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Zusammenfassung

Der Artikel behandelt isotherme Verformungen eines linearviskoelastischen Stoffes im
einachsigen Spannungszustand. Die Deformationsgeschichte des Materials fiir den Zeit-
abschnitt (— oo, 0) wird als bekannt angesehen. Ein Teil der mechanischen Arbeit, die am
Material wihrend dieses Zeitabschnitts geleistet wird, kann in rein mechanischer Weise
dadurch zuriickgewonnen werden, dass der Korper geeigneten weiteren Verformungen
unterworfen wird. Der Artikel behandelt den Héchstbetrag, der auf diese Weise zuriickge-
wonnen werden kann.
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Notations
a outer radius of the disk
ay, Ay, as, a4, @5 constants of integration defined by Equation (2.10)
by, by constants of integration defined by Equation (3.8)
Cy friction coefficient defined by the relation ¢4 = 7,/{1%) 0, 72 w?
¢y specific heat at constant pressure
G{n) dimensionless function of the tangential velocity defined by the relation
v = RG()
K dimensionless viscosity or thermal conductivity, u/u, or /A,

mean free path
T dimensionless mean free path defined by L/L,
£ dimensionless mean free path defined by L [z,
M),, (M), Mach numbers defined by w L,/)/y R Ty, w [}y R T,

—
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N.(n) reduced radial velocity function given by U — R N,()

(Nkn)sy (Ng,)q Knudsen numbers defined by L/z,, L/d

(Nph Prandtl number defined by (¢, u;)/4,

(Ngo1 Reynolds number (o; @ L,2)/u,

(N go), Reynolds number (g, w #2/u,

(Ng)o Reynolds number (g, » z5)/u,

P static pressure

Q reduced temperature function for heat exchange

7, 0,z cylindrical polar coordinates in the radial, azimuthal, and axial directions
R gasconstantinp =g R T

R, Z dimensionless coordinates, 7/L,, /L

S reduced temperature function for dissipation

S, S, molecular speed ratios # w/)/2 RT,, v,)/2 R T,

T temperature

u, v, W components of the velocity in the radial, tangential and axial directions
U, V,W dimensionless velocity components #/w L, v/w Ly, wjw Ly

Zy axial distance between disk and plate

« accommodation coefficient

b1 dimensionless parameter defined by #; = }/(Ng,)i/o

Bo dimensionless parameter defined by 3, = )/ (Nz.)olo

y ratio of specific heats

r dimensionless density given by o/o,

£ dimensionless axial coordinate given by z/z,

7 transformed dimensionless axial coordinate defined by ;9 = — RN(#)
6 dimensionless temperature 77,

P constant equal to 75 77/128

A thermal conductivity

u viscosity

0 density

g factor of proportionality defined by (ujuy) = o(T/T5)

P dimensionless stream function

W, m, angular velocity of rotation of disk and fluid core respectively
0 dimensionless angular velocity

Introduction

The present study extends from two earlier papers by Soo (1, 2]2%) to the case of
motion of rarefied gas between a rotating disk and a parallel stationary plate at a
finite distance away from the disk. The latter system is defined as an enclosed disk
(Figure 1). Additional bibliographies are to be found in these earlier papers.

The present problem is significant from the point of view of performance of
rotating elements in space (vacuum) environments and instances as the airlubricated
bearing where the mean free path L of the fluid is not negligible when compared to the
gap or other characteristic dimensions of the system.

2) Numbers in brackets refer to References, page 38.
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An earlier study [1] showed that a rotating disk is a convenient system for studying
slip and free molecule flow because the product of the characteristic Knudsen number
Nk, and the Mach number M., based on the radius of the disk, cancel out the radius »
as a characteristic dimension. Only the pressure p, angular velocity w and temperature
T determine the range of Ny, M, [= (L[?) (r o]}y R T] or the regime of the flow
phenomenon as viscous, slip, or free molecule flow; R is the gas constant and y is the
ratio of specific heats. Since slip motion, when it occurs, is found at all radii, large
magnitudes of slip motion can be measured accurately at a large radius of a rotating
disk. Therefore, a rotating disk furnishes, in a sense, a magnified model of slip motion.

rotating disk  slationary plate

Figure 1

Coordinate system of an enclosed rotating disk.

As shown in the following, the enclosed rotating disk makes possible measurement
in the slip and free molecule regime at both very small characteristic Reynolds
numbers and Mach numbers. Thus, the effect of compressibility is negligible. This is
not easily accomplished when an experiment is carried out with a flat-plate system [3].

It is also shown that continuous transition from slip to free molecule motion can be
computed based on the Maxwell slip boundary conditions [4]. The experimental
program makes possible a test of this boundary condition at near free-molecule flow
states.

We use the experimental program to determine the effect of a finite disk diameter.
Theoretical results cover the case of infinite disk and infinite plate. Experimental
results show that the effect of a finite disk on the nature of slip motion is small.

1. Basic Formulation

Laminar boundary layer motion over an infinite rotating disk at a finite distance
% from a parallel infinite plate has the following order of magnitude of velocities [2, 5]:

U = 0 [(Ng) R] (1.1)
V =0[R], (1.2)
W =0 [(Ng) Z], (1.3)

where U, V, and W are dimensionless radial, tangential and axial velocities:

U Vo 2 W ¥

U=t oIy Ey

(1.4)
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where #, v, and w are the radial (coordinate #, measured from the axis of rotation),
tangential (coordinate ¢) and axial {coordinate z, measured from the surface of the
rotating disk) velocities; L, is the reference mean free path of the fluid away from the
wall [6].

16

L= f 1.5
! 3 glVZnRT (1.5)

where g,, 4,, T, are the density, the viscosity and the temperature at reference state [1];
o is the angular velocity of rotation; the dimensionless coordinates R and Z are
given by:

v Z

(Ng.); 1s the characteristic Reynolds number given by:
L2
(Ng))y = —2 "2 /j‘: &, (1.7)

For the range of states of the fluid under consideration, ¢.e. the fluid has very low
density,

(Ngey < L. (1.8)

Further, we consider cases, where
R> Z. (1.9

We thus deal with the case, where
V>U>W. (1.10)

Following the above simplifications, the equations of continuity, momentum and
energy take the form:

S (TRU) - (TW) =0, (1.11)
IV e Rt o (B9, (112)
(k)0 =
D(Ug5 + W57} = Wi Wa)i' 5y (K-57). (114)
where the radial pressure p gradient is given by [5, 7]:
-2 aln, (1.15)

where g is the density of the fluid, w, is the angular velocity of the fluid core, and, in
addition to the dimensionless variables explained earlier,

L, r=2 0=
w)

62—“: ’
T, Q1

A c
K=%=l—1, Ny, = a’“‘ (1.16)

4 and ¢, being the thermal conductivity and specific heat at constant pressure of the
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fluid; and, following CHAPMAN and RUBESIN [8]:
KIl=g¢ (1.17)

where ¢ is nearly a constant for a given range of temperature.
The Maxwell boundary conditions for slip flow are, at the disk (z =0, Z = 0}:

U =2 (%g—) V.—R=1£ (‘;—g) W.=0, 6 —0,—xf (—37") (1.18)
where
L B Lil (1.19)

and subscript s refers to the conditions of the fluid at the wall, and w refers to the
conditions at the wall; at the plate (z = 2, Z = Z):

U-—2(57), V=-=e(5), W=0 6-1--x£(5;). 02

2. Flow Characteristics

The solution of Equations (1.11) to (1.14) subjecting to the above boundary
conditions can be obtained by using a similar transformation as in Reference [1].
Introducing stream function ¢ such that
1 ORy

_ Oy _
PU=z7, I'W=—5% "5

(2.1)

and transforming the coordinates to R and #, such that

~RN@) = prv, 22)

where 3, = ]/(TVRe)l/O', and N is a function of . Equations (1.12) and (1.13) now take
the form:

N =2 G (2.3)
G" =0 (2.4)

as in Reference [2], and are independent of the energy equation,

U=RN'(@), V=RG), W=— % N(#) (2.5)

and the boundary conditions are now:
N'(0) == p N"(0), 1 —G(0) =B, G'(0),
N'(no) = L N"(no),  G(no) = B1 G'(m), N(0) = 0 = N(np),

where, for given R,

(2.6)

n
z _ dn
+-Z= ()fﬂlp 2.7)
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and

Solution of Equations (2.3) and (2.4), subjecting to Equation (2.6), gives:

G = n Bi— 1o .
261“770+251_770’ (29)
N=a, n+ a,n?+ a; ® + ay n* + az 1P, (2.10)
with
4 = — By (5B — no)
VS IO @R~ a0t 6 R — ) ]
75 (3 81— 7o) 779 (60 B} — 50 By mg + 7 73)
= —_— = — cr 2.11
% 20 (2B, — 09)2 (61— ng) %s 60 (28, — 1o)2 (6 Br— 1) ( )
ay = — __(/3_1* o) . _ 1

Z@h - T 60 @A
For the case of incompressible viscous motion, §; - 0, o > — 1, > — 2/z,,
G=1-—y (2.12)
and

dl:O’ Ay = — —— @y = —

4y — —, (2.13)

as given in Reference [2]. Slip modifies the tangential, axial and radial velocities as
shown in Figures 2 and 3; 8, =~ oo corresponds to free-molecule flow. Hence, in the
present configuration, continuous transition from slip to free molecule flow can be
accounted for.
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Figure 2
Tangential velocity profiles.
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Radial velocity profile.

The pressure distribution remains according to:

1 1 1 1
ﬁ1—90, G(—-”’}ZL):AZ—, 92:7{; 61900, G:7, 92:—4".
The local rates of shear at the disk surface are
Ou — ” 32 _él——i "
W]o— © By RT,N"0) = — o |/ 2 20y N(0), (2.14)
where
” 3 (5 ‘8 - 770)
N"0) = 2 _ 7o° (5 By 2.15
O =20~ T5@s =) 6 p = (2.13)
and
0‘0] =—wp RI,G0) = — w32 EL;/G’(O) (2.16)
0z lo 1 b M1 Tu) ’ '
where
1
G'(0) = ——— 2.17
( ) 28— m ( )

3. Temperature Distribution

It remains to transform # back to the physical coordinate by solving the energy
equation. With the solution given by:

0=2(y—1) M;R*S(n) + (0, — 6,) Q(n) + 0, (3.1)

where 6§, is the dimensionless temperature of the gas at the disk surface, 0, is that at
the stationary plate, and M, =w L,/)/y R T, is a characteristic Mach number. The
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energy equation is now separable:
1 " ’

1
Py

S"42NS —2N' S=— (N"2+ G, (3.3)

which are identical to the forms arrived at by Mirrsars and PORLHAUSEN; and the
solution was derived in Reference [9].
We can consider the following cases of boundary condition:

Case I. Constant temperature system, at the solid surfaces, T(0)= T,
T(z) = T4
Case II. Constant disk temperature, plate insulated; at the solid surfaces,
T0)= 1T, 0T/0z], = 0.
Case ITI. Case I with negligible convection (rarefied gas).

Case I
The slip boundary conditions of the fluid of Case I are:
00
0,— b,=— x5, (3.4)
00
9!,—1—%/31 *‘0—”‘7—]”0. (35)

The accommodation coefficients, «, and ®,, are
9, — 0, 0, — 6,

as:ﬁ, Mp: es_l . (36)
The boundary condition, when separated, becomes:
/ 1 ’
QO +%p Q' (0) =, S(0)=—=p5(0), l
g (3.7)
! 1 !
Qu(no) — % 1 Q" (o) =1 — R S(no) = % f1 S'(n0). [
The equation of Q, is readily integrated:
1 7
lebl/exp [—ZNP,/Ndn dn + by, (3.8)
0 0
fora, = o, =a,
. 1— 2/a
bl Y '31% (1 + I/) B (3'9)
1 % By (1 — 2/a)
b= L - AL (3.10)
where
Mo n
1= [ exp [—ZNPr/quy] i, (3.11)
0 0

7
I' = exp [_ 2NP,/Nd17] . (3.12)
0
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When there is no slip, b, = 0, b, = — 1/7, as in Reference [9]. For complete slip,
By > oo, gives b, = 0, by = 1/2 (I' = 1, I = 5,). The dissipation function S{3) can be
calculated in the same manner as in Reference [9]. The trend of @ and S are as shown
in Figure 4, for a given Prandtl number.

" S

=00

> =] 5 \d )

Figure 4

Trend of temperature distribution for constant wall temperatures.

Case 11
The boundary condition at the plate is now:
06 '
W] =0 (3.13)
which gives
S'(ne) =0, Q') =0, (3.14)
or, by =0, by=1fo, and 0 =2 —1) M2 R2S(n) + 0, (3.15)

and the contribution is entirely due to dissipation. The trend, following solution as in
Reference [9], is.shown in Figure 5.

g S q
1] all fi's f=0
a
/}:oo
=0
/\
_ f== - _
=T U ~Ty 7 ~Ty 7

Figure 5
Temperature distribution for insulated plate.

Case 111
This case is closely related to our experimental program where the convection effect
is small, or, Equation (3.2) is reduced to:

azo
Tnz = O. (3.16)

Its solution with the given boundary conditions is:

_ %P (6,1 — O, (B,— 1)
6 2% By — o + 2% By —m’ (3-17)
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For motion without slip, 5, >0,

-6, — ("w;ﬂ (3.18)

and for the case of free molecule flow, §; > oo,

g— Sutl (3.19)
2
The trend is plotted in Figure 6.
0y, ¢

© /}=°°

3 8

5

g B0

= 1

0705 10 R T—
7]/’]0 ‘7]/%
Figure 6

Temperature distribution and relation between # and .

The physical coordinate z can now be determined:

7
£ __1
{=- 500/06%7 ]
_i,["ﬂ1(0w+1)“0 (0, — 1) n? ] j
Bo 2Py — 1 (2o fy— ) I’

where B, = B 2,/L,. Equation (3.20) shows that the relation between z and 7 is
parabolic. For §, >0,

(3.20)

w o o
+ 2

2 1 (6, — 1)
=" = _. ¢ N T T e 3.21
C Z ﬁo [ w 7] 2 Mo 77 ] ( )
at the plate, n = #,,
P Ao L (O, 1
e Ll oz

For a constant temperature system as in our experimental study,

2 n
=2 - 3.23
giving a linear relation between % and z with proportionality based on:
2
(NgJo = 2281, (3.24)
My

thus reverting to the case of incompressible fluid. Our experiments approximate this
condition very closely.



Vol. 15, 1964 Flow of Rarefied Gas Over an Enclosed Rotating Disk 31

4. Friction Coefficient and Slip Factor

The local tangential friction coefficient ¢, can be calculated from:

0v/0z),
o = LA (4.1)

From the above results, for a constant temperature system, with the Mach number
based on radins M, = w r/]/y RTy:

Mz v 2
¢ M, = (Nre), (70> M, [2 (Ly/z) + 1] ° *.2)
where (Ng,), is given by:
1/2
(No)y = £ = (+.3)
and reduces to
5 2=m
for free molecule flow; and to
M2 v 2
co M. =i () (4.5)
for viscous flow. At higher (Ng,), , we have
M2
¢y M, — 0-856 [ (NRg),] (4.6)

for laminar boundary layer motion as obtained by Scrurtz-GrRUNOW [16].
The above is to be compared to

2

¢, M, = Vins 4.7)
for free molecule flow over a free disk; and
e V3 (2@t 6, T M3 2
cy M, = 061 1) (ZF) VU[NRe | (+.8)
for the laminar flow range [1, 10].
The slip factor can be obtained from:
ov
V. — R,;,(M-) (4.9)
where, in terms of the molecular speed ratio [4]:
s U, 7w
TYrRT, ST VIRT (10
gives:
0S
S,— S, (oc) (4.11)

where { = z/zy, and £ = L[z, As a test of the Maxwell boundary condition for slip
flow, we may take the characteristic group as our reference:

A [(N]flf:T] (4.12)



32 Suao L. Soo and Zunair N, SARAFA ZAMP

and measurement of slip factor 2, will provide a test for the Maxwell boundary
condition for slip flow.

5. Experimental Equipment and Instrumentation

For the experimental program a test facility was designed and constructed in
which a disk is driven at speeds of 1000 rpm to 20000 rpm inside a vacuum chamber
{2" X 5-1/2' inside dimension) with provisions for measuring pressure and temperature
distributions over the entire surface of the disk.

Pumpdown (to 1x Hg) of the vacuum chamber consists of a 6" elbow welded to
the chamber on one side, and connected to the diffusion pump with an 0-ring seal.
A 2" “Veeco’ vacuum valve is placed between the diffusion pump and the mechanical
pump. The disk and probe mechanism assemblies slide into the chamber on two
channels welded inside the chamber in such a way that the disk center is the same as
that of the chamber.

Figure 7 shows a detailed drawing of the disk used in this experiment. The 12"
diameter disk was constructed from 7075-TG ALCOA aluminum alloy. The face of the
disk was machined and ground to a very smooth finish (variation across the diameter
was less than 0-001”). The disk was mounted directly on the motor shaft using an
‘American Standard force fit, class FN;'. The disk is driven by a special three-phase,
400 cycle induction motor designed for operation in a vacuum. The motor input is

JU™

0125 |
04375 |
0625

rees | L

Figure 7
Disk design details.

delivered from a 60- to 400-cycle frequency converter, which in turn is operated from
a variable transformer with 110 volt AC input. This disk drive unit is capable of
variable speeds ranging from 1000 rpm to 20000 rpm. For speed counting, a small
magnet is mounted into an 0-25” hole drilled in a stainless steel shaft. The stainless
steel shaft, which is 1” long and 0-5” in diameter, is screwed into the motor shaft.
A small earphone coil is mounted directly underneath the magnet. When the disk
rotates, a signal is produced every time the magnet completes a full revolution over
the coil. The signal is magnified by an amplifier, then fed into an electronic counter
for speed indication.

A probe holder designed for both axial and radial traverse is mounted on the frame
of the rotating disk system. Traverse of the probe holder is made through two shafts
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extended to the outside of the vacuum chamber through two vacuum seals [11].
These vacuum tight seals allow rotation and translation of a half-inch shaft without
affecting the pressure in the chamber.

Measurement of the chamber pressure and the calibration of the Pirani gauge
were made with a mercury McCleod gauge. The McCleod gauge is provided with
direct reading scales so that no computation is needed. Both chamber pressure mea-
surement and the velocity head measurement were made with Pirani gauges. For
the measurement of the velocity head in vacuum, a differential Pirani gauge was
designed [12]. The calibration of the differential Pirani gauge for air and argon are
shown in Figures 8 and 9. The pressure probes are shown in Figure 10. The time con-

10-0 ¢
100 |
° L
(=)
S o
& E
001 L 1/ Aavam {1 el ol T anT|
o001 0010 0100 1-:000 10:00 1000
pressure - difference (microns Hg)
Figure 8
Calibration curves for air.
0oE
100 |~
& r
s |
T
0=
007 oo A A YAl i1 L] |
0001 0010 0100 1000 10-00 100-0

pressure difference(microns Hg)
Figure 9
Calibration curves for argon.

ZAMP 15/3
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stant [13] for measurements down to Zy Hg pressure is less than 10 minutes. The varia-
tion of static pressure due to rotation at low densities amounts to less than 0-01
per u Hg of pressure, which is below the sensitivity of the gauge system.

For the determination of the actual velocity head, the calibration follows HARRIS
and PaTTERSON [14]. This calibration, when compared to the earlier method of
CraMBRE and ScHAAF [15], is shown in Figure 11. All probes were constructed of

Y-20 NF

Ihermocaple junction

o E M LRSI iasulaior
E/jrmi[ J‘%ﬁ; static
o L
i -
0-0i0dia fotal
2fioles ”
0134 JF_‘D@U 030
— 0028
1ow pressure probe almospheric pressure probe
Figure 10
Pressure probes used in the experiments.
34 [‘
Palp¥i/T theory (1)
0 D=0-04
26
e theory(13)
D=0-04
78+ experiment {161718)
14 i
70 L I Il I}

1 il | L
g0 07 g2 03 04 05 06 07 08
S{molecuiar speed ratio)
Figure 11
Comparison between theory and experiment of long tube impact in free molecule flow.
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sections of stainless steel tubing. Their sizes were chosen as a compromise between the
requirements of being small enough to minimize flow disturbance, and large enough
to improve the time response — the latter being a special problem for making measure-
ments in rarefied gas.

6. Experimental Procedure and Results

In the beginning, measurements were made in the continuum regime; the results
compare favorably to earlier published results [20]. Later measurements of difference
between the impact pressure in the tangential direction due to rotation of the disk
and static pressure were recorded using the differential Pirani gauge. The measure-
ment technique described in Reference {12] was used. The closest setting of the impact
probe is 0-064” from the disk surface. By means of the vernier controls outside the
chamber the probe was traversed across the entire gap between the rotating disk and
the stationary plate. Data were recorded at increments of 0-180” to 0-0945” across the
gap for gaps of 1" and 1/2” respectively. In addition to impact pressure measurements,
temperatures were also recorded using a copper-constantan thermocouple. The
thermocouple was mounted at the end of the impact probe.

The measured stagnation temperatures were nearly the same as the ambient
temperature with a maximum difference of 2°F, following the values predicted by [4]:

T 2

Ti =1+ 5%
whereas the maximum value of S in our experiments is 0-35. Hence, the relation as
derived for the iso-thermal system in the above is accurate for the present system.
From the ratio of the impact to static pressure, the molecular speed ratio S is deter-
mined from Figure 12, which is a plot based on Reference [14] for diameter to length
ratio of 0-015, as in our experiments.

For the determination of the slope 05/0¢ and slip S; — S, from the experimental
data, a fourth degree polynomial was used, and the coefficients of the polynomial in

30r

/P,
26

22

r8r theary (13) D=0-015

0,0 —L | 1 1 1 Il Jd
00 01 02 03 04 05 06 678

Figure 12

Molecular speed ratio versus pressure ratio.
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terms of the gap were determined by solving a set of five simultaneous equations for
each run. ¢ is given by Equation (4.1) and theslip factor £, is given by Equation (4.11).

The results of the experiments are presented in Figure 13, which is plotted in
comparison to Equation (4.12); Figure 14 is a comparison to the relation for semi-
infinite mediums [1]. Figures 15 and 16 are two typical plots showing the range of the
experiment from slip and free molecule flow.

0 s
R Maxwells theory
~ air } gap=T
(Re) /M2 T aargon | rg =05
o 3 } gap=05"
e =043
o air } gap=1"
PR ra =09
] [N 1 L L
00'004 001 01 0
Sy
Figure 13
Slip factor.
10¢
free molecule Flow semi-infinife medium{50}
nole:1he ordinale for 1S curve 1s Sy
instead of Sg
S ,
A alr } gap=1"
a argonl ra =05
o air }gap ="
e =04
. o air gap = 05"
o1 } e =09
002 - !

Figure 14

Friction coefficient.
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These results show that in spite of the inherent difference between a finite disk
from the infinite system used in the theoretical analysis[5], the validity of the theoreti-
cal model is demonstrated. A typical comparison is shown in Figure 17.

7. Discussion and Conclusions

From comparison of our theoretical and experimental results, it is shown that,
with the rotating disk, transition from viscous to free molecule flow can be studied
without involving the compressibility effect. Our experiments covered a wide range
in slip motion. As was suggested earlier [1], the rotating disk furnishes a magnified
model of slip motion. Even at moderate speeds and pressures we can obtain slip
motion over the whole disk of 12" diameter. The friction coefficient is shown to vary
directly with radius and with the molecular weight of the gas and inversely with the
gap. Transition from continuum to free molecule flow occurs through boundary layer
motion [16], viscous motion, slip motion, and then free molecule motion.
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Zusammenfassung

Es wird gezeigt, dass der Ubergang von der Kontinuumsstrémung zur «Gleitstrémung»
(slip-flow) an einer rotierenden Scheibe durch ihren Abstand von der ruhenden Wand, die
Drehgeschwindigkeit und den Gasdruck bestimmt wird. Messungen zeigen, dass die Max-
wellsche Grenzbedingung fast bis zur Molekularstréomung herab erfillt bleibt. Trotz der
Unterschiede zwischen der theoretischen (unendlich ausgedehnten) und der wirklichen
Scheibe werden die Reibungskoeffizienten fiir beide Fille sehr ahnlich.
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The Stability of Dissipative Couette Flow between Rotating
Cylinders in the Presence of an Axial Magnetic Field

By Urricu H. KurzwEg, United Aircraft Corporation, Research Laboratories,
East Hartford, Conn., USA

1. Introduction

The effect of an axial magnetic field on the stability of Couette flow between
concentric rotating cylinders has been examined by CHANDRASEKHAR [1]7) for the
case of a weakly conducting viscous fluid bounded by infinitely conducting, co-
rotating cylinders. It was found that the magnetic field has a stabilizing influence,
with the degree of stabilization being a function of the Hartmann number. NIBLETT [2]
has re-examined this problem, using the more realistic assumption that the cylinders
are insulators. His calculated values for the Taylor number at the onset of instability
have recently been verified experimentally by DoNNELLY and Ozima [3].

In the present paper we extend Niblett’s analysis to the case where the cylinders
have an arbitrary rotation ratio. We will give an explicit evaluation for the critical
Taylor and wave number as a function of the Hartmann number for all rotation ratios
| m | < 1, where m = ,/£2; with 2, and 2, denoting the angular velocity of the inner
and the outer cylinder, respectively. In addition, asymptotic formulas relating the
Taylor and wave number to the magnitude of the magnetic field for very large
Hartmann number, are obtained. Preliminary results of this investigation have been

1) Numbers in brackets refer to References, page 45.



