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This paper develops and proves an algorithm that  finds the exact  m a x i m u m  of  cer- 
tain nonlinear funct ions  on polytopes by  performing a finite number  of  logical and arith- 
metic operations. Permissible objective funct ions  need to be pseudoconcave and allow 
the closed-form solution of sets of  equations Of(Dy + 2k)/oy = O, which are first order 
conditions associated with the unconstrained,  but  affinely t ransformed objective func- 
tion. Examples are pseudoconcave quadratics and especially the homogeneous  funct ion 

+ 112 . . . . . . . . .  cx m(xVx) ,m < O, V posltwe deflmte,  for which solar no finite algori thm existed. 
In distinction to most  available methods,  this algorithm uses the internal representa- 

tion [6] of  the feasible set to selectively decompose  it into simplices of  varying dimen- 
sions; linear programming and a gradient criterion are used to select a sequence of  these 
simplices, which contain a corresponding sequence of  strictly increasing, relative and rela- 
tively interior maxima,  the greatest of  which is shown to be the global m a x i m u m  on the 
feasible set. To find the interior maxima on these simplices in a finite way, calculus 
maximizat ions on the affine hulls of  subsets of  their vertices are necessary; thus  the above 
requirement  that  Of(Dy + ,2k)/oy = 0 be explicitly solvable. 

The paper presents a flow structure of  the algorithm, its support ing theory,  its deci- 
sion-theoretic use, and an example,  computed  by an APL-version of  the method .  

1. The algorithm in this paper is the product of  a search for a finite 
method to solve programs of  the type 

max { f i x )  - c x  + m ( x V x )  1/2 ) 
x ~ X  

X = - ( x ~ R n : A x < ~ b , x ) O } ,  m < 0 ,  V positive definite. 

The search was motivated by Van Moeseke's work [9] who developed a 
criterion for decision-making under risk (see Section 5), whose empiri- 
cal implementation needed a solution method for the above problem. 

* Research supported in part by The Canada Council, Ottawa. 
Earlier versions o f  the paper were presented at the European  meet ing of  the Econometr ic  

Society in Budapest,  September  1972 and at the meeting of  the  Econometr ic  Society in San 
Francisco, December 1974. 
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Van Moeseke himself devised an infinite algorithm that depended es- 
sentially on the homogeneity of f, and some of the fundamental ideas 
of the method discussed here are due to him; Drdze and Van Moeseke 
[3] later proposed a finite method for homogeneous programs on unit 
simplices. 

The algorithm to be discussed is a primal method, in the sense that it 
attacks the given primal problem, and the algorithmic sequence starts 
and remains in the primal feasible set. On polytopes it finds, after a finite 
number of logical and arithmetic operations, the exact maximum of ob- 
jective functions, that are pseudoconcave and allow the closed-form so- 
lution of sets of equations ~f(Dy + 2k)/~y = 0 (these are first-order con- 
ditions for maxima on internally represented manifolds, to be discussed 
below). Examples that exhibit these properties are the homogeneous 
programs stated above, and pseudoconcave quadratic programs [5]. 

The well-known primal methods of Rosen [7], Wolfe [13], Zangwill 
[ 14] and others approach a maximizer on the feasible polytope X by 
searching on (feasible pieces of) tangent manifolds, that are directlyde- 
fined by the constraints active at a particular instance. In Rockafellar's 
terminology, the polytope and these manifolds are said to be externally 
represented, i.e., as the intersection of halfspaces and hyperplanes, res- 
pectively. Our approach uses the internal representation of the feasible 
polytope, based on Carath6odory's theorem: 

Theorem 1.1. Be X c Rn a nonempty  convex polytope; then every x E X 
lies in the relative interior o f  one o f  a f inite number  o f  simplices whose 
vertices are extreme points o f  X. The union o f  this collection o f  simpli- 
ces equals X. 

Proof. See Rockafellar [6, Theorem 17.1, p. 155; Corollary 18.5.1, p. 
167; Corollary 19.1.1, p. 172]. 

The choice of suitable extreme points of X is made by gradient- 
guided linear programs, which furnish the bridge between external and 
internal representation. At each step a new affine basis (see definitions 
below) is proposed, which generates a manifold and an equidimensional 
embedded simplex. Via calculus maximizations on this manifold and/or 
suitably chosen submanifolds (see Section 3) members of the basis with 
nonpositive barycentric weights are dropped, until a relative maximizer 
with all positive barycentric coordinates is found, which then lies in the 
relative interior of the simplex spanned by the residual basis. In this way 
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the algorithm generates a sequence of  simplices with strictly increasing 
relative maxima, the largest of  which must appear after finitely many 
steps and is the maximum o f f  on X. 

The simplicial decomposit ion principle based on Carath6odory's  theo- 
rem ~ can be profitably applied in more general algorithms, which locate 
maxima in simplices by line searches of  more or less sophisticated nature 
[ 11 ]. Algorithms of  this kind are capable of  finding local maxima of ar- 
bitrary functions on polytopes,  but  finiteness is lost, of  course. A further 
generalization to nonlinear constraints is not  possible, because these 
methods depend essentially on linear programs to search among the 
finite number of  extreme points of  polyhedral  sets. 

Notation. Let x ~ R n, with elements x i ~ R; 
x i ~> 0 and x i >~ 0 have the usual meaning; 
x > 0 m e a n s x  i > O f o r a l l i ,  
x > 0 m e a n s x  i>~Oforal l i ,  
x ~ > 0 m e a n s x  > 0 a n d x 4 = 0 .  
Vectors with special properties (e.g., being a maximizer, an extreme 

point, etc.) are superscripted: x*, 2 ~, etc. 
The gradient of  f is denoted by 0fl0x or fx ; evaluated at x*,  we write 

it as Of/Oxlx =x* °r fx*" Inner products are stated by mere juxtaposi t ion;  
e.g.,C~,(x x * ) i s  written for ~=1 ~.f/~.x. ilx.i=xp(Xi_X*); the transposition 
sign "T" is used only to avoid ambtgmhes m matrix products. 

Familiarity with the elementary theory of  convex sets is assumed. The 
following definitions cover only some special notions that are frequently 
employed in the paper (see also [6]). 

The set of  points B -= (~l ,  ..., 2x} is affinely independent if the con- 
vex hull S of  B is (k- l ) -d imensional ;  B is then called an affine basis, 
and S a simplex. 

An affine combination is a linear combination whose weights sum to 
unity; the set M of  all affine combinations of  a given set B is a (linear) 
manifold;M is also the affine hull of B; if B is an affine basis, the unique 
weights expressing any x ~ M are called barycentric coordinates. 

1 This procedure has little in common with the decomposition principle of Dantzig and Wolfe 
[2], and it is not related to the simplex interpretation of Dantzig's Simplex method [1, 1963, 
ch. 23]. 
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T : R k ~ R n is an affine t r ans fo rma t ion  if Ty = Dy  + 2,  where  D is a 
l inear t r ans fo rma t ion  and 2 ~ R n. 

The  in ter ior  o f  a convex  set S c R n rel"ative to  R n is deno ted  by  int  S; 
the in ter ior  o f  S relative to  the aff ine hull o f  S is d e n o t e d  by  ri S. Clearly,  
S =/= ~) implies ri S 4: 0; if  the d imensional i ty  o f  S c R n equals n, t hen  
int S = ri S. 

A ver tex  ~i o f  a s implex S is a carrier of  x ~ S if  the i th barycen t r i c  
coord ina te  o f x  is posi t ive;  x ~ ri S if all vert ices o f  S carry x. 

f :  R n --, R is a pseudoconcave  func t ion  i f  fx (Y - x ) < ~  0 implies 
f ( y )  <~ f ( x )  for  all x, y E R n [4, ch. 9].  

2. This sect ion presents  a f low s t ruc ture  o f  the algori thm, which  gives 
compu ta t iona l  ins t ruc t ions  and bivalued decision criteria for  every  step. 
Given are a feasible p o l y t o p e  

X = - { x @ R  n" A x  <=b,x>__O}, 

and a pseudoconcave  object ive func t ion  f :  R n -~ R, that  permi t s  an 
expl ic i t  solut ion o f  Of(Dy + 2k) /Oy = O. 

The  nex t  two sect ions con ta in  the suppor t ing  theo rems  and a com- 
m e n t a r y  on this f low structure .  

The algori thm 
Initial step. Solve the  l inear p rogram 

max  fo x 
x E X  

w he re f 0  = Of/OXlx=O. This locates  an ex t r eme  po in t  o f  X, say ~1; for  
t = 0 set x t+l = x 1 =x~ 1, Bt+l = B 1 = ()~1}, where B 1 is the aff ine basis o f  
the zero-dimensional  s implex S 1, wi th  max imize r  x 1 ~ ri S 1 ; go to  basic 
step 1. 

Basic step 1. Set x t = x t+l, B t = B t+l and let S t a n d M  t be the  s implex 

and the mani fo ld  genera ted  by  Bt; use linear p rogramming  to locate  the 
ex t r e me  po in t  2 x tha t  solves 

max  f x tX .  
x ~ X  

(a) I f fx t (~  x - x  t) = 0, t e rmina te ,  wi th  x t ~ ri S t being a maXimizer o f  
f on S t and on  X;  

(b) i f fx t (2k  - x t) > 0, go to  2. 

Basic step 2. (a) I f f ( 2 g ) > f ( x t ) ,  s e t x  t+~ = 2  x, B t+l = {2 x} and go to  1; 
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(b) if f (2  x) ~< f (x t ) ,  augment  the basis B t by  2 k to  fo rm the new aff ine 
basis B - (21, ..., 2 x -  1, 2k}; B generates  a s implex S c X and a 
mani fo ld  M 3 S, on which x t is no t  a maximizer ;  go to  3. 

Basic step 3. A t t e m p t  to  find a max imize r  o f  f on the mani fo ld  M, 
genera ted  by  B, using an aff ine t r ans fo rma t ion  o f  the a rgumen t  x. 

(a) I f  f possesses a maximizer  x*  on M, it satisfies f ( x * )  > f (x t ) ;  go to  
4; 

(b) if  f does no t  possess a maximizer  on M, find its max imize r  x '  on  
M',  where M' is the mani fo ld  th rough  2 k and parallel to  M n M t, 
again using an affine t rans format ion ;  x '  exists and satisfies f ( x ' )  > 
f ( x t ) .  

The ba rycen t r i c  represen ta t ion  o f  x '  w.r.t,  the  basis B is 

x'  =Bw '  =x'w'~ + ... + 3CkWk, w l t h w  k > 0 and at least one  wi¢k  <,0, 
i.e., x '  q~ ri S; go to  5. 

Basic step 4. The  barycen t r i c  represen ta t ion  o f  the max imize r  x *  o f f  
o h M  i sx*  = B w *  =21w~  + ... + 2 k w h ,  with w~ > 0 (Sect ion 4). 

(a) It" w* > 0 for  all i = 1 . . . .  , k, x* ~ ri S is a maximizer  o f  f on S; 
s e t x  t+l = x * , B  t + ~ = B a n d g o t o  1, 

(b) if at least one  w*¢k <~ O, i . e . , x*  ¢ r iS ,  go to 5. 
Basic step 5. In tersect  the segment  x t S ,  or  the segment  x t x  * with the 

b o u n d a r y  o f  S; the in tersec t ion  poin t  x r =  B w  r = x l w r  1 + ... + xkwrk 
satisfies f(X r) > f(X t) and will have w~ ~> 0, all i, wi th  w~ > 0 and at 
least one wrck = 0. Drop  the vertices 2 i tha t  are not  carriers o f x  r f rom 
B to get the reduced  affine basis Br; B r generates  a sub-simplex S r c S 
such that  x r • ri S r. 

(a) I f  S r is zero-dimensional ,  x r is its on ly  po in t  and thus a relat ively 
in ter ior  maximizer  o f  f on St;  set x f+l = x r, B t+l = B r and go to 1; 

(b) if  S r has d imens iona l i ty  larger than zero,  s e tx  t =x r, B = B r, M = M r, 
S = S  r and go to 3. 

3. For  s implici ty o f  expos i t ion  we have assumed that  the  l inear pro- 
gramming algor i thm used in the initial step and in basic step 1 delivers 
some ex t reme  po in t  o f X  if) '  0 0 r ] x  t happen  to be the zero vector .  

Basic step 1 is en te red  e i ther  f rom the initial step or f rom basic step 
4. In bo th  cases, x t c ri S t is a max imize r  on  the s implex S t and on the 
manifo ld  M t, which are b o t h  spanned by  the affine basis B t. Given x t, 

the linear program guided by  the gradient  fxt ~ af/aXlx =xt picks a n o t h e r  
ex t r eme  poin t  2 k • X .  With its help it can be decided w h e t h e r  x t is also 
a maximizer  o f f  on X. 
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Theorem 3.1. L e t  f be  p s e u d o c o n c a v e ,  and  let  2 x solve maxx~ x fxt x; 
then  x t m a x i m i z e s  f on  X i f  a n d  o n l y  i f  ftx (2 x - x t)  = O. 

Proof. It is easy to show that the condition is necessary for a maximum 
of  any differentiable function (e.g., see [9, Lemma 3.1.5, p. 2361). Suffi- 
ciency follows directly from pseudoconcavity o f f .  

Equivalently, f x t (2  k - x t) > 0 means that x t is n o t  a maximizer on X. 
The first step of  basic step 2 permissibly short-circuits the algorithmic 

procedure in case f(yck) > f ( x  t) by returning to a zero-dimensional sim- 
plex, as after the initial step. This prevents a certain matrix used in a 
calculus maximization below from ever becoming empty  (see Remark 
4.3). 

With f ( ~ k )  <~ f ( x  t) one still has f x t ( 2  k - x t) > 0; this means 2 k ~ M t, 
because xt being a maximizer on M t implies fx t (x - x t) = 0 for all x ~ M t. 
Thus the augmented set B = (21, ..., 2 k - 1, 2k}  is an affine basis, that 
spans the simplex S; replacing X by S in Theorem 3.1 shows that x t is 
not a maximizer of  f on S, and a for t io r i  not  on M D S. 

Basic step 3 is the centerpiece of  the algorithm; the ingredients avail- 
able at this point  are the bases B t and B, that span the simplices and 
manifolds S t and M t, S and M, respectively. From previous discussion it 
is clear that B t c B, S t c S c M,  S t c M t c M .  We also have x t @ ri S t, 

that maximizes f on M t, but  not  on M. It is therefore obvious that M 
must own points whose f-value is strictly larger than f ( x t ) ,  and a maxim- 
izer x* on M, if it exists, will satisfy f(x*)  > f ( x t ) .  (See Figs. la  and lb).  

For certain classes of  functions it can be decided by calculus criteria 
whether x* ~ M exists, and if this is the case, x* can be found exactly 
by calculus (see Section 5). If x* happens to lie in ri S, an iteration has 
been completed successfully with x t+l = x* .  If x* q~ ri S, the location of  
x* is used to suitably reduce B and thus the dimensionality of  S and M 
(see Theorem 3.8). 

In case the maximizer on M recedes to infinity, it :cannot possibly 
lie in ri S, and does not  even furnish a reference location, which would 
indicate which member(s) of  B ought to be dropped. As a surrogate 
location, any point  outside ri S whose f-value is larger than f ( x  t) would 
do conceptually (Theorem 3.8(c) below). In order to keep the algorithm 
finite, however, one needs some submanifold on which such a point can 
be found by  an exact, one-step calculus procedure, analogous to the one 
used to find x* onM.  

The submanifold M' c M which fits the bill cuts across the path of  
the receding maximizer (see Fig. 1 c): it is the manifold parallel  to M t, 
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fx t 

~1~ ~t 
(a) x t+l:  x* e ri S 

~2 o,/ 
(b} x* ¢ ri s 

M1 

X t ~ ' -  -." ~ ~' ~2  

 kll x 

~I x t ~2 

{c} x* does not exist, replaced by x' 
Fig. 1. The three varieties of  basic step 3 o f  the algorithm. 

MI 

that passes through 2 ~ (~ M t, i.e., M' = M t + 2c Ic. The proof  that M' owns 
a maximizer  x '  that satisfies f(x')  > f ( x  t) when no maximizer o f f  on M 
exists is given in Theorem 3.6; the proof  rests mainly on the following 
result, which Rockafellar proves using asymptotic cones: 

Lemma 3.2. Let  U be a closed convex set, and let M t be a mani fold  such 
that M t f3 U is nonemp ty  and bounded; then M' c~ U is bounded  for  
every manifold M' parallel to M t [6, p. 64, Corollary 8.4.1 ]. 

Lemma 3.3 (corollary to Lemma 3.2). Let  U be an unbounded,  closed 
convex set with a n o n e m p t y  interior, and let M t be a support ing hyper- 
plane to U, with U n M t bounded. Further, let Yc Ic ~ M t be a po in t  in 
the same halfspace as U, say above M t. Then M' n i n t  U is nonempty ,  
where M' is the hyperplane parallel to M t through 2 k. 
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Proof. Assume, contrary to assertion, that M' n int U is empty;  since 
int U 4= 0, this means that M' bounds U from above, while M t bounds U 
from below. Further, our assumptions imply the premisses of  Lemma 
3.2, and therefore the intersection of U with every plane parallel to M t 
is bounded. Thus it is impossible for U to recede to infinity anywhere 
on or between the two bounding planes M t and M'; but  this contradicts 
unboundedness of U, and therefore M' n int U cannot be empty. 

Lemma 3.4. Let  f be pseudoconcave, and let f (x ' )  > f(xt); then any 

x r  = X x '  + (1 - ~k)x t ,  O < ~k ~ 1 

satisfies 
f ( x  r )  > f ( x t ) .  

Proof. By pseudoconcavity, f ( x  r) > f ( x  t) implies f x t ( X  r --  X t) > O. Rear- 
ranging the expression for x r, one gets 

X'  - -  X t = 1 r 1 ~(x - x t ) ,  1 <~ ~ < oo; 

premultiplication by fxt yields 

1 
f x t ( X '  --  x t )  = 2 f x t ( X r  --  x t )  > O. 

Now assume f x t ( X ' - x  t) <<-0; by pseudoconcavity of  f, this implies 
f (x ' )  <<. f (x t ) ,  which is a contradiction. 

Lelnma 3.5. Let  f be pseudoconcave, and let 

U =- (x • M: f ( x )  >1 f(xt)}  

own a point  x r such that f ( x  r) > f(xt) .  Then any x'  • int U satisfies f (x ' )  

> f(xt) .  

Proof. Because x' • int U, one can always find a point y • U such that 

x' = xxr + (1 --X)y, 0 < X ~  1. 

Since f ( y )  >~ f (x  t) by definition of U, f (x ' )  > f ( x  t) follows by pseudo- 
concavity of  f and by Lemma 3.4. 
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Theorem 3.6. L e t x  t be a m e m b e r  o f  a b o u n d e d  se t  o f  m a x i m i z e r s  o f  the 
p seudoconcave  f u n c t i o n  f on the man i f o l d  M t, 2 wi th  a f f ine  basis B t - 

{21, ..., 2~-1};  assume the po in t  2 ~ satisfies f x t (2  ~ - x  t) > O, and  let  
B = {21, ..., 2 ~ -  1, 2k} span the man i f o l d  M D M t, on which  f does  n o t  

possess  a maximizer .  
Then f does have a m a x i m i z e r  x '  on M'  = (M t + 2 k) c M, that  satis- 

f ies  $(x ' )  > f ( x t ) .  

Proof. Let U =- {x ~ M: f ( x )  > f (x t ) }  be the upper contour  set o f f w . r . t .  
• "~]C 

x t. By pseudoconcavity o f f ,  U is a closed, convex set,fxt(X - x  t) >0  
implies by Theorem 3.1, that x t is not  a maximizer of  f on M, which 
means that int U is nonempty;  nonexistence of  a maximizer of  f o n M  
means, on the other hand, that U is unbounded.  

Relative to the manifold M, the submanifolds M t and M' are hyper- 
planes; since x t maximizes the differentiable function f on M t c M, M t 
is a tangent plane to U at x t ;  the convex set U lies entirely "above"  M t, 

i.e., on the same side as 2? to. U n M t is obviously nonempty  and bounded 
by assumption. Now, by Lemma 3.3, M' n U is bounded and by Lemma 
3.4, M' n i n t  U is nonempty,  which implies that there exists a maxim- 
izer x' ~ M'; x' satisfies J(x') > f ( x  t) by Lemma 3.5. 

Corollary 3.7. L e t  M r be a man i f o l d  spanned  by  any  subbasis  o r B ,  that  

contains  at least 2c k ; assume f has no m a x i m i z e r  o h M  r, and  that  M r con- 

tains a po in t  x r on or be low M'  such that  f ( x  r) > f (x t ) .  Then M r n M'  

owns  a m a x i m i z e r  x '  that  satisfies f ( x ' )  > f ( x t ) .  

Proof. By assumptionM r n int Uowns  points above and below or on M'; 
therefore by convexity of U, M' n M r n i n t  U is nonempty;  because 
M '  n M r n U is also bounded,  there exists a maximizer x' • M' n M r 

such that f (x ' )  > f ( x t ) .  

Corollary 3.7 applies to the unlikely but  possible case, that after one 
or several reductions of  the dimensionality of  M still no maximizer exists 
on the submanifold M r spanned by the remaining basis B r ; we showed 
that then again a maximizer x '  • M r n M'  exists, whose properties allow 
a further dimensional reduction. 

2 Due to the fact that  the maximizer  x t c M t is found by an exact calculus procedure (see Sec- 
t ion 4), the x t appearing in the algori thm is actually unique. 
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The following theorem summarizes and proves the support ing results 
for basic steps 4 and 5 of  the algorithm. These steps use explicit ly the 
internal  or barycentr ic  representat ion in terms of  the basis B -= (21, ..., 
2 x - l ,  2 x} to decide whether  x* ~ r i S  or not ;  which members  of  B to 
d r o p  with  the help of  x* ~ ri S or o f  x '  q~ ri S; the p r o o f  of  par t  (c) of  
Theorem 3.8 shows how this can be done with the help o f  a trivial 
linear program. 

Theorem 3.8. B e  x t ~ M t c M, x *  ~ M,  x'=~- M '  = M t + 2 k C M, s u c h  tha t  

x t ~ ri S t a n d  m a x i m i z e s  f on  M t, f x t (~  k - x t) > O, f ( x * )  > f ( x  t) a n d  

f ( x ' )  > f ( x t ) .  
L e t  f b e  p s e u d o c o n c a v e ,  a n d  le t  B t = ( 2 1 ,  ..., 2 k -  1} be  the a f f i n e  basis 

o f  M t a n d  S t, B - (21 , ..., 2c g - 1, 2g} the  basis o f  M a n d  S. Then  

(a) x* = B w *  has b a r y c e n t r i c  c o o r d i n a t e s  w~ > O, w ~  arb i t rary  f o r  
i = 1 . . . .  , k - l ,  

t t 
(b) x '  = B w '  has b a r y c e n t r i c  c o o r d i n a t e s  Wg = 1, w i <~ 0 f o r  at  least  

o n e i =  1, ..., k -  1, i.e., x ' ~  r iS,  
(c) the  s e g m e n t  b e t w e e n  x t a n d  a n y  p o i n t  x *  (or  x ' )  w i th  w ~  > 0 a n d  

w *  <<. 0 f o r  at  least  one  i = 1 k - 1 c o n t a i n s  a p o i n t  X r, w i t h  w r. >~ 0 
r > O, a n d  a t  least  o n e  w r = O. f o r  all i, w k i4: k 

Proof.  (a) M has dimensional i ty  k - 1, while M t c M has dimensional i ty  
k -  2; M t therefore is a separating plane on M. By Theorem 1.1, 
f x t (~  k - x t) > 0 implies 2 k ~ Mt ;  as a member  of  the basis B, 2 x has 
w k = 1 ; by pseudoconcavi ty ,  f ( x * )  > f ( x  t) implies f x t (X*  - x t )  > 0; thus 

* > 0 .  b o t h x * ,  2 x ~ M t but  o n M  on the same side of  M t, which implies w x 

(b) Since x '  e M '  = M t + 2x,  all points  on M' have w k = 1 ; because 
~= ' also ~ _ 1Wi = l ,  one mus t  have w i <~ 0 for at least one i = 1, ..., k - 1 ; 

this means x '  q~ ri S. 
(c) Since x t ~ ri S t c M t c M has coordinates  w~ = 0, w i e  > 0, one 

finds the barycentr ic  coordinates  o f  the desired poin t  x r by  solving 

maximize X 
subject to kw* + (1 - k)w~ /> 0, i = 1, ..., k -  1 

( t h e  k th constra int  is never binding); the solut ion can directly be writ- 
ten as 

(ma 1 X r =  x 1__ i = 1 , . . . , k - I ,  
• t 

W i 

w i Xrw * + (1 - ~,r)w~ >i O, i = 1 . . . .  , k ,  

with w~ > 0 and the binding component (s )  l having w~ = 0. 



B. yon Hohenbalken / An algorithm to maximize pseudoconcave functions 199 

It was mentioned earlier that if x* ~ ri S, one has achieved the objec- 
tive of stepping from a maximizer x t ~ ri S t c X to a maximizer x t+l 
ri S t+l c Xsuch t ha t  f ( x  t+l)  > f ( x  t) ( x t+ l=x* , ' S  t+l = S). Otherwise, one 
either has the point x* q~ ri S or, in case it is infinite, one can construct 
the point x' q~ ri S with f ( x ' )  > f ( x t ) .  By Theorem 3.8, the segment x ' x  t 

intersects the boundary of  S c M at the point x r. By dropping from B 
to the noncarrying vertices j (i.e., those with w~ = 0), one changes only 
the barycentric reference frame of  x r, n o t  its location in X. x r lies then 
in ri S r c S, S r 4= S,  i.e., in a subsimplex spanned by the reduced basis 
B r C B .  

By Lemma 3.4, x r s a t i s f i e s f ( x  r) > f ( x t ) ,  and therefore a new maxim- 
izerx* on the associated submanifoldM r will satisfy f ( x * )  >>- f ( x  r) > f (x t ) .  

When x* exists and x* ~ ri S r, the iteration again has been completed 
successfully; otherwise, the procedure repeats itself, with S = S r, B = B r, 
M = Mr; a possibly necessary new x '  E M'  c~ M r has the required proper- 
ties by Corollary 3.7. 

4. Basic step 3 of the algorithm requires the maximization of f on a 
manifold M (or M ' ) .  The usual external representation of  a ( k -  1)-di- 
mensional manifold M c R n is the intersection of n -- k + 1 hyperplanes, 
or algebraically the solution set of n - k + 1 simultaneous linear equa- 
tions; those equations represent the set of  locally active constraints of  a 
program, and a calculus maximization o f f  on M would proceed by form- 
ing the appropriate Lagrangean and solving the associated 2n -- k + 1 
first order conditions (if this is possible). The internal representation 
employed here sees a (k -- 1)-dimensional manifold M as the affine hull 
of  k affinely independent points, which constitute an affine basis B. 
Given in this way, 

k 

and the problem m a X x c M f ( x )  could be linearly transformed into 

maximize f ( B w ) ,  
w k 

subject to ~ w i = 1. 
i=1 

This last problem would require the solution of  k + 1 first order con- 
ditions, a considerably smaller number than 2n - k + 1, particularly if 
M is of  low dimensionality. 
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A possible difficulty in the external approach is the linear depend- 
ence of  the active constraints, which renders singular certain matrices 
required in the maximization procedure. In the internal approach used 
here it can happen, that the manifold M is a subspace (i.e., M owns the 
origin); the associated affine basis B (of  order n × k) will then have only 
rank k - 1, which again causes the breakdown of  the maximization by 
calculus. Lemma 4.1 opens an elegant route to surmount this difficulty. 

Lemma 4.1. Each nonemp ty  manifold M is parallel to a unique subspace 
L; in particular, i f  M has the affine basis B - (21  , . . . ,  • k - 1 ,  2 k } ,  then L 
has the linear basis B - (21 - 2 k, ..., 2 k-1 - 2k}~, and M = L + 2 k [6, 
Theorem 1.2, pp. 4, 7]. 

Using Lemma 4.1, 

M =  L +2c k - ( x  E R n ' x  = D y  +2 k', y E Rk-1},  

which allows the original maximization problem m a x x ~ M f ( x ) t o  be af- 
finely transformed into 

max f ( D y  + 2ck). 
y 

This is a constraintless problem with only k - 1 first order conditions 
to be solved simultaneously; furthermore, by Lemma 4.1, D is guaran- 
teed to be of  full rank, since B is an affine basis. 

Theorem 4.2. I f  f is pseudoconcave and permits  a closed-form solution 
of 

f ( D y  + ~k) = O, 

then the algorithm described in Section 2 is finite. 

Proof. The algorithm basically generates two sequences: There is the 
main one of  simplices in X, such that each simplex S t+l possesses a re- 
latively interior maximum f (xt+l) ,  that is strictly greater than f (x t ) ,  the 
maximum on the predecessor S t . This implies that no simplex can recur, 
and thus the members of  the sequence are a subset of  the set of  simpli- 
ces in X, which is finite by Theorem 1.1. 

An auxiliary sequence comes into play at the passage from S t to S t÷l , 
if S t+l does not  own a relatively interior maximizer; in this case the di- 
mension o f S  t+l is reduced step by step until a relatively interior maxim- 
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izer is obtained. This happens at the latest, when S t+l has shrunk to a 
point. That these reductions (obviously finite in number) can be done 
by  a f i n i t e  p r o c e d u r e  is ensured by Theorems 3.6 and 3.8, given closed- 
form solvability of  a f ( D y  + 2ok)lay = 0 (no inherently infinite sequence 
of  line searches is necessary). 

In the actual computat ions on the manifold M spanned by the affine 
basis B = (21 . . . .  , 2  k} we therefore represent points on M by 

x = D y  + 2 k, y E R k - l ,  

"x ..., ~k-1 _ 2 k }  is the linear basis of  the ( k -  1)-di- where D = {~?a _ x , 
mensional subspace parallel to M. 

Points on the mutually parallel submanifolds M ' c  M,  M t c  M are 
given by 

x = D t y + £ c  k y ~ R  k 2 

x = D t y  + Sc k -- 1 y E R k - 2 

where 
D r =  [2cl  2~k-1 . . . , 2 k - 2  __ 2 k  1] 

is the linear basis of  the (k -2 ) -d imens iona l  subspace parallel to both  
M' and M r. 

Remark 4.3. Notice that if the original affine basis B consists of  k ex- 
treme points of X,  D t contains k 2 points; therefore, i fB  has (or was 
reduced to), only two members, and step 3b were taken, D t would be 
empty;  it is easy to show that step 2a prevents this occurrence. 

5. On polytopes,  the algorithm above is finite for any pseudoconcave 
objective function that admits the closed-form solution of  
a f ( D y  + 2 k ) / a y  = O. 

Relatively simple examples of  this class are pseudoconcave quadra- 
tics [5], which, of  course, include semi-definite and definite quadratic 
functions. Our computat ional  trials suggest that our method is efficient 
enough to be competitive. 

Especially interesting is the algorithm's ability to finitely solve pro- 
blems involving the linear homogeneous concave function 

f i x )  = c x  + rn(x  Vx  ) 1/2, rn < 0, V positive definite. 

It is this functional for which the method was originally conceived, be- 
cause it puts the computational  coping stone on a theory of  decision 
making under risk developed by Van Moeseke [9]. 
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Consider the stochastic linear programming model 

max 7x, 
x E X  

where 3' is a random vector  with a distribution characterized by the 
vector of  means c and the variance-covariance matrix V; the feasible set is 

X = ( x ~  Rn: Ax ~ b , x  >~O} 

with A and b deterministic. 3 
In a stochastic problem, each possible decision is associated with a 

multiplicity of  outcomes corresponding to the various states of  nature. 
One method of  attack is to employ a decision criterion that maps the 
space of  consequences into the reals, thus achieving a preference rank- 
ing of  decisions. The best one (under the chosen criterion) is then found 
by maximization. 

With Van Moeseke's truncated minimax criterion [8,91 the ranking is 
achieved via the risk preference functional 

f(x) = cx + m(x VX) 1-]2 

which represents a dimension-preserving linear weighting of  expectation 
and standard deviation. (xVx)l/Zis considered as a scalar risk measure, 
and m < 0 expresses the degree of  risk aversion. For a given m, a cor- 
responding best decision is then found by maximizing f over the set X 
of feasible decisions. 

There are other ways to view the operation of  the criterion: It com- 
pares the lower ends of  the distributions of  ~x for every decision x after 
truncating their tails, whose size is determined by m; an interpretation 
in terms of  confidence limits is therefore possible [9, ch. 2]. The trunc- 
ated minimax criterion converts a stochastic linear program as above 
into a deterministic linear homogeneous, but  non-linear, problem. Thus 
the theory of  homogeneous programming is applicable, which in the spe- 
cial case of  portfolio selection yields some interesting and sharp results 
[8, 10l. 

The algorithm in this paper allows the computational  implementa- 
tion of  Van Moeseke's criterion in the case where the decision set is poly- 

This model fits well only those interpretations where the constraints are known with near- 
certainty (e.g., production constraints in crop farming, the budget constraints in portfolio 
problems), but the objective function contains randomness (market prices for agricultural 
produce, security prices). 



B. yon Hohenbalken / An algorithm to maximize pseudoconcave functions 203 

hedral. We now adapt the method for the objective functional 

f ( x  ) -- cx + m(x  Vx ) 1/2 , m < O, V positive definite; 

its gradient is fx  = c + ( m / a ) V x ,  where a = ( x V x )  1/2 . It is apparent that 
fx is not defined if o = 0, i.e., i fx  Vx = 0. Assuming V to be positive de- 
finite reduces the set of  x ~ R n with undefined-gradients to {0};thefol- 
lowing theorem accommodates  this singular case in the framework of  the 
algorithm (which otherwise requires differentiability everywhere). 

Theorem 5.1. L e t  f ( x )  be a linear homogeneous  concave func t ion  to be 
max imized  on a convex set  X, and let 2c 4= 0 be any po in t  in X. Then, 
i f  the origin is the solution o f maXx ~ x f~ x, the origin solves maXx ~ x f(X ). 

Proof. By concavity, f~ (x - ~) > f ( x )  - f(2)  for all x ~ X; since./~2 = f(2)  
for any 2 ¢ 0 by linear homogeneity,  this simplifies to J~x > J(x) for 
all x ~ X; by assumption J} 0 > J~x for all x c X, and because J~ 0 = 0 = 
f(0)  by homogeneity,  f(0) > J(x) for all x ~ X follows. 

Accordingly, the algorithm is adapted as follows: The linear program 
in the initial step is solved using the vector c rather than fo - Of/OXTx =0- 
Whenever the origin appears as the solution of  a linear program (in the 
initial step or in basic step 1), one terminates with 0 being the maxim- 
izer. 

I"o maximize cx + m(x  Vx)  1/2 on a manifold by calculus, one applies 
the affine transformation described in Section 4; differentiation yields 

f ( D y  +fc~) = cD + rn_ (Dy + fck) T VD = O, (1) 
0 where 

0 2 = ( D y  + ~k)T g ( D y  + ~ck). (2) 

The solution for y t  proceeds by first expressing y in terms of  o; from 
( 1 ) one gets 

y = - ( ° c D + ~ k  VD) ( D T V D ) - I  (3) 

which is substi tuted into (2). The resulting quadratic equation in H sim- 
plifies to 

0 2 = m 2 [2 k V 2 k - fc k V D ( D T V  D ) -  1DT V ~k ] X 

× [m 2 - c D ( D T V D )  1DTc]-I  (4) 
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Table 1 

[i] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[I0] 
[11] 

[12] 
[13] 
[ 1 4 ]  
[15] 

v 

HOMOGENEOUS M;B;D;E;F;G;I;J;O;P;Q;R;S;T;U;W;X;Y 
~÷((pC),2+pC)pE÷IE-9 
Y÷O SIMPLEX G÷C 
+6xI^/O=BE;S÷W÷,I]÷X÷Y 
G÷C+V+.xXxM÷(X+.xV+.xX÷B[;S]+.xW)*÷2 
+3XIA/O=Y÷l SIMPLEX G 
((G+.xX),X),W,[I] ~[;S] 
+OxIE>IG+.xX-~[;T÷pU÷W,O]÷Y 
J÷So.=S÷~pO÷T=IT 
+3x~O=I+pJ÷J[;IT]-J[;TpI+T÷T-I] 
Q÷(P÷D+.x~(~D)+.xV+.xD)+.x@D÷~[;S]+.×J 
+iSxIE~R÷Y+.x(V-V+.xQ+,xV)+.xY÷(M*2)-C+.xQ+.xC 
+4XIA/E<W÷O+J+.x((C×R,÷2)-Y+.xV)+.xP 
w÷u+(w-u)÷rl(U-W)÷U+Exu:o 
+8,p~[ ;~2÷pu÷w[s] ]÷B[ ;s÷(E<w)/s ]  
+9,pU÷'COMPLEXITY' 

C A M 

1 1 1 1 1 1 -5 
V 1 1 1 SLK 

1 0 1 B 1 -1 
0 1 1 2 1 
1 1 3 

HOMOGEHEOUS M 

-8 1 
2 2 
0 0 
0 0 

-5. 07107 

1 
1 
0 

COMPLEXITY 

0.5 0.5 

-3.25421 0.235921 0.764079 
0.47•842 2 0 
0.764079 0 1 
0 0 0 

COMPLEXITY 

- 2 . 5 3 5 5 3  
0.5 
0.5 
0 

0 . 5  0 . 5  
0 1 
1 0 
0 0 
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Since V is positive definite it is clear from (2) that 0 2 must be nonnega- 
tive. 

Now the decision required in step 3 of  the algorithm is made: If 
o 2 = 0 from (4), a = 0 and (1) becomes meaningless, i.e., no maximizer 
o f f o n M  exists; route 3b is then taken. If o 2 > 0 from (4), one substi- 
tutes o > 0 back into (3) to get yt ,  whereupon w t and x t are found by 
the appropriate transformations. 

Table 1 exhibits the algorithm for the linear homogeneous  case writ- 
ten in APL, 4 the data for an example and its solution sequence. Each 
iteration is represented by a matrix containing 

baryc n  iccoo   nates 1 
x t B t L ~ r  affine basis " 

The last matrix gives the exact solution. The example is selected such 
that step 3b is taken; its occurrence is signalled by the inserted word 
"COMPLEXITY". 
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