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ALGEBRAIC DE RHAM COHOMOLOGY 

Robin Hartshorne* 

We announce the development of a theory of algebraic 
De Rham cohomology and homology for arbitrary schemes over 
a field of characteristic zero. Over the complex numbers, 
this theory is equivalent to singular cohomology. Applica- 
tions include generalizations of theorems of Lefschetz and 
Barth on the cohomology of projective varieties. 

Introduction 

The theory of algebraic De Rham cohomology began when 

Grothendieck proved his comparison theorem [8] for smooth 

schemes over ~. My interest came from the study of 

cohomological dimension, with the observation that the 

classical theorem of Lefschetz about complex cohomology of 

hyperplane sections was easily proved using De Rham 

cohomology [12, III w More recently, in attempting to 

give a purely algebraic proof of the theorems of Barth [4], 

I was led to develop the theory for singular varieties as 

well. Independently Lieberman and Herrera [16], and 

Deligne (unpublished) have proved comparison theorems for 

De Rham cohomology of singular varieties. 

Thus it seems timely to lay purely algebraic founda- 

tions for the theory, which is what we do here. We define 

cohomology and homology groups for schemes of finite type 

over a field k of characteristic zero. We give purely 
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2 HARTSHORNE 

algebraic proofs of finite-dimensionality, functorial 

properties, exact sequences, and duality theorems. We 

also develop a theory of local invariants: cohomology 

and homology of the spectrum of a complete local ring. 

For both the global and the local invariants, we prove 

comparison theorems with usual cohomology theories over 

the complex numbers. 

As an application, we give a new proof of the theorems 

of Barth [4] for smooth schemes in projective space. It 

depends on an interplay of algebraic and analytic 

techniques. Meanwhile, these methods have been improved 

and generalized by Ogus [18], who has purely algebraic 

proofs of Lefschetz and Barth type theorems for schemes 

with arbitrary singularities. 

In this paper we announce our main results. Full 

details will appear elsewhere. See also [13] for related 

results and earlier versions of some of these results. 

One of the major outstanding problems in algebraic 

geometry today is the development of a good cohomology 

theory for varieties in characteristic p. While our theory 

is valid only in characteristic zero, perhaps some of its 

formal aspects (especially the homology) may be useful 

eventually in developing a good theory in characteristic p. 

1. Globa ! Theor~ 

Let k be a field of characteristic zero. Let Y be a 

scheme of finite type over k. For simplicity, we assume 

that Y admits a global embedding as a closed subscheme of 

a scheme X, smooth over k. Let 0" denote the complex of 

sheaves of regular differential forms on X over k with the 
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A 
exterior differentiation d as boundary map. Let X be 

the formal completion of X along Y, and let ~" be the 

completion of ~'. Then we define the algebraic De Rham 

cohomolog~ of Y, denoted HDR(Y) , to be the hyper- 

cohomology Hi(x,~" ) of the complex n" on the formal 

scheme X. We define the algebraic De Rham homology of Y, 

denoted Hua(Y) to be the hypercohomology with supports 

in Y, -- ~n-i(x,n" ), where n = dim X. We will omit the 

notation "DR" when no confusion can result. 

THEOREM 1.1. The cohomolog~ groups Hi(y) and 

homology groups Hi(Y ) as defined above are independent 

of the choice of the ambient scheme X. Cohomology i_~s a 

contravariant functor in Y; homology is a covariant functor 

for proper morphisms, and a contravariant functor for open 

immersions. 

Already the hypothesis of characteristic zero is 

essential for this theorem. A key step involves an 

integration of power series similar to the Lemma 17 of 

Atiyah and Hodge [3]. To demonstrate the functorial aspect 

of homology, we are led to introduce a canonical inJective 

resolution of n" using the notion of Cousin complex of a 

sheaf [IO, IV w The covariant map is then constructed 

using the trace map for residual complexes [loc. cir., VI 

w 

THEOREM 1.2. Let X,Y, etc. denote schemes of finite 

type over k. Then 

a) If Y is a closed subscheme of X, there is an 

exact sequence of homology 

.. -, Hi(Y) ~ .i(x) ~ Hi(x-Y) ~ ~i_l(Y)~.-. 
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4 HARTSHORNE 

b) I_~f Y1 and Y2 are closed subschemes of X, 

there are Mayer-Vietoris exact sequences 

�9 .. > HI(YlUY2)~Hi(Y I) | ~ Hi(q nY2)-->~+l(~uY2)~... 
and 

. . . . .  ~ Hi%n'~ )-">5 (q) | Hi(Y2)-> '~i (q  u~2) --> Hi-l(u )->''" 

c) If Y is smooth over k, of dimension n, then 

Hi(Y) --- H2n-i(x) 

d) If f: X' >X is a prope r birational map, if Y 

is a closed subscheme of X, such that f: X'-Y' ~ X-Y is 

an isomorphism, where y, = f-l(y), then there are exact 

sequences 

..._~ Hi(x)_~ Hi(x,)~i(y)_~ Hi(y,) > Hi+l(x)_~ ... 

and .- --~ Hi(Y')-~ Hi(Y)| )-~ Hi(x) > Hi_l(Y')--~ ... 

These results are all proved using fairly standard 

cohomological techniques. Note especially d), which is 

useful when one wants to apply resolution of singularities 

to some situation. 

THEOREM 1.3. (Duality) Let Y be a scheme proper 

over k. Then Hi(y) -~ HOmk(Hi(Y),k ) . 

The duality theorem is proved by reducing to a duality 

theorem for formal completions of coherent sheaves [ 12, 

III 3.3] which in turn is a generalization of Serre duality. 

Here a key point is to show that Serre duality is 

compatible with exterior differentiation d: ~i > ~i+l. 

This boils down to showing that d commutes with the trace 

map on residual complexes, which is done by explicit 

computation. 
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THEOREM 1.4. (Finiteness) If 

finite type over k, then the groups 

finite-dimensional k-vector spaces. 

Y is a scheme of 

Hi(y) and Hi(Y ) are 

For this result we use induction on the dimension of 

Y, and the theorem of resolution of singularities of 

Hironaka [14]. Then with all the functorial properties 

listed above, we reduce to the case of a smooth proper 

scheme over k, in which case the finiteness follows from 

Serre's finiteness theorems for coherent sheaves. 

By now we have enough machinery to do anything one 

would like as in any other cohomology theory. For example, 

we can define the cohomology class of a cycle on a smooth 

scheme. It is sufficient to consider prime cycles. So 

let Y be a closed integral subscheme of dimension r of 

a smooth scheme X of dimension n. Let U c y be a non- 

empty open subset, which is smooth. Then one shows 

H2r(Y ) > H2r(U) ~ H~ is an isomorphism. So taking 

1 ~ H~ gives us a fundamental homology class 

Wy E H2r(Y ). Its image in X gives a homology class 

~y @ H2r(X ) . But since X is smooth, H2r(X ) ~ H2n-2r(x), 

and so we have ~(Y) 6 H2n-2r(x) which is the cohomology 

class of Y. 

THEOREM 1.5. Let X b e~ smoot_____~hquasi-projective 

scheme over k, so that one has intersection theory for 

rational equivalence classes of cycles [7]. Let Y,Z 

c~cles on X. Then R(Y) and R(Z) depend qnl~ on the 

rational equivalence class of Y and Z, and we have 

~(Y.Z) = ~(Y) U ~(Z) 

where . denotes intersection of cycle classes, and U 

denotes cup-product. 

be 
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6 HARTSHORNE 

In case the ground field k is the complex numbers R, 

we can compare the De Rham cohomology of a scheme Y over 

to the ordinary (topological) invariants of the 

associated complex-analytic space ~. 

THEOREM 1.6. (Comparison) Let Y be a scheme of 

finite type over R. Then there are natural functorial 

isomorphisms H~R(Y)-- ~ Hi(yh,~), the singular cohomology 

o fY h wit h complex coefficients, and ~iR(Y) ~ H~M(yh,~), 

the Borel-Moore homology wit h local!y compact supports and 

complex coefficients [5]. 

Like the finiteness theorem, this theorem is proved 

by induction on the dimension of Y, using resolution of 

singularities, and the functorial properties of cohomology 

and homology. Thus one reduces to the case Y smooth proper 

over k, in which case the result follows from Serre's 

comparison theorem for coherent sheaves [19]. 

2. Local Theory 

To define local invariants at a point of a scheme, a 

little reflection shows that the Zariski local ring, or 

even the Hensel local ring is not local enough to give a 

reasonable answer. So we use the complete local ring. 

The definitions are parallel to those in the global 

situation. Let Y be the spectrum of a complete local 

ring containing its residue field k of characteristic 

zero. Embed Y as a closed subscheme of X, the spectrum 

of a complete regular local ring (hence a ring of formal 

power series over k). Let ~" be the compleX of sheaves 

of continuous differential forms on X, for the adic 
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topology. Let X be the formal completion of X along Y, 

and let ~' be the completion of ~" Let P E Y be the 

closed point. Then we define the local De Rham cohomolog ~ 

supports in P, denoted HI(Y), to be the hypercohomo- 
2 

with 

logy Hp(X,~') of the complex ~" on X with supports in 

P. We define the local De Rham homology, denoted Hi(Y), 

to be the hypercohomology ~n-i(x,N'), where n = dim X. 

THEOREM 5.1. The groups H~(Y) and Hi(Y) defined 

above are independent of the choice of the ambient scheme 

X. 

To prove the finiteness of these local invariants, as 

in the global case, we must use resolution of singularitie~ 

In resolving the singularity of a local ring, we are 

forced to consider situations which are no longer local. 

So we consider the category of schemes X, which are proper 

over the spectrum Y of a complete local ring, and we 

prove the following more general result. 

THEOREM 2.2. (Finiteness) Let f: X > Y be a 

proper morphism of schemes, where Y is the spectrum of 

complete local ring containing its residue field k of 

characteristic zero. Let P E Y be the closed point, and 

let E = f-l(p). Then the De Rham groups ~(X) and Hi(X) 

(defined analogously) are finite-dimensional k-vector 

spaces. 

For duality, we would like to give a proof using the 

local duality theorems of Grothendieck [iO, V w for 

modules over local rings. We have been unable to do this 
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8 HARTSHORNE 

however, so instead we use resolution of singularities and 

exact sequences to reduce to the global duality theorem. 

THEOREM 2.3. (Duality) With the notations and hypo- 

theses of the previous theorem, the vector spaces ~(X) 

and H.(X) are naturally dual to each other. 
1 

Since we have defined the local invarian~ for any 

complete local ring, we have the possibility of considering 

the local cohomology at a non-closed point of a scheme. 

For example, let X be a scheme of finite type over k, 

let Y be an irreducible closed subscheme of X, and let 

6 Y be the generic point of Y. We consider the local 

ring @D,X' and choose a field of representatives k(~) 

inside it. Then we can consider the local cohomology 
i ^ 

H~(Spec @~,X) , which is a finite-dimensional vector space 

over k(D). On the other hand, if y E Y is any closed 

 y,x point, we can consider the local cohomology H Spec ), 

which is a vector space over k. 

THEOREM 2.4. In the above situation, there is a non- 

empty Zariski open set U ~ Y such that for all closed 

points y E U, we have 

^ .i-2r,_ H~(Spec @y,X ) | k(n) ~ "n ~pec ~n,X ) 

where r = dim Y. In particular the left hand side is 

independent of the choice of y E U, and the right hand 

side is independent of the choice of the field of 

representatives k(~). 
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HARTSHORNE 9 

If we think of the local cohomology groups as a 

measure of the singularity at a point, then this result 

says that X is equisingular along Y at points of the 

open set U. This notion is in general weaker than the 

equisingularity of Zariski [20]. 

THEOREM 2.5. (Comparison) Let Y be a complex 
A 

analytic ~ space, let P be a point of Y and let Y' = Spec %,~ 

Then H~(Y') --is naturally isomorphic t_~o the local 

cohomolog~ H~(Y,~), and Hi(Y' ) i snaturally isomorphic . 

to the stalk at P of the Borel-Moore homology sheaf 

~i(Y,~) �9 

To express this result in terms of the local invari- 

ants used by Milnor [17] and L~ [15], note that if E > O 

is so small that B N Y is contractible, where B is a 
s E 

ball of radius E around P, then we have an exact sequence 

O > Hp(Y,(Z) > (Z ~. HO(B C Y-P,(E) .... > HI(y,(~) > O 

and isomor phisms 

Hi(Br ,) i+l Hp (Y,(Z) for i > I. 

Remarks: I. Although we have chosen to work with the 

local cohomology groups H~(Y), one could also phrase the 

theory in terms of the punctured space cohomology Hi(y-P), 
i ^ defined as H (X-P, ) The two are related by the long 

exact sequence of local cohomology 

. . . .  > H (Y) > Hi(Y) >Hi(Y-pl H +I(Y) >". , 

and the "formal Poincar~ lemma", which says that Hi(y), 
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' A ^ 

defined as HI(X,D'), is equal to k for i = O, and O for 

i > O. The proof of the formal Poincar~ lemma is exactly 

analogous to the proof of the classical holomorphic 

Poincar~ lemma. 

2. One can also define the local De Rham cohomology 

groups ~(X) for any closed subset Y of any scheme X over 

k, which admits an embedding into a smooth scheme. If Y 

is a point P whose residue field is finite over k, we have 

a "strong excision theorem" which says that 

Hip(X) = Hp(Spec ~p,x). One should be careful however, 

because if X is the spectrum of a non-complete local 

ring, with closed point P, then Hi(x) and Hi(x-P) may be 

infinite-dimensiona i. 

3. An Example 

To illustrate the relationship between the local and 

global theories, we calculate the local cohomology and 

homology of the vertex of the cone over a projective 

variety. Let Y be a closed subscheme of IP n , let 

C(Y) c ~ +I be the projective cone over Y, with vertex P, 

and let Y' = Spec ~P,C(Y)" 

By noting that C(Y)-P is a line bundle over Y, and 

using an algebraic Thom isomorphism, we find that 

Hi(c(Y))  ~ Hi-2(Y) for i > 1 

H~ - k 

and Hi(C(Y)) ~ Hi_2(Y ) for i h 1 

H o ( C ( Y ) )  = k, 
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Now to compute the local invariants, we use the local 

cohomology sequence for P E C(Y), and a strong excision 

theorem which says that H~(C(Y)) ~ H Y'). We find that 

and there is a long exact sequence 

where ~ is cup-product with the class of the hyperplane 

section on Y. For homology we find using duality that 

Ho(Y' ) = HI(Y' ) = 0 ; H2(Y' ) ~ HI(Y ) , 

and an exact sequence 

�9 . . - - ~  H4(~)---> H3(Y ) ~> HI(Y)--->5(Y'~--> H2(Y ) ~>Ho(Y)'---> O, 

where this time ~ is cap-product with the class of the 

hyperplane section. 

4. Applications 

One can expect that many theorems about the topology 

of algebraic varieties, hitherto proved using complex 

cohomology and transcendental methods, can now be rephrased 

in terms of algebraic De Rham cohomology, and given 

algebraic proofs. At the same time, one can expect to 

eliminate hypotheses of non-singularity, since the alge- 

braic theory is well suited to dealing with singularities, 

whereas transcendental methods like Hodge theory and Morse 

theory are not. 

135 



12 HARTSHORNE 

For example, one can prove algebraic analogues and 

generalizations of the analytic theorems of Barth [~I. 

One approach, due to Ogus [18], is via the study of 

integrable connections on modules over complete local 

rings. His method is best suited to dealing with arbi- 

trary singularities, and to proving the local analogues 

of Barth's theorems. We refer to his paper for an account 

of his results. Another approach is to use Barth's 

original method of transplanting cohomology classes. This 

method seems more suited to comparing the algebraic and 

analytic results. 

The transplanting method is based on the following 

construction. Let Y be a closed subscheme of ~. Let 

G be the special linear group SL(n+I) acting on ~. We 

consider the space Gx]P with its two projections Pl to G 

and P2 to ~. We embed GX~/ into GxIP via the group action: 

gxy ~. > gxg(y). Let F be a locally free sheaf on ~. 

Then we consider the complex 

. A 

-- <p F | PlOG ) 

where ~ is the complex of sheaves of differential forms 

on G, and ~ denotes completion along the subscheme G XY. 

Then we study the cohomology of this complex, and that of 

its analytic analogue, by means of the Leray spectral 

sequences associated to the two projection maps. 

To state our conclusions, we consider the condition 

(for an integer s). 

(Fin-s) For every locally free coherent sheaf F on 

P, and for every i < s, the group Hi(•,F) is a finite- 

dimensional k-vector space, where ~ denotes completion 

along Y. 
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HARTSHORNE 13 

Note that (Fin-s) is true if Y is non-singular and 

s = dim Y [9, 8.1]. More generally, Ogus [18] has shown 

that (Fin-s) is true for local complete intersections, and 

in fact he has given necessary and sufficient conditions 

for (Fin-s) to hold. 

THEOREM 4.1. Let Y be a subscheme of 

(char. k = O) satisfying the condition (Fin-s) for an 

integer s. Then for every i < s, the graded 

S = k[Xo,... ,Xn]-module 

M i = 

v 

is a free~ finitely generated S-module, generated by its 

component H i(~, ~) in degree zero. 

At the same time, we obtain a comparison of algebraic 

with analytic cohomology groups. Let Y be a subscheme cf 

~, let yh be the corresponding complex-analytic and 

space. 

THEOREM 4.2. Assume that Y satisfies (Fin-s) for 

an integer s. Then for every loca11~ free sheaf F on ~, 

and for every i < s, the natural maps 

A ^ ~h Hi(yh Fhlyh) ) > Hi(  , < 

are isomorphisms. 

Thus the algebraic condition (Fin-s) implies both the 

conditions (I:)_ and (Is,an) of the main theorem of [13,82]. 

These conditions in turn imply the theorems of Barth, as 

is explained in the paper [loc. cit.]. We refer to that 
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14 HARTSHORNE 

paper for complete statements. Note in particular that we 

recover the original theorems of Barth [4] for a smooth 

scheme Y in ~n without using the analytic finiteness 

theorems of Andreotti and Grauert [2]. 

Another application of algebraic De Rham cohomology, 

closely related to the above, but much more elementary, is 

the proof of the Lefschetz theorems. These are 

THEOREM 4.3. (Lefschetz) Let X be a scheme proper 

over k, let Y be a closed subscheme of X, and assume 

that X-Y is affine and smooth over k. Then the natural 

maps 

Hi(X) > Hi(y) 

are isomorphisms for i < dim Y, and inJective for i = dim 

THEOREM 4.4. (Local Lefschetz Theorem) Let X be 

the spectrum of a complete local rang, with closed point 

P, and let Y be a closed subscheme of X. Assume that X-Y 

is affine and smooth. Then the natural maps 

are isomorphisms for i < dim Y, and in~ective for i = dim Y. 

In the analytic case, these theorems were proved by 

Bott [6], Andreotti and Frankel [I], and L~ [15] using 

Morse theory. Using the results of Ogus [18], the hypo- 

thesis of non-singularity in both of these theorems can 

be replaced by the following weaker condition: for every 

scheme point x ~ X-Y, Hxi(Spec- ~x,X) = O for i < dim @x,X" 

This holds in particular if X-Y is a local complete 

Intersectlon. 
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