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Zusammen/assung 

Der Artikel behandelt isotherme Verformungen eines linearviskoelastischen Stories im 
einachsigen Spannungszustand. Die Deformationsgeschichte des Materials fiir den Zeit- 
abschnitt  (-- oo, 0) wird als bekannt  angesehen. Ein Teil der mechanischen Arbeit, die am 
Material w/ihrend dieses Zeitabschnitts geleistet wird, kann in rein mechanischer Weise 
dadurch zurtickgewonnen werden, dass der KSrper geeigneten weiteren Verformungen 
unterworfen wird. Der Artikel behandelt den H6chstbetrag, der auf diese Weise zuriickge- 
wonnen werden kann. 
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Flow of Rarefied Gas Over an Enclosed Rotating Disk 1) 
By SHAo L. Soo, Dpt. of Mech. Engineering, University of Illinois, Urbana, Ill., USA, and 
ZUHAIR N.Sal~AFA, Dpt.of Mech. Engineering, University of Kansas, Lawrence, Kansas,USA 

N o t a t i o n s  

a outer radius of the disk 

a 1, a 2, a a, a 4, a 5 constants  of in tegrat ion defined by  Equa t ion  (2.10) 
b 1, b 2 constants  of in tegra t ion  defined by  Equa t ion  (3.8) 
cr friction coefficient defined by  the relat ion cr = %/(�89 @1 r2 0)2 
cp specific heat  at  constant  pressure 
G(~) dimensionless funct ion of the tangent ia l  velocity defined by  the relat ion 

V = R G(~) 
K dimensionless viscosity or thermal  conduct ivi ty ,  #/#1 or 2/~1 
L mean  free pa th  
L~ dimensionless mean  free pa th  defined by  L/L  1 
~s dimensionless mean  free pa th  defined by  L,/z o 

(M)~, (M)r Mach numbers  defined by  ~0 L~/ /V R T~, (0 r / / y - R  T 1 

1) A study supported by the National Science Foundation under grant No. G-9725. The experimental 
portion of this paper was performed by Z. N. SARAFA toward a thesis for partial fulfillment of the require- 
ments of the Ph.D. Degree at the University of Illinois. 
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N[(r~) reduced radial velocity function given by U - R N~(~l) 
(NK~)~,, (NK,)~ Knudsen numbers defined by L/z o, L/d 
(Np~)l 
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Prandtl number defined by (c~ #0/21 
Reynolds number (Q1 e )  L12)/#1 
Reynolds number (Q1 co r~/#l 
Reynolds number (o 1 co Zo)/#l 
static pressure 
reduced temperature function for heat exchange 
cylindrical polar coordinates in the radial, azimuthal, and axial directions 
gas constant in p - 9 R T 
dimensionless coordinates, r/L 1, z/L 1 
reduced temperature function for dissipation 
molecular speed ratios r ~o/~/2 R T1, %/]/2 R T 1 
temperature 
components of the velocity in the radial, tangential and axial directions 
dimensionless velocity components u/o) L 1, v/~o L 1, w/(~ L 1 
axial distance between disk and plate 
accommodation coefficient 
dimensionless parameter defined by ~1 = I/(NRe)I/~ 

dimensionless parameter defined by ~0 = ]/(NRe)0/~ 
ratio of specific heats 
dimensionless density given by ~/el 
dimensionless axial coordinate given by z/z o 
transformed dimensionless axial coordinate defined by/~1~/~ . . . . .  RN(~) 
dimensionless temperature T / T  1 
constant equal to 75 ~/128 
thermal conductivity 
viscosity 
density 
factor of proportionality defined by (#/#1) = (7(7"/I"1) 
dimensionless stream function 
angular velocity of rotation of disk and fluid core respectively 
dimensionless angular velocity 

I n t r o d u c t i o n  

The present study extends from two earlier papers by See [1, 2] 2) to the case of 
motion of rarefied gas between a rotating disk and a parallel stationary plate at a 
finite distance away from the disk. The latter system is defined as an enclosed disk 
(Figure 1). Additional bibliographies are to be found in these earlier papers. 

The present problem is significant from the point of view of performance of 
rotating elements in space (vacuum) environments and instances as the airlubricated 
bearing where the mean free path L of the fluid is not negligible when compared to the 
gap or other characteristic dimensions of the system. 

2) Numbers  in  bracke ts  refer to References, page 38. 
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An earl ier  s t u d y  [1] showed t h a t  a ro ta t ing  disk is a convenient  sys tem for s tudy ing  
slip and free molecule flow because the  p roduc t  of the  character is t ic  Knudsen  number  
NK~ and the Mach number  M r, based  on the  radius  of the  disk, cancel  out  the  radius  r 
as a charac ter i s t ic  dimension.  Only  the  pressure p, angular  veloci ty  co and  t e m p e r a t u r e  

T de te rmine  the range of NK, , M T [= (L/r) (r co/l/7 R T] or the  regime of the  flow 
phenomenon  as viscous, slip, or free molecule flow; R is the  gas cons tan t  and  Y is the  
rat io  of specific heats.  Since slip motion,  when it  occurs, is found at  all  radii ,  large 
magni tudes  of slip mot ion  can be measured  accura te ly  at  a large radius  of a ro ta t ing  
disk. Therefore,  a ro ta t ing  disk furnishes, in a sense, a magni f ied  model  of slip motion.  

ro/ot/ng disk slolionsry p/ale 

\ \ 

Figure 1 
Coordinate system of an enclosed rotating disk. 

As shown in the  foliowing, the  enclosed ro ta t ing  disk makes  possible measuremen t  
in the  slip and  free molecule regime at  bo th  ve ry  smal l  character is t ic  Reyno lds  
numbers  and Mach numbers .  Thus,  the  effect of compress ib i l i ty  is negligible. This is 
not  easi ly accompl ished when an exper iment  is carr ied out  wi th  a f la t -p la te  sys tem [3]. 

I t  is also shown t h a t  cont inuous  t rans i t ion  from slip to free molecule mot ion  can be 
computed  based  on the  Maxwell  slip b o u n d a r y  condi t ions [4]. The  expe r imen ta l  
p rogram makes  possible a test  of this  b o u n d a r y  condi t ion at  near  free-molecule flow 
states.  

We  use the  expe r imen ta l  p rogram to de te rmine  the effect of a finite disk  d iameter .  
Theore t ica l  resul ts  cover  the  case of infini te disk  and infini te  plate .  E x p e r i m e n t a l  
results  show t h a t  the  effect of a finite disk on the  na tu re  of slip mot ion  is small .  

1. B a s i c  F o r m u l a t i o n  

L a m i n a r  b o u n d a r y  layer  mot ion  over an infini te  ro ta t ing  disk at  a finite d is tance  
z 0 from a para l le l  infini te  p la te  has the  following order  of magn i tude  of velocit ies [2, 51 : 

g = 0 [(NRe)I R] (1.1) 

I / =  0 [R], (1.2) 

w - o [(NR~)I Z] ,  (1.3) 

where U, V, and  W are dimensionless  radia l ,  t angen t i a l  and  axia l  veloci t ies:  

U --~--- V -  v W -  w (1.4) 
~o L 1 ' m L 1 ' ~o L 1 ' 
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where u, v, and w are the radial (coordinate r, measured from the axis of rotation),  
tangent ia l  (coordinate q~) and axial (coordinate z, measured f rom the surface of the 
rota t ing disk) velocities ; L i is the reference mean  free pa th  of the fluid away  from the 
wall [61. 

L 1 _  16 ~* , (1.5) 
5 ~1 1/2 ~ R T 1 

where ~1, #1, T~ are the density, the viscosity and the t empera tu re  at  reference s ta te  [1] ; 
co is the angular  veloci ty of rota t ion;  the dimensionless coordinates R and Z are 
given by  : 

R r Z - -  z 
L1 , L1 . (1.6) 

(NRe)I is the characterist ic  Reynolds  number  given by:  

(NRe)I _ L~ co q~ (1.7) 

For  the range of s tates of the fluid under  consideration, i.e. the fluid has very  low 
density,  

(X~)~ < 1. (1.8) 

Fur ther ,  we consider cases, where 

R > Z. (1.9) 
We thus deal with the case, where 

V > U > W. (1.10) 

Following the above simplifications, the equations of continuity,  m o m e n t u m  and 

1 o ( F R U ) +  o (FW)=0 (1.11) 
R OR - 0 Z  ' 

0 ( OU) (1.12) I 'V~ F Q 2 R + ( A ~ e ) / 1 0 Z  K O z  R 

0 ( K  OV 
O z - /  = 0 (1.13) OZ 

0 ( K  0 ~ _ )  ' (1.14) 

where the radial  pressure p gradient  is given by  [5, 7] : 

Op ~ (1.15) Or ~) coc r, 

where ~ is the densi ty of the fluid, co~ is the angular  velocity of the fluid core, and, in 
addit ion to the dimensionless variables explained earlier, 

T F - -  O Q -  mc K ~ Z N p , - -  % #  (1.16) 
0 - -  T1 ,  01' ~o ' /~l 2 1 '  Z 

2 and cp being the the rmal  conduct iv i ty  and specific heat  a t  constant  pressure of the 

energy t ake  the form" 
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fluid; and, following CHAPMAN and RUBESlN [81: 

K F = a (1.17) 

where a is nearly a constant  for a given range of temperature.  
The Maxwell boundary  conditions for slip flow are, at the disk (z = 0, Z - 0): 

i V I 0 v, (1.18) 

75:~ L 
-- 128 ' . i f--  (1.19) 

L 1  

and subscript s refers to the conditions of the fluid at the wall, and w refers to the 
conditions at the wall; at  the plate (z = z o, Z = Z0)" 

OU OV O0 

2. F l o w  C h a r a c t e r i s t i c s  

The solution of Equat ions  (1.11) to (1.14) subjecting to the above boundary  
conditions can be obtained by  using a similar t ransformation as in Reference Eli. 
In t roducing s t ream function ~ such tha t  

F U -  Ow 1 OR~ (2.1) 
o z  ' F W = - ~ o ~ "  

and transforming the coordinates to R and ~, such tha t  

- -  R N ( ~ )  = f l l ~ o ,  (2.2) 

where fil = ~/(NR,),/a~ and N i s  a function of ~. Equat ions  (1.12) and (1.13) now take  
the form" 

N "  = - s 2 -  6 2, (2.3) 

GH ~ 0 

as in Reference [21, and are independent of the energy equation, 

1 
U = R N ' ( ~ ) ,  V=RG(~D,  W -  N(~) & 

and the boundary  conditions are now: 

(2.4) 

(2.5) 

N'(0) = - / 5 1  N"(0), ] - -  G ( 0 )  = fll G'(0), 

N'(~]o) = fll N"(r]o), G(~]o) = fll G'(~]0), N(O) = 0 = N(~o), 
(2.6) 

where, for given R, 

z - Z = - /  dr] 
L1 fll F 

o 

(2.7) 
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a nd  

L1Z~ - Z ~  " -  - -  J 81d'i~/U 
0 

(2.8) 

Solut ion of Equa t i ons  (2.3) and  (2.4), subjec t ing  to E q u a t i o n  (2.6), gives 

/31 ~o 

2/31- r io  2 / 3 1 - r i o '  

N = a 1 r] + a 2 ~22 + aa ,]a + a4 r/4 + a5 ~?a, 

with  

- / 3 1  ~ (5/31 - ,70) 
a l  = 1 0  (2/31 - -  rio) 2 ( 6 8 1  - -  rio ) ' 

ri~ (5 & - rio) 
gg = 2 0  (2 81 - -  ri0) 2 (6  81 - -  ri0) ' 

rio (60/32 - 50/31 rio 4- 7 rig) 
a~ - 60 (2/31 - rioV (6/31 - rio) 

(/3, ~o) 1 
a4 12 (2 & - ,,o) ' a5 = 60  (2 81 - rio) ~ " 

(2.9) 

(2.10) 

(2.11) 

For  the  case of incompressible  viscous mot ion ,  fil + 0, r]0 + - 1, r] + - z / z  o, 

a nd  
G - -  1 - "r/ (2.12) 

1 7 1 1 
a 1 = 0 ,  a2  - -  2 0  ' a a  - -  6 0  ' (/4 - -  12 ' a5  60 ' ( 2 . 13 )  

as given in Reference [2]. Slip modifies the  tangent ia l ,  axial  and  radial  velocities as 
shown in Figures  2 and  3 '  fil § oc corresponds  to free-molecule flow. Hence,  in the  
present  conf igurat ion,  con t inuous  t rans i t ion  f rom slip to free molecule flow can be 
accoun ted  for. 

1.0 

0"8 

g'8 

O.z, 

0"2 

17'~. 0 o12 oi~ 0'8 0"8 l'O 

F i g u r e  o~ 

T a n g e n t i a l  v e l o c i t y  prof i les .  
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0.012 

O.008 

0"00~, 

0'0 

-0'004 

-0"008 

-0.812 

O.O 012 8"~ 0"8 0"8 l"O-~l 
Figure 3 

Radial velocity profile. 

The pressure distr ibution remains according to:  

1 
/~1 --->" O, G = - 2 - '  4 ; /~1 ----~ 0 0 '  G : - - - ~  ~Q2_  ' 4 ' 

The local rates of shear at  the disk surface are 

where  

and  

w h e r e  

du ] coal2]/ ~ 1 T 1 
oz o = - ~ 81 R _rw x " ( o )  = - v ~  T ~  r N"(O) ,  

no 3 (5 i l l--no) 
N"(0) = 2 a2 = 10 (2 ~ -  no)2 (6 ~ -  no) 

~ ] o =  - - ( � f l l R f f w G ' ( 0 )  = - - o 9 3 1 2 V 0 ~  T~ T1 r G' (O)' 

(2.14) 

(2.15) 

(2.16) 

1 (2.17) 
G'(0) - 2 ~1 - no 

3. Temperature Distribution 

I t  remains to t ransform ~ back  to the physical  coordinate by  solving the energy 
equation. Wi th  the solution given by:  

0 : 2 (y -- 1) M~ R ~ S(~) + (0, - 0p) g(~) + 0 , ,  (3.1) 

where 0, is the dimensionless t empera tu re  of the gas at  the disk surface, 0p is t ha t  at  
the s ta t ionary  plate,  and M 1 = (9 L1/ / y  R T 1 is a characterist ic  Mach number .  The  
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energy equation is now separable: 

1 
Np/  Q" + 2 N Q' = 0,  (3.2) 

1 
- -  S "  + 2 N S '  - -  2 N '  S = - -  ( N  "2 -[- G'2), (3.3)  
Npr 

which are identical to the forms arrived at by MILLSAPS and P O H L H A U S E N ;  and the 
solution was derived in Reference [9]. 

We can consider the following cases of boundary condition: 
Case I. Constant temperature system, at the solid surfaces, T ( 0 ) =  T~, 
T(zo)  = T r  

Case II. Constant disk temperature, plate insulated; at the solid surfaces, 
T(O) = Tw, OTIOZ]=o = O. 

Case III.  Case I with negligible convection (rarefied gas). 
C a s e  I 

The slip boundary conditions of the fluid of Case I are 

0 0 1 ,  
0 s - -  0 w = - -  Z f i l  O~ ]0 

oo  
op  - 1 = ~ ~ ~-]~o. 

The accommodation coefficients, ~s and ~p, are 

0 s - 0 v 0 s - O~ 
~162 - -  0 w -  O~ ' o~p - -  0 s -  1 

The boundary condition, when separated, becomes: 

1 
Q(O) + ~/31 Q'(O) - , S (o) = - ~/31 S' (o), 

e s 

1 
G(ryo) - ~ ; h  O' (~o)  = 1 - -  - - ,  

e~o 

The equation of Q1 is readily integrated: 

for ~s = % = ~, 

where 

s (~0)  = ~ ~1 s'(ryo). 

Q l = b l / e x p  - 2 N p ~  Ndr] d r ] + b  2, 
o o 

1 --  2 / e  

b l  = l - -  f l l  ;~ (1 + I ' )  ' 

1 ~/31 (1 - -  Z/e)  
b 2 - -  e 1 - - / 3  l g ( 1  + I ' )  ' 

I =  f exp - 2 N p ~  N d r ~  dr] ,  

o o 

[ ; ]  I ' = e x p  - - 2 N p ,  Ndry . 
o 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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When  there is no slip, b 2 - 0, b 1 = - 1/I, as in Reference [91. For  complete slip, 
fil + oo, gives b~ = 0, b 2 = 1/2 (I' = 1, I = ~0). The dissipation function S(~]) can be 
calculated in the same manner  as in Reference E91. The trend of Q and S are as shown 
in Figure 4, for a given Prandt l  number.  

41 
7 

Figure 4 

Trend of temperature distribution for constant wall temperatures. 

Case I I  
The boundary  condition at the plate is now: 

00]  = 0  
07 ~o 

which gives 

or, b 1 = O, 

(3.13) 

S'(rio ) = O, Q'(r~o ) = O, (3.14) 

b 2 = 1 / ~ ,  and 0 = 2 ( 7 - 1 )  M12R 2S(~])+  0w (3.15) 

and the contribution is entirely due to dissipation. The trend, following solution as in 
Reference [93, is shown in Figure 5. 

'//7 Q 

T 
3 

Figure 5 

Temperature distribution for insulated plate. 

Case I I I  
This case is closely related to our experimental  program where the convection effect 

is small, or, Equat ion  (3.2) is reduced to:  

d 20 
d~ ~- = 0.  (3.16) 

I ts  solution with the given boundary  conditions is: 

O= z~l(Ow+ l)-- Ow~~ + ( O w - - 1 )  rJ (3.17) 
2 z ~ , - -  r/o 2 ~ /~1 - -  rio" 

-~0" -7] _~o ~ -7 
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For  mot ion without  slip, fll + 0, 

0 = 0 w - -  -(  Ow - -  1)7 

and for the case of free molecule flow, fil --> oo, 

O -  0 ~ + 1  
2 

The t rend is plot ted in Figure 6. 

(3.18) 

(329) 

0.0 ' a'.5 ' / o  

Figure 6 

0"0 0"5 l'O 

q]/iTo 

Temperature  distribution and relation between .1 and ~. 

The physical  coordinate z can now be determined:  

z _ 1 / O d ~ ?  
- ~o f lo d 

o 

1 [ ~ f l l ( 0 w + l ) -  own~ 

where flo = fll zo/L1. Equa t ion  (3.20) 
parabolic. For  fll --> 0, 

Z __ 1 [ 

at  the plate,  ~1 = ~o, 

(3.20) 
0w- 1)*12 .] 

2(2~f l t -7o)  l '  

shows tha t  the relation between z and ~ is 

(0w T_ 1) ~72] (3.21) 
2 rio 

= ) 0 - = -  f l .  - - -  7 0 .  (3.22) 

For  a constant  t empera tu re  sys tem as in our exper imenta l  s tudy,  

= .CZo = __~Lflo, (3.23) 

giving a linear relation between ~7 and z with propor t ional i ty  based on: 

(NRe)O _ z~, co 51 , (3.24) 
,ul 

thus rever t ing to the case of incompressible fluid. Our exper iments  approx imate  this 
condition very  closely. 
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4.  F r i c t i o n  C o e f f i c i e n t  a n d  S l i p  F a c t o r  

cr M~ -- 

where (NR~)~ is given by" 

The local tangential friction coefficient % can be calculated from: 

cr -- ~ (OvlOz)o (4.1) 
(�89 ~ r~ ~ " 

From the above results, for a constant temperature system, with the Math number 
based on radius M~ : co r / / y  R TI:  

M~ ( r )  2 
(NRe)r ~o Mr [2 (Lx/zo) + 1] ' (4.2) 

and reduces to 

(4.3) 
/ h  

5 2 ~  
cr M r = 16 7 (4.4) 

for free molecule flow; and to 

C4 Mr-- (NRe)r --Zoo Mr (4.5) 

for viscous flow. At higher (NRe)~ 0, we have 

[ M~ ]w- (4.6) cr M, = 0.856 L (NR,)~ J 

for laminar boundary layer motion as obtained by SCHULTz-GRuNOW [1@ 
The above is to be compared to 

2 
c r  l /3x7  (4.7) 

for free molecule flow over a free disk; and 

Mr 0.61 

for the laminar flow range [1, 101. 
The slip factor can be obtained from" 

/\OV" 

where, in terms of the molecular speed ratio [4] : 

(4.8) 

(4.9) 

U s ~v 03  

S, = ~ R  T- 1 S w -  1/2~ r l  (4.10) 
gives" 

I \ O S  s, -  < = < (4.11) 

where ~ = z/zo, and ):-~ = Ls/z o. As a test of the Maxwell boundary condition for slip 
flow, we may take the characteristic group as our reference: 

., r r M~ ] (4.12) sw<: ff  L(N.,), j 
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and measurement of slip factor J:~ will provide a test for the Maxwell boundary 
condition for slip flow. 

5. Experimental Equipment and Instrumentation 

For the experimental program a test facility was designed and constructed in 
which a disk is driven at speeds of 1000 rpm to 20000 rpm inside a vacuum chamber 
(2' • 5-1/2' inside dimension) with provisions for measuring pressure and temperature 
distributions over the entire surface of the disk. 

Pumpdown (to 1# Hg) of the vacuum chamber consists of a 6" elbow welded to 
the chamber on one side, and connected to the diffusion pump with an 0-ring seal. 
A 2" 'Veeco' vacuum valve is placed between the diffusion pump and the mechanical 
pump. The disk and probe mechanism assemblies slide into the chamber on two 
channels welded inside the chamber in such a way that the disk center is the same as 
that of the chamber. 

Figure 7 shows a detailed drawing of the disk used in this experiment. The 12" 
diameter disk was constructed from 7075-TG ALCOA aluminum alloy. The face of the 
disk was machined and ground to a very smooth finish (variation across the diameter 
was less than 0.001"). The disk was mounted directly on the motor shaft using an 
'American Standard force fit, class FNI'. The disk is driven by a special three-phase, 
400 cycle induction motor designed for operation in a vacuum. The motor input is 

o.12L 
o.~L 
0.825 
z.8;5_~ 

Figure 7 

Disk design details. 

delivered from a 60- to 400-cycle frequency converter, which in turn is operated from 
a variable transformer with 110 volt AC input. This disk drive unit is capable of 
variable speeds ranging from 1000 rpm to 20000 rpm. For speed counting, a small 
magnet is mounted into an 0.25" hole drilled in a stainless steel shaft. The stainless 
steel shaft, which is 1" long and 0.5" in diameter, is screwed into the motor shaft. 
A small earphone coil is mounted directly underneath the magnet. When the disk 
rotates, a signal is produced every time the magnet completes a full revolution over 
the coil. The signal is magnified by an amplifier, then fed into an electronic counter 
for speed indication. 

A probe holder designed for both axial and radial traverse is mounted on the frame 
of the rotating disk system. Traverse of the probe holder is made through two shafts 
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ex tended  to the  outs ide of the  vacuum chamber  th rough  two v a c u u m  seals [111 . 
These v a c u u m  t igh t  seals allow ro ta t ion  and t rans la t ion  of a half- inch shaf t  wi thou t  
affecting the  pressure in the  chamber .  

Measurement  of the  chamber  pressure and the ca l ibra t ion  of the  P i ran i  gauge 
were made  with  a mercu ry  McCleod gauge. The McCleod gauge is p rov ided  with  
direct  reading  scales so t ha t  no compu ta t ion  is needed. Bo th  chamber  pressure mea-  
surement  and  the ve loc i ty  head  measurement  were made  wi th  P i ran i  gauges. F o r  
the  measu remen t  of the  ve loc i ty  head  in vacuum,  a different ia l  P i ran i  gauge was 
designed [121. The  ca l ibra t ion  of the  dif ferent ia l  P i rani  gauge for air  and  argon are 
shown in Figures  8 and  9. The pressure probes are shown in Figure  10. The t ime  con- 
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s tan t  E131 for measurements  clown to 2# Hg  pressure is less than  10 minutes .  The var ia-  
t ion of s ta t ic  pressure due to ro ta t ion  at  low densit ies amoun t s  to less than  0.01 ,tt 
per  # H g  of pressure,  which is below the  sens i t iv i ty  of the  gauge system.  

F o r  the  de te rmina t ion  of the  ac tua l  veloci ty  head, the  ca l ibra t ion  follows HARRIS 
and PATTERSON ,q41. This cal ibrat ion,  when compared  to the  earl ier  me thod  oI 
CFIAMBRE and SCHAAF ~151, is shown in Figure  11. Al l  probes were cons t ruc ted  of 
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Comparison between theory and experiment of long tube impact in free molecule flow. 
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sections of stainless steel tubing. Their sizes were chosen as a compromise between the 
requirements of being small enough to minimize flow disturbance, and large enough 
to improve the time response - the latter being a special problem for making measure- 
ments in rarefied gas. 

6. E x p e r i m e n t a l  P r o c e d u r e  and R e s u l t s  

In the beginning, measurements were made in the continuum regime; the results 
compare favorably to earlier published results [201 . Later measurements of difference 
between the impact pressure in the tangential direction due to rotation of the disk 
and static pressure were recorded using the differential Pirani gauge. The measure- 
ment  technique described in Reference [12] was used. The closest setting of the impact 
probe is 0-064 I' from the disk surface. By means of the vernier controls outside the 
chamber the probe was traversed across the entire gap between the rotating disk and 
the stat ionary plate. Data  were recorded at increments of 0.180 ' / to  0-0945 H across the 
gap for gaps of 1" and 1/2" respectively. In addition to impact pressure measurements, 
temperatures were also recorded using a copper-constantan thermocouple. The 
thermocouple was mounted a t  the end of the impact probe. 

The measured stagnation temperatures were nearly the same as the ambient 
temperature with a maximum difference of 2 ~ F, following the values predicted by [4]: 

T2 - - 1 +  2 
T 1 5 $2, 

whereas the maximum value of S in our experiments is 0.35. Hence, the relation as 
derived for the ;so-thermal system in the above is accurate for the present system. 
From the ratio of the impact  to static pressure, the molecular speed ratio S is deter- 
mined from Figure 12, which is a plot based on Reference [141 for diameter to length 
ratio of 0.015, as in our experiments. 

For the determination of the slope dS/O~ and slip S s - S w from the experimental 
data, a fourth degree polynomial was used, and the coefficients of the polynomial in 
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Molecular speed ratio versus pressure ratio. 
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terms of the gap were determined by solving a set of five simultaneous equations for 
each run. c, is given by Equation (4.1) and the slip factor J2~ is given by Equation (4.11). 

The results of the experiments are presented in Figure 13, which is plotted in 
comparison to Equation (4.12); Figure 14 is a comparison to the relation for semi- 
infinite mediums [1]. Figures 15 and 16 are two typical plots showing the range of the 
experiment from slip and free molecule flow. 
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These results  show tha t  in spite of the  inherent  difference between a finite disk 
from the infini te  sys tem used in the  theore t ica l  analysis  [51, the  va l id i ty  of the  theore t i -  
cal model  is demons t ra ted .  A typ ica l  compar ison is shown in Figure  17. 

7. D i scuss ion  and Conclus ions  

F r o m  compar ison of our theore t ica l  and  exper imen ta l  results,  it  is shown tha t ,  
wi th  the  ro ta t ing  disk, t rans i t ion  from viscous to free molecule flow can be s tudied  
wi thout  involving the  compress ib i l i ty  effect. Our exper iments  covered a wide range 
in slip motion.  As was suggested earl ier  [1], the  ro ta t ing  disk furnishes a magnif ied  
model  of slip motion.  Even  at  modera te  speeds and pressures we can ob ta in  slip 
mot ion  over  the  whole disk of 12" d iameter .  The friction coefficient is shown to v a r y  
d i rec t ly  wi th  radius  and  with  the  molecular  weight of the  gas and inverse ly  wi th  the  
gap. Trans i t ion  from con t inuum to free molecule flow occurs th rough  b o u n d a r y  layer  
mot ion  [16], viscous motion,  slip motion,  and  then  free molecule motion.  
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Zusam1~,4en/assung 

Es wird gezeigt, class der  IJbergang yon der  Kon t inuumss t r6mung  zur (~ Gle i t s t r6mung 7> 
(slip-flow) an einer ro t ierenden Scheibe durch ihren Abs tand  von  der  ruhenden Wand,  die 
Drehgeschwindigkei t  und den Gasdruck bes t immt  wird. Messungen zeigen, dass die Max-  
wellsche Grenzbedingung fast  bis zur Molekulars t r6mung herab erftillt bleibt.  Tro tz  der 
Unterschiede  zwischen der theore t i schen (unendlich ausgedehnten) und der wirkl ichen 
Scheibe werden die Reibungskoeff iz ienten ffir beide Fglle sehr ~ihnlich. 
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The Stability of Dissipative Couette Flow between Rotating 
Cylinders in the Presence of an Axial Magnetic Field 

By ULRICH H. KURZWXa, Uni ted  Aircraf t  Corporation,  Research  Laboratories ,  
Eas t  Har t ford ,  Conn., U S A  

1. Introduct ion 

The effect of an axial magnetic field on the stability of Couette flow between 
concentric rotating cylinders has been examined by C~IANDRASEK~IAR [111) for the 
case of a weakly conducting viscous fluid bounded by  infinitely conducting; co- 
rotating cylinders. I t  was found that  the magnetic field has a stabilizing influence, 
with the degree of stabilization being a function of the Har tmann number. NIBLETT I21 
has re-examined this problem, using the more realistic assumption that  the cylinders 
are insulators. His calculated values for the Taylor number at the onset of instability 
have recently been verified experimentally by  DONNELLY and OZlMA [31. 

In the present paper we extend Niblett 's analysis to the case where the cylinders 
have an arbi trary rotation ratio. We will give an explicit evaluation for the critical 
Taylor and wave number as a function of the Har tmann number for all rotation ratios 
I m I ~< 1, where m = X22/s with D1 and ~ denoting the angular velocity of the inner 
and the outer cylinder, respectively. In addition, asymptotic formulas relating the 
Taylor and wave number to the magnitude of the magnetic field for very large 
Har tmann  number, are obtained. Preliminary results of this investigation have been 

1) Numbers in brackets refer to References, page 45. 


