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Summary 

The multi-environment trial, in which a number of genotypes is evaluated over a range of environmental conditions, 
is a standard experiment in plant breeding in general, and variety testing in particular. Useful statistical models for 
the analysis of multi-environment trials, with emphasis on the analysis of genotype by environment interaction, can 
be found in the classes of linear and bilinear models. Statistical properties of the mo~t important representatives of 
these model classes are shortly reviewed. Structural differences between the models stem from: (1) the inclusion 
of random model terms in addition to fixed model terms; (2) the representation of the.interaction by additive or 
multiplicative parameters; (3) the incorporation of concomitant variables on the levels of the environmental factor. 
For models with bilinear multiplicative structure for the interaction it is described how the interaction can be 
visualized by biplots. An illustration of the application of the models and biplots is given in a companion paper. 

Introduction 

A classic experiment in plant breeding is the multi- 
environment experiment, which in the standard case 
involves the evaluation of a number of genotypes 
at a number of locations over a number of years. 
Inferences to be made from multi-environment trials 
concern genotypes and environments. For the geno- 
types, typically, predictions are wanted for perfor- 
mance over years, or over years and locations. For 
environments discriminatory power prevails. Multi- 
environment experiments form the core of varietal test- 
ing programmes in many countries. These programmes 
have to assess the agronomic value of new varieties. 
Eventually, decisions have to be made about admit- 
lance of new varieties to the Variety List. A character- 
istic feature of data collected within Variety List test- 
ing programmes is their unbalancedness. The variety 
sortment changes over the years and not all varieties 
are tested at all locations within each year. Prediction 
of performance is better not based on simple mean 
performance. Two popular methods providing adjust- 

ed means are fitting constants (Searle, 1971 ; Patterson, 
1978) and best linear unbiassed prediction (Henderson, 
1963; Robinson, 1991; Searle et ai., 1992). Both these 
methods are based on linear models with, usually, only 
indicator variables as explanatory variables, i.e. classic 
analysis of variance, or ANOVA, models. Interaction 
is modelled by a separate, additive parameter for each 
combination of genotype by environment, coarsely and 
unparsimoniously. These models are used primarily for 
arriving at good predictions over a range of environ- 
ments, thereby in some sense averaging (weighted) 
over the interaction present. No attempt is made at 
interpretation of the interaction, thus leaving the caus- 
es of interaction for what they are. 

As an alternative to linear formulations of interac- 
tion, multiplicative formulations can be chosen that 
do permit interpretation of interaction, as differen- 
tial genotypic sensitivity to environmental variable(s). 
Three main classes may be distinguished. The first, 
and at the moment most popular, class consists of the 
Additive Main effects and Multiplicative Interaction 
effects (AMMI) models (Gollob, 1968; Mandek 1969; 



Perkins, 1972; Gauch, 1988), which is a subset of 
the class of bilinear models (Denis, 1991 ), also called 
biadditive models (Denis & Gower, 1992, 1994). For 
AMMI models no explicitly measured environmental 
variables are necessary, as they contain implicit, hypo- 
thetical environmental variables to which genotypes 
differ maximally in sensitivity. In contrast, models of 
the second class, that of factorial regression models 
(linear models), contain, as a rule, exclusively explic- 
itly measured environmental variables (Denis, 1980, 
1988; van Eeuwijk & Elgersma, 1993). For the third 
class, that of reduced rank factorial regression mod- 
els (bilinear models), the environmental variables are 
generalizations of the environmental variables in facto- 
rial regression models as well as AMMI models. They 
are hypothetical and maximize differences in genotyp- 
ic sensitivity as in AMMI, but under the restriction of 
having to be linear combinations of measured environ- 
mental variables, a feature which links reduced rank 
factorial regression to factorial regression (Davies & 
Tso, 1982; van Eeuwijk, 1992). 

In comparison with linear models, routine applica- 
tion of bilinear models to unbalanced data may seem 
more complicated, as special software is required to 
perform the recommended alternating least squares 
estimation procedures (Gabriel & Zamir, 1979; Denis, 
1991; van Eeuwijk, 1995). However, a simple approx- 
imative method may consist in first fitting a mixed 
model to an incomplete genotype by environment table, 
subsequently calculating a complete table of best linear 
unbiassed predictions (BLUPs), and finally applying 
bilinear model analyses to that complete table. 

In the remainder of this paper five classes of models, 
including linear and bilinear models, will be reviewed. 
Results of analyses with bilinear models are often 
presented graphically in the form of biplots (Gabriel, 
1971). Their construction and interpretation will also 
be described. An application of the methods to data 
from the Dutch Maize Variety Trials is given in a com- 
panion paper by van Eeuwijk et al. (1995). 

Analysis of variance models with fixed model 
terms 

ANOVA models are used to describe a wide range 
of phenomena. Phenotypic responses in multi- 
environment trials are no exception to this rule. In the 
so-called fixed ANOVA models, observations are writ- 
ten as the sum of a number of fixed model terms and a 
normally distributed error tenn. The adjective 'fixed' 

for a model term is used to indicate that the param- 
eters are deemed constants, expressing the effects of 
the levels of a factor, or combinations of factor levels, 
on the response variable. The model is linear in its 
parameters. For example, a two ANOVA model for the 
yield, Yij, of genotype i (i = 1 . . .  1) in environment j 
(j = 1 . . . J) can have the form ~(Yij) = / / +  c~i + 3j, 
with E(.) the expectation operator, p the general mean, 
c~i the genotypic main effect, and/3) the environmen- 
tal main effect. Identification constraints are chosen as 
sum-to-zero. This model is straightforward in its appli- 
cation to complete tables, as estimation of parameters 
is then equivalent to averaging and subtracting. For the 
incomplete tables from multi-environment trials the 
simple procedures appropriate for complete tables can 
no longer be used. Fitting constants is a method devel- 
oped especially for fitting ANOVA models to unbal- 
anced data (Searle, 1971, p. 138). The method can be 
understood as regression on dummy (0-1) variables 
that allocate the parameters of the linear model to the 
observations (Searle, 1971, pp. 140-145). Therefore, 
fitting constants can be performed with every software 
package that includes multiple regression. For unbal- 
anced data the order in which terms are fitted is impor- 
tant (Searle, 1971, pp. 270-279). Later terms in the fit- 
ting sequence are corrected for earlier ones. As a rule, 
effects of lower importance are included first, while 
main effects are included before their interactions. 

Fitting constants is often used to obtain adjusted 
genotypic means for incomplete genotype by envi- 
ronment tables (Patterson, 1978). To such a table a 
model is fitted that includes only the genotypic and 
environmental main effect. From this model adjust- 
ed means are calculated, that can deviate considerably 
from the arithmetic averages. When genotypes were 
absent in environments with generally high responses, 
their means are corrected upwards. Means for geno- 
types absent in unfavourable environments will be cor- 
rected downwards. 

To an incomplete genotype by environment table 
no model with interaction, like for example s = 
p + ai +3)  + a/3ij, can be fitted. For the missing cells 
interaction parameters will be undefined, as will be the 
main effects for the corresponding levels. For incom- 
plete higher dimensional multi-environment tables, the 
non-genetic factors are often collapsed into one envi- 
ronmental factor to create a two-dimensional genotype 
by environment table to which an additive model can 
be fitted. Because main effects then are defined for all 
factor levels, adjusted means can be formed without 



problems. This is one way of dealing with missing 
ceils. 

When data tables are (severely) incomplete, the 
analysis of variance table is best used as an explorato- 
ry tool to get a rough idea of the distribution of the 
variation over the various sources. Use of F-tests is 
less straightforward. Due to non-independence of the 
mean squares, variance ratios are no longer exactly F- 
distributed, while the hypotheses being tested depend 
on the structure of the data (Searle, 1971, pp. 316- 
318). 

Analysis of variance models with fixed and 
random terms 

The previous section dealt with ANOVA models in 
which all model terms except the error were assumed 
fixed. Assuming not only the error term, but also other 
model terms to be random, i.e. to come from a (nor- 
mal) distribution, can have desirable consequences. In 
multi-environment trials not all genotypes are tested at 
each location and in each year. For example, two geno- 
types are tested over a number of years, but the number 
of locations (trials) at which the genotypes are present 
differs between years, and the genotypes are not always 
jointly present in each trial. When a combined esti- 
mate of the difference is wanted several options are 
open. The average difference over the years may be 
taken, but this cannot be optimal as the difference will 
be estimated more precisely in years with more trials. 
Another possibility is to consider only those trials in 
which both genotypes were present. However, this pro- 
cedure would clearly not use all information available. 
Yet another option is to weigh the difference within 
a year by the number of trials. This procedure will 
run into problems in the presence of substantial geno- 
type by year interaction. The use of fitting constants 
on a genotype by environment (location times year) 
table may provide a reasonable estimate for the dif- 
ference. However, the optimal procedure should take 
into account (1) all the possible sources of variation 
in addition to the error variation, like variation due 
to years, trials, year by trial interactions, genotype by 
year interactions, and genotype by trial interactions; (2) 
recover information on the genotypic difference from 
year totals, trial totals, etc.; (3) combine the informa- 
tion efficiently by weighing inversely proportional to 
the estimated variances (Robinson, 1987). 

A recommended way to comply with these require- 
ments is by ( 1 ) taking appropriate terms random and (2) 

estimating parameters of fixed and random terms plus 
the corresponding variance components by the method 
of residual maximum likelihood, or REML (Patter- 
son & Thompson, 1971; Searle et al., 1992; Genstat, 
1993). Models which include fixed and random factors 
are called mixed models (Searle, 1971). The distribu- 
tional assumptions entailed by mixed models should 
be checked. Terms for which less than ten degrees of 
freedom are available should not be taken random, as 
they do not allow proper checking of the distributional 
assumptions. 

REML estimation consists of two steps. First, vari- 
ance components are estimated by maximizing the like- 
lihood of the so-called error contrasts. These REML 
estimates reduce to the usual analysis of variance esti- 
mates in case of balance, and are in contrast to max- 
imum likelihood estimates not biassed downwards. In 
the second step, the fixed and random effects are esti- 
mated, using the variance components from the first 
step. The estimates for the fixed effects are generalized 
least squares estimates, which means that the effects 
can be estimated by a weighted regression in which 
the weights are equal 1o the reciprocals of the vari- 
ances of the contrasts involved. As a consequence, the 
effects are estimated in such a way that information 
from different strata is recovered and combined in the 
most efficient way possible, taking into account unbal- 
ancedness. 

Estimation of random effects is often called predic- 
tion. In contrast to the situation for a fixed factor where 
parameters are estimated, for a random factor realiza- 
tions of an unobserved random variable are estimated 
(predicted). REML estimates of random effects are 
best linear unbiassed predictions, or BLUPs (Robin- 
son, 1991; Searle et al., 1992). This implies that the 
estimates will be shrunken in comparison to the gen- 
eralized least squares estimate that would have been 
obtained were the random effects chosen fixed. The 
phenomenon of shrinkage is in plant breeding well 
known in connection with the notion of heritability. 
Consider the model for the phenotype Yij, for the j-th 
observation (j = 1 . . . ni) on the i-th genotype (i = 
1 . . .  I); Yij = gi + s where gi and s a r e  random terms 

2 and o-~. The BLUP estimator for the with variances O'g 

genotypic effect gi is {ni/(ni + (o-~/o-~)))y~, where y, 
is the mean over the observations on genotype i. This 
BLUP estimator corrects for possible random envi- 
ronmental contributions to the random genetic effects, 
and thus for selection bias. The amount of shrinkage 
depends on the ratio of the variances involved, i.e. on 



the heritability (h 2 = o2/(0 .2 + 0.~ )), and the number of g .q 

observations for a particular genotype, ni. 
Estimated effects for fixed and random factors 

and their interactions can be linearly combined, i.e. 
summed, to find the means for the levels of particular 
factors and their interactions. For unbalanced data the 
predicted means correspond to hypothetical means that 
would have been obtained were the data orthogonal and 
equally replicated. 

In cases where it can be defended that factors and 
factor combinations are taken random, mixed model 
analysis provides a quick and easy way of dealing with 
missing cells. Given that the appropriate model term 
is taken random, for factor levels or combinations of 
levels without observations, corresponding parameters 
can be estimated by the expected value for that term 
(zero), and predicted means calculated without extra 
problems. For fixed model terms the parameter would 
have stayed undefined. 

AMMI models 

Together with the introduction of the acronym AMMI, 
Gauch (1988) started a popularization of this already 
known method of describing interaction in terms of sin- 
gular vectors (Gollob, 1968; Mandel, 1969; Johnson & 
Graybill, 1972; Perkins, 1972). Essentially, the matrix 
of residuals from additivity is decomposed by a singu- 
lar value decomposition (Gabriel, 1978). One way of 
construing AMMI is that the interaction is described 
in terms of differential sensitivity to the most discrim- 
inating environmental variables that can be construct- 
ed. These environmental variables are hypotheti.cal, 
and obtained from the data themselves, no measured 
environmental variables enter the model. Because both 
environmental variables and genotypic sensitivities are 
estimated from the data table itself, the AMMI model 
is called a bilinear model: given the column param- 
eters the model is linear in the row parameters, and 
given the row parameters the model is linear in the 
column parameters. The AMMI model for a genotype 
by environment table can be written as 

M 

c(y,j) = ~ + ~  +/3j + ~ A,,~.~6,,,~ �9 
171= I 

The additive interaction parameters, a ;3ij, of the ANO- 
VA two-way model are replaced by a sum of multiplica- 
tive terms, in which the Am's represent proportionality 
constants called singular values, the 9,hi's genotypic 

sensitivities, or scores, and the 6mj 'S environmental 
values, or scores, on hypothetical environmental vari- 
ables, or (AMMI) axes (m = 1 . . . M). Identification 
constraints normally chosen are 

I ./ I 
2 2 7,,,i = 1, ~ 6mj = 1, ~ % n i T m ' i  = O, 

i = l  j = l  i= l  
.1 

6,,~6,,~,~ = O, (m r m') 
j = l  

The first axis represents the hypothetical environmental 
variable that describes the largest amount of interac- 
tion and thus best discriminates between genotypes, 
the second axis the second largest amount, etc. For 
interpretational purposes the environmental scores of 
an axis may be related to the values of measured envi- 
ronmental variables. 

Multiplicative modelling of interaction is success- 
ful when the additive ANOVA interaction, oflij, with 
(I- 1 )(J- 1 ) independent parameters, can be replaced by 
only a few multiplicative terms (M << minimum of 
I- 1 and J- 1 ), thus adequately describing the interaction 
with considerably fewer parameters. Various methods 
exist for assessing the number of multiplicative inter- 
action terms (axes) (see Cornelius, 1993; van Eeuwijk, 
1995). The most simple one is due to Gollob (1968), 
and suffices for many practical applications (Gauch, 
1992). For each axis a mean square is calculated, that is 
compared with an error estimate, by means of an F-test. 
The mean squares are obtained as follows. The sum of 
squares for axis m is equal to the square of the singular 
value, A,2,~. The corresponding number of degrees of 
freedom is (I-l)  + (J-l) - (2m-l). The required mean 
square is the quotient of these two quantities. 

Factorial regression 

After fitting main effects to a two-way table of geno- 
types by)environments, one can introduce concomitant 
variables on the levels of the genotypic and/or environ- 
mental factor in an attempt to describe the interaction 
(Denis, 1980, 1988; Snedecor & Cochran, 1980, Chpt. 
16). A factorial regression model for a two-way geno- 
type by environment table with concomitant variables 
on the environmental factor has the form 

H 

h = l  

This factorial regression model is very similar to the 
AMMI model, except that in the interaction part mea- 



sured environmental variables, xh (h -- 1 . . . H; 
H _< J- 1 ) are included instead of estimated hypothetical 
variables. For that reason the factorial regression mod- 
el is a linear model, it is linear in its parameters, and the 
familiar estimation and testing procedures for regres- 
sion can be used. Interaction in the factorial regression 
model can be interpreted as differential genotypic sen- 
sitivity, expressed in Eli till ~Hi, with respect to the 
environmental variables x~ till XH. 

The regression on the mean or row regression mod- 
el (Yates & Cochran, 1938: Mandel, 1961" Finlay 
& Wilkinson, 1963) might be interpreted as a spe- 
cial type of factorial regression model with only one, 
non-measurable, concomitant variable on the environ- 
mental factor, namely the environmental main effect�9 
Alternatively, the regression on the mean model may 
be taken to be an AMMI model with one bilinear inter- 
action term and the environmental scores proportional 
to the environmental main effect. 

Reduced rank factorial regression 

Reduced rank factorial regression generalizes both 
(full rank) factorial regression and AMMI. Just as for 
AMMI, hypothetical environmental variables, or axes, 
are constructed, but now under the restriction of having 
to be linear combinations of measured environmental 
variables. The reduced rank factorial regression model 
is again a bilinear model. The model formulation is 

~::(Yij ) = /t q- O,q-,Jj "+ E A,,,"lrni Pmh't'hj 
r ; q : l  h : l  

The AMMI axes, 6mj, are replaced by linear combi- 
nations of, in general, measured environmental vari- 
ables, the reduced rank factorial regression axes, 

[~-~h=l PrnhXhj]. The pmh'S stand for the coefficients 

of the environmental variables x~ till XH in the m- 
th reduced rank factorial regression axis. Interaction 
is described by differential genotypic sensitivity, 7mi, 
towards the constructed variables represented by the 
axes. The parameters for the interaction part are now 
derived from a singular value decomposition of the 
matrix of fitted values of the interaction residuals on 
the set of measured environmental variables (Davies 
& Tso, 1982). Identification constraints for genotypic 
and environmental scores are usually equal to those for 
AMMI. 

The number of axes necessary for an adequate 
description of the interaction can be determined simi- 
lar to that for the AMMI model. Degrees of freedom 
are attributed as I + H - 2m for axis m. Mean squares 
can then be calculated, and either a likelihood ratio test 
as given by van Eeuwijk (1992) may be performed, or 
an F-test analogous to the one described for AMMI. 
Given that the full rank factorial regression model was 
found adequate, reduced rank factorial regression can 
be called successful when only a few linear combina- 
tions of the measured environmental variables explain 
about the same amount of interaction. The maxi- 
mum number of axes possible equals the minimum of 
I-1 and H. Reduced rank factorial regression becomes 
equivalent to (full rank) factorial regression when this 
maximum number of axes is incorporated in the mod- 
el. When the restriction imposed on the reduced rank 
factorial regression axes of having to be a linear combi- 
nation of environmental variables is dropped, reduced 
rank factorial regression becomes equivalent to AMMI. 
For an extensive treatment of an application of reduced 
rank factorial regression.to a genotype by environment 
problem see van Eeuwijk (1992). 

Biplot representations 

The model formulations for AMMI and reduced rank 
�9 regression showed that their interaction parts consist 

of summed orthogonal products. Because of this form 
the interaction lends itself to graphical display in the 
form of so-called biplots (Gabriel, 1971). Let us start 
with AMMI and assume that either two terms suffice 
for an adequate description of the interaction, or else 
represent the major features, and let us distribute the 
singular values, A,,~, over the genotypic scores, 7~i = 

: 6mjA m , 7mi Ac~, and the environmental scores, 6~j �9 l-c 
with 0 < c < 1. For AMMI the interaction consists then 
of the sum two products: 7"jir"tj + ")2i62j. The choice 
of the scaling constant c depends on the purposes of the 
analysis. Usually one is more interested in the geno- 
types and c is chosen equal to one (Kempton, 1984). 
The features of the biplots, however, are not too crit- 
ically dependent on c, and c = 0.5 may suit well for 
most problems. 

The genotypic scores, 77i and 72"i, are now inter- 
preted as coordinates for a planar depiction of the geno- 
types, and the environmental scores, 67./ and 6"~y, for 
a similar depiction of the environments. The scores 
determine the endpoints of genotypic and environmen- 
tal vectors, which depart from the origin. Simple geom- 
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etry reveals that the interaction between a genotype i 
and an environment j can be obtained from a projec- 
tion of either vector onto the other. The reason is that 
the interaction according to an AMMI model with two 
product terms for interaction, 7"li6"tj + 7~i6~j, is equal 
to the inner product between the v e c t o r s  (7~i,7~i) and 
(6*lj ,6~j ), or the projection of either vector onto the oth- 
er, times the length of the vector on which projection 
takes place. In case of an obtuse angle between geno- 
typic and environmental vector, an additional minus 
sign is necessary. It is easy to read from a biplot the 
relative interactions that genotypes exhibit in a partic- 
ular environment. One only needs to look at the rank- 
ing of the projections of the genotypic vectors on the 
particular environmental vector. Cosines of the angles 
between genotypic vectors approximate correlations 
between genotypes with respect to their interactions. 
The same holds true for the environments. 

For reduced rank factorial regression the story is 
slightly more complicated. We again assume that two 
multiplicative terms suffice and distribute the singu- 
lar values over the scores. Interaction can then be 
described as 

In the reduced rank regression biplot we plot 
three types of vectors whose coordinates are 
determined by: (1) the genotypic sensitivities, 
(7/i,7-~i); (2) the environmental characterisations, 

P~h'r'hJ , Z P~h'r'hJ ; a n d  (3) t h e  c o e f f i c i e n t s  
h = l  h = l  

for the environmental variables within the reduced rank 
factorial regression axes, (P~h,P~h)" As in the AMMI 
biplot the inner product of the genotypic vector i with 
the environmental vector j gives the interaction (non- 
additivity) for genotype i in environment j. In addition, 
inner products between the genotypic sensitivity vec- 
tors, (7Ti,7;i), and the coefficient vectors, (P'Jh ,P2h ), 
approximate the (full rank) factorial regression coeffi- 
cients, ~m = P*lh')'li + P~h"f~i" For illustrations of the 
use of biplots in reduced rank regression models see 
Ter Braak (1990) and Ter Braak & Looman (1994). 

Information on measured environmental variables 
can also be added to AMMI biplots, although these 
variables had no influence on the determination of 
the environmental axes. We can indicate directions 
of greatest change with respect to a particular envi- 
ronmental variable, by depicting the variable by the 

coefficients of its regression on the axes. When the 
scaling constant c is chosen equal to one, this is equiv- 
alent to using the correlations of the environmental 
variable with the axes. The sum of the squared corre- 
lations over the axes gives a measure for the quality 
of the representation. Reduced rank regression biplots 
can be supplemented with environmental information 
not used in the determination of the axes in the same 
way. 

Epilogue 

In this paper linear and bilinear models for the analy- 
sis of genotype by environment interaction have been 
described in a somewhat theoretical context. The best 
appreciation of what the models may add to the insights 
of the practical plant breeder is obtained from their 
application to real life data. In the sequel to this paper 
(van Eeuwijk et al., 1995), data on dry matter content 
from the official Dutch Maize Variety Trials will be 
analyzed and it will be shown how the joint applica- 
tion of the models can lead to an interpretation of geno- 
type by environment interaction in terms of differential 
sensitivity to external environmental variables. 
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