely segmented electrodes and a small magnetic Reynolds number. It is
concluded that there can be a substantial difference, depending upon Hartmann number, electric field intensity
and Brinkman number, between the Nusselt number considering the Hall effect and that neglecting it. Represent-
ative results are presented in diagrams and in tables.

Zusammenfassung. Um den GesamteinfluB des Hall-Effekts, Ionenschlupfes, der viskosen Dissipation and Joule-
schen Erwarmung auf die laminare Warmeilbertragung in einem MHD-Kanal zu untersuchen, ist die exakte Lo~
sung der Energiegleichung abgeleitet, wobei man konstante Warmestromdichte an der Kanalwand, unendlich fein
segmentierte Elektroden und kleine magnetische Reynolds-Zahl annimmt. Es ist festgestellt, dal abhingig von
der Harimann-~Zahl, elekirischen Feldstérke und Brinkman-Zahl ein wesentlicher Unterschied zwischen der Nus-
selt-Zahl, die den Hall-Effekt beriicksichtigt, und der, die ihn vernachldssigt, bestehen kann. Typische Ergeb-
nisse sind in den Bildern und Tabellen dargestellt.

Nomenclature A thermal conductivity
A channel cross section W magnetic permeability
B magnetic induction v kinematic viscosity
Br Brinkman number o mass density
E electric field N charge density
Ec Eckert number o electrical conductivity
Ha Hartmann number T shear stress tensor
Nu Nusselt number ¢ dissipation function
Pe Peclet number
Pr Prandil Number
Q heat generation function, Eq.(12) Subscripts
Re Reynolds number c conduction
T temperature j Joule heating, Eq.(14)
half channel height m mean value
Cp specific heat at constant pressure mag magnetic
mass fraction of unionized particles q heat flux, Eq. (14)
specific enthalpy ref reference value
j current density v viscous dissipation, Eq.(14)
p pressure W wall
q heat flux X,y,z cartesian coordinate direction
t time
v velocity
X,y,z cartesian coordinate Superscripts
Be Hall parameter - vector
B ion slip parameter + substantial quantity, Eqgs.(2) and (3)
N Dirac delta function ' reduced quantity, Eqs.(9c) and (10)

m dynamic viscosity - dimensionless quantity, Eq. (10)
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1. Introduction

The asymptotic fully developed temperature distribu-
tion corresponding to the classical Hartmann velocity
profile for the magnetohydrodynamic (MHD) channel flow
was derived for the first time by Perlmutter and Siegel
[1]. In their analysis, the internal heat generation due
to viscous dissipation and Joule heating was included and
the constant wall heat flux was assumed. Their analysis
is validonly for the fluids, which have a non-tensor elec-
trical conductivity throughout the channel.

In an MHD device using partially ionized gases, the
approximation of a constant electrical conductivity of the
working medium is not reasonable. In this case, one has
to consider the influence of the tensor conductivity dueto
Hall effect and ion slip on the velocity field. For example,
if solid electrodes are used in an MHD generator, then a
Hall current will be produced in the flow direction with a
subsequent reduction in the effective electrical conducti-
vity and power density. Further, the usual viscous velo-
city profile in the flow direction will interact with Hall
currents to cause transverse velocities.

Eraslan [2] solved the energy equation numerically,
where he considered the combined effect of viscosity and
tensor conductivity on velocity field in a flat channel, as-
sumed the constant wall temperature and neglected the
temperature gradient in the flow direction.

In a previous paper, Javeri [4] derived the velocity
and temperature distributions in a closed form for an
MHD channel flow, where the influence of viscosity, Hall
effect aﬁd ion slip on the hydrodynamic fields was inves-
tigated. Javeri [4] assumed a constant wall heat flux and
neglected the internal heat generation completely.

The purpose of this paper is to extend the analysis of
Javeri [4] and to explore the combined influence of Hall
effect, ion slip, viscous dissipation and Joule heating on
the temperature field and heat fransfer in a flat channel.
Including this combined influence, the exact solution of
the energy equation is derived for the boundary condition

of second kind for temperature.

2. Analysis

2.1. Generalized Equations

For the physical model, which is formulated by Sutton
and Sherman [3], the energy equation, which describes

the heat transport and is to be solved here, is given by

—_— —

Dh D ; ;
Dm-ﬁ%:dlv(XgradT)+<I>+E+‘J+’ (1)
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where the substantial quantities are

—

E+:E+7><§, (2)
F o -
R R N (3)

and the dissipation function is

® :Z Z -rij(bvj/bxi).
i

For the components of the shear stress tensor one can

(4)

write

T -n(bvi/bxj + bvj/bxi) - (2/3)n 513‘ divv. (5)
The generalized Ohm's law for weakly ionized fluids ex-
presses the current density in terms of electromagnetic

fields. It is derived by Sutton and Sherman [3] as

o= oB - (8,/B) (i, xB) + 25 8T (B/B)(B]./B)-] 1.
(6)

This version of Ohm's law considers the anisotropy of
electrical conductivity. The first term on the right side
of Eq. (8) gives the influence of electric field. The se-
cond term considers the Hall effect. The last term in-
troduces ion slip. The ion slip term is obviously impor-
tant for slightly ionized gases for which the mass frac-
tion of unionized particles, f, is nearly equal to unity,
when the magnetic field is large.

Itis clearthatit will be extremely difficult to solve
the energy Eq. (1) in its general form. Consequently,
some simplifications must be introduced, if one is to

proceed at all.

2.2. Simplified Equations

The MHD channel under study is shown in Fig.1. To de-
termine the temperature field from Eq. (1), the follow-

ing limitations are introduced.
B
2
iZy E " 2c
R Y R
i | f

Fig.1. MHD channel under investigation
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Geometrical Assumptions

G1. The channel is of constant cross section.

G2. The channel lengthin X direction and the channel
breadth iny direction are much greater than the
channel height in z direction.

G3. The elecirodes in y direction are segmented in-
finitely finely in order to allow an axial electric
field to develop so that no net axial current will

flow.

Fluid Dynamic Assumptions

F1. The laminar flow and the temperature field are
steady and fully developed.

F2. The fluid properties are constant.

F3. The Lorentz force is the only external force influ-
encing the fluid motion.

F4. The pressure work is not considered in the energy

equation.

Electromagnetic Assumptions

E1l. The channel walls in z direction are ideal insula-
tors.

E2. The scalar electrical conductivity is constant.

E3. The flow is free from charge density.

E4. The applied magnetic field is uniform and is much
greater then the induced magnetic field;
Remag << 1.

To summarize, we have

B =B, By, BZ, B_, By <«<B, = B, = const. ; (7a)

J7 g iy 03 (7b)

VSV Yy 03 (7¢)

E-E - const., E_ = const., E . (7d)
X y z

Using Eq. (7), the generalized Ohm's law (6) may

be expanded into its components as

=o' HE, + vyBO) - B'(Ey -v,B,)1/8,, (8a)
jy:c'[(Ey—VXBO) + B'(EX+VYBO)]/B4, (8b)
where

B, = 178,(By/B)8 (B /B), (9a)
By = B(By/B), By =f1+8%, 8, =182 (o0
8= 8,/(148)), o' = a/(1+5,). (90)
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It is seen that the presense of ion slip reduces the elec-
trical conductivity ¢ and Hall parameter 62 by a factor
(1 +Bi) . For easy treatment of governing equations, the
following dimensionless quantities are introduced:

=0),Ty=T(x

=x/c, ¥ =y/c, 2=12/c, p, = p(X =0,2),

\7X = VX/VX,m, \—ry = Vy/vx,m’ Vom ° (1/4) - j v, dA,
A

Toos = S/ T =(T=Tg)/T o, D= (p-pg /(ov m)’
(10a)

J_x:jx/(oxmo _“J/ me)

EX:EX/(VXIH O) _E/(meo)

Re = vx’mc/\), Pr = \)pCp/?\, Pe = RePr,

Ec = vi}m/(cpTref), Br = EcPr, (10b)

Ha = ¢B, Vo/n » Ha' = cByla’/n" Re ng = Uy, m®

Considering these dimensionless quantities and res-
pecting the restrictions mentioned, the simplified ener-
gy Equation canbe derived from the generalized energy
Eqg. (1) as

Pev_(oT/ %) = (¥T/052) + EcPr(Q_ + (Ha‘)zﬁjj. (11)
The functions, which express the internal heat gene-
ration due to viscous dissipation and Joule heating, are

given by (for constants see appendix)

g - (d\_IX/di)Z . (d\—/y/di)z

(1/2)(HaG/BS)[cosh(ZHari) - oos(ZHaii)], (12a)

o

e - - = - £ 02 e 82
I JX(EX+vy)+Jy(Ey—vX):(J ) +(Jy)

(1/8)[(E, +F )%« (B, -7 ). (12b)

Employing the Eqgs. (8) and (10),

current densities can be written as

the dimensionless

(13a)

(1/8)0(E, +7) - 8 (8, - 7)1,

Ix X y y X

Jo= (1/B)(E, +7 )8 + (B, - 7 )1.

¥ x* Yy _— (13b)

e
il

The solution of Eq. (11) is the nucleus of the present pa-

per and is derived in the following section.
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2.3. Solution of the Energy Equation

The analysis is simplified by the fact that the energy
Eq.(11) is a linear partial differential equation. Hence,
the solution canbe found as three smaller parts, which
are combined to build the complete temperature field.
By superposition the total solution is given by

T(x,z) = Tq(x,z) + TV()E,E) + Tj(i,i).

(14)

In Eq. (14), Tq defines the temperature distribution,
which takes into account the specified uniform heat flux
A at the channel walls but does not consider any kind
of internal heat generation within the fluid. T descri-
bes the temperature distribution, whichis causedby the
viscous dissipation only. Tj expresses the temperature
distribution, which is created by the Joule heating only.
Both Tv and Tj do not consider the heat transfer at
channel walls. The separation of the total temperature
field (14) into smaller parts does not only simplify the
analysis but also allows to estimate the contribution of
each part. From Eqgs.{(11) and(14), three partial dif-

ferential equations can be obtained:

Pei (3T /o%) = (2T /o), (15a)
Pev_(3T,/2%) = (07T, /27°) + EoPrd, (15b)
Pei, (3T;/0%) - <02T’J./baz) N Ecpr(Ha')Zcij. (150)

To solve the Eq. (15), the following conditions are ap-
plied:

Condition for constant wall heat flux:

1z =1: (qu/bi) =1, (16a)
Condition for zero heat transfer at channels walls:

2] =1: (2T /02) = (b’T’j/oi) = 0. (16b)
Symmetry condition:

Z=0: (aTq/oi) = (3T, /0z) = (ij/bz) = 0. (16c)

Condition for fully developed temperature distribution:

(3T /»%) = const., (3T /2X) = const., (2T./2%)=const..
a v ! {164d)

Condition for an overall energy balance:
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1
Peij\'f-’r_dz:l, (16e)
2% xq
0
1< 1
Pe 2 fGsz:EcPrfﬁdE, (16 1)
b;( X v v
0 0
1 1
Pe 2 f 7 T.d5 :EcPr(Ha‘)zf T.d7. (16¢)
% 5 X] 5 J

The velocity field, which is to be inserted into the Eq.
(15), was derived by Javeri [4] from the Navier Stokes
equation of motion as (for various constants see appen-
dix)

v, = (W1Zi -W,Z o+ WB)/BS, (17a)

vy = (- \71Zi - VZZr + V3)/BS, (17b)

where

zZ.= cosh(Harz)cos(Haiz), (17¢)

Z, = sinh (HarZ)sin (Haii). (17d)

This velocity field satisfies the conditions:

Z| =1:v_=v_ = 18

lz] =1:v, v, =0, (18a)

zZ=0: (c&x/bi) = (bx’zy/oi) =0, (18b)
(18¢)

1 1
Vx,m:IVXdZ:l, vy,m:jvde:O.
0 0

Before proceeding further, an expression for the axial
electric field is needed. It is determined by requiring

the condition for no net axial current flow, i.e.

(19a)

O
b |
w
o))
NT
1l
jo

From Egs. (13) and (18), the result is readily found to

(19b)

To determine the axial temperature gradients, the en-
ergy Eq. (15) is integrated over the channel cross sec-

tion (for different constants see appendix):
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Kq: Pe(qu/oi) =1, {20a)
1
K, = Pe(bTV/bi)/(EcPr): Qv,m :J Gvdz
0
(Ha /B Y(1/4)(S /Ha —Sllz/Ha.) (20b)
1
K; = Pe(d,/2R)/(EoPr) = (Ha' )2 T, - (Ha) J(;

- Hyo[B-2B + (Hay /B ) [(1/4)(S, p /Ha o5, /Ha,) -

—(2/Ha3)(CrD1+C1.D2) *Cn”' (20c)

Respecting the conditions (16), one can deduce from the
energy Eq.(15), after an extensive calculation, thetem-
perature distribution as follows (for constants see appen-
dix):
T =%/Pe+F (21a)
q q
TV/(ECPI‘) = KV(x/Pe + Fq) -
- [Hag(Zy3/H 5+ 24,/Hy )/ (8B,)-C 1,
(21b)

T/ (BoPr) = K 3/Pe « (K« 2 Hy0 JF -1y lE322/2 .
+(2E /B )[v 2/a. (8,Z;+5 Jr)/Has] +
~(Hay/B)| (1/8) (2 y/1, 2 1) -

~(2/Hag)(8,2,+5 2 )+C_ 22/2J~C3 ]

(21¢)
where
Zyq= cosh(ZHari), Zyy= cos(ZHaii), (214)
_ =2
Fq = (Fzz - Fszi - F4Zr)/F1 - (2te)
Defining the fluid mean temperature as
1 —
J Tv dz
= 0
T = s (22)
m v
X, m

one can derive from Eq.(21), the following expressions

for the mean temperature

m = [1+ EoPr(KV + KJ.)J(:Z/Pe), (23a)
Tq’m = x/Pe, T—V,m/(EcPr) = K, (%/Pe), (23b)
Tj’m/(EcPr) = Kj(i/Pe). (23c)
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The Nusselt number, which describes the heat transfer

at channel walls, is given by

Nu = cqw/[k(Tw~Tm)] =c| bT/bz]W/(TW—Tm)

= 1/(TW -Tm), (24a)
where
(TW-T'm) = (T'W-Tm)q + (’T‘W-Tm)v + (TW-'Tm)j. {24b)

All the three terms on the right side of Eq. (24b) can
be determined from the Egs.{21) and (23). Since the
closed form solution of temperature field (21) is very
complicated, it is advisable to check its correctness.
Therefore, the energy Eq.{(15)was integrated numeri-

cally as follows:

1
T - ®/PerF f F 17,0, (25a)
0
1
Tv/(EcPr) =K_(%/Pe) + Foy —f F v dz, (25b)
0
1
TJ./(EcPr) = Kj(i/Pe) + Fjl - Fjl\*rxdz, (25¢)
0
where
7
Foy = | (G-207 (G)az, (254)
0
z
Foo=[ G-20s 2 -7, ) az: (25¢)
0
z
Fiy =) G-20[K5,60) - menfREn e, (s
0

z' : Integration variable.

The comparison between the temperature field (21)
and that according to Eq. (25), which were evaluated for
a sample set of parameters: Ha'= 6, 8'= 2 and E'y: i/2,

indicated an excellent agreement.

3. Result

In section 2.3, the temperature field is determined as
a function of X/Pe and Z as well as of parameters Ha' s

B, —'y’ and EcPr.
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In Table 1, the functions, which describe the fluid

motion andthe heat transfer, are given for two limiting

cases B8'- 0 and B' = oo keeping Ha' = const. The axial

velocity profile changes from Hartmann type at 8' =0

to a Poiseuille type at B' » oo,

Table 1. Hydrodynamic fields and current densities at

B'=0 and B' » oo for Ha' = const.

Function Bl—»0 R 0o
Vi hy(eq-gq) (3/2)(1- 22)
-Re Op/0%) hylHa'/(Ha'~s,/c))-E, ] F+h5(1-E)
T Iy . .
~Re @5/05)
i (B, (E-1)
a, [hBSinh(Ha’E)/hoje 972
3, (B,-7,° (5,-1)°
T -%/Pe £, - 4 (62°-7*-39/35) /8
T,/ (BePr) as[%/Pe+(£,-4,)1~(15-45) 3%/Pe + 91,/8
T4/ (EcPr) by%/Pe + (by+2B ng)(f,-a,) [Ha'(Ey—1)]2‘

- By (f3-dz) [X/Pe + 1,/8]

oy = cosh(Ha'); oy = (01)2; s, = sinh(Ha'); 8y = sinh(2Ha');

55 = siph(3Ha') ; &5 = (Ey)a; hy = Ha'c,-s

13
h, = (hq)?; By = (Ha)% 1y, = Ha'hy; bg = 2Ha';

h, = Ha'/ho;

1y = 0 (B/3+4/hy)-2(2+hy)8, /by Ty = Sp/b5=1;
Ty = (0152—55/5-51)/Ha'; dq = h2(01r1/2—r2/h3)/2;

d=h,]

a, = h1h2h3[r3/(8h§)-r1/43/2;

{e2r1/2+h2[r1(1+202)/4-201r2/h3+r3/(8h5)]} /2;
- h2h5r2/2; b5 = h5[2e2—4iy+h2(1+202—352/h5)]/2;

- - 2
By = cosh(Ha'z); 8y = cosh(2Ha'z); f, = hq(cqz /2—g1/h3);

1 =2 -
£, = h2h [gg/(BhB)—z /)y £, = 22

3

2

- 7% - 11/35;
£y = ©7%/2 + By[Z2(142ey) /b - 20,8,/b5 + 85/ (8h5)].

Since the influence of Ha' and B' on the temperature

distribution T

is already discussed by Javeri [4], the

attention is paid mainly to the viscous dissipation and

Joule heating. To assess the influence of Ha' and §' on

the viscous dissipation, which does not depend upon 'E_!y,

the distribution of viscous dissipation and the tempera-

ture profile caused by it are presented in Fig.2 for an

arbitrarily selected value of Ha'=6. The axial tempera-

ture gradient and the difference between the wall and mean

temperature due to the viscous dissipation are given in
Fig.3 as well as in Table 2 as a function of Ha' and B'.
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Since the transverse gradient of the axial velocity, which
determines the viscous dissipation significantly, is inthe
vicinity of the channel walls far greater than that in the

middle of the channel, the majorpart of the viscous dissi-~

pation is confined in the magnetic boundary layer near

|<j> Ha =;1.ac [
O ———=B=2 |— /
——— 0 f
/
1 L J
20 y
/
S
0 = ==
1o —*—’
& /
8 o
8= 47
L /% |
=
%
o) - 7
’/’/,//T '’
-~
L——"’://:::/
-
— 2
-.8 1
0 2 % 3 8 1

Fig.2. Viscous dissipation andtemperature profile caused
by it for Ha' = 6; Egs.(12) and (21)

3 i

_ I\
o q&"
s
2 :E ' >
< / .
't:;
1
,./,
0 4
e ——
u
%
tk> b
xS 1
0
(3~
3

Fig.3. (JT,/2%)/(EcPr) and (T, - T,) /(EcPr) =
fet(Ha',B'); Egs. (20) and (21)
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the channel walls. This means an augmentation of the heat
flux near the walls. From Figs.2 and 3 as well as from

Table 2 one can conclude:

e i T ke To_
v, profile (al‘v/ax) (l‘w lm)v
tends to EcPr EePr
Ha' = const. Poiseuille decreases decreases
B' incrcases type
Ha' increases Hartmann increases increases
B' = const. type

Table 2. Axial temperature gradient and difference bg-
tween the wall and mean temperature duetovis-
cous dissipation

@r,/3%)/ (EcPr)

Ha' 8' =0 2 4 10 20 o
2 3.066%3 3%,01697 3,00526 3.00090 3.,0002% 3
4 3.5%252 3,21187 3.07720 3.01421 3.00363
6 4.31929 3.71013% 3.%2521 3.06926 3.01820

10 6.17284% 5.11824 4.32812 3.43866 3.13259

16 9.10222 7.40140 6.1253% 4.55811 3.6733%1

(Tw-Tm) V/(EcPr)
2 .B79%28 .799616 .780194 772934 .771809 .771429
4 1.14049 922494 827392 .781814% 774086
& 1.45194  1.14458 (947376 .809847 .781578
10 2.10397 1.65927 1.3%3876 ,.969720 .8%2975
16 3.09623 2.4%658 1.95724 1.38425 1.05114

In general, the effect of B' onthe shape of the axial
velocity profile and on the viscous dissipation can be no-
ticed clearly, as Ha' increases. The results indicate
that the significant error may beintroduced in the pre-
diction of the quantities, which express the heat trans-
port, for large Ha', if B' is neglected in the analysis,

for instance,

(8T /o%)(Ha' = 10, B' - 0)

—— = 2.08,
(bTV/bX)(Ha' = 10, ' »o0)
(T -T ) (Ha'=10, 8" » 0)

. mY - 2.72.
(TW -T )V(Ha‘ =10, B' » )

It is more difficult to assess the temperature distri-
bution due to the Joule heating because it is a function of
Ha', B'and Ey' To save place here, the attention is de-
dicated to two special cases of E_. They are E = 0 (short

circuit) and ﬁy = 1 (open circuit). To understand the ef-
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fect of Ha' and B ' on the Joule heating, the distribution
of Joule heating and the temperature profile originated

by it are illustrated in Fig.4 for an arbitrarily selected

f
|
[
*\4—.
l
_mr»

I ——
L |
BT ‘
Fig.4. Joule heating and temperature profile caused by
it for Ha' = 6; Eqgs. (12) and (21)

100 : |
—— = / [
g T 0y E, =0
3
80r < 7
1 f
& Y/
—
©
60 /
40
20
Ey:_L_
0 Hd
0 4 8 12 16

Fig.5. (0T, /0%)/(EcPr) = fct(Ha', 3 ', B, ) ; Eq. (20)
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value of Ha' = 6 and for E_y =0 and E_= 1. In case of
short circuit situation and B ' = 0, the Joule heatingis al-
most equally distributed all over the channel; for 8 '»co
it tends to a constant value. In case of open circuit con-
dition and B ' = 0, the major part of the Joule heating is
confined in the vicinity of the channel walls. Thus it acts
as a wall heat flux; for B ' -»c0 it tends to zero. In Fig.5

and in Table 3, the axial temperature gradient due to

Joule heating according to Eq. (20) is given. For short

Table 3. Axial temperature gradient and difference be-
tween the wall and mean temperature due to
Joule heating

@1 ,/0%)/ (BePr)

Ha' B' =0 2 4 10 20 oo Ey
2 4.65588 4.15261 4.04639 4.00790 4.00199 4

& 17.7960 16.5260 16.1760 16.0313 16.0080 16

6 %8.8806 36.9469 36.3556 36.0688 36.0178 36 0
10 104,938 101.707 100,794 100.171 100,048 100

16 263.064 258.784 257.188 256.321 256,106 256

2 1.65588 1.15261 1.04639 1.00790 1.00199 1

4 5.79605 4.52604 4,17596 4,03130 4.00796 4

6 11.8806 9.94692 9.%5555 9.06882 9.01779 9 .5
10 29.9383 26.7067 25.71%6 25.1706 25.0478 25

16 71.9644 66.78%7 65,1884 64..3209 64.1059 6L

2 .655884 .152612 .046385 .007901 ,001994 O

4 1.99605 .526035 .175955 .031302 .007956 O

6 2.88061 .946917 .355549 .068824 .017792 O 1
10 4.93827 1.70674 .713567 ,170550 .047755 O

16 7.96444 2.78371 1.18839 .320874 ,405926 O

(Tw—Tm)j/(EcPr)

2 -.161910 .218035 .%04412 .336277 341195 ,342857

4 -, 496462 672564 1.11809 1.3%2481 4.%5957 1.3714%

6 -.851906 1.05104 2.4%868 2.88024 3,03150 %,08571 O
10 —1.54335 1.54943 3.79356 €.82404 8,02546 8.57143

16 -2.55895 2.719337 5.70505 14.7693 16.9911 21.9429

2 ~.086714 .041515 .072007 .083362 .085120 .085714

4 -.265854 097948 .252216 .326069 .338563 .342857

6 -.451922 .088932 447314 700564 952709 771429 .5
10 -.805162 -.00840 .668823 1.60352 1.974%6 2.14286
16 =1.31635 -.15989 .860137 2.62652 4.10107 5.48571

2 .138876 .030906 .009312 .001581 .000399 O

4 425972 ,170708 ,035748 .006277 .001592 O

6  .74B030 .212317 .073997 ,013856 .003564 O 1
10 1.41089 434699 .16%002 035040 .009609 O

16 2.41142 .782944 .30866% .071904 .021862 O

circuit situation, this quantity is nearly independant of

of 3', e.g.

(oTj/oi) (Ey =0, Ha'

10, B'~ 0)

(ij/bi) ('E_y =0, Ha'

10, B8 ' =»co)

= 1.05.

In case of open circuit condition, the axial temperature

gradient ( ij/bi) depends upon B' distinclty. In Fig.6 as

well as inTable 3, the difference between the wall and mean

temperature due to Joule heating according to Eq. (21)

is presented. With the help of Fig.4, one can understand

the curves of Fig.6. For Ha' = const. and short circuit

condition, the Joule heating near the wall increases as
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8 'increases. For open circuit situationand Ha ' = const.,
the Joule heating near the wall decreases as B ' increas-

e8.

Eyz 0
e L 4
i} .
BL:_ Q RS
u—E
!
3
J= A _ b
2
0
[3‘\0
_3 .
20 4 8 12 Ha' 16
Ey= 1 /
A
Q
1
/2/
/ 4 "
0 — T

Fig.6. (T, -T,),/(EcPr) = fct(Ha', B ', E, ) ; Eq. (21)

The solution derived and the results presented in this
paper can be employed to decide which of the two arts of
the internal heat generation is important and to estimate
8 ', beyond which one can practically set B ' equal to in-
finity, for a given combination of parameters Ha ' and
E%.

To calculate the Nusselt number according to Eq. (24),
one must also know the value of the dimensionless group
EcPr. The complete presentation of the Nusselt number
for the different values of the parameters Ha', B ', Ey
and EcPr would enlarge this paper significantly. Accord-
ingly, to obtain a general survey of the combined influen-
ce of these four parameters on the heat transfer at the
channel walls, the Nusselt number is illustrated in Fig.7
for the extreme values of B ' and for the special values
of E . From Fig.7 one can deduce that a substantial er-
ror can be introduced in the prediction of the Nusselt
number, depending upon Ha', B8', Ey and EcPr, if the
Hall effect is completely neglected. Table 4 shows the
Nusselt number for the limiting values of 8 ' and for the

sample values of Ha', —Ey and EcPr and gives a gene-
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ral view about the magnitude of the possible maximum
error in the determination of Nusselt number, if the Hall

—

O
mww«_’m
|

\ [ZIX|QT—
A\

25¢

o 3
Rl
=
-~

Fig.7. 1/(T. -T,) = fot(Ha', 8', E,, EcPr); Eq. (24)
effect is not considered. Form Table 4, one can learn:
greater the deviation between the ratio of extreme Nus-

selt numbers and unity, greater the influence of the re-

duced Hall parameter B' on the heat transfer at the chan-

Table 4. Ratio of Nusselt number at B' - 0 to Nusselt
number at B’ » <o

(Fu(B' — 0)1/[Nu(B’ — oc)]
Ha' Ey EcPr
0 0.2 0.5 1.0
1.7596 1.31%18 | .92291
0 ‘%g“'%ﬂ. 37 Ltts "‘8'07—‘%.5 3
4 2.27532 = 1.609 | = 2.045 | = 2,426
PR -~ oo .
B 1. 878y | L4985
1 = 1.105 T.56056 | ToAkoh '.7957(»'55
- 0.850 | = 0.713 | = 0.627
1.99226 | 1.49258 | 1.05258
0 A5y —_q%ggg "'627211.1 T
10 2.56464 - 4,600 | = 7.697 | = 10.35
2.05882 1500 465691 25609
1 = 1.246 56250 | TAhToR ’7%?1: Sh55
- 0.586 | = 0.506 | = 0.322
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nel walls. It can be noted that this ratio, depending upon
Ha', E and EcPr, can exceed the range limited by 0.1
and 10.

Finally, it is concluded that the Hall effect and ion
slip have significant influence on the limiting, fully de-
veloped heat transfer conditions in an MHD channel, and
the analysis of the problem by neglecting these effects
may result in considerable error in the solutions repre-

senting the actual physical conditions.

4. Appendix

The constants, which appear in the velocity and tempe-
rature fields and depend upon the parameters Ha', 8'

and Ey’ are listed below.

B3:L1+B'2;B4:1+6'2;

= .8 = 7.
B (172)(;53+15,B1 \/(172HB3 1)7;

B =8 (B-1:E, - ()% 5,- (F)% 8, =8,-8,;

Ha = Ha'Br/BS; Ha, = Ha‘Bi/BB; Hig= (Har)z;
Hy, = (Hai)z;

Hyqg = OHyg+Hyy3 Hyp = Hyg+9H 5 Hag = HygoHy s
Hay = Hyg-Hyys

Ha, = 2Ha_Ha, ; Ha, = (Ha.)"; Ha, = (Ha,)?:

5 r i’ 7 37 6 37
Hag = 2Ha_; Hag = 2Ha,; Hy = (Ha')2/54;
D, = Har(H13—3H14) ;D = Hai(3H13—H14) ;

C_ = cosh(Har)cos(Hai) ; Ci = sinh(Har)sin(Hai) ;
S = sinh(Har)cos(Hai) : Si = cosh(Har)sin(Hai) ;

i = sin(Hag) ;

Shr2 = sinh(Has) ;S

Cipo = cosh(HaS) 5 Cuip = cos(Hag) ;

Sr2 = Spr2Coizi Siz = CppaSiia:

S5 = cosh (SHar)sin(Hai) ; Sr3 = sinh(SHar)cos(Hai) ;

Sr4, = sinh(Har)cos(?»Hai) P34 = cosh(Har)sin(SHai) ;

B = HarCr ~ HaiCi - S0 Bi = HarCi + I—IaiCr - Si-

’

B.= (B4 (B)®;c = (c)? (e

Tr = Drcr - Dici; Ti = Drci + DiCr'

b
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W, = = - H = = - .
1 V2 BrHai HarBi’ W2 V1 HarBr + HaiBi’

W3 = WZCr - ch.l; V3 = V1C.1 + VZCr;

S1 = VlHa4 + VZHaS; S2 = VZHa4 - VlHaS;

S3 = CiHa4 + CrHaS; S4 = CrHa4 - CiHaS;

D1 = HarSr + HaiSi; D2 = Harsi - HaiSr;

F, = BSHaS; F

) = WoHa,/2; F

P 3= HaiBr + HarBi;

F4 = HarBr - I—IaiBl.;

R,. = (Ha

10 c; - HaSCr)/HaG - (Dr,si - Dl.Sr)/Ha,?;

4
R, = D,/Hag - 2R, ;

By = (Ha4Cr + HaSCi)/HaEi - (Disi + DrSr)/Ha,];

R, = D;/Hag - 2R, ;
Ry = [S; ,/Hag-1-(Ha S ,+HaS,,)/(2Hay)+S;i2/Hagl/4;
R4 = [(Harsr2+HaiSiZ)/(2Ha3)+Shr2/Ha8+SiiE/Ha9+ 11/4;
R, = (Hars12 - Haisrz)/(BHaS); Rg = 1/3; R, = DZ/Has;
Ry = Dl/l—IaS;
Fey=F,WR - F,WoR, - F,W Ry + F ,W,R,;

Fop= (FqW,y - F,W )R, + Wo(F Re - FoR, - F Rg)

- 2y .
F5 = (1:'51 + F‘52)/(Ha385) ;

- Ha.S

G, = [(3Har513 ; r3)/Hn - DZ/Ha3]/2;

G [(HarSi4 - 3HaiSr4)/H12 - DZ/HaBJ/Z;

2:

Gg = [(BHarSTS + HaiSiB)/H“ + Dl/Ha3]/2;
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4= [(Ha S , +3HaS,,)/H , + D, /Ha,1/2;

Gg = Sypp/Hags

5
Gg = Sijp/Hags Gy = W Ry - WyR, + WoRy;

Gg = W Ry = WoRy + WoR, 5 Gg = W Ry - W,R, + W,R;
Uy = WGy - W,Gy + oGy Uy = WGy - W,G, + WG
C, = (1/8) (Hag/B2) (U, /H, g + Uy/H, ) 5

= E3G7/2 + ZEX[V3G7/2 - (SIGS + Sng)/HaGJ/BS;

C,o = (U1/H13—U2/H14)/8—2(S G,+S G

3Gg*+S4Gg)/Hag+C 1 G,/2;

(c31 + Ha3c32/Bs)/Bs.
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