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Abstract. The dielectric response of a small metal particle to a perturbing potential 
vL =rL YLM ei~ is considered within the random phase approximation (RPA). The static 
dielectric polarizability is found and the size dependence of the surface plasmon frequencies 
are then determined from sum rule calculations. When the particle radius a is large com- 
pared to the Thomas-Fermi screening length r o the RPA equation is transformed into 
a form appropriate for an analytical solution. The dynamic electric polarizability, the 
position and the width of the surface plasma resonance are found in the limit a/ro >> 1. 

1. Introduction 

Electromagnetic properties of small metal particles 
have been the subject of rather intence investigations 
in recent years [1-8]. These investigations have at- 
tempted to obtain a more fundamental understanding 
of the behavior of colloidal particles in external 
electromagnetic fields and considerable progress has 
been made. Two very different approaches have been 
used in the theoretical studies of the properties of 
small metal particles: the hydrodynamics of the 
charged electron gas [-6, 71 and the quantum mech- 
anical theory based on the random phase approxima- 
tion 1-9, 14, 15]. The hydrodynamic approach leads 
to rather simple equations affording a determination 
of the charge distribution, the effective field inside 
the particle etc. However, there exist some doubts 
concerning the justification of the applicability of the 
hydrodynamic equations to the electron plasma in 
metal particles. The fact is that the free path of 
electrons 1 becomes large compared to the particle 
radius a at sufficiently low temperature, while the 
condition l~ a is required to hold for the applicability 
of the hydrodynamics. Therefore the RPA approach 
seems to be more preferable for the description of the 
electromagnetic properties of small metal particles. 
In this paper the RPA is used to calculate the fre- 
quencies and the damping of surface plasmons in 

small metal particles. Below we stick to the following 
programme. In Sect. 2 the main assumptions are out- 
lined and the RPA equation is formulated for the 
renormalized electromagnetic field arising inside the 
particle due to the screening of an external potential 
by conduction electrons. The static solution of the 
RPA equation is found in Sect. 3. This solution allows 
us to obtain the static polarizability of the particle 
in a multipole external field. This result being combined 
with the Thomas-Reiche-Kuhn type sum rule defines 
the mean square frequency of the surface plasmon. 
In Sect. 4 the fact that plasmon frequencies become 
independent of the size of the particle is used in order 
to simplify the RPA equation. This simplified equation 
is then solved and the effective field inside the particle, 
the position and the width of the surface plasma 
resonance are determined. 

2. Description of the Model Employed 

Plasma oscillations of conduction electrons in metals 
is a typical example of collective excitations in a 
many-fermion system which can be successfully de- 
scribed within the RPA. As in the case of the bulk 
metal we adopt here the jellium model, i.e. conduction 
electron scattering by the ions is neglected. The metal 
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particle is then replaced by a model in which the 
ions are spread out into a uniform distribution of 
positive charge and the conduction electrons move 
inside the potential well u(r) forming by this positive 
background. The Hamiltonian of the conduction elec- 
trons then has the form ( h = m = l ,  where m is the 
electron mass) 

H = H o + HI, (2.1) 

H~ 2 ~r 2 ~-u(r) ~(r), (2.2) 

e2 d3rid3r2 ~+(r2)~/+(rl)~b(ra)~t(r2). (2.3) 
H ' = T ~  [h--rE[ 

Here ~+, 0 are the creation and annihilation electron 
operators. 
Now consider the metal particle placed in an external 
electric field acting on conduction electrons ~(t)  and 
calculate the linear response of the electron gas to 
the perturbing potential e"//~ in the Hamiltonian (2.1). 
We define the dynamic electric polarizability as follows 

ct (t)= i e 2 (OI T~F(t) ~(0) 10} 

where 

~(t)  = S V(r) O + (r, t) ~ (r, t) d a r; 

0 + (r, t)=e iut ~+ (r, 0) e -ira. 

(2.4) 

T is the time ordering operator and 10} is the ground 
state of the electron gas. The Lehmann type expansion 
is known to be valid for the Fourier transform of e (t) 

a(co)= ~ a(t) e i~~ dt 
-0o 

:  zl<ol l >l ( 1 ) 
s cos--Co--ic~ +coS+co-it5 

Let v (r, t) be an external electric field. Then the effective 
field V inside the particle is the sum of four terms 

V=v+6 Ve+6 Va+6 V,, (2.6) 

where 6 V~, c5 Va, 6 Vm are the polarization parts of V 
arising due to appearance of the induced charge 
densities: CSpe in the electron gas, 6Pa in the dielectric 
medium surrounding the particle and ~Spm inside the 
metal particle. The last term in Eq. (2.6) accounts for 
the polarization of the ion lattice which is assumed 
to be a dielectric medium with the dielectric constant 

~m" 
Each polarization term on the right-hand side of 
Eq. (2.6) may be expressed in terms of V 

6V~=e~ lr l~_ra~ 6Pe(h) d3rl 

= e 2 j ~ H(rl, r2) V(r2) d 3 rl d 3 r2 

- e 2 (QHV). (2.7) 

(The symbolical notations () will be used below in 
parallel with integrals.) Here Q = l r - r l ]  -1 and H is 
the polarization operator of the electron gas which 
has the form within the RPA [10] 

H(h,rD=~(o~(rl)(o~,(rl) n~-na, ~o*(r2)cpx,(r2)(2.8) 
~ ,  ~ l - -  ~2, -t- CO 

where ax, ~0~ are the one-electron energies and func- 
tions and n x - t h e  occupation numbers. The term 6 Va 
is found in the following way [11]. The induced charge 
density is g)Pa = - d i v  P where the polarization vector 

ed-- 1 
P =  -na(r )~-~-gv .  

Here ea is the dielectric constant and nd(r) is the 
dimensionless density of the surrounding dielectric 
medium (rid= 1 in the uniform dielectric). Hence 

where co s=E s - E  o are the exitation energies of the 
electron gas and 6 ~ +0. Among enormous number 
of exitations contributing into the sum on the right- 
hand side of Eq. (2.5) there are collective states (plas- 
mons) arising due to coherent exitations of electron- 
hole pairs. These collective states reveal themselves 
as poles in e(co) with residues enhanced strongly as 
compared with noncollective states. The absence of 
the momentum conservation leads to the appearance 
of the plasma resonance width related to the decay 
of the collective state into noncollective electron-hole 
ones. Thus, if ~(co) is known then the position and 
the width of the plasma resonance may be determined. 
In this paper we calculate c~ (co) within the RPA. 

5Vd= ~ 6Pd(h) d 3 

__ e a -  1 1 • n a ~ r  i d 3 r 1 . ( 2 . 9 )  
4~ S [ r_h[  ~r 1 

Integrating twice by parts and remembering that 
A Q = - 4 ~c 6 (h - r2) we have 

alVa= --(ed--t)na V 

( a 1 )  ~nd 
+~--~-~ ) I r - h l  ~-ri V(rl) d3 rl 

= --(Ca--1)na V + ~  1 (VQ. Vn a V). (2.10) 
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The term 6 V,, is obtained from Eq. (2.10) by replacing 
of the indices d to m. Finally we get the equation for 
determination of the effective field V: 

V = I) q- e 2 (QHV) - (ea- 1) n a V -  (era - 1) n m V 

Ca-- 1 em-- 1 
+ ~ - ~ - ( g Q . g n d v ) + ~ - ( g Q . V n m V ) .  (2.11) 

The polarizability c~(co) may be expressed in terms 
of V [12] 

C~ (co)= -- e 2 ( 'U'H V) (2.12) 

where ~ is the field acting on the electron gas. It 
differs from the external field due to presence of two 
dielectric media (the surrounding dielectric and the 
ion lattice) and is determined by the following equation: 

~//'-- v - (Ca - 1) n a ~U- (,f. m - -  1) n,, 

8 d -- i a m - 1 
+ ~ -  (VQ �9 Vnd ~ ) + ~ -  (VQ. gn,, ~) .  (2.13) 

Below we confine ourselves to the consideration of 
the multipole external fields 

vL (r) = r L YLM (fl) (2.14) 

where YLM are the normalized spherical harmonics 

YLM (g2) Y*u' (t2) d~  = (~LL' t~MM'" (2.15) 

3.  S u m  R u l e  C a l c u l a t i o n s  

The solution of Eq. (2.11) is impossible without sim- 
plifications. However, if one wishes to know the 
plasmon frequency only, then the solution of Eq. (2.11) 
with co 4=0 may be avoided and instead the sum rule 
technique may be employed [13]. Once two sum rules 

w~ =e2 E~Os/<OI ~ IS>[ ~ (3.1) 
S 

and 

w_l = e  2 2 09S1 I<01 w is>l 2 (3.2) 
S 

are known the mean square plasmon frequency can 
be extracted from the ratio 

co~=walw ~. (3.3) 

The sum rule w_t, as is seen from Eq. (2.5), is expressed 
in terms of the static polarizability 

w _ 1 = �89 ~ (0) (3.4) 

while wt, as shown below, depends only on the ground 
state density distribution of the electron gas. Since 

the plasma resonance is very narrow (see Sect. 4) the 
frequency col as defined by Eq. (3.3) coincides with 
the position of the plasma resonance. 
We begin by calculating ~L (0). The main simplification 
in Eq.(2.11) arising in the static limit is related to 
the possibility of the replacement o f / / ( h , r z )  by a 
delta function (see e.g. Ref. 10) 

/7(r~,r2)= ~ -6 ( r~ - r2 )  (3.5) 

where Pr is the Fermi momentum. Next, the dimen- 
sionless densities na(r) and nm(r) are assumed to be 
step functions: 

na (r) = 0 (r - a), n~ (r) = 0 (a - r) (3.6) 

where a is the particle radius and 0 (x)= l  at x > 0  
and 0 otherwise. With these simplifications Eq. (2.11) 
takes the form at r < a 

e2 PF ~ d3 rx 

I ) VIrl)dar, (3.7t 
q - ~ J  8 r  1 It--r1] 

Let us define the function fL (r/ro) by the equality 

8,, V(r) = fL (r/ro) vL (r) (3.8) 

where r 0 = (re e~/4e z pv) ~/z is the Thomas-Fermi screening 
length. Using the well-known expansion for I t -  h [- 

1 ~ 4~ M 
j r - h ]  L~o2L+I BL(r'rl) ~ YL~(g?)Y2M(s 

- L= - M  (3.9) 

where 

BL (r, q ) = r  L rf L-10(q --r)+ l~ r -L-10(r--q) 

we come to the following equation for fL (x) 

1 [  x 
fL(X)=I ( 2 L + l )  X--(ZL+I) Sy2L+ZfL(y)dy 

0 

+ ~ yfL(yldy] (ed-em)(L+l)%(2L+l) UL a . (3.10) 

Instead of fL(X) it is convenient to introduce a new 
unknown function gL (X) connected with f r  (x) by the 
equality 

r 1 1 o~ro 
fL(X)=gL(X)[ + ~ L + f  Jo YgL(y) dy 

(ad-am)(L+I)  ( a ) ]  -1 
~m(2L+l) gL V . (3.11) 
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This expression substituted into Eq. (3.10) gives 

1 
gL (x) = 1 

2 L + l  

xZZ+ t ~ a gL(y)dy- oSYgL(y)dy �9 (3.12) 

Eq. (3.12) can be transformed into the linear second 
order differential equation 

(2L+2)  
g~-~ - - g ) - g L = 0  (3.13) 

X 

with the initial conditions gL(0)=l,  g~(0)=0. The 
solution of this equation is 

gL (x) = 2 L + -~ F(L + 3) x - tL + ~) IL + ~ (x) (3.14) 

where IL+i(x) is the modified Bessel function. 
In order to calculate e (co) we must also solve Eq. (2.13) 
for ~(r)  at r <  a. It is not very difficult to conclude 
from Eqs. (2.13), (3.6) and (3.9) that 

[ L +  1 -1 -~ 
~(r)  = vz (r) [e~ + (ea-  '~m)YL-~- ]  " (3.15) 

Hence 

O~g(O) = e2 PFrgL+3rc2 em ~/f g~(y) dy 

Is,, " . L + I  -1 -~ r 1 1 ,/~o 
�9 + ( e a - e " ) ~ - ~ ]  [ + 2 ~ f  ~o yg~(y)dy 

(aa-em)(L+I) ( a ) ]  -~ 
-~ a , , (2L+l )  g~ 7o (3.16) 

(Eqs.(2.12), (3.8), (3.11) and (3.15) are taken into 
account in deriving of Eq. (3.16)). The integrals on the 
right-hand side of Eq. (3.16) are 

alto alto 

y2~+2 g~(y)dy=2~+~F(L + 3) ~ Y~+~Iz+-~(y)dy 
0 0 

2I.+}F(L+~)(a] t+~ ( a )  = - -  IL+ ~ 
\ ro / 700 

alto a/ro 

Yg~(y)dy=2I~+~F(L +~) [. y-~Z-*~)Iz+~(y)dy 
0 0 

=2L+}F(L+~)(at  I~_�89 ( \roe 7o - ( 2 L +  1). 

Using the relation 

Iz+~(z)=Ii._,= (z)-(2L + 1)z-~ Iz+�89 

we finally get 

2 L + l  a 2~+~ (r~) 
L + I  m~ (3.17) 

~(o)= 4~c [e,.+(e~_e~)2~] 

where the size dependent factor ML (x) is 

ML(x)= 1-(2L+l)x-alz+~(x)/II"-~(x) (3.18) 

1 +re-era (L+ 1)x -11L+~(X)/IL__~(X ) 
~m 

At x ~  ooML(x)~ 1. This expression is an extension of 
our previous result obtained for the case L =  1 and 
ea = e,, = 1 [14]. 
Now let us calculate Wa. The sum on the right-hand 
side of Eq. (3.1) may be transformed in the following 
way 

Zcos[(Ol~lS)[==�89 (3.19) 
S 

where [a, b] = a b -  b a. The double commutator 
[~,, [H, ~//~]] is easily found with the aid of Eqs. (2.1) 
to (2.3) 

[~,  [ H , f ] ] = ~  \ Or ! 0+(r)O(r)d3r" 

Hence 

- ~ f  ,k r ,/, e2 [ 0 ~ ] e  
w 1 - 2  ~ (01~+ "r) ~ (r)10) \ ~?r ! d3r 

e 2 [ 0 ~  ]~ c? r = ~ - j ' n ( r )  \ c~r ] (3.20) 

where n(r) is the conduction electron density. Inte- 
grating Eq. (3.20) by parts we have 

J" n(r) d3r=Sn ~ 0 ~  -~r ds 

O~U 3n 02"U d3r_S ~ d3r. 
- S nU-o~-rZ Or Or 

Taking into account the facts that A~t/'~AvL=O and 
n(r )=0 at r~oo  one sees that the last integral only 
contributes to Wl. Assuming n (r) = n 0 ( a -  r) and using 
Eq. (3.15) we obtain 

e 2 L n a 2 L +  1 

L + I  ]2 " w , -  2 [em+(ea_~m) 2 _ ~ ]  
(3.21) 

Now the plasmon frequency is easy determined from 
Eqs. (3.3), (3.4), (3.17), (3.18) and (3.21) 

2 2 L [ . , L + I - ]  -1 l ( a )  
coL=coo2 - f ] 70 

(3.22) 

where co2 = 4re n e 2 is the plasma frequency of the bulk 
metal. 
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4. The Limit of Large a/ro .  Position and Width 
of the Surface Plasma Resonance 

This section is concerned with the solution of Eq. (2.11) 
for the effective field V at co ~= 0 in the limit of large 
a/r o. Notice, that the matrix elements Vxz, differs 
appreciably from zero at  energy differences e~-t~,-~ 
LvF/a ~ eFN- ~ where N is the total number of conduc- 
tion electrons in the particle and gV is the Fermi 
energy. These energy differences are seen to decrease 
with increase of the particle size whereas the surface 
plasma frequencies remain finite at large a/r o (see 
Eq. (3.22)). This circumstance allows us to simplify 
considerably Eq. (2.11) by expanding the denominator 
(e~-~x,+co) -~ in the polarization operator (2.8) in 
powers of (e~-ex,)/~o. Instead of this we represent 
H (q, r2) as the sum of two terms 

H(r~, r2)= Hl(rj, r2)+ n2 (r~, r2) (4.1) 

where 

H, (rl, r2)= -co  -2 ~ cpa(rl) cp~, (rl) ( n , -  na.) (ga-  gz') 

�9 cp* (r/) q~a, (r2) (4.2) 

and H a = H - H I .  The contribution of H 2 is small 
~ r o / a ~ N  ) as compared with /71. Noti- 

cing that 
( l c%V 63V O.) 

(e~-ex')Vx~'=([H~ 2 Or ~ 8r 3r ~,  

(4.3) 
and taking into account the relations 

~0z(r) ~o~ (r')=6(r-r');  ~, nz [q)z(r)l 2 =n(r) (4.4) 

we transform the right-hand side of Eq. (2.7) in the 
following way: 

b V e = e 2 (QFI V) ~ e 2 (QH1 V). 

But 

S/7  (r, r 1) V(rl) d 3 r 1 = o9- 2 E (Pa (r) (p~, (r) (n z - nz,) ~ d 3 rl 
~,A' 

e *(n)an an = - c o -  n ( r ) ~ -  r . (4.5) 

(The term 0 2 V/Sr 2 in Eq. (4.3) does not contribute into 
this sum.) Hence 

1 O(n( rO  0~-rf) d3 rl. (4.6) aVe=--09-2e2 5 ] r _ r l [  0 r  1 

Eq. (4.6) is similar to Eq. (2.10) and may be transformed 
in the same way 

4nn(r)e 2 e 2 8 1 8n V(rl)d3rl. 
a V e =  (.02 V - - ~ - 5  ~rl Ir-r~l 8-~ 

(4.7) 

The substitution of this expression into Eq.(2.11) 
yields: 

V(r)= v(r)q 4~ n(r)e2 e2 
co2 v(r)- (v Q. v n v) 

(g d -  1) (5,, - 1) 
% 4 ~  (vO.  VnaV)-F 4~ (VQ. VnmV) 

--(ga- 1) n d (r) V(r)-  (e , , -  1) n,, (r) V(r). (4.8) 

It should be emphasized that the particle shape has 
not been specified when deriving Eq. (4.8). Therefore 
this equation is applicable for consideration of 
particles with arbitrary shape of boundary surface. 

Now we solve (4.8) for the spherical particle assuming 
the conduction electron density to have the sharp 
edge n (r) = n 0 ( a -  r) and v = D L = r L YLM" Let us seek 
the solution of Eq.(4.8) in the form V(r)=ALVL(r ) 
at r < a. Then we obtain: 

cog L , , L + I  ]-1 
602 2 L + l  {- (ea-~m)2L~(]  " 

(4.9) 
[ 

AL = [gm -- - -  

and 

v(r) • 
09 2 

L + I  (co _coL) 

where 

N~=4~z ne 2 - -  

VL(r) (4.10) 

L 1 
(4.11) 

2 L + l  L + I  
[~m +(~a- g,,) 2 ~ f  ] 

We see from Eq. (4.10) that V(r) has a pole at CO=C~L, 
which means the existence of nondamping plasma 
oscillations with the frequency c o = ~  L. In order to 
obtain the damping arising due to the plasmon decay 
into noncollective electron-hole states, transitions 
with energy difference e a - - e ~ , ~ L  have to be taken 
into account. We make it including H2 into our con- 
sideration in a perturbation manner. According to the 
ideology of the first order perturbative theory the 
coordinate dependence r L YLM of the solution of 
Eq. (2.11) is assumed to be not affected by the presence 
of /72 on the right-hand side of Eq.(2.11), but the 
eigenfrequency ~L is slightly modified by shifting into 
the lower half-plane of the complex variable co. This 
means the solution of Eq.(2.11) to have the form 
at r <a: 

VL(r ) = CL(CO ) VL(r ) (4.12) 

where the function CL(CO) is to be determined. To this 
end we substitute Eq.(4.12) into Eq.(2.11), multiply 
both sides of Eq.(2.11) by vL(r')H(r',r) and integrate 
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over r and r'. The result is 

CL(co) 
(vg vD 

L + I ]  [e,. - (vL[1vD- e (vL[1Q[1vD + +q-j 
(4.13) 

The term e2(vL[1QHvL) is transformed by using the 
relation e 2 (QH1 vD = Lco 2 vL/c~ 2 (2 L + 1) as follows 

e 2 (vL[1Q[1vD = e 2 (vL//Qll  vD + e 2 (vdIQlI  vD 

[,(VLHV~) + (VL[12 vL)] (.o2 L 
o9 2 2 L + l  

and the term e 2 (VL[I 2 Q[12 vL) is neglected. Hence 

(/)2 
CL(co)= 

L + I  
[~m + ( e d - - e , ~ ) 2 ~  ] [ 'CO2--~(I --2ig)] 

(4.14) 

where, to within the accuracy of the terms of the first 
order in [12 

Im (vLHz vL) co2 
2g--  (vLHlvL) -- nLa2L+ 1 Im(vL[12VL). (4.15) 

It is not very difficult to recognize that Im (vL[12 vL) = 
Im (vLHvD i.e. 

Im (vLH z VL) = ~ CO ~, I (VL)44' I 2 ~ (~4 -- at) ~5 (~4 -- ~4' + CO) 
2 2 '  

(4.16) 
dn4 

where the expansion n4-n4 ,=~f~a(e4-e4 ,  ) is used. 

The calculation of g is performed in the Appendix. 
The final result is very simple: 

6 L Pr (4.17) 
g ~ 2 L + l  aco 

The dependence g~co-1 can be understood from 
semi-classical arguments. The matrix element (vL)24, is 
proportional to the Fourier component of vL(r(t)) 
where r(t) is defined by the classical equation of 
motion. If the potential u (r) in Eq. (2.2) is a rectangular 
well, then ~(t) has a g-function singularity at the 
moment of collision between electron and the particle 
boundary. Therefore the Fourier transform of vL(r(t)) 
behaves like co-2 at co >>vF/a where a/vF is the electron 
free path time. Since co ~ c~ L >> vv/a then 

Im (vL HvL) ~ co- 3, 

and accounting for the factor o)2 in Eq. (4.15) we con- 
clude that g ~ co- 1. 

Now we calculate the dynamic electric polarizability 

O~ L ( 0 3 )  = - -  e 2 (']/'[1V) 

_ e  2 nLa 2L+1 

L+I  ]2 
em+ (ee-  ~,,) 2 ~ i -  j ( co2 -~2 (1 -2 ig ) )  

5. Discussion 

In Sect. 2 we have calculated the dependence of the 
plasmon frequencies and the static polarizabilities on 
the particle size. This dependence is determined by 
the factor ML(a/ro) which is shown in Fig. 1 for the 
case of silver particles in the glass: ed =2.25, era=4.9. 
The influence of the particle size on the dipole static 
electric polarizability has been discussed in Refs. 
[-14,15] in connection with the experimental observation 
[,16] of the absence of the Gor'kov-Eliashberg effect 
[,17] in small metal particles, There has been shown 
that the appreciable deviation from the classic value 
a 3 of the static dipole polarizability might appear in 
very small particles. The results of the present paper 
show that the size effect can be enhanced considerably 
if the particle is embedded into a dielectric medium 
with the large dielectric constant. In Fig. 1 the func- 
tion M L (a/ro) is shown for ea = 40. 
The plasma resonance wave length 2L = 2 Z C/OOL (L = 1) 
is shown in Fig. 2 as the function of air o for the silver 
particle in glass. It is interesting to note, that this 
dependence is in a sharp contradiction with recent 
observations by Smithard [-8] who has discovered the 
increase of 21 with decrease of the particle size. Rea- 
sons for this disagreement is not clear to us. Further 
experiments are required. 
Our result concerning the plasma resonance width is 
very close to that of Kawabata and Kubo [9] ob- 

1.8 
1.6 
1.4 
1,2 

M L  I , 0  ~d=2.25 

0.8 

0.6 gd =4-0 
0 .4  
0.2 

I I I I I I [ I 
O; 3 6 9 12 15 18 21 24 2~7 3'0 3'3 

a/ro 
Fig. 1. Size dependence of the dimensionless static polarizability 
ML (L=I) for silver particles in glass (era=4.9, ed=2.25) and in a 
dielectric medium with ed = 40 



A.A. Lushnikov and A.J. Simonov: Surface Plasmons in Small Metal Particles 23 

4300 
z, lO0 
3900 
3 700 
3500 
3300 

3100 
29OO 
2700 

25000 ; ; ; 1'2 1'5 1'8 21 2'4 217 30 3'3 
a/ro 

Fig. 2. Size dependence of the dipole plasma resonance wave length 
for silver particles in glass (~,, = 4.9, ed = 2.25) 

tained for the case L-- 1. However, our expression for 
the width (Eq. C4.17)) is somewhat simpler since we 
have used the formal requirement Ogo/ev< 1 of the 
validity of the RPA. In real metals this condition does 
not hold, therefore other mechanismes such as decay 
of the plasma resonance into two e lec t ron- two hole 
states may contribute to the plasma resonance width. 
Thus the comparison of the theoretical and experimen- 
tal widths contains the information about the relative 
contribution to the width of different mechanismes. 
Our width is half the experimental one [-4] for silver 
particles with a = 60/~. 

Appendix 

Here we calculate 

Im ( V L I I V L )  =.7~ (O 3 2 (g2 --  e2')4 ] (UL)2 2'12 3 (e 2 - -  ~3 2, ~- (D) 
).2' 

�9 6 ( e ~ - - e t ) .  C A 1) 

Let us begin with the calculation of the matrix element. 
We choose the one-electron potential in the form 

u (r) = u o 0 (a - r). (A 2) 

Then 

= [ / 4 ,  CV v 

+ volume terms. (A 3) 

The volume terms decrease with increase (ea-ea,) 
whereas the surface term (g v. 17 u)ax, is independent of 
(e~- ~,,). Indeed 

~d 3 aVE r ~ r  Uob(r--a)%.qo*, 

= La L +~ u o R,, L, (a) R,~ L= (a) ~ dF2 YLM Y~ M, YL2M~ (A 4) 

where RnL is the radial part of qh. It is not very difficult 
to obtain (see Ref. 9) 

lim Uo Rn, L,(a)Rn2Lz (a)=kmLl knzL2 a- 3 (A5) 
uo--~ oo 

where 

k , L = 2 n a - l ( L + 2 n )  and e=kZ/2. (A6) 

Hence 

([H, [H, VL]])Za, = La 2 L- 2 k~ k2 ~ d~  Yn~t Y~M, YL2 M~ 

(A 7) 
and 

Im(VLM1)L) =7cog-3L2a2L-4 E 2 2 
nl n2 L1L2 

"(~(gl--E2~-( 'O) 2 I (YLMY~,  YL:M~)I a. ( 1 8 )  
M, M 2 

The angular part of the sum is evaluated as follows 

1(YLM Y~M1 YL2M=)] 2 
MIM2 

1 
- 2 L + l  ~ I(YLMY~M~YL'-M=)I2 

MM1 M2 

(2L1 + 1)(2L2 + t) 1 
- ~ dXPL(X)PL,(X)PL~(X) C19) 

2(2L+1)  _, 

where Pz(x) is the Legendre polinomials. Since 
L1, L 2 ~ a p F N L  we replace the integral on the right- 
hand side of Eq. (A 9) by CSL, L~ i.e. 

1 2 
dXPL(X)PL,(X)PL~(X) = 2L  z + 1 6L, L=. (A 10) 

-1  

Combining Eqs. (A 9) and (A 10) we get" 

E l  X I(YL Y ,<YL2 2)I2  aL, L2. 
u~ ~t~ L + 1/2 

Substituting Eq. (A 11) into Eq. (A 8) gives: 

(A 11) 

7"C 
Im (vL FIvL) = O93 

g2 a2 L-4 
L + l / 2  ~ Llk2k~6(eF-eO 

ntn2Ll 

�9 6(el - e2 +o9). (A 12) 

Let us replace the sums on the right-hand side of 
Eq. (A 12) by integrals 

Z = ~  dn=~ dnde = a  ~ ]~"de (A13) 

Then we obtain instead of Eq. (A 12): 

L2a2L-2p2 LM 

6 
CA 14) 
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where  we p u t  ] / - 2 ( ~  ~ 2 1 ~ v =  PF a n d  L ~  = 2 a pv/re. 
F i n a l l y  we get 

I m  (v f l I  vL) 12 L PF 
2 g -  - (A15)  

(VL[IlVL) ~ ( 2 L +  1) aco"  
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