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Abstract. Binocular stereo is the process of obtaining depth information from a pair of cameras. In the past, 
stereo algorithms have had problems at occlusions and have tended to fail there (though sometimes post-processing 
has been added to mitigate the worst effects). We show that, on the contrary, occlusions can help stereo computation 
by providing cues for depth discontinuities. 

We describe a theory for stereo based on the Bayesian approach, using adaptive windows and a prior weak 
smoothness constraint, which incorporates occlusion. Our model assumes that a disparity discontinuity, along the 
epipolar line, in one eye always corresponds to an occluded region in the other eye thus, leading to an occlusion 
constraint. This constraint restricts the space of possible disparity values, thereby simplifying the computations. 
An estimation of the disparity at occluded features is also discussed in light of psychophysical experiments. Using 
dynamic programming we can find the optimal solution to our system and the experimental results are good and 
support the assumptions made by the model. 

1 Introduction 

Binocular stereo is the process of obtaining depth in- 
formation from a pair of left and right camera images. 
The fundamental issues of stereo are: (i) how are the 
geometry and calibration of the stereo system deter- 
mined, (ii) what primitives are matched between the 
two images, (iii) what a priori assumptions are made 
about the scene to determine the disparity and (iv) how 
is the depth calculated from the disparity. 

Here we assume that (i) is solved, and so the corre- 
sponding epipolar lines (see Fig. 1) between the two 
images are known. We also consider the disparity to 
depth map, (iv), to be given and hence we concentrate 
on problems (ii) and (iii). 

A number of researchers including Sperling (1967), 
Julesz (1971); Mart and Poggio (1976), (1979); Pol- 
lard, Mayhew and Frisby (1987); Grimson (1981); 
Baker and Binford (1981); Kanade and Okutomi 
(1990); Yuille, Geiger and Biilthoff (1990) have ad- 
dressed the problem of binocular stereo matching. 
However, we argue that more information exists in 
a stereo pair than that exploited by previous algo- 
rithms. In particular, occluded regions have always 
caused difficulties for stereo algorithms. These are re- 

gions where points in one eye have no corresponding 
match in the other eye (see Fig. 4.) Despite the 
fact that they occur often and represent important in- 
formation, there has not been a consistent attempt 
at modeling these regions though several theories, 
for example (Pollard et al. 1987; Drumheller and 
Poggio 1986), may be able to avoid their worst ef- 
fects. ~erefore ,  most stereo algorithms give poor re- 
sults at occlusions. However, psychophysical evidence 
(Nakayama and Shimojo 1990, Gitlam and Borsting 
1988) suggests that the human visual system does 
take advantage of occluded regions for obtaining depth 
information. 

Despite the fact that good progress has been made 
on modeling discontinuities for the problem of seg- 
mentation and surface recons~uction (Geman and Ge- 
man 1984; Blake and Zisserman 1987; Mumford and 
Shah 1985; Geiger and Girosi 1991), the detection of 
discontinuities for problems with multiple views, like 
stereopsis and motion, is still poor. We argue that in a 
single view (one image), there are no occlusions and so 
previous modeling can be applied. However, for mul- 
tiple views, it is necessary to also model the occlusions 
and, in particular, to establish the relation between dis- 
continuities and occlusions. 
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Fig. 1. A pair of  frames (eyes) and an epipolar line in the left frame. 
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Fig. 2. A matching space has elements Ml,r that decide if a feature 
at pixel I, in the left epipolar line, matches to a feature at pixel r, in 
the right epipolar line. 

Belhumeur and Mumford (1992) are also investigat- 
ing occlusions in stereo and, differently from them, we 
have formulated the problem in the matching space. 
This matching space is a two dimensional space with 
axes given by the corresponding left and right epipolar 
lines (see Fig. 2). Each element of the space asserts 
if a feature on the left epipolar line image matches a 
feature on the right image. 

Our modeling starts with the Bayesian approach and 
we define an apriori probability for the disparity field, 
based on (i) a weak smoothness assumption allowing 
discontinuities, (ii) uniqueness of matching and Off) a 
monotonicity constraint. We model occlusions by in- 
troducing a constraint that relates discontinuities in one 
eye with occlusions in the other eye. We call this the 
occlusion constraint and leads to two requirements, one 
being the monotonicity constraint and the other that the 
Bayesian theory is symmetric with respect to the left 
and right images. These constraints restricts the possi- 
ble solutions to the problem. Note that Systems based 
on matching sparse features, such as oriented edges, in 
structured environments are able to avoid using mono- 
tonicity constraints, see page 77 in Ayache (1991). 

For our matching primitives we have modified the 
adaptive window matching technique (Kanade and 

Okutomi 1990) by pre-setting the window size and 
adapting it when moving the center and by taking into 
account changes of illumination between the left and 
right images. This method can, by itself, give esti- 
mates of stereo depth• But, as we will show, better 
performance results when we incorporate it directly, 
together with the weak smoothness constraint, into our 
Bayesian model. 

We then apply dynamic programming to obtain 
the best estimate of disparity assuming the Bayesian 
model. The experimental results on real data are good 
and support the assumptions made by our model. 

2 Matching and Surface Reconstruction 

The Bayesian approach assumes that we can express 
the probability of the scene S given input data ! by a 
distribution P(S I I) which, by Bayes' theorem, can 
be written as P(I [ S)P(S)/Z,  in terms of the imaging 
model P(I  [ S), the prior model P(S) and a normal- 
ization constant Z. We assume that the optimal inter- 
pretation S* is obtained by the maximum a posteriori 
estimate, S* = ARG{MAXs}P(S [ I). 

To specify the theory we must choose an imag- 
ing model and a prior model. The imaging model for 
stereo can, in principle, be derived from knowledge of 
the properties of the viewing system (Cemushi-Frias 
et al. 1989). The prior model should reflect the sta- 
tistical properties of the scenes on which the theory is 
intended to work. In addition, we can impose hard 
constraints on the possible solutions S*. In this sec- 
tion we will specify the imaging and the prior models. 
In the section (3) we will show how to impose hard 
constraints on the scene to deal with occlusions. 

We first consider the imaging model, the probability 
of collecting an input pair of images. Then we specify 
a prior assumption for the disparity field. Combining 
these, using Bayes' theorem, gives us the posterior 
distribution P(S [ I). The theory can be described 
either in terms of solving a matching problem or in 
terms of surface reconstruction. It gives a compromise 
between accurate fitting of noisy data and conformance 
to a prior model of surfaces. 

2.1 Matching Features 

We assume that we can extract feature vectors W~ and 
1 ~  for all points I and r on corresponding epipolar 
lines in the left and right images, If a feature vector 



in the left image, say ~L ,  matches a feature vector 

in the right image, say l~ R, then 111~tc - I~R II should 

be small, where the distance II @ - if'r e If is a number 
varying from 0 to 1. We assume a dense set of  features, 
though it would be easy to extend the model to include 
sparse features like edges. In Section 5 we propose to 
use intensity windows as matching features and specify 
the measure [I * I[. As in Marr and Poggio (1976) and 
Yuille et al. (1990), we use a matching process Mt,,- 
that is 1 if, a feature at pixel l in the left eye matches 
a feature at pixel r in the right eye, and is 0 otherwise. 
We define the probability of  generating a pair of  inputs, 
1~ L and I~ R, given the matching process M, by 

Pinput(W L, 1~ R [ M)  

= e--Zl'r[MI'rllVClL--~VrRl[+e(l--Ml'r)]/C1 (1) 

where l  = 0 . . . . .  N -  1 a n d r  = 0 . . . . .  N -  1 are 
indices that scan the left and right images along the 
epipolar lines. 

The E term pays a penalty for unmatched points, 
where Mt,~ = 0, with e being a positive parameter to be 
estimated. Ct is a normalization constant, fl @ -  W~ II 

gives a distance measure between the two vectors (1~ L 
and ~ R )  and will be defined in section 5. This model 
can, in principle, be derived from an image formation 
model. 

In the case of  llxll being the euclidean norm, (I) as- 
sumes that for corresponding points 1 and r the feature 

-~L L R vectors 1~ t and IV; are related by W z = W f  + 
where ~ is a random variable distributed with P(?~) = 
e-NIBII2/c, where C is a normalization constant. For 
example, if ~ is taken to be additive Gaussian noise, 
assumed to exist in both cameras, we rederive a previ- 
ous model (Cemushi-Frias et al. 1989). 

2.2 Uniqueness and an Occlusion Process 

In order to prohibit multiple matches from occurring 
we impose a uniqueness constraint: 

N-I N-1 
Z M / , r = 0 , 1  and ~f~Ml,r=O,X,  (2) 
/=0 r=0 

Vr c (0 . . . . .  N - 1) and 'v'l ~ (0 . . . . .  N - 1) respec- 
tively. Notice that this uniqueness guarantees that there 
is at most one match per feature, but also permits un- 
matched features to exist. 

Occlusion Processes. :For a stereoscopic image pair 
we define occlusions to be regions in one image that 
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have no match in the other image. These may occur as 
a result of  occlusions in the 3-D scene (see Fig. 4). We 
first define an occlusion process for the left eye, 0 L, 
and another for the right one, O R , such that 

N-I 
o / - ( M )  = 1 - M ,r 

r=O 
N--1 

OR(M) ----= 1 - ~ Mlr. 
/=0 

and 

(3) 

Due to uniqueness, the occlusion processes are 1 when 
no matches occur and 0 otherwise. By analogy, we 
define a disparity field for the left eye, D c, and another 
for the right eye, D R, by 

and 

N--1 
D L ( M ) = ~ M t , r ( r - I ) ,  if 0 L = O ,  

r=O 
(4) 

if O R = 0. 
N-I  

DR(M) = ~ Ml,r(r -- I), 
l=O 

w h e r e  D n and D R are defined only if a match occurs 
(i.e. if the occlusion field is zero). This definition 
leads to integer values for the disparity field (if no con- 
tinuous values of Mx,r are considered). Notice that 

L The disparity field D L = DR+u p and D R = Dr_uT. 

ranges over O(D L 6 ( - 0 ,  0)). The disparity range 0 
is analogous to the size of Panum's area (Panum 1858; 
Marr and Poggio 1979; Burt and Julesz 1980) for the 
human visual system (the disparity region in the retina 
where fusion occurs). These two variables, O (M) and 
D(M) (as functions of  the matching process M), will 
be useful to establish a relation between discontinuities 
and occlusions. We can rewrite (1), by performing the 
sum over the index l (left coordinate system) and using 
uniqueness (2), with the new variables O R and D R as 

Pinput(~L, ~rR [ O R, D R) 

= e-r~r[(l-°F)II~v/2~f-~/FIl+'r°F]/C~ (5) 

where we have absorbed a constant e e(N-I)  into the 
definition of C1. For manipulation purposes we have 
changed the global parameter E into a local parame- 
ter Er. The motivation for this change will become clear 
when computing the mean field equations in Section 3. 
An analogous expression can be obtained in term of the 
left eye coordinate system by summing over the index 
r instead of l. 
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2.3 Stereo and Surface Reconstruction 

We now specify a prior model for surfaces in the world. 
We use a variant of the standard weak string model 
(Geman and Geman 1984; Blake and Zisserman 1987; 
Mumford and Shah 1985). We will then combine this 
with our imaging model. 

Piecewise Smooth Functions. Since surface changes 
are usually small compared to the viewer distance, 
except at depth discontinuities, we first impose that 
the disparity field, at each eye, should be a piecewise 
smooth function. There is a simple trigonometric rela- 
tion between disparity and depth, so we consider piece- 
wise smooth disparity functions. An effective cost to 
describe these functions, based on work on visual re- 
construction (Geiger and Girosi 1991), and applied to 
stereo in Yuille et al. 1990, is given by 

Ueff(M) = uL.(DL(M)) + UR(DR(M)) 

where 

L L ~ ln(1 + e [y-tz(D[+, -D[g2]) u b ~ ( D  ) = × - 
l 

R ( R Z l n ( 1  + e [y-~(Df+I-Df)2]) (6) U~ff D ) = y -  
F 

where/z and g are parameters to be estimated. Note 
that, since D is not defined at occlusions, we do not 
define Ueff(D) at such points. This will be further dis- 
cussed in section 3. 

This cost function has a serious difficulty at occlu- 
sions and can generate a phenomena of interlaced re- 
gions of occlusions and matches. In order to discuss 
this difficulty, we first propose an alternative effective 
cost and then by comparing the two costs we will see 
the limitations of(6). The alternative cost we propose is 

l (7) 
R R 

[ '~ff -a(D ) :  ~ E ~/IDR-I-I -- p f l  
r 

where/x is a constant. We argue that (6), but not (7), 
will prefer an interlaced sequence of matched and oc- 
cluded (unmatched) points to a single large occluded 
region. This is equivalent to having a staircase-like 
disparity function, in the other eye, instead of a single 
disparity discontinuity. 

The two effective costs, (6) and (7), are shown in 
Fig. 3. The key difference is that, for all positive x, y, 

Ueff-a(x) + Ueff-a(y) > Ueff-a(X + y) + Uef~-~(0), 
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Fig. 3, Two different potentials that enforce piecewise smoothness. 
It is desirable to use potentials, U(x), with large derivative where 
x ~ 0, e.g. xV2 to avoid the creation of many small regions with 
small disparity changes. Here x represents the disparity change 
between neighboring pixel sites. 

while 
Ueff(x) -Jr- Ueff(y) < Ueff(x -]- y) + Ue~(0), 

provided that x, y are small enough for Ueff(x) to be 
approximated by a quadratic (see Geiger and Girosi 
1991). These follow from the results ~ + ~ > 

& x 2 + y2 < (x + y)2. Equivalently, these 
conditions imply that Ueff-~ is concave for x > 0 and 
U~ff is convex for small positive values of x. 

From these properties it follows that Ueff and Ueff-a 
will, respectively, encourage and discourage staircase- 
like disparity functions corresponding to interlaced 
matched and occluded points. Thus, we prefer to use 
the cost Ueff-, given by (7). 

We emphasize that the choice of prior is motivated 
by the class of stimuli on which the system is designed 
to work. Our prior, (7), encourages piecewise constant 
surfaces. Other priors may be desirable for other situ- 
ations. 

We assign a Gibbs probability distribution to these 
costs and combining it with (1), using Bayes' theorem, 
we obtain 

1 N-t N-1 
Pstereo(M t I~L, ~ R ) =  Z H U 

r=0 /=0 

x e-  MI rlIwIL-i~ f ,+, l-Ml,r)+-~( 1--0 L ~ + ( 1 - o R ) ~ r R + I - D R  )] 

(8) 

where D and O are specified as functions of M by 
Eqs. (3), (4) and Z is a normalization constant. Observe 
that by using the relationships between O, D and M 
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Fig. 4. (a) A polyhedron (shaded area) with self occluding regions 
and with a discontinuity in the surface-orientation at feature D and 
a depth discontinuity at feature C. (b) A diagram of left and right 
images (1D slice) for the image of the ramp above. Notice that 
occlusions always correspond to discontinuities. Dark lines indicates 
where match occurs. 

given by (4) and (3) we can express our theory either in 
terms of matching fields or as surf'ace reconstruction. 

Observe that our theory, given by 8, is symmetric 
with respect to the two eyes. This is necessary to en- 
sure that the full information can be extracted from 
occlusions, see next section. 

It is important to emphasize that the choice of the 
prior term will put restrictions on the class of  images 
for which this algorithm is applicable (as do the generic 
smoothness assumptions often used in computer vi- 
sion). However, the symmetrical form of  the prior with 
respect to left and right images, will be a requirement 
of  the occlusion analysis as we discuss next. An advan- 
tage of the Bayesian approach is that it can readily be 

modified to incorporate prior assumptions appropriate 
for different domains. 

3 Occlusions 

This section analyzes the occurrence of occlusions and 
shows that they can be taken into account by restricting 
the set of  possible matches. 

We observe that in order for a stereo model to admit 
disparity discontinuities it also has to admit occlusion 
regions and vice versa (see Fig. 4). Indeed most of  
the discontinuities, along the epipolar line, in one eye 
corresponds to an occluded region in the other eye (see 
Champolte et al. 1991 and acknowledgments). A good 
stereo model must be symmetrical with respect to oc- 
clusions and discontinuities in the left and right eyes. 
Our model uses the probability distribution in (8). 

One possible way of dealing with occlusions is to 
simply treat them as outliers to be thrown out. A num- 
ber of  existing algorithms have dealt with them in this 
way, usually by throwing them out in a post-processing 
step. It would seem preferable, from our perspective, 
to throw out the outliers while doing the matching. 
Our theory can easily be modified (simplified) to ac- 
complish this but we argue, however, that this does 
not exploit the full information potentially available at 
occlusions. More precisely, it does not establish any 
relation between occlusions and discontinuities. In- 
stead we propose dealing with occlusions by imposing 
a constraint on the possible paths in matching space. 

3.1 Occlusion Constraint 

Occlusions can be best understood in the matching 
space'. This is a two-dimensional space where the axes 
are given by the epipolar lines of the left and right 
images and each element of the space, Ml,,., decides 
whether a left feature at pixel I matches a right feature 
at pixel r (see Fig. 2). A solution for the matching 
problem, a disparity map, along an epipolar line is rep- 
resented by a path in the matching space. Let us assume 
that the left epipolar line is the abscissa of  the match- 
ing space. A path can be broken vertically when a 
discontinuity is detected in the left eye and can be bro- 
ken horizontally when an occluded region occur, We 
propose that a stereo system should assume: 

PROPOSITION I (Occlusion Constraint). A disconti- 
nuity in one eye, along the epipoIar line, corresponds to 
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an occlusion in the other eye and vice vers'a. Moreover, 
the prior cost for an occlusion in the left eye must be 
the same as for an occlusion in the right eye. 

The occlusion constraint consists of two parts. The 
first is an assumption about the geometry of the scene 
being viewed (for a discussion of where it breaks down 
see 3.2). The second might seem obvious, and in- 
deed follows directly from the first assumption and our 
choice of a symmetric probability function (8). We em- 
phasize, however, that stereo has often been formulated 
asymme}rically--for example, by assuming an energy 
function model E [d] = f { IL ( x ) -  IR (x +d (x)) }2dx-- 
and for such theories the result will not be true. 

The geometrical assumption can be formulated as 
the monotonicity constraint. Plot all the matched pairs 
in the matching space. We require that for any matched 
pair (r, I) at least one of neighboring points at r + 1 
(in the right image) or l + 1 (in the left eye) must 
also be matched. Join neighboring matched pairs by 
straight line segments to form a curve. The monotonic- 
ity constraint only allows matching such that this curve 
is monotonic when consider as a function either of 
l o r r .  

Observe that the matched points can be written in 
matching space as {(Ft L, l): O~ = 0} or, equivalently, 
{(r, F~R): O~ = 0} where Ft L = l + D~ & Fr R = r + 
D~. Joining neighbouring matched points by straight 
line segments will generate two functions r = F L (1) 
and I = FR(r) which are inverses of each other. The 
monotonicity constraint will imply monotonicity of 
both r = FL(1) and l = / ; R ( r ) .  

The monotonicity constraint allows either vertical 
or horizontal jumps but it does not allow horizontal 
and vertical jumps to occur simultaneously (see Fig. 6) 
(since this would violate the requirement that neigh- 
bouring points are matched). In this way a horizontal 
jump in one eye corresponds to a vertical jump in the 
other eye and the occlusion constraint is observed. 

The monotonicity constraint is a variant of the or- 
dering constraint. It differs slightly from the standard 
ordering constraint because it requires neighbouring 
points to be matched. It will be shown in 3.2 that, like 
the ordering constraint, the monotonicity constraint 
does not always holds for 3-Dimensional scenes 1 . 

As we discuss in section 4, the monotonicity con- 
straint, will be applied as a hard constraint to simplify 
the optimization of the effective cost (8). The occlusion 
constraint will then be satisfied since (8) is already of a 
symmetrical form, where the prior cost of a horizontal 
jumps of size rxl is the same as of a vertical jumps of 

the same size, namely JumpCost Ix1 = Elxl + ~ - / .  
We point out one, somewhat unintuitive, conse- 

quence of our definition of occlusion. Because we 
are working on a discrete lattice it is impossible to 
represent a curve of varying disparity without leav- 
ing some points in the left and right eyes unmatched 
(the only curve we can draw that matches all points 
within two corresponding regions is a line at forty-five 
degrees--hence with constant disparity). Our defini- 
tion will then call these points occluded. This does not 
correspond to the usual geometric definition of occlu- 
sion, though it does satisfy the intuition that occluded 
points are unmatched. We will refer to these points as 
lattice-induced occlusions. The form of our smooth- 
ness constraint, (7), will allow these lattice-induced 
occlusions to occur, but prevent them from having any 
significant effect on the output of our theory. This is 
because they will always correspond to a small dispar- 
ity jump in the other eye and hence will be smoothed 
across. True occlusions will correspond to large dispar- 
ity jumps and hence break the smoothness constraint. 
The best way for avoiding lattice-based occlusions is to 
go to sub-pixel resolution, see Bethumeur and Mum- 
ford (1992). 

3.2 Violations of the Monotonicity Constraint 

In some unusual situations the monotonicity constraint 
can be broken, thus breaking the occlusion constraint, 
while still preserving uniqueness, as we discuss now. 

The Double-block Illusion. Figure 5 shows an exam- 
ple where a discontinuity does not correspond to an 
occlusion. 

In such situations it seems that the human visual 
system attempts to fit the data to two surfaces obeying 
the monotonicity constraint and hence obtains trans- 
parency (Gillam and Borsting 1988). Two other the- 
oretical solutions, using a single surface, are: (i) 
to mismatch the two objects by using the ordering 
constraint, thus causing the sensation of two tilted 
planes (see Fig. 5B), or (ii) to match just one ob- 
ject (considering the other occluded) thus causing 
the sensation of two occluded regions, one to the 
left and the other to the right of the object (see 
Fig. 5C). This situation can be considered as a gen- 
eralization of the double-nail illusion (Krol and van 
der Grind 1982), where the head of the nail is of 
finite size (not a point), and thus we call it the 
double-block illusion. However, the complexity of 
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Fig. 5. The double-block illusion, a generalization of the double nail illusion. This scene has a rectangle in front of another larger rectangle 
and, although no region of occlusion exists, a depth discontinuity occurs. It seems that the human visual system perceives this scene as two 
transparent surfaces (A). Two other theoretical possibilities are: (B) both rectangular images are mismatched (if the feature correlations permits), 
respecting the ordering (monotonicity), thus two tilted planes are perceived, or (C) two occluded regions are detected, one in each eye coordinate, 
and one object with two tilted walls (giving the occluded regions) is perceived. 
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Fig. 6. These scenes have occluded regions in the left and right eyes without occlusions in one eye corresponding to discontinuit ies in the 

other. These are, however, very unusuN situations and it still remains to be investigated how humans perceive these situations. 

this illusion is much greater than of the doule-naiI 
illusion. 

Concavity. The strict form of the monotonicity con- 
straint does not allow "acute" concave surfaces to exist. 
In these cases two occluded regions, one in the left eye 
and the other in the right eye, are connected as shown 
in Fig. 6. However, this is an extremely unusual scene. 
Note, in such an acutely occluded scene, that if just a 
small amount of the scene between the two occluded 
regions is visible to both eyes then the monotonicity 
constraint will be preserved. 

4 Dynamic Programming 

We can use a dynamic programming algorithm Bell- 
man 1957 to solve for disparity by taking advan- 
tage of the form of the effective cost (8), local 
neighbor interactions, and by imposing the mono- 
tonicity constraint on the disparity field. One of the 
first works on stereo using dynamic programming 
was by Baker and Binford (1981) and more re- 
cently there was (Ohta and Kanade 1985). Each pos- 
sible solution of the disparity field is represented 
as a path through matching space (see Fig. 7), The 
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Example Path 

Left Pixel Index L 

Fig. 7. An example path solution for the disparity field. Dynamic 
programing searches for the optimal path among all possible ones 
under the monotonicity constraint. 

Fig. 8. An illustration of the dynamic programming. The sub- 
problem being considered is the (L, R) one. The previously solved 
subproblems are in light grey. The required subproblems (lp, rp), 
under the montononicity constraint, are in dark gray. 

monotonicity constraint helps restrict the space of pos- 
sible solutions. 

We first constrain the disparity to take on integral 
values in the range of ( - 0 ,  O) (analogous to Panum's 
area in human vision). 

Our current implementation fixes the disparity of the 
initial and final pixels to be zero. This condition is not 
necessary for the dynamic programming technique and 
the disparity at the initial and final pixels could be left 
to be decided by the global optimization criteria. 

Dynamic programming works by dividing a prob- 
lem into a number of subproblems and then saving and 
reusing the solutions to the subproblems. In this way, 
an exponential number of possible answers can be con- 
sidered in polynomial time. For stereo, the problem is 
"what is the best matching path?" (which is another way 
of asking "what is the disparity field with minimum ef- 
fective cost?"). The subproblems we have chosen are: 
for each point (1,r) in the matching space, "what is the 
best matching path, and its cost, from the beginning to 
the point (/, r)?". 

How is a typical subproblem, (t, r),  solved? Let 
(Ip, rp) be a point that immediately precedes (l, r) on 
a path that is a solution to the (l, r) subproblem. Due 
to the monotonicity constraint (lp, rp) must be (l - 
t, r - k) or (t - k, r - 1) for some integer 0 > k > 1. 
Furthermore, the effective cost of the best path that 
reaches (1, r) via (lp, rp) is simply the cost of the best 
path to (Ip, rp) plus a cost for going from (Ip, rp) to 
(l, r) (which is independent of the best path to (l r, rp)). 
To find the best path to (l, r), we enumerate the points 
(lp, rp) and evaluate the best path to (l, r) via (Ip, rp); 
the best of these paths is the best path to (l, r). 

Figure 8 represents a typical (l, r) subproblem to be 
solved. The previously solved subproblems are in light 
gray. The required subproblems that correspond to the 
(lp, rp) points above are in dark gray. It can be seen that 
each required subproblem is solved before its solution 
is needed in the calculations for the (l, r) case. 

Here is an algorithmic description of the dynamic 
programming algorithm. The inputs are the number 
of pixels per line, N, a bound on the disparity value, 
0, and the feature match information, It Wl L - Wr R [1. 
Also, the j u m p c o s t  [ ] function takes Dl+l -- Dt and 
calculates Ueff(D) of Eq. (7). 

Stereo routine: 
float costs IN] [N] ; 
/*  will be the best path cost 

for subproblem (l,r) */ 

point backPointers[N] IN] ; 

will be the best path info for 

subproblem (l,r) */ 

point bestpath[N] ; 

/* will become the matching path, 

reversed */ 
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int length; 

/ *  will become the length of the 

best path * /  

constraints (i, r) { 

/* useful subroutine */ 

if (I<0 OR I>=N OR r<0 OR r>=N) 

return (FALSE); 

if (0< ABS(r-I)) return (FALSE); 

if ((i==0 OR l:=N-l) AND NOT l==r) 

return (FALSE); 

return (TRUE); 

} 
costs[0] [0] = 0; /* handle the 

beginning point */ 

for (i:i; I<N; i=i+i) for (r:l-0; 

r<:l+0; r=r+l) { 

if (NOT constraints(l,r)) continue; 

bestcost = INFINITY; 

for (k:r-l; k>=r-2*0; k=k-l) { 

if (NOT constraints(l-l,k)) break; 

x : costs[l-l] [k] + j~pcost[r-l-k] ; 

if (x < bestcost) { 

bestcost = x; 

bestpoint = (k, l-l); 
} 
} 
for (k:l-l; k>:l-2*O; k:k-l) { 

if (NOT constraints(k,r-l)) break; 

x : costs[k] [r-l] + jumpcost[l-l-k]; 

if (x < bestcost) { 

bestcost = x; 

bestpoint = (k, r-l); 
} 
} 
costs[l] [rl = bestcost + IIW?- W?II; 

backPointers[l] [r] = bestpoint; 
} 
/* reconstruct the solution path, 

in reverse order */ 

bestpath[0] = (N-l, N-l); 

/* start at the endpoint */ 

length = i; 

"while (NOT bestpath[length-l] == (0,0) 
{ 
bestpath[length] 

= backPointers[bestpath[length-l]]; 

length = length + I; 
} 

The computation load is O(N*O*O). The occlusion 
constraint was considered here in two ways. First, 

the monotonicity constraint was used to reduce the 
required set of previously solved subproblems, thus 
helping the efficiency of the algorithm. Secondly, the 
function j u m p c o s t  [ ] was choosen as to be symmet- 
ric with respect to horizontal and vertical jumps. 

5 Matching Intensity Windows 

For our feature vectors for matching, ~/~ and l~',. n, 
we use adaptive correlation between windows (see 
also Kanade and Okutomi 1990; Gruen 1985). How- 
ever, we use here a different strategy than Kanade 
and Okutomi (1990), who iteratively estimate the size 
of the window. Large windows are desirable but a 
major limitation is the possibility of getting "wrong" 
correlations near depth discontinuities. To avoid this 
problem we consider two possible rectangular win- 
dows, one (window-l) to the left of the pixel I and the 
other (window-2) to the right (see Fig. 9). This win- 
dow is rectangular so as to allow pixels from above and 
below the epipolar line to contribute to the correlation 
(thereby encouraging figural continuity and discour- 
aging mismatching due to misalignment of epipolar 
lines). 

Each window in the left pixel is compared (according 
to some measure to be defined) with the respective one 
in the right image. The one that has better measure is 
kept and the other one discarded. For previous attempts 
to deal with occlusions using window matching see 
Little and Gillett 1990. 

We first define the two intensity window candi- 
dates, with size co, for each pixel as follows (see also 
Fig. 9) 

e-I e--1 e-I ! Lt_~+ 2 . . .  L z LI+j 

I .e+x L~+I re+l 
\ L'I --o~+2 ~l+1 

IL;_, L7 I , 
\ LT+~ Lf +' ,++' 1 ~/+w--2 / 

where L~ is the value of the left image at pixel coor- 
dinate t along the epipolar line e. Thus, both window 
candidates include the pixel l and its first neighbors 
along the three epipolar lines, e - 1, e, e -t- 1. Notice 
that the index e has been implicitly considered in 1 ~  1 
and ~ 2 .  
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T 
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Fig. 9. The two windows in the left image and the respective ones in the right image. In the left image each window shares the "center pixel" 
I. The window-1 goes one pixel over the right o f / and  window-2 goes one over left to I. 

By analogy, we define the two window candidates 
in the right coordinate system as 

e - I  e-1 e-1 i Rr_go+ 2 " -  R r R r + l  

~,m = I Re'-go+2 R; R;+ 1 & 
~, Re+l Re+l ee+l 
\ r --go+2 " ' r+l  

R r _  Rer-I  . . .  e - I  e -  1 Rr+go_ 2 

: I R; R;+go_  l , 
\R;+]R;+I ~e+l I 

"'r+go-2 / 

where R e is the value of the fight image at pixel co- 
ordinate r along the epipolar line e. We then select 
the smaller of  the two measures, I11~F 1 - I ~ / ~ l  II and 
it ¢ ' F  2 - w/~211, as the distance measure, i.e. 

= m i n  ( l ]~f f  ~ - w ~ '  II, IIW,m - wf21l ) ,  

where min(x,  y) = x for x < y and min(x, y) = y 
for x > y. The distance between the left and right 
intensity windows, say 111Vlrt - l ~ f  all, is a measure 
of  similarity between two windows that we wilt now 
define. 

A surface patch reflects different amounts of  light 
to the left eye and to the right eye. We have modeled 
this difference with a local scale parameter and offset 
factor. More precisely, when a window is matched, 
we assume that the values of  the left and right images 
satisfy (see also Fuh and Maragos 1991) 

~z/M = a r ~ R  + b r l l  

where I and r are the left and fight pixel coordinates. 
I 1 is a matrix of size 3 x w with all elements equal to 
1. The local constants ar and br account for the illu- 
mination change (scaling factor and background light). 
Notice that the index e, labelling epipolar lines, is again 
implicit in the quantities @ ,  IVy, at ,  br. In the sim- 
ple case where ar = 1, which we have actually used 
in our simulations, the offset constant br becomes the 
difference between the average intensity value in each 
window, left and right, i.e. 

go 
b~ 1 e+l L e' _ 

z_go,+2 
d=e--I go'=l 

for window 1 ( l lWf 1 - wzLIlI) and for window 2 

(11Wr R2 -- ff¢~2 II) becomes 

br 2 1 e+l go L e' _ R e' 

d=e--1 go =1 

The distance between windows is then defined to be, 
for window 1, 

C ~ £ e e' 
= ~ Lz_w,+2  - -  R r _ j +  2 - -  b~] 

3w e"=e--1 w'=l 

where Ix l is the modulus of x, c is a constant to be 
estimated which we have chosen so to ensure that I1 * 1t 
is less than 1 for acceptable matches. Similarly for 
window 2, 
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Fig. I0. A pair of left and right images of the pentagon, with horizontal epipolar lines. Each image is 8-bit and 512 by 512 pixels. 

__C e+I 

I. I+w'-2 r+w'-2 30) S Le' - Re' - bZ~l" 
e~:e-- 1 co'=l 

A more complex con'elation scheme could be de- 
vised, by comparing different window sizes (see 
Kanade and Okutomi 1990) or different window shapes 
(see Fuh and Maragos 1991; Yang et al. 1992). All 
of them, though, would require extra computational 
time. An important property of our approach, com- 
pared with most other window matching approaches, 

L R is that the values of the correlations, 11 l~t - ~/r tl, are 
fed into our Bayesian theory rather than being used to 
directly estimate disparity. This allows our model to 
impose prior piecewise smoothness assumptions and 
the monotonicity constraint. 

6 Implementation and Results 

A standard image pair of the Pentagon building and 
environs, as seen from the air, is used (see Fig. lO(a) 
and (b)) to demonstrate the algorithm. Each image is 
512 by 512 8-bit pixels. The dynamic programming 
algorithm described above was implemented in C for a 
SPARCstation 1; it takes about 7 seconds per line (~1 
hour for a 512 x 5 t2 image), mostly for computing the 
feature differences for matching the windows (~85% 
of the time). The parameters used were: /~ = 0.5; 
E = 0.15; 0 = 20; co = 3. The first step of the 
program computes the correlation between the left and 
right windows. We display the results of using the best 
correlated windows, for comparison with our Bayesian 
theory, in Fig. 11. Finally the disparity map for the 

Fig. 11. For each pixel, in the right image, we display the "dispar- 
ity" obtained from the best correlated windows, oJ = 3, (before the 
use of the piecewise smoothness and monotonicity constraints have 
been considered). 

Bayesian theory is shown in Fig. 12. The disparity 
values changed from - 9  to +5. 

The basic surface shapes are correct including the 
primary building and two overpasses. Most of the de- 
tails of the courtyard structure of the Pentagon are cor- 
rect and some trees and rows of cars are discernible. We 
observe that the disparity is tilted, indicating that the top 
of the image is further away from the viewer than the 
bottom. Some pixels are labeled as occluded and these 
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Fig. 12. The final disparity map where the values changed from - 9  
to +5. The parameters used were: /z = 0.15; E = 0.15; 0 = 40. In 
a SPARCstation 1+, the algorithm takes about 3600 seconds, mostly 
for matching windows (~75% of the time). 

? ~ . . .  

] ~ , '  
, .  f .  

\ 

• '3 ; 

.. J . . . .  ? , '  

Fig. 13. The occlusion regions in the right image. They are ap- 
proximately correct. 

Fig. 14. The "ground truth" results, i.e. manually constructed dis- 
parity map (from Carnegie Mellon University). Notice that the actual 
grey values are different due to the reference value for zero disparity. 
The ground truth is clearly sharper and cleaner, but we argue that 
many details obtained with our method, such as the overpass on the 
right bottom part, are of superior quality. 

Fig. 14 we show a "ground truth" result obtained from 
Carnegie Mellon, where the disparity map was manu- 
ally constructed. This ground truth is clearly sharper 
and cleaner, but we argue that many details obtained 
with our method, such as the overpass on the right bot- 
tom part, are of  superior quality. 

The second experiment is done with an image of  a 
view of  Denver, obtained from Carnegie Mellon Uni- 
versity. We have reduced the original images (which 
had different sizes for the left or right images) to a pair 
of  images of  size 160 x 160 pixels. The parameters 
used were: t~ = 0.3; ~ = 0.15; 0 = 16; co = 3. The 
disparity map is shown in Fig. 15. The disparity val- 
ues changed from - 1 2  to +8.  Again the quality of the 
result is good, although smoothing along the vertical 
direction would have improved the final result. Again  
the result of  manually constructed disparity map, ob- 
tained from Carnegie Mellon, is of  comparable quality 
with our results. 

are about where they are expected (see Fig. 13). The 
disparity map obtained by purely correlation match- 
mg is much worse than the result disparity map, hence 
showing that piecewise smoothing and the monotonic- 
ity constraint provides significant enhancement. In 

7 Relations to Psychophysics 

Though our work has been partially motivated by psy- 
chophysical experiments it is primari ly intended as a 
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Fig. 15. The image pair tbllowed by the final disparity map and the occlusion process. The disparity values ranged from --12 to +8 and we 
have assigned a dark value for the occlusions. The parameters used were:/x = 0.3; E = 0.15; 0 = 16; o) = 3. Finally the manually constructed 
map is presented, with different grey values due to the reference value for zero disparity. The quality of our results could be improved with a 
post processing vertical smoothing. 

theory of computer vision. Nevertheless we argue that 
it also has relevance for psychophysics. 

Firstly, the psychophysical evidence (Nakayama and 
Shimojo 1990, Gillam and Borsting 1988), suggests 

Right eye coordinate 

. . . . . . . . . . .  - - - - -  - ~ " "  III ~ I edf t 

Left eye coordinate oL=1 

Fig. 16. The shaded area on the matching space diagram represent 
possible disparity values for the occluded features. This is assuming 
that no transparency is perceived. If the completion of the occluded 
areas result on surfaces in front of the matched ones then, trans- 
parency must occur. Notice that Panum's area also gives bounds to 
the disparity values. 

that the human visual system does take advantage of 
occluded regions for obtaining depth information. Our 
theory (see also Belhumeur and Mumford 1992) seems, 
by virtue of the assumptions it makes, to be the only 
existing theory that is possibly consistent with these 
experiments. It would be interesting to do detailed 
comparisons between our theory and psychophysical 
experiments. 

We now examine two issues in more detail: (i) what 
happens to the disparity estimates at occluded regions, 
and (ii) under what situations would our monotonieity 
constraint break down, and what experimental predic- 
tions might follow. 

At occluded regions there is no match and thus we 
would not initially think of assigning a disparity value. 
Indeed, according to (4) and (8) a disparity is defined 
only where a match exist, and not at occlusions. How- 
ever, some psychophysical experiments suggest that a 
disparity is assigned to the occluded features. 

Two-bars Experiment. Suppose wehave two features 
(bars) in the left image, say W/~ and W~ and one feature 
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Fig. 17. A stereo pair, inspired by Nakayama and Shimojo's experiment. The images are 256 x 256 pixels. When fused, a vivid sensation 
of depth and depth dicontinuity is obtained at the occluded regions (unmatched features). The depth sensation supports the disparity limit 
conjecture. A cross-fuser should fuse the left and the center images to perceive the blocks behind the planes. An uncross-fuser should use the 
center and right images. Below we show the result of our algorithm on these pair of images. We used co = 4, 0 = 14,/z = 1.5, e = 0.15. 

in the right image Wr]" According to uniqueness just 
one match is possible, yet humans seem to have a 3-D 
perception of  two bars with distinct depth values. This 
suggests that, at least, a disparity is assigned to the 
occluded bar. Some other experiments reported in 
(Weinshall 1989) may perhaps be interpreted in the 
same way. 

Due to the monotonicity constraint, there is a limit to 
the possible disparity values for the occluded features. 
This limit is the one that would break the monotonic- 
ity constraint, otherwise they would not be occluded 
(see Fig. 16). This is known as Panum's limiting case 
(not to be confused with Panum's area, which we have 
already discussed). If  a disparity is assigned to the oc- 
cluded regions than, possibly, a disparity discontinuity 
will be formed between the occluded and unoccluded 
regions. Nakayama and Shimojo (1990) have shown 
that illusory depth discontinuity can be perceived by 
the human visual system (see Fig. 17). Moreover, they 
have shown that the disparity value is not the one pre- 
dicted by Panum's limit, but instead they suggest that 

the human visual system interpolates using a smooth 
cost function, like (7), provided this does not violate 
Panum's limit. 

We argue (speculate) that transparency is an alterna- 
tive way of completing the occluded surfaces. When 
the completion of the occlusions give rise to a surface 
in front of  the matched one, transparency becomes the 
only possible coherent solution. For this case to occur 
the grey values of the occluded region must satisfies 
the Mettelli's rule for transparency. 

8 Conclusion 

We have developed a theory for binocular stereo 
based on the Bayesian approach using prior piecewise 
smoothness assumptions. We have used windows of 
intensity as features for matching, allowing them to 
be adaptive with respect to the intensity values and to 
the location (though our implementation only uses two 
choices of location). A more adaptive scheme, using 
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a more general transformation of the window size is 
being considered. 

We have shown that occluded regions in a stereo 
pair are rich in information and can help simplify 
the computation by reducing the combinatorics of the 
matching problem and as a cue for discontinuities. 
We have introduced an occlusion constraint that have 
two requirements (i) the prior cost of having dispar- 
ity discontinuities must be the same as having occlu- 
sion jumps and (ii) a geometrical constraint, namely 
the monotonicity constraint, or the closely related or- 
dering constraint. These two requirements establish 
a relationship between discontinuities and occluded 
regions. 

Using dynamic programming we have been able to 
efficiently find a minimal cost solution. The exper- 
imental results are good quality and support the as- 
sumptions of the model. 

The importance of binocular stereo as a cue for oc- 
clusions and depth discontinuity has recently been em- 
phasized by Nakayama and Shimojo (1990). We have 
argued, that unlike previous stereo theories (but see 
also Belhumeur and Mumford t992), that our theory 
will be consistent with these experiments and will make 
predictions that can be experimentally tested. 
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Notes 

1. As previously mentioned, some sparse feature based methods do 
not need to use the monotonicity constraint in structured scenes, 
see Ayache (1991). 
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