CRITERION FOR STRONG CONSTRUCTIVIZABILITY OF A
HOMOGENEOUS MODEL

M. G. Peretyat'kin UDC 517.15

In this paper we give a negative answer to a question posed by Morley in {7, p. 239]: Is it true that for
a homogeneous model 7 of a complete decidable theory 7 to be strongly constructivizable it is sufficient
that the family § of all types realizable in # be computable ?

In Sec. 2 we describe an appropriate counterexample. In Sec. 3 we give a precise criterion for strong
constructivizability of 77, which, besides the computability of J , contains a certain effectiveness condition

for extensions of types in S.

1. Preliminaries

In this paper we consider only signatures admitting a Gddel enumeration of the set of all formulas of this
signature.

A countable or finite model 777 with enumeration v:NER|771)  is called strongly constructive if the
theory Th m, is decidable, where mv is the enrichment of the signature of ##Z by new constant symbols
C;, i<W, sothat §; canbe interpreted by the element v(i)e [9|. A systematic exposition of the theory of

constructive models can be found in Ershov [2].

A diagram is a noncontradictory quantifier-free formula D (L) Zys o v e 1 Fpey ) of finite predicate sig-
nature & which is a conjunction of atomic formulas or their negations over the variables 1;,1‘,,.. Ty s
where each such formula (or its negation) occurs in ) . If m<n , then the diagram Z, (10',.7,, N Ay )

is called a subdiagram of 20 if o@, is obtained from &2 by deleting all terms containing the variables
Zppyeeor Ty

By an 2 -type P (Z,%,...,%,, ). of a complete theory 7 we mean a maximal set of formulas con-
sistent with 7 and containing only formulas whose free variables occur among z,%,...,Z, . The functions
<z,4 >, .7(/1), Kin)- are standard recursive functions of enumeration of pairs such that =< Ty, K>
for all 2 (see [4)).

Suppose q%, 9?, ...,CPS,,.. , $<w, is a Gédel enumeration of all formulas of signature ¢ . We say that
anumber S is the recursively enumerable (r.e.) index of .the type p(Z,,%,...»L,.,) ,if n= 7(5} ' p= {C{Z | ie
WK (S)} » where Wi is the 5 -th r.e. set in a Post enumeration. A type of index S will be den?ted by Ps).
A family of types S is called computable if there exists an r.e. set A suchthat §= {,D (] i€ A ]

If p(Z,,Z,,.... %) is & type, Osa'a«:, <...<(, <7 , then we denote by prlwén,l’(;,,.. .,:C;’S_{} the § -type
g (1‘0, T, -,555_,) , which is obtained by selecting from £ the formulas with the indicated variables and then
replacing in the formulas of the obtained set g " the variables ”z,,’xz, yores :L’L-s_f by the variables %,:B, geors Lgai s

respectively. We will call ¢ a subtype of o .
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Suppose N is some countable family of types of a complete theory 7 . There exists a model of T
realizing precisely the types in § if and only if S satisfies the following conditions:

1. § is closed under rearrangements of variables in types.

2. 9 is closed under the taking of a subtype.

3. Any two types 5,, /7, € S are subtypes of some type 9 eS.

4, For any type £z, )e$ and any formula ¢‘ (@)yoeny Ly yy T, ) 5 if Tz, Pep , then there exists a

%y
type ¢(%,.., D RI€ S, such that pu {C?b}

There exists a countable homogeneous model of 7 realizing precisely the types in § if and only if
besides the above conditions we have

5. For any two types 2, (%,,....Z, ). 7, (.1‘0,...,1',”_,)65 and any £<m.i.n{m,/z} s if p, I‘{:l’a,...,i'g_,jﬁ
pzf‘{czb,..., 1"5_/} , then there exists an (r+m-— £) -type geS such that A/ <% /7;=£{\{1;:---’$£-f 1 Tgaeeos Topprme ,g}.

It is not difficult to show that it suffices to require the existence of ¢ only in the case n=m= A+t
A countable family § having all of the indicated properties is called homogeneous,

The definitions and main results of the theory of homogeneous models can be found in [5].

Suppose A isa nonempty r.e. set and : A/ DA is a fixed general recursive function (g.r.f.). Let A

denote the set {¢(0), p(1),...,9 (s /)}, and X the set of sequences of elements of X .

2. Counterexample to the Question of M. Morley

In this section we describe a complete decidable theory 7/ and a computable homogeneous family of
types S such that a homogeneous model 70 of T realizing precisely the types in S is not strongly con-
structivizable, Infact, #7 is even not constrlictivizable, since 7 is a model-complete theory.'

The signature of the theory 7/ is
o={R.B.A....,P

S e S<u)},

where A is a binary and the e , i <w, are unary predicate symbols. We will also consider the following

finite parts of ¢ :

LN AT I

Consider the following propositions of signature O, :
1°. Yz 1 Riz,z),
A2°. vaf/ [R(z‘,y)—»/?(y,x)].
Suppose S<w, D, (%,,.-., 2, ,), Dz,

0 and e@o' isa subdla.gra.m of .!07 . The scheme Asg contains axioms of the following form for all pos-

sible such pairs Z, , -@7 with a fixed § :

Aa‘; . V.’.Uo...v-rﬂ_, [-@0(%, 1 /z- ) j‘z‘ﬂ n—/"z:‘tz]'

Z, s ) are two diagrams of g -models consistent with A1Y,

The axioms of 7 are all of the formulas A1°, A2°,A3], S<d,
LEMMA 1. 7 is a complete decidable theory admitting elimination of quantifiers.

Proof. Let 7/ g denote the theory of signature 6, for which the axioms are A1°, AZ®, A3
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We will prove the consistency of 7; by constructing a model. We will call a ¢; -model 7%/ admissible

if 777 satisfies the axioms A1? A2°.

Suppose 7% is an admissible 65 -model. Consider one of the axioms of the scheme A35°- Suppose
a,,. € 77 are suchthat Mk D) (g,.,q, ).  Then there exists an extension 297  such that #.

is an admissible 6, -model and k7%, (@4, ,,%,) . Indeed, let

a1, | = |au {6} .
On the set {ao, >y 5 7} we extend the definition of the predicates of signature ¢, so that D, (a @iy { ).
On the pairs (2,5) such that @€l77, | { -~ ,,g} we define the predicate K symmetrically in any fashion,
The resulting model ##, is the desired one.

We can now construct in a standard way a chain
m,sm, < ...SZ?Z#E

of admissible 6; -models so that the union 7 of this chain is a model of the theory 7; .

Suppose 770, 7! are two models of 7; . Let /1(737,71) denote the sets of all finite partial isomorphisms
of M into? . & follqws directly from the axioms Asg that u ( g7, 71) possesses the extension property,
ice., for any Ley(?,71) and any a€M .4€7? there exist Ay Ry€u(7, ) such that AL,2A A,2 4 and
ae.@aml, ,be /Qaﬂg_ A, I follows from these same axioms that /u( W, 7N)#& . Consequently, each reu (o, 1
is an elementary mapping, hence 7;. admits elimination of quantifiers, If . 7 are countable, then each
heu (97, 1) can be extended to an isomorphism, hence 7; is countable-categorical. Obviously, /, has no
.~ finite models. According to Vaught's criterion, 7 is complete.

It remains to observe that /S T+, for any S<w ,

Thus,
T=U T,

$<w

hence 7 is a complete theory with elimination of quantifiers. By a theorem of Janiczak, 7 - is a decidable
theory.

The lemma is proved.

In view of the elimination of quantifiers, any 1-type g(x) of the theory 7 is uniquely determined by a

sequence « €“ {0,1} , so that
(A @, P, B (@), s<0) E g W

Now suppose 722 . Any n -type p(zzb,x',,. -2 Z,_; of the theory 7 is uniquely determined by the
i-types )
| P, =P’\{-’%J . p/_pr{x7.}’ © 0 fay '=/7r\{xa-1}

and some 0, -diagram D (&, &,..., L, ;)€ £
Atype ¢ () satisfying condition (1) will be called distinguished if
oy =l = ., . =alg = ... =/,
A type g(fr) of the form (1) will be called admissible if there exists 7<) such that

oCn=oCn+{".-- -“Il+£="' =/.

292



) ]
Suppose Acw . we will say that a sequence € {0,4 } is compatible with A if there exists s<d
such that .

1, if aeA
Vet = { o, it igh, =0k 57,

2) &, =0,
8)ols = { for £>25

A type g(;c) is compatible with A if it is determined by a sequence compatible with A,

We now turn to the descr1pt10n of the desired family of types. Suppose Aew . We denote by S the
following set of types of the theory 7 .

a) A 1-type g(a:)eg & g(x) is an admissible type. _

b) Suppose p(f,,T,) is a 2-type consistent with 7 ,g;—pf{a‘a},g, =PP{2‘,} . Then peSA if and only
if the following condition is satisfied: if X (Z,,Z,)€p ,then

1) g, is distinguished == ¢, is compatible with 4 ,

2) g, is distinguished == ¢, is compatible with A ,

c) An n ~type pP(%,,...,Z,_,):7123 belongs to SA if and only if each of its 2-subtypes belongs to 5 .

LEMMA 2. For any Acd § 4 1s a homogeneous family of types of the theory 7 .

Proof. That 5,; is closed under the taking of subtypes and rearrangements of variables in types is
obvious. :

Let us verify condition 4, Suppose £(Z,,... T, ,)65 » and the G -formula qb(r,,,...,x,,_,,:c,, ) is such
that _?xﬂqbe p . There exists a ¢; -diagram Dz, Ty Z,) such that the set of formulas

p(:ta,...,xn_,)u{.@(xn, T, ,T,), P, ..., ,:/’*Tn)}

is consistent with 7/ . In view of elimination of quantifiers, it follows that

= Diz,,...2,,,1,) — Pz,

T M,x}.

Thus, it suffices to enlarge the set

Pl T, /)U{OU( e @y T)) @)

to a type which belongs to SA . If £ contains a conjunctive term of the form Z;= Z, , t<n , then (2) can
be uniquely extended to a type, which necessarily belongs to SA . Otherwise, it suffices to take an enlargement
q (cco, Z,_,,%,) such that the 1-type qr{x,,} is compatible with A4,

Finally, let us verify condition 5. Suppose A, (:t'o,. 3 Zyys Ty ), P, (.'1;,,. T )e S are such that

A ) {Cl’o,, oy CZ‘”_,}"’ #2 Hwﬁ"" "’I”"j

=11

r .
P vt
/02=Sb,1ﬂ /02(;1‘0,..,,1',‘__”.2'”) .

Consider the set of formulas

* ‘ _ . ’ )0 ’ N
P (1. SLy l'l"z‘ﬂi-l)—p’ (.’1',,,...,1’,1_,,1}, ~ (1‘07"'71;{-/"2‘/&1/'

7 - *
If for some (<1 we have (T;= Z,)€p, or (Z;= Ty )€F, ,then p - determines a unique type 9 /7,

Z,_;,T,, Toyy ) which belongs to S, and is such that
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fﬂ{l},,. x/r—/’ /'} ,C;,Qf‘{ Zy» - "xﬂ-{’ ﬂ+i‘} P+ @)
In the opposite case we must add to ,D the formula

(:Z? 7‘ n«H)&’_'P( Zys n+/)’

and then the resulting set of formulas determines a unique type 9 which belongs to S 4 and satisfies the
relations (3). The condition (3) is the special case of condition (5) with /{ =0 .

The lemma is proved,

LEMMA 3. If A isén r.e. set, then SA is a computable family of types.v

_Proof. It suffices to prove computability of the set S of 2-types in S g For this, obviously, it suffices
to find a computable family S’ such that S*C' S = S, where

*
§ ={p‘(1;,1‘,) | ® (z,a,)ep&p Pz} isdisinguished and
P ¥ {1‘ }15 compatible with A}

Consider an arbitrary finite sequence p={fJ..-.../s ), f; €{0/} , and some 7<w. For the pair &=(y,2)

we will describe the process of enumerating the 2-type 2, ( 0L, ) .. We define two sequences o, PE @ {o1 } .

Put o=/ for 0<is$-1,

. a
o _ 1, ifi LEA, .y y
Ha LS
s o, if ;g A", Uses,

o, =0, 4 =71 for £>2s. Clearly, 4 is compatible with = if for each £<« we have

X (/4—:4){..51},@’
We define the‘ sequence £ as follows:

£
o, if X s Xfaéﬁ,
Pt =

o 1 otherwise,
We construct the type Pg so that

B o
{R(;‘o,m,),loé é(r)s '%E(TI); /€<H)} /05(07 7

0

1
Then the set 9 of all such types Z¢ is the desired one.
The lemma is proved.

For an arbitrary Acd we denote by 2 4 the function
94(,1) = the number of elements in {0, 1,..., /Z—/} ni .

Anr.e. set A will be called approximable if there exists a g.r.f. f' () such that

1) sz(x)sg (z), . 4
2) 7 x{'{x)- ().

LEMMA 4. ¥ A is anr.e. set and a homogeneous model 7% realizing precisely the types in N 4 is
constructivizable, then A is approximable.

Proof. We will first show that the family of 1-types
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QA = {p 1 /D is compatible with A }

is computable.

Let [, denote the type of an element Q€ .. Sgppo_se '€ realizes a distinguished type, which
we denote by o’ . We will prove that '

Qp-{plme R @}, (5)

¥ Me=R (a'a,) ,then g, must be in 0/1 by definition of SA . Conversely, suppose peQA . Consider a
2-type g(r Z,) such that

QP{TO} =pf7 gf{a;}:p, '47(1‘19)59

Then ‘Z‘;S A and is therefore realized in 777 on some pair ({{) . Since 2’ and g ’ realize the type /:7'
and the model 77 is homogeneous, there exists an automorphism X : 77, — ?ﬂ such that 2(§)=2’ . Let
a=Al) . Then ME=Rl2) , and P. coincides with 5 . '

The computability of a y follows immediately from (5) and the constructivizability of 77 . From d f
we select a computable subfamily « 7z <& , such that

the length'of the "field of compatibility™ of « " with /4 is at least {6)
(which is equivalent to the condition ((F;>21) <, =0 )).

We define g.r.f. ¢(f). fit)  as follows:

{0) = 0,
{5 (£) for #>0 is the smallest number such that gfz,‘»max{g( 1), 225+2} and such that for each z<Z

there exists a number 5= § (7,Z) suchthat Zs< g(«f) and
n ) n

71') Xps= 0, Hpgpy=e00 = 9>

2){ilosics—t& o =1} ={04,..,5-nA",

yr&‘)

=,
Fli7,

and ff= the number of elements in the set {6,4,....2~1}n 4
We can say that at the moment ¢ we sur{rey the initial segments of the sequences eCooC/ e'ct-l . of
length g{f) and within the zone of the survey we obtain compatlblhty of each. of these sequences with the set
A ¢ mc A However, in certain «", 7<% » there can be zeros outside the zone of the survey. Let 2‘ denote
the smallest number £ >n  such that there are no zeros outs1de the segment of length 9(&‘) in «<”, Since

the sequence «, is compatlble with A , we have at this moment the exact equality

{ilosies1 & o, =/} L 8=1}nA

for §=§ (n,0) On the other hand, in view of condition 2) in the definition of 69[ %) » at this same moment we

have

. X " ;(5)
{0105053—/&¢5+5=I}={0,/, ,s=1}n

Therefore, in order to prove that at this moment we have ][? (Ll)‘g (If) it suffices to show that i <3(n, Zf ).

If rzsz‘ / , this follows from (6). In the case /L<f -1, note that 21(2,~1) >ZZ‘ by definition of g »and

by definition of 2{ there must be zeros in «” to the right of /] (iﬂ 1) ., from which the desired inequality

follows.
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Thus, f (x) has the properties (4).

The lemma is proved.

LEMMA 5. There exists a nonapproximate r.e. set.

Proof. We will construct the desired set (which we denote by A ) in steps. Suppose At is the finite
part of A constructed after step £, '

Suppose /’ () »n<d ,is a Kleene enumeration of all pa.rtla.l recursive functions of one variable, 7(‘ n
is the finite part of ﬁ, computed to the moment ?f and 7{' =& for n>¢! . Assume that the function <z,¢>
of enumeration of pairs possesses the following property: for any <« the function ly(.z‘,y> is monotone
increasing.

We will now describe the construction.

Step =0 . Put A’ = 2 |

Step £>0 . put A'= ’e At uM d » where M is the set of all g<w , for which the following two conditions
are satisfied. We first calculate 2 =<#, i>, 4= <rz,,{+/> .

1) Dom £2 2 +1, 4],
2) Yo e [a+s, 6] {'ﬂfZ.Z') <841 (2).

We will show that the set 4 is the desired one. Suppose 7{;(:5) isag.rf.and Yz 76’, (Z) = 4 4 (). We
will prove that
Vz[z><n0>= £ (2)<8, (z)].

Suppose 1> <n,0> . Choose £ so that <rz,£><xgs<n,f+/> . Let a=<n,£>, g=<fl,£+/> . Consider the
first step ? where both of the above conditions are satisfied for & . Then g¢/4 t:/aeA t, hence

ﬂt(-z;,)< it (%)) < G e ()€ 5 (z,)

The lemma is proved.

A proof of Lemma 5 was found independently of the author by K. A. Meirembekov.

Remark. I is not difficult to show that if B is approximable and A €, 8 (evenif A is r.e.and As #5 ),
then A is approximable. It follows from this and Lemma 5 that a creative set K is not approximable.
| Now consider §= SA » where A isanr.e. nonapproximable set. By Lemma 2, there exists a homogene-
ous model A of the theory 7 realizing precisely the types in S . The family S is computable by Lemma’
3, but the model #/Z cannot be constructivizable in view of Lemma 4,

v Also, we can reduce the signature of the theory 7 to a finite one, using, for example, a method of the

author (see [3, Sec. 5, Lemma 4.4]). In this way we can reduce the signature to two binary predicates and

then, by some well-known method, to a single binary predicate.

3. Criterion for Strong Constructivizability

Throughout this section we assume given a complete decidable theory 7 of signature 6 , a computable
homogeneous family of types J,a homogeneous model M of 7. determined by § , and a Gédel enumeration
qb 9?, .,¢ ..; § <&, of all formulas of signature & .

THEOREM 1. The following conditions are equivalent:
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1. There exists a g.r.f. £ (Z) suchthatif P(z) isan n -typein § ,then {Pw)]i€ me} is precisely
the family of (7+/) -types in N extending ~(7) .

2. There exists a g.r.f. 7(28) suchthat Y72 {P(i)ie Wers ) S ,andif P(z) isan 7z ~typein S ,
then there exists ZL0= Z,(7) such that for ¢ 22&0 the set {p @)l ie W o é)} is precisely the family of
(n+1) ~typesin § extending 7 (7).

3. There exists a g.r.f. ((2,$) suchthatif #(z) isan 2 ~typein & and ‘5‘2(.2’0 &y, X,)
is such that p(z)u[‘-?bs} is consistent with 7 , then P(G (’Z,S)> is an (1+1) -type in S extending P(v)
and containing 9“"9 . ‘

4, There exists a g.r.f. /‘/('Z S, 5) such that V1 S, fp(ﬁ 7, S,Z‘)) €§ and for each 7<) there exists
io Ze (7) suchthat if Z(%) isan & -typein J and 9"’(@* Z,,,%,) is such that p(’l)U{#S’} is consistent
with 7 , then for Z‘ZZfa we have that ﬂ(H(’Z,S,fJ) is an (fz-H)- -type in § extending P('L)U{qbs’].

5. 770 is strongly constructivizable.

The proof follows the scheme

/ﬂ\
\ﬂ/

We will prove only the two implications (4)== (5)==>(1)., since the others are obvious,
(5) => (1). Suppose v is a strong constructivization of / . Consider any 7<« such that ~(7)
isan 7 -type in § .- We will construct in steps the family
*
8 =959+ 1 9mr.. s m<0)

of all (1+1) -types in § extending P(7) . Let us describe the concepts needed for the construction process.

1. Va, R S, . is a Godel enumerationof all formulas of signature 6 whose free variables are in-
cluded among .Z;,,.Z;, L
2.Q,4a,..,0;,...,5<W@ is an effective enumeration with respectto the v -numbers of all proces-

sions of length 2 of elements of the model 77 .
3. If T is a procession of length (7+/) in /M , we put
£omy . -
TP* (&) =4 (¥ losist s m=y ©).
git is the finite part of the type Z: constructed after step ¢ . We assume that gf: & for i,zf .
Q : is the conjunction of the set gf
4 .
6. J;t, g,t,..., gt-/ are specific elements of m.
7. £(¢) is an auxiliary function, whose values are defined in steps.
After step 7 the following conditions will be satisfied:
#— &
1)%—7' f(f)’g ), 0sist~,

2) 3z, Q) (2,,...,2,,,2,)€ Plv), 0<isi,
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The construction:

Step =0 . Put g}"_—_gf for all lz'<a)-/a7)=0.

Step 7+ . There are two cases.

Case 1. If 1{;t+/= 45, O< ist-1, é// ;H is the element with smallest number different from all 0?"/ .
i<t f ~(z‘,/+/)=;(’(l(), gf*’ is in accordance with 1), then condition 2) holds (if we replace 7 by Z+/ ). Inthis
case we consider the attempt successful and step ?+/ has been carried out.

Case 2. The definitions given above lead to a violation of 2). In this case we find the smallest possible
value 7[) (£4) >7f(f) , for which we can choose a system of elements 277,)(/ e ,ffﬁ so that conditions 1) and 2)
are satisfied and also the following condition: 3) Z i : Q O<is t~7 . This completes step 7+ ,

Suppose é is the smallest number such that d 4 realizes the type 7 (z) . The idea of the construc-
tion is that there occurs a moment Zf such that / Zf) { for all fZ?f” . Then for all Z‘zl‘o we are in
Case 1, hence $* will be precisely the set {7;0 @ [,5’ )1 567?{} Since 7% is homogeneous, S* is as
desired.

The process described above depends uniformly on % , hence there exists a g.r.f. £(z) , such that
S={PwlieW,,}.

(4) =» (8) . The proof given here is, in essence, only an "elaboration" of M. Morley's proof of the
main theorem of {7, Theorem 6.1], which says that if the family of all types consistent with a complete de-
cidable theory / is computable, then a countable saturated model of /7 is strongly constructivizable.

Suppose A is anr.e. set, 9= {P([) lie A-} satisfies the conditions of homogeneity, (7, s,;t) is a func-
tion satisfying condition 4 of the theorem, and < Jin),K)> =~ is a standard enumeration of the pairs of
natural numbers. Fix ag.rf. 9: V23 A | Put 4(s)=P(p(Ji9)) Then §={4()|i<w} and in this list
each type p c $ has an infinite set of numbers.

We will assume without loss of generality that the signature & of the theory 7 is purely predicate.

Consider

o*=06v{C,¢C,....C

(/A B

s““;3<w}.

Suppose 90, @,, cery @s yeeey S< is a Godel enumeration of all propositions of signature o* . we will con-
struct by steps with respect to 7 certain propositions V4t3 ) such that (o ) is an identically true formula
and &(£+1) is either @(z‘)&% or 0(5)&,1@,} . The resulting sequence @) is a set of axioms of a
complete decidable Henkin theory, and a canonical model of this theory is the desired one.

- At the same time, we will construct auxiliary functions 7"(/2, z‘), g(ﬂ,i),ﬁ(ﬂ,zf), X (n, zf), Y{ﬂ,?f), A’(ﬂ,é) .
For brevity, we will sometimes omit the second argument; replacing it if necessary by the phrase "at the mo-
ment ZL . i

At the moment Z=0 the functions 717 (n), g(n), 4 (n) will be general recursive. At most one yalue of

each of these functions can vary in a step.

The objects X,Y at the moment & depend on 7{ as follows:

X(1) = <Gyueeor CpoysCogy o -1 Cpiy> s
Y(m) = <Gpoevos Guys Cpprr  + 2 Ctmy 16m >
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where = maa){j (fc') }nfé/z} and Y(z) is considered only for those 2 such that 7{£~I~f}= m+{ ,i.e., for
=1, 4, 8, 13, 19,..,./+%s(s+5). ‘

The objécts R are the following assertions concerning 8=0(%):

R(20) = R'(22)8 R" (20),
where /Q*(fﬂ)"‘ "either it follows from B that <CyyeirCyp_y >  hasnotype L(Km)Mz,.., Tt} s
or & is cons1stent with the fact that <Gyeres Ot {,C’em> has type 4[K(n)) ,
R (.?rz) =" § is consistent with the fact that X(7) has type 4 (g{rn)
R(2nd)= 8 is consistent with the fact that Y(n) has type 7 (Aln).

In the conditions A #(2/1) .R(2n+1) , the number of variables of a type is always equal to the length of the
corresponding procession. The conditions K '(2’5)' for which this is violated and also the conditions K (Z2n+1)
for which Y(7) is not considered are taken to be true by definition,

The inductive construction is as follows.

Step t=0.8(0) isa tautology, f(ﬁ,a) ~0 forall n, 57(40)‘,:4{/;;0) are defined to be the recursive func~
tions assuming the smallest possible values such that the number of variables of the types they determine cor-
respond to the lengths of the processwns.

Step >0 , put &( z‘)— 5’(#0&5’?} -7» where € is chosen so that the largest possible initial segment
of conditions is satisfied.

Find the smallest 5< ¢ such that F (s) is false. If there is no such S , then step f is complete (the
values of all functions at the moment 7 are the same as at the moment -/ ). If there is such an S , then
we consider two cases,

Case 1. The first violated condition is X' (Zz) . Then we put 7'0{1'?, ) equal to the smallest 7 such
that C, does not occurin &%) (thus condition A I(Zﬂ) will be satisfied). We next put 2(m, %) equal to
the smallest number greater than g(n,é-/ ) for which R'{22) is satistied.

Case 2. The first violated condition is X (Z7+/) . Suppose o< is a function such that

Yin) = <€o‘(0) o ’Ooc (rrz+/z+/)>
We construct a formula ('57 by replacing in (57 (Z) each constant C; occurring in Y{rz} by the variable ££
where £—/1Z éc( 2)=8)}, Suppose f’? is obtained from @ by replacing all remaining constants by different
variables and quantifying them by means of 7 . Finally, let

Zﬂ(fa:- . 7Tm+rz+f) B @”&A {(mir;z(f)ld(é):d(j)}'

Suppose 7 is the r.e. index of the type é(g(ﬂ}) » and 5 is the G6del number of the formula ¥ . pa é(ﬂ)*
H {(%,8, zf ), where i ‘is the smallest number such that Zf £ and the number of variables of the type §74
(//('Z s, ¢’ }}  is equal to the length of the processwn Y(ny + Step ¢ is complete,
We will show that for any fixed 7#<« the value of each of the functions f, % A stabilizes as ¢ increases.
At the moment ZL-“— 0 wehave F(0)=0 and 9(0) = is equal to the smallest 5 such that / (S) is a 1-
type. These values cannot change, since in the construction of &( £) there is always the pos51b111ty of chooging
€ so that the condition X (0) is not violated.
Now assume that that 7(#) . 5(%} 4 (#) stabilize for all #<n , beginning with the moment Z’ . We
will show that /{ 7)  and cg(/z) stabilize, If Y(rz-—/) is not defined, put Z(7) =X(/z-f), p::[: (g(ﬂ—ﬂ) ; other-
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wise, suppose Z(7)=< 6;,,...,6’,,,07%,---,0;“_”> and - is the type of Z (7) under the condition that Z(/ (n—1)
is the type of Yirn-1) ( F is obtained from the type P4 (/z—/)) by a rearrangement of variables). Let s de-
note the number of variables of the type Z (K(7)) . We consider several cases.

Case 1. Suppose $=(z)+/ and

LK M g,,..., 2y, Y= M2, 02y, Y @

Stabilization is achieved at the moment when the following conditions are satisfied (here £ is the length of

the procession Z () ):

LL{gum) Mz, ...z J=p,

(8)
2L (gm)Mz,,..., 2, Y=L (Kw).

If g at some moment. f >t ! does not satisfy these conditions, then the condition X (27) is violated. But
then we must change the value f () , and thus we remove from X(n) any additional condifions imposed by
the increasing proposition 8(2) , except for the conditions (8). Therefore, a value guz) satisfying the con-
ditions (8) will ultimately be found. ;

Case 2. S=J (n)+ {/ . Inthis case the condition % ’(2/1) is true by definition. Therefore, only the con-
dition (8.1) is imposed on 5(11) . As in the previous case, after a series of violations of the condition R "(Zﬂ)
we will find a value ¢(r) satisfying this condition, and from this moment g(7 ) and £(7) no longer vary.

Case 3. s=J(n)+ 7 , but condition (7) is violated. In this case, the increase of & (¢) implies that the
condition R’(2z) will be satisfied constantly from some moment on. Then the stabilization of 7ll (") and g(n)
occurs as in Case 2.

It Y(n)‘ is defined, then the stabilization of A(ﬂ) occurs at the moment Zf=/+ma:£{(‘fo(”c), ¢ ’} , where 7
is the index of the type Z (}(/z)) .Zfa (?) is the number in condition 4 of the theorem, and f’ is the moment of
stabilization, v

The desired model 777=<M; 6> is constructed as follows. Suppose M={C0,C,,...,C$,... ; 8<w } The pre-
dicates of 6 are defined on M in correspondence with the sequence g (Zf ) . If we consider the mapping
v N M defined by the rule V(b')= C; ,then we can show by a standard argument that (777, v) is a strongly
constructive model of 7 . The conditions X ,(Zﬂ ) guarantee the homogeneity of 77, the realization in 727
of all types in § , and also the Henkin condition, from which it follows that # is a model of 7 . The con- '
ditions & (Z2n11) do not allow the realization in 77 of extraneous types. The conditions # “(22) play a
determining role in the stabilization of the functions. A

. It is easy to see that in the example of Sec. 2 there is a violation of condition 1, namely, if % is the index
of a distinguished type, then any value for £ (%) is unsuitable, since the family of 2-types in § extending a
distinguished type is not computable.

We now give two corollaries of our theorem. We assume that T is a complete decidable theory.

COROLLARY 1.1. (Goncharov and Nurtazin {1], Harrington [6]). If 7 has a prime model 7% and the

family $  of principal types is computable, then 7% is strongly constructivizable.
Proof, Condition 4 of Theorem 1 is satisfied for § . Indeed, in the role of # (%, 5,Z) we take the index
Gz 7
of the first type found in S containing 7 (¥} and qb_'s , where Z( Z)# is the finite part of the type P(2)

300



computed after 4 steps. If P (z)t with €bs is inconsistent or if 4’5 contains superfluous variables, we
define # ('Z,S,Zf) trivially in any fashion, The role of Zlo (2) is played by the moment when the generating
type p(’wéoccurs in A(v) .

COROLLARY 1.2 (Morley [7}). If 7 has a saturated model 77 and the family § of all types is com-

putable, then 7% is strongly constructivizable.

Proof. Condition 3 of Theorem 1 is obviously satisfied for § .

There naturally arises the following question. Suppose T isa complete decidable theory and ) is\a
computable family of types possessing the properties 1-4 given in Sec, 1. Such families can be called ad-
missible., Does there always exist at least one strongly constructive model of 7 realizing precisely the types
in § 2 The answer turns out to be negative, since we have the following

THEOREM 2. Suppose § isa computable admissible family of types. Then conditions 1, 2, 3, 4 of
Theorem 1 are equivalent to each other and to

5'. There exists a strongly constructive model of 7/ realizing precisely all types in § .

The proof of this theorem follows the same scheme as that of Theorem 1.

The proof of the implication (5’ )== (1) is somewhat more complicated. This is related to the fact
that the family of all (n4/) -types in $ extending a given n -type Py may not be realized over some
one realization of the type #(z) . Therefore, it is necessary to organize a search of the points of realization
of the type P(@) .

The proof of the implication {4)==(5) is an almost verbatim repetition.of the proof in Theorem 1, The
only thing requiring any essential alteration is the condition A ’(2/7) and everything connected with it. I must
be adjusted so that we obtain a Henkin theory and can realize all types in J.

COROLLARY 2.1. Suppose (WZ, v) isa strongly constructive model of a complete theory 7 and the

family S of types realizable in 7% is homogeneous. Then the homogeneous model mf defined by the
family S is strongly constructivizable.

It follows that in the example of Sec. 2 there exists no strongly constructive model realizing precisely
the types in S .

In conclusion, the author would like to mention that the main results of this paper were obtained inde-
pendently by Goncharov {8]. Conditions 1 and 3 of Theorem 1 were found by the author later, as a result of a
joint discussion.,

The author is grateful to all of the participants in the mathematical logic seminar at Alma-Ata, who con-

tributed to an active discussion of the results of the present paper.
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