STRUCTURE OF THE UPPER SEMILATTICE OF RECURSIVELY ENUMERABLE
m -DEGREES AND RELATED QUESTIONS. I

S. D. Denisov ° UDC 517:11,518:5

In the first part of this paper we consider the following upper semilattices, the semi-
lattlce .Z' of recursively enumerable ,; ~degrees, the semilattice’ .2’-= {Ke.z Ias g}
where dE-Z and @ 1is not equal to the largest element of .Z s and the semilattices
Z(§,) of computable enumerations of the classesv5”={¢, {1},....{a}}, where n=h2,.... Ve
prove (Theorem 1) that it is possible to provide the semilattice .?,’l (0.2’,,2,'(5” )) with an
enumeration 7 (4" ¥ respectively) such that in a suitable category of enumerated semilat-
tices ef (a ¥ ,.,2(6' )F) possesses the "morphism extension property.' Theorem 1 ahd Theorem
2, which asserts, roughly speaklng, the isolation of the largest element of .Zr (a.Z ,aZ(«S )F
characterlze the semilattice f ( 3.2((5’ )) uniquely to within isomorphism. It follows, in
particular, that the above-mentioned semilattices are isomorphic: zeé’aof%l(s,,) . It had

been conjectured that these semilattices are isomorphic.

In the second part of this paper ("Structure ... II") we investigate by the methods of
e e . . d_ |,/ 4 . .
this first part the semilattice aZ ={ MM)IAEAZ } and the semilattices of computable
enumerations . .2(6’) , where § isa computable family of general recursive functions contain-
ing exactly one limit point and is such that the semilattice .Z(SY) . wWhere S is the set of
1solated points of ,5’ » is a one-element set. We will prove that .Zd"’i’(ts’)"‘i s where

g0l : ad

F (respectively 3(5) ) is obtained from the semilattice o (respectively f(&') ) by

externally adjoining a largest element. We begin a more detailed expositiom.

1. Preliminary Facts

As a working definition we adopt the following definition of m -reducibility. Suppose
A.BC N; we say that the set A is m -reducible to the set B nAémﬁi , if either A is
recursive or there exists a general recursive function 71' such that VxeN(x&A“f{$)€5) .
The reiation £, 1is obviously a preorder on the set of all subsets of /&l ; we denote by
~y  thet corresponding equivalence relation: A'VmB = Asmﬁ & 5<m A . The equivalence
class of the set A relative to ™~ 1is denoted by a/m (A) and is called the m-degree
of A ; an  m-degree 'containing a recursively enumerable set is called recursively enumer-
able. The relation <, induces an order on the set of /m-degrees, and this ordered set is
an upper semilattice, i.e., any two elements have a least upper bound. In the sequel, in-

stead of "upper semilattice" we will simply write ''semilattice." We denote the semilattice

of r-degree by L™ , and the set of recursively enumerable m—degrees by ofe
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Let us establish some conventions. We will denote a semilattice and its underlying set
by the same letter, and the operation of taking the least upper bound by U ; thus, ng -
auzf =4. Suppose Li=<L ,U> 1s a semilattice. The smallest element of L (if it exists)
will be denoted by 0 , and the largest (if it exists) by I ; sometlmes these elements will
be denoted more exp11c1tly I£ A subset Ac ¥ is called an 1deal of the semilattice
& if for all aKe.Z we have the relations g, feA——»augeA aeA& g<a——>—{e/1 For

e
recursively enumerable /% -degrees we will use the following abbrevations. If g, zfe,‘l , then

alys = {ce.Z Iascszf} .Z’g-——{cé«zehsﬁ},
JL={cetflascl.

It is easy to see that .Ze is an ideal of the semilattice aerz and that dm(gé) is the
smallest element of .Zm and fl . It follows from the computability of the family of all
recursively enumerable subsets of /V that the semilattice .,Ze possesses a largest element.
We will also consider the semilattices a,{-{o’eze lasf} , wWhere aeig and @ is not equal
to the largest element of .Ze , and the semilattices of computable enumerations L (S/z) » Where
15,,2={¢ .{/},...,'{/Z}} and /Z=/,Z,,.... Suppose S is a computable family of recursively
enumerable sets and Z(S) is the semilattice of computable ernumerations of 5 (see [1]); by
analogy with #7 -degrees, the element of of(S) defined by a computable enumeration. f"A/ontOS
will be denoted by U//m(}p) . It can be shown that the semllattlce o'f(S ) possesses largest
and smallest elements (see [1]) and that the semllattlce a{ is (naturally) isomorphic to
the semilattice aZ(S,) .

The concept of /M -reducibility was introduced by Post [4]. 1In that same paper he
introduced the concept of a creativé set; it turns out (Myhill [5]) that dm(A)=ng if and
only if A is a creative set. Yany (see [3]) observed that the # ~-degree of a so-called
maximal set J{ is minimal, i.e., satisfies the condition d (M)+ 0 & V{ei (0<b’\
a’ (./1[)—*5=0 V{_ (/l{)) Lachlan [6] proved that the largest element of aZ’ is inde-
composable, i.e., aug I—»a=_7uf Z . Ershov [7] showed that

1) .‘é contains infinitely many minimal elements;

2) there exist elements (# @) under which there are no minimal ones;

3) 16 is not a lattice;

4
4) the elementary theory of the semilattice Z” is undecidable.

It isproved in [8] that for any ae,Z {0 I} there exists {éf such that Qs & {40, .
and that for any aei’ we have &<7J ‘—"J—’féf (0«<5<.l) It is proved in [11] that for
any 06! we have ‘

a<}-»_—7fefe(a< & Yeell (c<b—cesavec=£)).

e
Lachlan's paper [12] was a significant advance in the study of £ , namely Lachlan proved
that if "Zﬂ is an L-semilattice (denoted by .Za 1 ¥ = <.Z, UD, where L is a semilattice and

# is an enumeration of £ ; the definition of a Lachlan semilattice (L-semilattice) is given
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. é . 4
below), then there exists af.l' such that the semilattice .Za-{fe.z I;sa} is isomorphic
to & ; conversely, for each T Ad there exists an enumeration a: N g—“—orja such that (.‘[a )9
vé
is an L-semilattice. The last results on the semilattice & (and also -Z(S,,) ) are the

theorems of Ershov—Lavrov |13] and V'yugin [14]. Let us recall what they are.

4
THEOREM (Ershov—Lavrov [13]). 1If AC-? , A # ¢ is a computable ideal, 8 C -Ze is a
computable family of M -degrees such that AnA = ¢ and IdA Ty, ] , then there exists
ae.Z‘ such that Vie.i’e(é’«z«»é’e A) ana VéeB ( & is comparable with { ).

THEOREM (V'yugin [14]). For any Qele different from J and for an arbitrary L- -
4 ' (4
semilattice -Za , there exist fe” such that a<f , the semilattice a'ZJ = {CE-Z le< ng}
¢ .
is isomorphic < and VCE-Z (csé’*csava‘c).

A complete description of the semilattice £™ is contained in Ershov [15) with the

addendum of Palyutin [16].

2. Definitions and Statements of Theorems

A pair consisting of a (no more than countable) semilattice o = <Z,U> and an enumera-
tion @: N _or_lt_cz_z of the underlying set X will be denoted by .‘le and called an en-
umerated semilattice. We introduce the following category K : the object of K are the
enumerated semilattices, and a morphism a:.Z’ ";".Zz of an enumerated semilattice .‘L"
((Z,’u >, 8) into an enumerated semilattice cfvz= (<.‘ffu>v, \')) is a mapping a:,Z’ — g2

of the underlying set -Z’ into the underlying set £ such that
1) @ is a multivalent;
2) @ 1is a semilattice homomorphism;
3) 0{1’) is an ideal of .Za 3

4) there exists a general recursive function £ such that YzeN @e(x) = vE(D) (.e.,

a2 is a morphism of the corresponding enumerated sets (see [1])).

Suppose ‘{g is an enumerated semilattice. We will say that .Ze is a Lachlan semilattice
(L-semilattice) if there exists a sequence of finite preordered sets <.00,S0>C<Z7,, <€, 0C,.,
where 'Dt c N , such that .

10) 8(2)= 8(y) ~— FieN (zs;4);
L) {7}

28
ing abbrevations:

is a strongly computable sequence of finite sets (we will use the follow-

2oy = 2 yhy<, 2, [@;=(yeN |2~ 4}, F=); |2e0)),

L2) the ordered set —p(, is a distributive lattice;

~t
_ it
the least upper bound and the largest and smallest elements;

~ ,
L3) the mapping 271;'—" induced by the embedding <ﬂ£,S£> c <ﬂ£+ > preserves

<.
1717 0%

L4) there exist general recursive functions U(d‘,}(,(:), 0'(1‘,5(, ) such that
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zyel, — ulzy.i),r(xy.i)el;,
() vlyl; = [ulz,40)];,
@) nly); = rizyy,i)];, where 2,460

L5) there exists a recursive predicate P(;c,y, L’,d,{) such that for all 1‘,#,0' we have

Ty~ Ya74 P (Z,4, ,a,f).

W; mention one property of Lachlan semilattices that will be needed to prove Theorem
1. Suppose o‘fa is an L-semilattice and‘ f' is a general recursive function such that
1{'(”)=/V Then ‘Zﬂ of is an L-semilattice. Indeed, suppose <D > C<ﬂ \,>C--. is a
sequence of preordered sets satisfying conditions L1)-L5) and such that g(.'l') 9(y) —
:JI,E/V( “”l,l) . Suppose y(t) /Zy{f(yhl‘) (here 4 is the m1n1mlzat10n operator). Since
FIN) =N, the function g is general recursive and ]["9(1,') = Z. Put. ﬂ = {.1'64”/{.2)60
&1}<5U.P(9 Z?))} ’<’ / =7 yeﬂ do/(:c)s /(g) It is easy to see that the sequence of
preordered sets <'70 >cC <.D ... satisfies conditions L1)-L5) and that ’Qf(x)s e

)(’(}1) -4-»-_‘7&6/\/(:1: <L 5[) Thus, we have proved that -29’{, is an L-semilattice.

Suppose {7['.}520 is a principal enumeration of the set of all one-place partial recur-
sive functions. If we let /7 be the domain of 7[ , it is clear that [/7 .}620 is a
prlnc1pal enumeration of the class of all recursively enumerable subsets of N. We introduce
an enumeration of the semllattlcex : ﬁ(a) = alm(ﬂb ) and an enumeration of the semilattice

OZ: ?)’([)= QuZ (i) (the dependence of §° on @ 1is not indicated, but this will not lead

to complications). We also intfoduce an enumeration of the semilattice eZ(S,I) as follows.
Let 7@(0)=¢{, £(@) = {z} for /4¢<a,7‘l7'(/z+:c+/)=L7‘2 (@)} if £ (%) is defined and 7 (2)€
{/,...,/2}, 7?‘:(IZ+1H- /)= &; otherwise, put »}'(i)=a’m (76) (the dependenceﬂ of the enumeration §
on /£ is not indicated).

We are now 1n a position to state Theorems 1, 1', and 2. We fix an enumerated semi-

lattice £, €{L,, ,Lp, L (5 )g .

w2y

THEOREM 1. Suppose in the diagram

/ ' :
that a,{e/(,fgl {(.Z") , and "Zg is an L-semilattice. Then there exists ¢€& A making the

diagram-commutative.

THEOREM 1'. Suppose the diagram

0
e
Q
R{\\\
———fin.
[+
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that a!e/( c, aﬁ are morphisms of enumerated sets, g—c-d ]# c(/) -and .Z " is an L-

semilattice. Then there exists €€/( making the diagram commutatlve and such that & (,Z )

nely)=4(L°).

THEOREM 2. Suppose 62")’ —-r‘.f is a morphism of enumerated sets such that .Z's(a(])
4
Then there ex1st an L-semilattice .29 ., a morphlsm of enumerated sets é’ / —_— 2% and a K -
morphism £ .Z -—".Z¢ such that a= Cvg and JQ(G (.Z)

3. Prqof of Theorems 1 and 2

Recall that {ﬁ"}&>b is a principal enumeration of the set of all one—pléce partial re-
cursive functions (p.r.f. ), /7; is the domain of f , and, therefore, [/7'}1,>0 is a
principal enumeratlon of the set of all recursively enumerable subsets of N . Fix a general
recursive function (g.r.f.) c(.z'/) effecting a one-to-one correspondence /‘V<-~-/V"2 and such
that C{'Try) is nondecreasing in £ and ¥ , in particular, w.p(d:y) .'I'y) Let ¢ :c,y,z)z
CLZ‘,C(yJ). We give the definition of .the Lachlan ¢ ~operator (see [10]). Suppose UCA/
is a set and A chNisa recursively enumerable (r e.) set. Then we -denote by ¢' (U A) the
following m-degree: if A= @ , then ¢(UA) (d) ; if A4 @ and f is a g.r.f. such
thatvf'(ﬂ)=/1,’ther‘1‘ JLU,A)= d,,, (7" (U)). This definltion is obviously correct, i.e., does
not depend on the choice of f . The follofving are the main prpperties of the Lachlan ¢ -

operator.

01) The gllfoperator A — ¢'(_U,A),maps_ the set of r.e. subsets of /\( onto the set of

m -degrees <dy (U); (U, N) = dy (U);
02) ¢ (U, AvB)=y(U,A)u¢(U,B8);

03) 1If ¢(U As ¢ (V,B) and 50V7‘¢ Bn (/V‘V)#d then there exists a p.r.f. f with
domain A such ‘that ;’(A) €8 and :CGA—“ .’tEU"‘;’(z)EV) ; conversely, the existence of a
p.r.f. f with these properties implies that ¢(U A)<¢ (V 5) in particular, 1f AﬂU
An(N\U) are recursively enumerable, then sf(l/l)- d (¢)

04) If A,ﬁ are r.e. sets, V 1is a r.e. equivalence relation on ﬂ such that for army
zeﬂ there exists ¢ GAIHB& Z~y, and for anyvz},ye,‘ we have z~5z—~(,c'e(/ —rye ),
then ¢ (U A) < ¢ (U, 8) . |

For example, let us prove 04). Suppose 0= {(a',y)l:t»vy& yeﬁ} The set { 1is recursive-
ly enumerable (z,y)cl?-‘(.ce U ‘-*‘(EU) . xeA "—":7y ((x,y;e 6’) and (x.;)ec-»;eﬁ In
view of the first and third properties of £ , ,there exists a p.r.f. f‘ ‘with domain A sut:h
that .teA ~(.c.{1x))e£, and it follows from the second and fourth properties that the p.r.f.

f also satisfies the relations .‘Z‘GA — (zeU‘-vf(z)e U) and f(A) c 3 In view of 03),

¢(UA)¢¢(U§)

Let us recall some facts about finite distributive lattices (see [12]). Suppose -_D is
a finite distributive lattice. An element aeD is called an atom if a‘{uc _— as’iva‘c.
Suppose .ﬂ ﬂ are finite distributive lattices and ¢! ﬁ-"ﬂ is a mapping preserving the

least upper bound and the largest and smallest elements. If aeﬁ is an atom,. we denote by
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C (@) the set of minimal elements of the set 5 (a) & {56./71 las= ;0{{)}. We claim the following.
D1) The set 6’(0.) - is nonempty and each element of é’(a) is an atom.

D2) If @, KE.DZ are atoms and asg , then there exists a mapping ¢: 5'({)'*0(0) such

that%(a')sa’.

That (&) is nonempty follows from the fact that ¢ preserves the largest element.
We will show that each element of [(@) is an atom. If ge C@) and gsC Ud, then zf=({nc)u
(!nd),a<¢(6’)=W({fnc)u(b’na’))= <p(6’nc)uso({na’) ; but & is an atom, hence &< 90(6’06") or
a«p(é’nd) . If, for definiteness, asgo(fnc) , then {nceﬁ(a) and gnCég; but f is
a minimal element of A (2) , hence 5nc = f and {<0 Let us prove D2). Since a<d , it~
follows that 0(6’)c5(a) and, since 5((2) is finite, under each element there is a minimal
one, i.e., the desired ¢ U(g) c é’(a) exists.

We also introduce the concept of convergence. Suppose /45 are sets and 4(/4,5) is
the set of all partial mappings from A into B8 . 1If 7"54’(,4,5), ae,4 , then 7['{(2),, is
an abbreviation for " f’ is defined at the point & .'" Suppose {95}1;0 is a sequence of ele-

ments of 4 (A,ﬁ) . We will say that the sequence {343130 converges 1if
1) JsYu,o Yach (ssussbg, @] — g (@/),
2 YaedFs [Viss (19, @) or V28 (g, @/ag,0)=g, @)].
If the sequence {91}430 converges and y€4(/4 5) we will say that y is the limit of

{?‘}{””’91.-».,74 , if for any a:

1 9@ —FaVizs (g, (@)]),
2) gl@! —FsVizs (g @/& g, (@)= g(a).

Obviously, for a convergent sequence the limit exists and is uniquely defined. Note that if
a sequence {9‘}i>0 converges and its limit 9 4&—21909,4 is a function with finite domain,
then there exists 4 such that ?ﬁ } for all 2,‘>4 . Indeed, suppose 4 is such that

V(l r VaeA (4 sd<1}'&g a)’—»—g (a)/) , and suppose ACA is the domain of ? Since
Aa is finite, there exists :L 24 such that for Z‘>;L, and (ZGA %{ (@) is defined and

‘% (@)= g(a) . Obviously, 9';,‘ g for 2 24, . TFor functions 7(’ /V_>57( { an arbitrary set)
and 711 N —~N  the equalities &rn 7[('&) C (where cel ) and &m, f{i)—w have the usual
meaning, namely &m, /’(‘i) 6’ <+ (there exists n€N such that 42— f4)=C ),

&ITL /(i)——- 00 i (for each neN there exists me/\/ such that Azrn—-/{i);ﬂ ). Note that
1f 0 is 4(:4 5) then an equality &IT‘I;.O;[(Q C in the sense of the second definition im-

plies the equality &m, f(é) = (¢ in the sense of the first, but not conversely.

Other Conventions. The totality of subsets of a given set A will be denoted by S(A) .

As usual, a partition P of a set A is a subset of S(A) .PCS(A), such that each element

P is nonempty, the elements of P  are pairwise disjoint, and the union of the elements of
F is A . If P ,Q C §(A) are two partitions of A , then P is called a refinementvof
@ if each element of P is a subset of a suitable element of Q . 1t 5CA and P c §A)
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is a partition of A , then we will denote by piﬁ the following partition of 5: Pl 5 =

[CnBICeP & CnBES}.

To avoid obscuring the main ideas with complex notation we analyze only the case

4 . , . i
0Z¢=.£’92. in Theorem 1. The changes required for a.x); .eZ((S‘,, ); will be indicated later.

THEOREM 1. Suppose in the diagram

Jg{ _c_ - 2
e A
£

. "4 .
that 4, JG/(, .[ﬁlf (.Zo) and :ze is an L-semilattice: Then there exists C€K making the

diagram commutative.

Suppose d is the cylindrification of the enumeration & ; by definition, there exists
a g.r.f. ? such that #= 609 ,;(fi/)= N, and ? assumes each of it values infinitely often
(g is a function of large amplitude). In view of the remark immediately following the de-
finition of L-semilattice, Y.Z; is an L-semilattice. Obviously, the identity mapping
-Z “‘*',Z'- is a K-isomorphism. Therefore, we may assume without loss of generality that
the enumeratlon g is 1tself a cyllnder, i.e., =8 ; for some function ? of large am-
plitude. Suppose <.[7 > < <_7 .., 1s a sequence of finite preordered sets
satlsfylng conditions Ll)—LS) and such that @(SC) @(g) — JieN (.T‘LSI) and suppose
(.Ty ;). 0 (1‘ y.o) are g.r.f. satisfying L4) (in connection with our sequence). Let L4
be a semilattice obtained from .Z by externally adjoining a largest element. We define an
enumeration of & ./u:/‘/m.l, as follows: /I(O)-]x ./I[_'L'-l' /) = @(z). We also define a

sequence of preordered sets <_Z70’<0>C<_0 s,>C..,, and gn.r.f. u(a',y,a’),cr(:t;y,Z) ;

(x) D = {weN|x=0vx>/&x-/eﬂf}
y 2 gyel) &Eg OV.z;yal&(:c—/)s’(y 1,

u(zy,i)= { ‘;I(x"’i""")” Sl ddk

otherwise,
, z, it 4=9
riayl)=< ¢, if - T=0,

d"(.t—/,;—/,i) + 7/, otherwise.

It is easy to see that the sequence <.D £,>C <ﬁ €,2C... and the function &, & satisfy
conditions L1)-L5) and that /({1‘)‘/1@) -‘-—’-J&GN = }/), in particular, .f” is an L-semi-
lattice. We emphasize that throughout the proof of Theorem 1, <ﬂ $;>,U, T are the objects

introduced in (*). We‘. will also assume that ZLs¢ —> xeﬂ,’- .

! -
It is clear that the natural embedding JO’ c .2’# is a K -morphism. Suppose & is the

composite mapping .Z; —a-b-.Za' c 'Z/l . It suffices to prove that there exists ceX | making
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the diagram

g, -2 &
| /
£

commutative. Since the enumeration & 1is a cylinder, there exists a g.r.f. 7(' such that
dV(x)=€/{x) and /’(w);.'l' . Let f(x)-‘i/(x)*/ . Obviously, @V(z) = ,u/{x) and;p(x);x The
latter relation implies that the set /(/V) is recursive (we denote it by H ), and the first
relation implies the equality/t(ﬂ)=5[.zo). This set H wiil be needed later.

We will use (until the end of the proof of Theorem 1) the following abbreviations:

JL"‘gy;‘ xﬁ‘?&%sg z, [l’]i={5/€/‘”£~'y} .D (_-1’][: {:I,‘E 'Di } . Suppose A~is a subset

of ﬂ‘ . We will say that is an atom of 17‘ if the distributive lattice .D" contains
an atom & such that A= {;{_’ED‘-’ las [x]t } . We introduce, following Lachlan (see [12]),
frames and towers. By a frame of length { we mean a sequence (¥ = ( p1e s ,,Ul‘- ), where

%CS(J?/) (& (.L?/) is the totality of subsets of _?/ ), such that

K1) 0'[6 is a singleton;

K2) 02-=U{6‘(13)|5€%-+,},/<5~
K3) for Bk /+,,_/7n,3-n{Uer&’(5)} J<¢s

'

here 6\{@ is the totality of maximal (with respect to inclusion) elements of the set {UEOZ/-

IUDBnD/-}

We will denote the length of a frame (¥ by In (). A frame &4 =(0‘a:-"’”[i) will be
called good if, for each /Gb s, each element of 0'/ is an atom _ﬂ . It follows from con-
ditions D1) and D2) that if A:p is an atom of _P , then there ex1sts a unique good frame
d[=(0'0,...,ali) such that O = {A} ; it is also easy to see that {0} is an atom of .D for
all £20 , hence the sequence ({{0}}, ...,“0}_}) is a good frame. If Ck= ( 91000k ), .Z
= .Za,...,.i;-) are two frames, we will say that ¢ is a subframe of L if os/ ,%ec,‘é when
es¢ , and for 55“&/ the set 6’(5) computed in & 1is equal to 5’(6) computed in 4
We now define a tower. Suppose £ c N is a finite set. A tower with base F and length ¢
is a sequence A=(A0!""A(:'%"“'¢i) of partitions of F  and mappings sﬂl H A}-—»S(_ﬂ/) such
that

pu
B1) the partition A" is a singleton: A£= {J'.};
B2) the partition A: is a refinement of the partition A-+/,/'<[ ;

B3) for Q€ AI'“ the restriction of ¢ to {P GA IPCQ} A IQ is a bijection of this
set onto 0(50*/ (Q)), where €(¢4_, (0)) is the totality of maximal (w1th respect to inclusion)

elements of the set\{5€ (,t}. (A/)IB 50/_'_,(0) nv.Z?/}, /<b,

B4) the sequence (% (Aa)"“! % (AL-)) is a frame.
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The frame in B4) will be called the frame of the tower A . The length of the tower
A" will be denoted by 1n (A) , the frame by fr (A) , and the base by bs (A) . It is not
difficult to show (see [12]) that for any frame # and any finite set fC/V containing suf-
ficiently many elements there exists a tower A with base # and frame & . Suppose
‘= (‘ﬂ""’AZ’%"“’Spi) is a tower,js(: and /76/1/ We denote by tw (A,j.P} the tower (Aofp,...,
A/' A %,...,-55/- ), where 7,( . K‘/’ , is the restriction of ¢, to A;lp (in view of con-
dition B2), Ax [P is a subset of AK )3 we denote the frame of tw (A,j,p) by fr \A,j,P) .
We introduce a partial order on the frames. Suppose M=(”m~~“i ), L= (,5_2,", "Yb) are two
frames of the same length, %(:: {A} ,££= {5} . We will say that (¥ is less than of ,ﬂl-ﬁ,{ .
if 1) A28 and 2) for any /'<(; , .Z?ECZJ-H, éG.Z’.H , if Jo6 , then there exists a mapping
¢ : 0(.!7)—’0((5) such that ¢(U)3 U ,Ue C‘(j) , where CP) is totality of maximal (with
respect to inclusion) elements of the set {ert' ,UD _/7.-ﬂ _27} .5(5) is defined analogously.
It is easy to see that if (f= (%,,,,,(7[[; ), L= (.,Yb,,,,,,?;-) are good frames and.%£={/‘} "%={5} ,
then, in view of D2), 0'[4,‘4 if and only if A= B . Suppose /ﬂ-—- (Aa,...,Ai,%,..,,gﬁz), B=
(50,.. .,B/-, 5/0,,.., ¢/ ) are towers with bases 52;62 respectively, where fﬂ£=¢ , and
suppose ks (af ((;,}'), Pe A/u Qe ﬁk and fr (A,K,p)‘é fr (B, Kk,&) . Then there exist mappings
@0180 lQ"'/ﬁolp',.., é, iﬂK’Q-’/‘ﬂK P such that ¢,6,(K)> ¢, (R) for e<k,RelB, Q.
Indeed, sipce the sets @ |14 ,AK | P are singletons, there exists a unique mapping QK: ,
Bx | @ — AK | P and this mapping satisfies our condition by virtue of the relation fr (A,
X, P) g fr (ﬁ, K, Q) Assume that we have constructed a mapping 884-/ satisfying our con-
dition. Using condition 2) in the definition of £ and condition B3), we can easily define
the desired é, {not necessarily» uniquely, of course). We will now construct a tower
$=(€0,,.., 06- , s_ﬂ;,...,l,_il;) with base fu & . Eor <K the partition Ce is obtained from
the partition Ae by replacing each element K € A\e by k= Ru (U{f&ﬂdQl@ﬂ?}%@}) , and
for £€> K by replacing each element K eAe by

Rull ., & RnNP+4
R ,» if -EnP=,¢,~

‘Pg(/?*)i 7 (E) . We denote this tower { by tw (A,B,K’/?Q)‘.

—y .0
Let A be the recursive set introduced earlier with the property that ,u(H) =gl ).

In the sequel we will consider only those frames ¢ = {OZv,..,,OZi ) ,0!5"- [A} , that satisfy

the condition
(x*) AnH =4,

We now introduce a set of pairs 4 . A pair e£=(0?,\/) is an element of‘_Q if and only if the
first component of ¢ is a frame &=(,... AN {AY . i=clmne) , and the second component
is either 1) the symbol I and then nel (a ;)air of the first kind), or 2) V is the symbol II
(a pair of the second kind), or 3) V is a set B such that Ac B C'271:+1 and Bﬂﬁ#ﬁ/ (a pair
of the third kind). The length of a pair &« (ln () ) is the length of the first component

of & . We define the norm of the pair o at step 4 (nr {¢,4)). Suppose &, J are the
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g.r.f. introduced in (%), aeﬂ is the smallest element of <.D > (it is the smallest
in all <_7,~ > ), and /4 C N is a finite set. We define u (A L) U'(A i) by.induction on
the number of elements in A . a(g’ =a, p‘( ,0)=0, a(Au{a'},o) ul( 1’,4{(/41,) ‘) JMU{QU_}

‘ } If(:I’ lf(A (4) 6) , where Z 1is greater than all elements of ,4 . It is easy to see that

we have an equivalence
[,4 C—/75 & A isanatom of _p‘]"—»— [A C'Di & Vz‘,yeﬂa (« ($,y,b')€/4 —
—zef vye/”& V:z:e[}i (J(A,Z)szx——xe/‘f)] .

It follows frém L5) that the second member of the equivalence is a :7V -predicate, hence
there exists a g.r.f. /J'((A ‘), 4) that is nondecreasu1g in 4 and such that &m ,D((A 1/ 'i)%w
if and only if AC.D and A 1is an atom of .D . Suppose O = (¢, 21000y Ul,/) is a frame.

Put p(ﬂ, ’1)—«S{Lp{p (/f,/),'i) ,J <si&Ae d"l } Fix an effective one~to-one correspondence
W:42 <>N  such that if a)(cl,\/,):é, u)(of, \{e} =/', and In f)s 1n (.Z) , then I;Sj , and
for ocz(ﬂ,V) put nr (s 3)= C(/D((%,'i), a)(ec)) . We emphasize that if 4/ is a subframe of
L= (CL,V,), and p= (.Y,\(z). then nr (oc,‘&)s nr (B,4) (and nr (G8)= (B,4) =>oc = B) . Put

nr (o) =&f_é_>mw nr ((,4); nr(«) can assume the value oo , and nr &)e N is equivalent to saying
that the first component of « is a good frame. We also introduce a computable sequence of
r.e. sets {5 }1,>0 with the follow1ng property: if /1(1,) /u,f(/), then a’ (5) {V{/) , where
7[’ is the previously fixed g.r.f. representing the morphism & : o‘f — Y e. Suppose ; is
a g.r.f. representing the morphism 0’ !"—»,Zr , and suppose é(£)='/ly { )= x) (here 4«
is the minimization operator). Put A ﬁ , if bff 7['(/\/), and A'—ﬂyé () » if 6€7£ N) . Ob-
viously, the sequence {A }‘>0 is computable. In view of L5), there exists a g.r.f. p{d‘,
5{,4 4) , that is nondecreasing in 4 and such that :C‘N'y -~ &ITL p(d,‘.‘g,l:, 4)= co. Suppose
P(a'y ()= [Lﬂl P(a—‘yt 4)(p(2,¢,) can assume the value co ) and suppose P (T,0)= 0, p(x,
4+/)—wp{,o(myw)ye_7 nfN)} (sup(@)=0). Put B,={c(i,4,))ye; &[,eA &)<
,o{x,y,o)v/ <p (Q‘,b)]} .  The computability of the sequence { 2}1.>0 and the fact that it

satisfies our condition can be verified directly.
We fix an effective procedure which at the even steps 0, 2, 4,... vields: .

either 1) a triple (A,J,P) s where A=(A0"”’Aj’ 500,...,8-) is a tower, és/ , and
peA{: s
or 2) a pair «€4d of the first kind,
or 3) a natural number [;EN
or 4) a pair €42 of the third kind, each object occurring infinitely often,

at the odd steps 1, 3, 5,... yvields elements of .Q, each oc€4Z occurring nr () times.

We will describe, in general terms, a construction which leads to a proof of the exis-
tence of the desired morphism C:@ o{ _’ag . At step 4 we will define for each «€4 a
partial mapping G¢+i from N into the set of all towers and transfer certain elements into
a set {/ ; that which we include in U up to step 4 will be denoted by U‘ . The follow-

ing relations will be satisfied:
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o P nol .

v 6, (@) &G (5/)’& bs (G (o) bS(@P(y))aé fg—ot=pizx=y;

2) 65 (z)! ~bs(£ )y, vos (6, “ @) SV

3) @t (.'I:),I—" (the frame of the tower &i () 1is equal to the first component of o¢ ).

We will say that the tower A exists to step 4 if there exist o, Z (uniquely determined

oL

by virtue of 1)) such that é’q‘(a:)'&,éz (2) = A. The number £ is said to be used to step 4
if either L€ {04} or & has been used to step 4 in the base of the tower, i.e., Jt<4,

aCEQ ye/\/(@ (y)/&xebs(ﬂ (9’))) Before turning to a detailed description of the con-

struction we define several duxiliary functions.

Suppose Jf is a creative set. Suppose {][5 J,{”&},{ﬁ }, {ﬂ(&} are strongly computable

sequences of finite functions and sets that are nondecreasuug in 4 and such that 7££=U

{7(’(,5\4 0} , and so omn.

We define the so-called indicators and heights. The indicator for pairs of the first
kind. Suppose o= (ﬂl,z.) is a pair of the first kind, 1ln (ﬂ)=C(m,ﬂ,B)=/', K=3aup (m,n) .
We define a function in (e,4) . Let 3;,<4 <4,<,.. be those even steps at which our
ﬁrocedure yields e . If 4<% , then in (uQ»L) = 0. If 4;<4 545+’ , then in [q4)= in
(o, ¢£+/) . Suppose d=4;+71 . If

1) the function f,, is defined on the set
o <
B=ulPlIy (6, @!&E7 (y)=(A,,.. A,
Porerr¥; )& PEA& neP (P},
2) for each ye[} the number /:, (y) is used to step 4—/,
3) for each yeﬂ we have ye Ui_/"‘“/;,(g)ﬁUi /0
e A

4) -/5(5)05 = ¢ , vhere B = U{bs ‘_,(5”5_ (#) }
then we put in («4) =in ((4-1) *+{. Otherwise, in (¢ 4)=1in (o, 4~1)

The indicator for natural numbers. Suppose ce N ) (:=C(ﬂ,€) . Let 40<£1<42< »+e be
those steps at which our procedure yields ¢ . We define a function in ({,4). If is4,
then in(&','i)‘—‘ 0. 1If 4/3<:';54,j+l, then in (l;,i)= in (Z,#/--i- /). Suppose 4= él--!-/ =
in(f,4-1/) . If

1) the function fé’,i is defined on the set {G,,.. .,a},

2) for each <@ the number 7[;(1:) is used to step 4-1 ,

3) for each ®<@a we have zell (m,4 7[6(.’,8)€U4_, (recall that 9 is a g.r.f. rep-
resenting the morphism §: Z — «2{‘.),

then we put in ({,4)= in (0,4—/)4-1 . Otherwise in ((,4)= in (¢, 3—1).

Suppose 4 is a frame. We define a function ht (ﬁ',*&.) . Let d.0<4,</$2<.. be those steps
at which our procedure yields triples (A,s, P). 1If is4,, put ht (w,&) = . If34 <4 < :ij

then ht {Cf,4) = ht [G{,é--H) Suppose 4= :& +/ and at step -.(/ the procedure yields (/ﬂ, ¢, P) .
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1f
1 &=t (A, P)
2) the tover A exists to step 4~7 and AN M1;,# #&bs(A)n Uy, = ¢,
3) 1n{A)2 he(ot,4-1),

then we put ht ((,4)= ht ((0,4-1)+/ . oOtherwise, ht (@ 4)= ht (O, 4~1) .

We can now describe the construction. Before step ¢ we assume the numbers 0, 1 to be

used and transfer 1 into U , and for each .(eQ we put G: = 52{
Step 4 . a) 4 1is even.

1) Our procedure at step 4 yields a triple (A,Z,‘/D) . Suppose 0{» = fr(A,l;,p) s
ht (oév,d,)= a . 1If ht (alv 44+f)=a or at step @ our procedure yields an element of LuN ,
then we .change nothing: GM-! : for all uLEQ Suppose ht (oév 4+{/)=@t/ and therefore
the tower A exists to step % 6‘7 ()= A and suppose at step @ our procedure yields
(B,/ Q) and 63 (B, ,Q) If (/—/ 00/7 ¢ [jvs. , in (B)< ln(A) the tower B
exists to step 4 é:/j(’y) =4, bs B)n ‘ji ¢ , then we put &f/ ‘y) equal to tw (B, A (,
®,P), G ¢+/ [#) is not defined, and there are no changes at the other points.

2) Our procedure at step 4 vyields a pair o= (a’,]) of the first kind. Supﬁose
in {,4)= Q. 1If in (,4+f)= @, then we change nothing. Assume that in (o, 8+1)= a+{.
Suppose £ 1is the first point at which the function &: is undefined. We take a sufficient-—
ly large initial segment of unused numbers 2 , construct a tower A with base & and frame
0L , and put Gﬁ-l =A , and for y%x we put Gﬁ_, (y)= G:(g) . For the IBEQ such that
nr (oc,&%;_?r (/5]4), we put @’G = ¢, and for the remaining p(#—‘ o) there are no changes:

.
@‘.H- .

3) Our procedure at step 4 yields a natural number {=c(ne). Suppose in ({,4)= @Q

4

If in {(,',4+/)=£Z, then we change nothing. If in ([,4+/)= Q@ +/ in particular, /&4 (a)/', sup-—

pose 7[2(0)=J . If to step 4 there exists no tower B such that Z;G bs B) , (< 1n @)

bs (B)HU _¢ then we change nothing. Suppose such a tower B exists: B= 63'6(:1:) (50” ,,B
gﬁ) , and suppose Jep ,PE B Lo = fr(E ¢,P). We form a pair o= (Clyl) of the

second kind and let be the first point at which the function G is undefined. We- put

:L-H (ﬂ)_ t (B,0,P), & 14-1 () is undefined, and there are no changes at the other points.

4) Our procedure at step 4 yields a pair o= (Cf:ﬁ) of the third kind. Let Z be the
first point at which the function G: is undefined. We take a sufficiently large initial
segment of unused numbers & , construct a tower A with base & and frame C¥ , and put

o

e (€)= A . There are no changes at the other points.

. . . - A s
b) 4 1is odd and at step 4 our procedure yields a pair o . Put @M_f ¢ '@éﬂ G
for I@%oc . Consider the elements of 47 . If / is a pair of the first or second kind,
GJ’ (x), and € M/, , then we transfer the base of the tower 63 (.'II) into U . 1If /= ((2’,5)
is a pair of the third kind, 1n (Cl)= ¢,/ =y (B, (+1), then for those & such that 0‘{, () &

155/¢ we transfer the base of the tower @”’ Z) into U . This completes the description
?
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of step 4 of the construction.

Let U= U {U.& "1?0} . Obviously, the set U is recursively enumerable. We will

prove several lemmas.

LEMMA 1. Suppose that nr (e()?L o0 for a pair e(EQ Then the sequence {G }4;«0 con~

verges, and if oc is a pair of the first or second kind, then 5 (lm. @ is a function

4A—>c0
with finite domain.
The proof will be carried out by induction on nr (ac)eA/ Suppose the lemma is true
for the elements 42 {pQQ | nr(s) < m—'(ef)} and let ﬁ? {,GEQ | B be a pair of the first
or second kind } It is obvious that the set Q is finite. Suppose 6.0 is such that

4 240&, nr (IB)S nr (o) — nr (8,8)= nr (), &z&v& nr(g) > nr («)—> nr(ﬂ,i)> nr (). In view
of the property of our convergence mentioned directly after the definition, there exists
A,;do such that 526,&/565? — Z;lp= 0/5 . Put ht (£)= &m.ht(l&) (ht (.‘() can assume the
value oo ). Let /(={-‘(I .‘f' be a subframe of O’.’} , where OZ is the first component of

the pair o and A/ {.Z'GK Iht -2') } Suppose 422*.&, is such that .Zfe./(”\'/(,&,&2:&‘a -
{hte (£)= ht(£4), LeK &iz4 , —ht(&, 4)> 1n () . Fix 4,24, such that 4245 (our pro-
cedure at step 4 yields the pair «) — (4 is even). We claim that if 4,<€4s< & 9;(:‘0),’,
then G’ . Obviously, it suffices to consider the case ¢ = 4+{. Assume the contrary:
4> 4, & G (.’2) , but gﬁ, (#) is undefined. 1If at step 4 of the construction we are in
case al), then there exists a frame £€ /( such that ht (oi’,4)#ht(£,4+/)&, In (Cl)) ht(,ﬁi);
but this is impossible in view of the choice of 4 . If we are in case d2) or a3), then,
by choice of 4, , for some ,BEQ, we can extend the definition of 5 ; but this is impos-
sible in view of the choice of 61 . Case a4) is obviously impossible, and case b) is im-
possible by the choice of A;s . Contradiction. Now consider L>/L and @ such that Gi (1')]
aﬁd suppose @:(ﬂ.‘)= (Ao,,..,Aé,%,,,.-,gﬂ‘. ) Consider Z(?:Sz, as shown above, 62 (1‘) , so let
@-c (z) = ( e ,_,.5 ¢0,.,., ¢ . From the descrlptlon of the construction it is easy to
see that for each £<( there exists a bijection 0‘,£ A Bé’ such that sz(P)D £ (ob-
viousiy, Qezl is uniquely determined). For e<i we put Ag {/DEA l é(P)n ”eﬁé ¢
for some 72 5} Suppose Z‘>4« is such that

(Peh, 16,0 (P)N T,y #0}= A,

for all £<{ . From the description of al) it now follows immediately that t st — Gt

ol
(x) = Gt () . The convergence of the sequence {_G'g }1>0 is proved.

Before proving the second half of the lemma for o we make several remarks. Suppose
/BGQ U{od G'B &m, 5’-'6 . We define a partial function 9’6 as follows: yp(x) % -
- (r (y)/&a:e bs(@p(y7) The sequence of finite fumctions {c }¢>0 has the following pro-

perties: a) it is strongly computable, b) it converges to 6" , and ¢) G () '& GF (1‘)/——>

A 444
bs(gfa[x)) c bs (Clﬁ_f (a:)) therefore, the function 9 is partial recursive and the domain
of 9 , which we denote by ///3 , is a recursively enhumerable set. If ﬁc.Qo is a pair of

the first or second kind, then H’e is finite, hence ¢ HP)— . Suppose /Jé.Qo is a
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pair of the third kind, A= (£,8). ve calculate ¢ (U, H'B) Suppose K= 1n (.{), j— v (8,
xk+1) . We claim that ¢((/b”j 0/ (5 ) (where {5 }220 is the computable sequence intro-
duced earlier). Indeed, it is obv:Lous, in the first place, that ;'6(/'/'6) =N (see case a4)
of the construction), and, secondly, it follows from the description of the second part of
case b) that for xe// we have x€l *—*9 (,'c)eﬁj , which, in conjunction with property 03)
of the Sﬁ -operator, yields the equality ¢(U /L//a) a/ (B/)

We will now prove the second half of the lemma for o . We first analyze the case where
o is a pair of the first kind, o= (1,7 ), 1n(0t)=¢(mne@ =i, K= 4up (m,n). Assume that the

functlon @ &m 6’ has an infinite domain. Then it follows from the description of case
{—2co

a2) of the construction that the domain of Gx is N , hence ;“ (/f“)=/\/. Let /7=U {/D

| Zx (@‘(.’L‘)-‘( . A {00,...,;04. )&, péA\K&/ZE%(p)} ; it is clear that set /:7 is recursive-
ly enumerable and /7’C H It follows from the definition of pairs of the first kind that
for each z we have Hﬂ bs(@d{a}))# ﬁ, hence 9‘*(/7)=)V , and it follows from the description
of the second part of case b) of the construction that for &€ HN we have Z €U = g‘(.’t}e/ll;
this, in conjunction with property 03) of the ¢ -operator, yields the equality ¢(U /7]—

Q/ (M) = 71 . We claim that the function 7[) is defined on the set /'/ fe(ﬂ n// ;p’

and for each 1’6// we have $€(/‘—*7p{x)€U Indeed, we would otherwise have EUTL ln(ofi)E/V
while our assumption '"the function 6> has an infinite domain" implies, as is eas1ly seen,

the equality &m. in (oc 4)= . We call a tower /ﬂ final if there exists 3, such that

424, — (the tower A exists to step 4 ). Put v= N~ (U {bS (A\) l A is a final tower})
The set Y is recursively enumerable, as is the set Vn(/\/\U) Therefore, by 03), ¢(U,

V) =0 . 1t follows from the description of case a2) of the construction that N=VU (U {Hﬁl
lpeQD U{e(}}, and it follows from the properties of /e and 02) and 03) that I= ¢ (U,/?)S
}ﬂ(U,VU (U{H”l,ae Q0}>)= U{S”(U,H#)J pe.é?a } € {(,,Za) , which contradicts the

assumptions of Theorem 1.

We now analyze the case where « is a pair of the second kind, o= {047}, 1n &)=} = ¢(n,¢).
‘Assume that the function @ &m 5: has an infinite domain. Then it follows from the des-
cription of case a3) of the cgzggructlon that the domain of @ is A , hence ;‘(H‘)-:

It is also easy to see that for .Z’€/7’ we have $€U-¢—-'? (z) €M . Now consider the function

2 t2) — fmel( §

7/73 . We claim that /g is a g.r.f. and that for each & we have ze/7
is the previosuly fixed g.r.f. representing the morphism { .Z ““’\Ze ). Indeed, in the

contrary case we have &m, in (a 1) e N, and our assumption "'the function g has infinite

domain" implies that &m 1n{1/ 4)~co . It follows from consideration of case a3) of the con-
struction that for each Z we have bs \@ (x)) ﬂf; (N)aéﬁ hence the image of the p.r.f.
; /e is N . This last fact, in conjunction with the relations Z € HS— (ze U~
(z) Gﬂ{) xell otn) /(x)e(/ and 03), yields the inequality a’ (./h’)<0,/ )E f(ox ) , which

contradicts the assumptions of Theorem 1.

o

91;

Lemma 1 is proved.
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Suppose Q eLEQInr {o()€/V} and 5 &n‘b L-’ for oCEQ (the sequence 5 }i>0
converges by Lemma 1). Obv1ously, the tower /4 is flnal if and only if there exist oce_Q
and .TG/V such that G (1‘) &,/ﬂ = 6? (.:Z') Recall that V-— N\ {bS\A lA is a final
tower}) and L s/ —"".Z'EJ' (where {_7} {20 1s our sequence from (¥). For each triple

o2,i) such that oc€4d, &.’CED & [ < ln(«) we introduce the set /? {/D | there
exists ge/\/ such that & (y)/& G%( y)——- (AD' ,,,A v Ppson ,(,0 )&péA &xe;ﬂ(P)l for each
triple (x,Z¢) such that [ = ln(ec)&oce!)&xej we 1ntroduce the set ,Q -¢ if o«

is a pair of the first or second kind, while if o« = (,8) is a pair of the thlrd kind, then
o X g% _ =< .
,Qu. =¢, if ¢ B , and /Q_u = U{_bS\G ky))] gzo}, if zeB . We also put

Ry = Vu (ui{ky ‘xeﬁa&, iem (0}) V(v {R] |xeRai=n («)}).

LEMMA 2. The set /? , is recursively enumerable and sé((/,;? : ) = ¢(U,;€u.+/).

Let/(a= {.2’ | &£is a frame & 1n () <4} K= '{.ZEK |ne(f) # 00} Suppose 4, is
such thatd4z4, — [ht(.?) htﬁ’i.) for .{E/(]&, [G for pairs e(€Q of the second
kind and of length <b_] . Put Qu: { | there exist i>4,, ace[J, ye/\/ such that

1) §Z(y).'&5’:(y)== (Aa,...,A/-,;oa,,,,,,p/.)&,Zsj &Pef;& xep (P);
2) he (£4)> 1n (65 (y)) for a1l LeK, A, ] ‘

We also put /Q;‘: = U{,Q;; |M€Qo& {s ln(oC)} . We claim that VU/?_,;;=VU Q:[u The first
set is obviously contained in the second. Let us prove the reverse inclusion. Suppose
a EQ Y ; and suppose 424, ' o, e ., ;/oe/V satisfy conditions 1) and 2) in the
definition of 4 and ae/’ . Since (ZQIV , it follows that for unlquely determined o, E.Q
%,e/\/ we have G y’ !&ae bs( “{ (y,)) Let 614-/ (y,)'“ pr e oo s K, ¢av'--,¢(» }.. Looking
at the descrlptlon of the construction, it is easy to see that by virtue of the choice of da
and condition 2) we have 1ln (e, )= ll'l(o( > ¢, and if e(#éO(o- , then 1nfec)) > 1Infy) , but if
L0 then ¢,= y’ Let ,0 be the element of ﬂ containing € . Again by the choice
of i and condition 2), /DD/D& $é (P):;a& (P) hence xe¢ ( ) Thus, :L+/ o, y,,
satisfy conditions 1) and 2) and /OCP . Continuing this argument, we obtain in &‘ steps
a sequence (oca,%,p ),. . .,@(t yt’p) such that 1n (e )2...2 10 (o )>band if 0(.+1-r‘l=0[~ , then
1n (ot I“") <1ln (ou , but if o =o, then %/H —/. , the set :H‘Z‘ o, yt' satlsfles conditions

"

1) and 2) and /D c P c.,, C /Dl,,and so on. The sequence {@(t %‘“,0 )} ‘0 obviously converges;

let (/ zZ, §) be its limit. Clearly, /EQ & 1n ()’)20 and 06/9 . Therefore, the equality
VUA7 “'VU(ZM. is proved and with it the recursive enumerablllty of the set V U R., , since
- the set Vu Q& is obv1ouily recursively enumerable. Suppose oceﬂ & (= 1n (x) . It is
easy to see that the set ﬁz‘i is either empty or equal to /‘/ (// is the set introduced in
the proof of Lemma 1, where we proved that it is recursively enumerable). But-/?‘u- =Vu Rz’z

v (U {:é:& | € Qa &i=1n (oc)} , hence the set /?-’ti is recursively enumerable.

We will‘now prove the equality gﬁ (U, 'q.ti )= ¢ (U. /Qz".‘_, )



Ry = U_{A’; |°£€Qa& ¢+{< In (oc)};
,Qz. = {ﬁ;; I°<€Qo&/ t=1n (oc)};
/?:,-z = U{R; l«ef, & i=n (o)

/
/Qu+’ = U {,D ]thete exist €47 andye/\/suchthat

Gy 86 ()= A PN VA )&
&itisjsPeh;, & zep, (P)=u{R L+{‘e¢€£7&c+/€ln(x?})

4 .
Rﬁ+ U{Rx+1|ec€Qa& (/=1 (oc)}.
It is obvious that k VU/Q U/e UR .'ca+{ =Yu ﬂ/ v R.tl, The recursive enumer-
ability of the sets VUR VU’Qa!H-i is proved in the same way as the recursive enumer-

ability of VUR was proved in the first part. Obviously, VUIQ c VUR , hence, in

view of 02), (/ (U VU ’ é(/} (UV U ’?gjw) . Consider the partition p ofzbzhe set YU
'Q;irH P = {Vﬂ U} {V ﬂ (N~ U)}U (the set appearing after the symbol U in the de-
finition of ,Qu ’) , and the equivalence relation connected with P on VU /Q;, w s &4 {*—"

(a, I;)Eu{px P IPEP} It is obvious that for each Z€& VURI‘L » there exists gEVU IQ’
such that a~1{ and for &, gGVU/? ' a~g—> (G-EU "'—’KGU) Therefore, if we can

prove the recursive enumerability of the equivalence ~s , then, in view of 04), we would have
Sb(UVU/QzM{) ¢(U VU/Q.,& ) LetK {.{',‘lisaframe&, 1n (aZ)<&'+/} K {-ZG/(l
ht é.’)-;éoo}. Suppose . 4, is such that 474 — \—ht £ 1)=nht(Y) for ,'f€/(]& l_G' G~

pairs o of the second kind and of length < b‘*‘%] . Consider the family of sets @ : Q =

{Vaulu{vn (M U} U {Q | there exist 424 €, yeN such that

D6 ! a6 y)=(A oreo N e @) & 2048 Q€ gy & zey;,, (Q),
2)ne(£4) > (65 (y)  for all xe/g\/(,}. |

Obviously, the family @ is computable and PC@ . We will prove that for each QQQ there
exists ,DGP such that QCP . If Q= Vnly or g=Vn (/V\U ) , then this is so. Suppose
that for certaini>4 xer, Y, e N the set &,&c”,ym & satisfies the above conditions 1
and 2). Fix deé? and denote Q by Qa . If aglv , then arguing as in the first part,
we obtain a sequence {(0(2,‘ yi"gt }t 50 converging to some triple (}',Z /7) s where@ CQ c,
hence Q C /9 and for some ZL>0 the set M—Zf c(t yt Qt satisfies conditions 1) and 2)

hence A€ . It remains to analyze the case Q€ V.

Suppose ZfZO is such that @ 1lies in the base of some tower to step :M'zt but not to
step A+T+H . Arguing as in the first part, we obtain a sequence (ocg,go , Qo ) ) (oz” y, ,Q, ),
"(B[L‘"yt’ng) such that ro Q’ c,.. < ng and the set M'?,‘, gt,yt,at satisfies conditions
1) and 2). If we now look at the description of the construction and take into account the
choice of 3, and condition 2), we see easily that either Hc Q* cVn Y or [Z<CQ c¥n
(N~U) . 1t follows from what has been proved that U [;DX/DIPEP}= U {QXQ | Qe Q} ;
but the second set is recursively enumerable in view of the computability of the family Q s

hence the equivalence ~s 1is recursively enumerable. Thus, the inequality ¢(U VUﬁz“_,)s
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(ﬁ(U VU/Q/') hence also the equality ;ﬁ(U VU/Q' )=' ¢(U VUR, .1:4+I
a completely analogous way we can prove that gﬂ(U ,Q ) ¢(U ,? ) for pairs o ¢ ue@ &,
i+ < 1n (&)

) is proved. In

It is easy to see that the set A’ R is finite, hence, the view of 02) and 03),
¢(U R ) ¢(U /Q;b ) Thus, it remains to prove the inequalities

$ (U, R )< § (U, Rpp,,), 4 (U R, VS 4 (UR ).

Let .4:7 {eCﬁQ!ot-(Uf B) bea pair of the third kind & 1In @c)—o&xeﬁ} Q {«EQ lec== ((Z B)
be a pair of the third kind & 1n(x)= c+l&x€5} It is obvious that /?:u— f lo(EQ },
’Q;H U{ xo+/ |°‘€-Q } Therefore, it suffices to prove that V(U /Q )5 ;MUA{ZM ’oCEQf
and ¢ (U, Row)s ¢ (URy; )y €42,

Suppose oceé? ; o= (X, B), In (X)=4¢, BC.D+,, xeB, BNH # g let /
(1'(5, ¢+1). 1t follows at once from the definitions that 17 =/7/ (the set A was intro-
duced in the proof of Lemma 1), hence ¢(U R ) = 5&([/// ) d (5 )({5 } o s the
sequence introduced earlier, and the computation of gﬁ (U, H ) is glven in the proof of
Lemma 1). Let 5 {yEﬂu_a I / “_2%} g= 1/'(5 (/+.€) It is obvious that a) /"‘,;+3¢ .
hencea/ (5 )= Q/ (5 ) ; b) -1'65 HIe)] Bn/-/%ﬁ Consider a pair of the third kind, ,6 =
(L, 3), where 4 is the sequence ({{0}}, . .+{{0}}) of length ¢{+/ . As we have already
noted, !_L_mep(af, .5)6./\/ , hence nr (p)e/V. Therefore, ﬁégz , and in view of a),

- ¢ U R )= 5) 52) fb(U g+/)<¢(Uﬁrb+/)
SuppOSEQCEQ <= (0, 8), 5ﬂf/%¢, In ()= ¢+, Bc Dy, Ieﬁ ; let j=o

[B {+2) . We decompose the element [f] ; i+ of the distributive lattice .p“.z into atoms:

D‘,,_z'— [/,]‘+2U"'U[/'n i+2 - Obviously, ¢ 1‘b+/) 0/ (5 )=U{GI (5 )l/<€</‘l} There-

fore, it suffices to prove that d (5 ) = ¢ (U Rzll Denote /e by g . Let {[K ]“”.,.,

[K b+f} be the totality of minimal elements of the set {[y]'“’ IyE H‘I&'g <z 5(}

view of D2), each [K‘] i+ is an atom of the distributive lattice _/7+/ , and since gsmm s

it follows that for some 4 we have /( ‘41“3 . Denote K‘ by & . Suppose A={ye i+/l
aj‘szH#} . If Aﬂh’ + ¢ consider the pair 8= ($A} of the third kind, where oL is
the sequence ({{0}} . ,{{0}}) of length ¢ . 1In view of our assumptions, PE LI, and
¢( R'a )=d (5 )>a/ (5 ) - It remains to analyze the case /4 nH= ¢ Suppose

,[' (,é;“m )13 the unlquely determined good frame such that “_, {A}

and letB {ye Sp2 y} Obviously, rel CB . Consider the pair B= (,c,B') of the
third kind. The follow1ng chain of equalities is a consequence of the definitions and the

first part of the proof of Lemma 2: a’ (5 ) ¢(U/Q +I) ¢(U H) ¢(U /Qﬁ )
¢ (U’Rﬂz ). Thus, the proof of Lemma 2 is complete.

We will use the following notation up to the end of the proof of Theorem 1: if a,‘E..ZZ- \

then
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k’;; T (UUZ loced2, & ¢ 51 OYuV,
Ry 2 U(R |wesd & i=1 ()}

clearly, Rmi,= R;‘ U 'Q;b . We define a mapping C:of —» .{e as follows:Cu (z)= ¢(U,,€rx )
Let us verify the correctness of the definition. Suppose ,u(a:)=,u(g) Then, in view of LO),
for some (; we have &, ye.D & .TNI; :{ By Lemma 2, (ﬁ(U ,Q ) ¢(U A’xz) Sb(U:? )
¢ ) . Therefore, it suffices to prove that ¢(U :Q..u) ¢(U P ). Since .'I,""'y

it follows that /Q, = /?1 Now suppose (d,B} is a pair or third klnd, in (€)= ¢ ¢,
€4 xelB ; let /= U'(B ¢+). Also, let B= {zeJ]ét,|j§5+,z},g=r(5,z:+/). Obviously,
/.Nl'&!g’ y&g, BnH + @ . Consider the pair 8= ({5, B) of the third kind, where o

is the sequence ({{0}} y oo {{0}}) of length ¢ 3 it is clear that B lies in _Q . It
follows from all of the above that ¢ (U ) (5) Q/ (5 )= ¢ U R/&) In view of the
symmetry of the situation, the equality ql/(U /?xa) = Sﬁ( U, y‘) is proved hence also the

correctness of the definition of the mapping ¢C

e
LEMMA 3. The mapping €¢:!:& —.¢ 1is an upper semilattice homomorphism, and the diagram

is commutative.

We must prove that for all $,y we havel (/d (x) Uﬂ(y)%@dﬁ)uw(y) . Fix z',y ; in view
of 1L0) and L3), there exists ¢ such that x4 ED‘- and WUy (T,y,l:)=/1(a:)ulu (y); let

z U% = a(:ry,z,) It follows immediately from the definition of an atom of a finite dis-

tl‘lbutl\;e lattice that A’ Py = '?:ca U 'Q#' , 80 it suffices to prove that ¢ U R’: i )=
¢(U /?1.‘) U¢(U R}‘ . We have c(lu(x)u,u(y)) (U qu )= ¢(U, ) v (U
D)= PR G URL ) v p (UR wuey&)ww,ﬁm)w(u Ryi) =

c,u cc)uc/u (g). -
Suppose of= (073) is a pair of the third kind such that 1n (@)=2¢, eLGQo , TUYE B ;
o~
let /=(}'(5, ¢+/) . We decompose the element UJLH of the distributive lattice DZH into

atoms: [/] i UJI:HU UD ]W Obviously, ¢ (U, ,@“‘ ) d (5 Ju.. ua, (B- ) . Suppose

{€€sn . Since /e (e XUY and De l+s 15 an atom of .D‘:H , it follows that elther/e 7y L
or /e €., 4 - Suppose B= {ZE..? +rl/e ;% }, and o 1is the sequence k{[o_}},.. {{O}}

length ¢ ; if p= & ,B) it isobvious that ,BEQ If /'esi_H.’E , then ¢ZU ﬁp)=
dp (B;) » and if jeS;u 4, then ¢ UR") a/ (B;,) . Consequently, $(U, ,,_.W)<

‘,ﬁ(U,R;‘)U ¢ (U, R;l: ) , hence 5&((_] quyb) ¢ (U /2 ) ¢ (U’/?yi) The inequalities.

¢(U’Q )‘¢ :cu;/o) ¢(U ;{a) ¢(U xuyo)

can be proved in a completely analogous fashion. Thus, the first part of the lemma is proved.

We will now prove that C'ZI-=; .
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Let 72Tbe the g.r.f. fixed earlier such that ﬂ/(x)=ﬁv(x) (recall that the H in condi-
tion (**) is f(ﬂ) ). It suffices to show that cZz‘v{x)%gv () or, taking into account the
equality aV(x)=/£fT(d>) , that C/lf(x) = g\)(w) . Fix =z and denote f(:z:) by ¢ ; suppose
}/5270 .  Then gll[y) =¢ (U, V4 ¢ ). It is easy to see that /\7;5=¢ (the notation was in~
troduced before the statement of Lemma 3), since our frames satisfy condition (¥%). We will
now prove that gﬁ(U, /?;L.)=-5v(ac). Suppose g= {ZEDLH l y b_,_,Z} / U'{5 s+/) , and &
is the sequence ({{O}j,.,{‘[o)}) of length 4 ; let B= («[ B). Obviously, B€ fa , 'Nz,'ﬂ 4
and ¢ (U, A?? =d, (z?/) = Bv(x) (see the definition of {1533820 ), hence £V (x) < ¢(U,R; ).
Suppose o« = (07,5) is a pair of the third kind such that 1n (Ct) =¢ y&ﬁ oCGQ , and let
/=(/_{5 i+/). Then ¢ (v, Rec) d (5 )<dm (5} )= 4v(x). Therefore, ¢(U ) g\’ (=)

and the equality C(CeQ= g is proved
e
LEMMA 4. The mapping C:of — 2 1is one-to-one.

We will first prove that é’v(x)sc/u (y) -— gV(Z) s/u(y). The right to left implication
holds by virtue of Lemma 3. Let us verify the left to right implication. We have a’m (ﬂ?(m})z-.
fv(x)so/u(y)=¢(u,k'%) . Therefore, by 03), there exists a g.r.f. 7"5 such that ﬁ(N)CI”
and aéﬂy{w) fe (el . Let {=c¢(ne). It follows from the definition of the indicator for
natural numbers and our assumptions that &m in ((,4) = o0 . Llet K= U{/Q [gcef e &
4<1n (°()<(,}>U(U{ loce42,& 1n (x) = y}) We claim that 7{; ;{:z:)) Aoy .

Assume the contrary - and let @ be the first element of the set N\/7 for which f-;l (a)
does not lie in KUY . Since {¢V , there exists a final tower A such that {E bS A)

(bs (ANY = ¢) ; since {E.Ryy N K, we have In (A)>5 The following property of the con-
struction is immediate; if a tower B exists to step Z‘ , a tower ﬁ exists to step Ll“'/ ,
and bs (5)” bS(C)'#ﬁ, then 1n (B)B 111(0). Now suppose 4 1is such that in((:,ﬁi),= a,
in(4,44+4) = @+/ . Let us see what must be done as step 4 of the construction. First

of all, it is obvious that 4 is even, and at step & our procedure yields the number { and
we have satisfied part a3) of the construction. Secondly (since in in((;,'.‘»)aé in (g, ;H-/)),
fﬁ(d)!, g=7g{(2)¢(/i and there exists to step 4 a tower B such that f€ bs (B) . This
tower B must also possess the following properties lnlﬁ) >1n(A)>Z, and bs (B)n Ui = ¢
Consequently, at step 4 we must satisfy the second part of a3), from which follows the in-
equality 1n (A)‘l:; but this contradicts our assumptions. Thus, the inclusion fé (NSTT (:t))
chRuVY is proved. This inclusion easily implies the inequality d/m (/Z?/z.,)§ ¢([/,/€UV) =
¢ (U,R) . We will now compute Sﬁ(U,k) Suppose 'BCGZ-L-7 y< In )= /so . If &€ is a
pair of the first or second kind, then the set’ /? is finite and ¢(U /? ) d, so suppose
eL=[w,5) is a pair of the third kind, Of = ((760,..., (7[) d = {A} If 9¢A then /?”= ¢
Suppose yEA ch Zc":\ ﬂ'(ﬁ .+/) We have g<: Y (hence gsb-ﬂy) ﬂ(g)ea (£°) (since
BnH+o8 ) ¢( yy) a’ (15 ), 9(&(2) Q’ )(the latter equalltv is proved by means
of computations analogous to thoss/of Lemma 3), and therefore ¢ (U R )— (‘7{1{9) In a
similar way we can compute jb(U,k;;) for e'ccga and 1ln (c£)=y . Flnally, there exists
£€ s such that gsiﬁ_’y, ¢(U,R)= (;u(g), and /zlg)ea(;Z") . We have C&V(x)='{ll{x)
ésb (U,R)=cu (g)and,u(g)s/uly); but the restriction of C to &(&£°) is an isomorphic em-
bedding, hence @V(x) sp (2) and @V (:l')sll.l (;) , as required.
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We will also need a property of distributive semilattices. The concept of distributive
semilattice and the following lemma are due to Ershov [15] (in that paper he proved the
equivalence of the concept of a distributive lattice and the concept of a semilattice satisfy-
ing the "closure condition," which had been introduced earlier by Lachlan [10]). A semilattice
og=<aZ,U> is called distributive if for :C,é/,Ze &£ it follows from xs%uz that there exist
Y,<4.Z2,s% such that T=4 UZ, .

LEMMA (Ershov [15]). Suppose = <,§,’,U> is a distributive semilattice and A C & is
a (nonempty) ideal. Suppose x~y(mud /“ = (there exists ZGA such that $UZ=yuz)’ x/A
is the class of the element &£ relative to the equivalence relation $~% (/de/”, X/A=
{$/A lcceJZ’), .’é\= {yel[ys:c), and Z (£) is the totality of ideals of & . Then the mapping
of £ into (DZ/A)X[(.Z) that sends 2 into(a}/A,.{)\nA) is multivalent.

We have the following easily verifiable implication: ( ‘ML is a Lachlan semilattice)
——*(,./u,is a distributive semilattice). Therefore, our semilattice £ is distributive. We

now turn to the proof of Lemma 4.

Assume that U (Z) 74/1(;), but c/u{é)=c/u{7. We will show that there exist z,ge N such
that /d(:c)%/d (‘4/), Cﬂ($)=0/4(él) and .’L'sxy , where K=4up {x,;{). Suppose M= 4UP (1—‘,9-) , and
denote u(@,y‘,m) by y . Then C/.L(s_é)=c7u(57)=_c/u(%), and either /J{E)#luly) or /1(5/’)75/1(51)
Suppose, for definiteness, that /[{5}7&/,( (y); obviously, we then have E%O . Since the enumera-

1
tion & /‘/m

is a cylinder, we may assume that for all /‘,Z such that ZG.D/ & ,2'740

the set {’66./7‘/' ] "L'\//-Z} _contains at least /‘+/ elements. Suppose / = &U,P(E,y,m) , and
.’06_72’; is such that T~ T &j s L. 1t is clear that .‘Z',y satisfy our conditions. Fix

a triple J;y,/( € N such that/u (.’C) 79/.( (y), C7u (.’I})= QU(y),K=wP(3‘,y},$$Ky We have

e (x) = ¢ (U, ﬁzx), cu (}/) = Sﬁ ((/,/?yk) , hence, in view of 03), there exists a p.r.f.

such that the domain of is equal to Az (R, )Xk, , ZeER, — (ze(~— (z)e

f e YKl 8 Py K YK [4

U) . If ¢= c(:r,y,e), then K<{ and :t‘s[’,(( (here € 1is the previously fixed g.r.f. effect-

ing a one-to-one correspondence NJQN). Let [/(,][;,..., [Kf:li be all atoms of the finite

distributive lattice _le' lying under L@j and let [k’]l:" ey [Kw'][ (73<a}') be all atoms

of _5& lying under &JL . We claim that there exists g, 7ﬂ<,05 & such that {Z E_WZ IKP

SZZ‘}QH= ¢ Indeed, otherwise we would have /l(/(;_H )9"'7)”(Klr) GE(‘,{O),; if Z=p (/(70+,)U...

up (K,)e T(L7) | then p()uz=ply)vz, ie., u(@)/ZE°)=ply)/Z(£°); on the other

hand, from the first part of the proof of Lemma 4 we obtain the chain of equalities
{5(z)lze.2°&5(z)s,u, (©)} = (&) izeL &
&b(zyscu@y={am|zeL & 6(2) sculp}={a)l 2eL’8T(z) s p Y}

i.e.,/,L/('\a:)ﬂa—(,{o)=/tlz;l)ﬂi(,ga) s by Ershov's lemma, ﬂ{z):/u{y) , which contradicts our
assumptions. Consequently, the desired A2 exists. If A= {ZE_/7£ [/(Ps[; Z} , then
yélq, $¢A,Anf/ = ¢ . Suppose O = (do,,,,,ﬁfé')(a"-={,4‘}) is the good frame determined
by the atom /4 , and o= (ﬂ,f} is a pair of the first kind with first component equal to o .
It follows from our assumptions conce_rning x,y,e that [;L_n_z; ci-,n (o(,'i) = oo , and from part a2)

o o
of the construction that @ = &ITL 5"& has infinite domain, which contradicts Lemma 1.
L —>ec0
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e

LEMMA 5. The image C (L) of the mapping c:L—~L .1s an ideal of the semilattice
¢°

We begin with two preliminary remarks. First, suppose O is a frame, (;=1U(C() , and for
each /?(; there exist a final tower A= (AU,...,A , ¢0’ vecy ¥ ) and a subset PN such
that K>/ , bs (A)NU=¢, PeA; k=~ tr(A,;,P), and PA/l; #f . Then bs (@) =co.
Secondly, suppose (f is a frame, 1;=ln(02') bs (k) =co ,A= (Ao,...,A\K, %,...,WK) is a final
tower of length =, bs(A)nU = @ , and suppose PEA(, and fr(A,l:,/D) <. Then
,Dﬂ”é %¢ . The proof of these two assertions is easy and is omitted.

In view of property 01) of the 5& -operator, it Arsu'ffices to prove that for each i there
exists £ such that cu(z)= ¢(U // ). TFix b . Suppbse A/w--,/’g are all atoms of _D&-
that do not meet A (/4 nH= A NnH= ¢) d,,,.’;&l are the good frames determined by
these atoms. Consider those atoms A,o’ such that for each /Z(; there exist a final tower
A= (Ao,..., AK , Sﬂo,...,gﬂ,{) and a subset 2SN such that K?/ ,Pe AZ , o= fr(A,é, Py,
and pnﬁb‘ # ¢ . We may assume without loss of generality that /’,,...,/’w. ((I/'Se) are
precisely those atoms satisfying this condition. Suppose K,=/ (/4,,1;), voey Ky = U'(Aw,(:) ,
and xeﬂé is such that [.‘I,‘]l;='- [Kf'—ll: u...u [Kaf]l: . We have ht (0Z/)= . =-ht(oz.”’)=w (the
"first remark'), and if :1:6/12 , then there exists P, /sps &, such that Ag o4 , hence
0224 Cip s therefore,

(***) if the final tower A=(Aa”“’A/(9%;" '1901(')" and subset AcH satisfy the conditions
K20 ,/DEA‘-, xe%.(,ﬂ), and bs(A)ﬂU= ¢, then ,Dn'/7&- 74 ﬂ (the "second remark").

On the other hand, there exists /0 { such that if the final tower A—(Aa,,..,AK,
l/o,,. ,¥¢) and subset ,OCA/ satisfy the conditions K>/0 , pEA ¢ (P)= Ai , where
a}'<g e, bs (A) nU—-,é then Pnﬂ d .

Suppose K= U{bS (6 (y))le(.ég & 1n (x) < /a &G~ (4. } Then /7 C./Q1 UK Ul and
J(U,R)E 5(,8) (the notation EJ.‘ ,A’ » was introduced before the statement of Lemma 3,
and ,Q -—JQ URz . We will prove that¢(U /?u) ¢ (U, /?7 ), hence l,é U, Ry; )-
¢( ) , and also that ¢(U/7 n/? ) Y (U, be ). Suppose o = (Of,B) is a pair of
the thlrd kind, &= 1n () . Z€B , and suppose / lf{ﬁ é+/) Q[/J“I = Q’,]Wuh.;‘.u [;/.d]l:"'/
is a decomposition of the element g;]“_, of the finite distributive lattice g4y into the

atoms. We have
$(V,R,;)=d, (zg-)-d,,,_(@-z Ju...ud, (8;,),
[K,]&.H UeeoU Kyl = [:c]‘-;,; [/‘,Jl;ﬁu. U] ey

Fix p,/s,osa’ ; sirnice [;'P L4 is an atom of _5 vy 0+ LT follows that for some g /sg

we have j, </, Kg . Let 5-{Z€DM., l/ﬁ H,Z} p= 6”3) Then BESD, and ¢(UR'B)‘
d ( ) hence¢(Uk ) ¢(UR )and¢ U»Qz)s¢ U/? ) Now consider the
partltlon of the set R P— {R n U}U {Vn /V\U)}U ({ P | there exist eCEQ

Y€N such that G (y)/& G5y = (ApsersA ot )& K21 & PEA; &ze g, (P)&

bs(A)n U—ﬂ}) and the equivalence relation connected with & on /? a~5.— ((Zg)E,U{
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x P |,D€P} The recursive enumerability of the equivalence </ can be proved by the methods
of Lemma 2; we also have LZNZ{—" (CZ el ‘—"KGU) . In condition (**%) it is actually

. 3 r -
asserted that for each de/?x/‘: there exists 56 (/Z: n 'Q:u. ) U Y such that @~ 5 , hence, ac-

cording to 04),
(U, TnR, ' )=¢ U, (,nR.YUV) = WU/? ).
since ¢ (U,R)E f(.Z ), for some y we have C/l(y)-= ¢(U,/7l: ﬂ:?) We now have the chain

of equalities _
P )=, M nRE )ug U, 77, nR)=
=9 (U, R:a) v Cﬂ-(ﬁl) = ¢ (U,‘ﬁ:d)u cu {y)=c/u(x)uc/u(y)___ C(/‘(w7U/1(y>),
which proves Lemma 5.

LEMMA 6. There exists a general recursive function A such that cu () = ‘72A(a:) for
each .’CEN .

Fix xeN . Suppose K = {,Z I o is a frame & In (,{)<$} K {xeKo} he
(.g).,a w} , ,S(/() is the totality of subsets of /(a . For AeS K we introduce

the notation ht(A $) = inf { ne ( .‘[4 JLed], ht(A 4)—4up{ht(,¥4)\ ’-“A Y

}{\t(A)= &m ht (A"), ht (A\__&m ht (A 4) - Let /1,,, 7AK be some linear
ordering of S(K) For L /<L‘K put /? = VU(U {Pl there exist 4< ht (I( \A )
€42, ye N such thatG (9) &6 5)—(A0,,,,A Byrrer Oy )& [x</<ht (K\As)

Pel &:L'e‘f':c(P)V oL = (&'5) is a pair of the third kmd &/ & P= bs (6” (5;))&
xeB]}) Uz {geﬁ !y< ht (A; )} uU; also, put

Ro=(...(RyeREVBR. )o. NoR:,
(.. eu)eu)e..)eu;,

Uy

where, as ushal /495 = {22: [CCEA ]]‘U {2.’1‘4’/ [xeﬁ} ; obviously, ¢ (Ux,k ) U{(;ﬂ (U;,R; )|
1s(s K} We will prove that (,0 (U /Q ) = %(Ux,Kt) Suppose /4 7‘/( Then either i
ht (K \A 7 ?4 c© or ht (A ); . If ht(A )=co , then obv1ously/? < (/ , hence ¢(U‘,/?;)’
= 0; if ht(A ) # oo , thenht (/( \A )=0© | and the sets Q‘T\ vV U‘\ U are finite, which
implies that ¢(sz ) 0 . Now suppose A , . Then ht( \A ) o0 ht (A )# o° , hence
/Q o /? and the set U s U is f1n1te It is easy to see that the set ,Q‘ \ﬂ
is also finite. Consequently, (/(U /? ) gﬁ (U ’?.z'.z:) hence ¢ /\7 ) ¢(U .1:)= C//(.'Z‘)
In view of the uniform effectiveness of the construction and the fact that the enumeration
{/7(; _}5;0 is principal,‘ there exists a g.r.f. £ such that for each xe/\/ we have CIU(QZ) =
Up 1 Ry )za/ /7/611')/’

Thus, Theorem 1 is proved for the enumerated semilattice Jt . Note that we have
proved more than was required. Indeed, let € be the composite mapping uZ C,{ —-—>-,‘[
Then Cé& K .Eya=5‘, and ]?’5 (,Z') . We will use Thecorem 1 in this strengthened form. Let

us now indicate the changes that must be made in the proof of Theorem 1 for the semilattices
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a'g%" !(3n)§a . The changes for a,Z : in the definition of the indicator for natural
numbers we must consider /7 (n) & /4 , where a,==a’m (A) , and in the proof of Lemma 5 we must
assume that & € ¢ ([/, /7(:) .  The changes for A (Sﬂ)€- are as follows. First note that the
set of compﬁtable enumerations of S/z is in a nat‘ural‘ one-to—one correspondence with

the set of sequences (U]”Uﬂ) of pairwise disjoint, recursively enumerable sets such that

Uy 4@ and NN(U,0...0U,)4g , nanely, o
Fo— (/"({/}),.--,/‘-f({n}));

instead of U we must construct the sequence (U’""’(/n) . Before step 0 we regard the
numbers @,/,...,72 as used, and transfer 1 into U, sese » and 2 into Uﬂ . Instead of the
creative set ./1{ we must use a sequence («/l/,,-u,/”ﬂ) such that the corresponding computable
enumeration f.' Nmsﬂ lies in the largest element of .Z (Sﬂ_ )'dm (/)=.[ ; the other changes
are obvious. We give only the definition of the 5ﬁ —-6pérator_ for & ('g/z) . Suppose 7[.' Nmsfl
is a computable enumeration and A cN is a recursively enumerable set. If A =‘¢ , then

¢(/,' A) = 0. Suppose A%¢ and ﬂ is a general recursive function such that (N)= A .
vut Flo)=¢, F(e)={i}, Isi<a, G(a+nt 1) =foiz) and § (£ A)=dy (3).

Thé proof of Theorem 1' is analogous to that of Theorem 1, but in the definition of the
indicator for natural numbers we must take as ? a g.r.f. representing the morphism ¢ ! / —
Ly | |

We will now prove Theorem 2. Again, in order to avoid cumbersome notation that obscures

e .
the assence of the matter we analyze only the case,$¢=-f,—,‘. . The changes for Q,Z%, .,Z(J,:);

will be given later.

4
THEOREM 2. Suppose Q! / —+,‘Z¢‘. is a morphism of enumerated sets such that Z'gla (X) .
/
Then there exist an L-semilattice cg{ , a morphism of enumerated sets fij-""ze , and a K -
morphism c:é_’; ‘—*Zf‘f such that a=c-f and -.[?/G (!’) .

Proof. Let 4={/l ]l’ is a p.r.f. & VI’,}IE/\/ (IS;& f'(%)/—-r f'(sc),/)} and suppose
{72': .}[20 is a principal enumeration of 4; let g be a general re,ci‘tilrsive function represent-
ing the morphism & . Put A”= /7}(0), AI;_,_/:A(: 7 /7’“-4_,) N 5¢= 7£l,' (A ), where 2 = C((:,/) .
Clearly, {5/¢}n20 is a computable sequence of r.e. sets and /4=-{a’,,, 5,,_) l/l 20} is the
smallest ideal of ,Yc containing @ (/) . Since the largest element of ,‘[e is indecomposable,
Id€A . we equip the semilattice A with the enumeration V: v(&)-a’,,, (50 ).. 1In view of
the computability of {5‘;}530 , the natural embedding /4,, < .‘Zﬂe is a K -morphism and, since
{.72‘7:.}620 , 18 ‘principal. a )’—-> AL’ is a morphism of 4enumerated sets. By a theorem of
Lachlan [12], L, equipped with the enumeration i A (i)= ¢ (./I[,/](; ), where M is a crea-
tive set, is an L-semilattice. But the enumeration A& 1is equivalent to the enumeration %
and, since Z is complete, is isomorphic to it, i.e., for some recursive permutation P we
have '(/Z=/U = (see [2, p. 201]). Thus, j; is an L-semilattice. By Theorem 1,
there exists a K -morphism C:»Z; —-".,Zﬂe such that 1) Ig{c (X e) and 2) the composite
mapping AV < ,2’;—‘-».2_’; is an embedding AV c .Z; . Taking -Zﬂ_-e in the role of .Zal and
the composite mapping /-—"'—)Av C ,Z: in the role of g , we obtain evérything we need.
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Remarks for a,‘[: ,.,Z(LS;,);: the indecomposability of the largest element of i(sn)
follows from the theorem of Ershov [9] on the indecomposability of precomplete enumerations
representing the largest element of L (Sn) (see [2, p. 210]); that ae‘()’, ,1(5;,); are L-semi-

lattice was proved in [14].

3. Some Corollaries

We now deduce several corollaries of our theorems.
COROLLARY 1. The Ershov—Lavrov Theorem [13] (see p. 4).

We first prove an auxiliary assertion. Suppose «Z‘, is an enumerated semilattice and
the semilattice & 1is obtained from o by extremely adjoining a largest element. Assume
0 . .
there exists a K -morphism af-*”v “‘"a;, of the enumerated semilattice -Z", into the L-

semilattice og; . We claim that there then exists an enumeration Q:A/-(-)Et—%.‘{ of the semi-
lattice ,? such that % is an L-semilattice and the natural embedding °Zp C‘é’—& is a K -
morphism. Suppose ]p is a general recursive function representing the morphism & , i.e.,
V.:ce/\/_ (aV{w)=/l;£{$)) , and suppose <../70,$0>C<.p,, S,)C... is a sequence of preordered sets
satisfying conditions L1)-L5) in the definition of an L-semilattice and such that /a(:c)s/t ('y)
-~ jéeN(xé&-él) and {70(0)""2.7,(’(‘.)} C_D‘- . Finally, let '/4,;={f'(0)..,.-,7p(l;)}. y(l;)=a(/4‘-,£),
D=z, 96, i)\ zel;}, J; = {zlz=0visz & (2-1€D; & j<i) , where 4,0
are the general recursive functions in L4). We introduce preorders -on Z : xé‘} 0, "(02;: (1‘4-!))
and (.T+/);<v£ (}/'H) ~ZIs; y . We also define general recursive functions &, 7T : &‘"(1;0,(;) =
Z(ay,i)= 0, [Z(:c+/,g+/,£_) = F(ulng,i)g(iri)y+] i(z,0,i)=z, ./7(0,51,5)=‘y, |
fﬂ(.’zi’/’y.k/, 6.,2,= [’(J'(z‘,y,o'),g(é)l 5) +7. 1tis easy to see that the sequence

~J ~ ~r Vand N
<j70'<0.> C<./7,,$,>C,..and the g.vr.f. ¢, U0 satisfy L1)-L53). Let A=U{.D{lr ‘(;;0} H
we introduce an enumeration é_ of the semilattice ;‘Z : the domain of & is and
5(0)_=]x—, .§(x+/)=,u[$) . It follows from the above that the enumerated semilattice .,%—

is an L-semilattice (except that the domain of g is the recursively enumerable set A s
and not all of N) and the g.r.f. P (}'(70(1:),3([.), l:) represents the natural embedding
-Zv CZE . Passage from § to an enumeration & with domain N 1is obvious. We now begin
the proof proper of the Ershov—Lavrov theorem. Suppose A Cageo A?L ¢ is a computable ideal,
and 5C,{e is a computable family of  m~degree such that Aﬂ5=¢, [?-/A UB . Since A
and B are computable, there exist enumerations V':A/C—HE&A ,4:”%/4 Uﬁ such that the
natural embedding AvC(AUB);, (A UB)%. C.Zq; are morphism of enumerated sets. Suppose the
semilattice :’Z is obtained from the semilattice A by externally adjoining a largest ele-
ment, and & is an enumeration of Z for which 25- is an L-semilattice and the natural
embedding AVC"Z& is a K-morphism. Let [ be the smallest ideal of ,Ze containing
AUB . Then ]§/6 and there exists an enumeration A /V-(ang-é’ for which the natural embedding
(AUB)Z < 0/1 ,.Z:u c ,Z; are morphisms of enumerated sets. We collect the objects and

morphisms in a single diagram:

o

%—E—’J@
g
v g 0/1
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where U, ¢, P,z are natural embeddings. By Theorem 1', there exists €K making the
diagram commutative and such that E(J) neg = A By considering € (fz) we obtain every-

thing we need.
COROLLARY 2. V'yugin's Theorem (see [14]).

Suppose GE.Ze a%.Z' , and .Z is an L—semilattice By a theorem of Lachlan [12],
there exists an enumeration &: Nomoz turning aZ into an L-semilattice (Z )9 and such
that the natural embedding (.Z )g c .Z is a K -morphism. Assuming that the sets ‘Za and
Z are disjoint, we define an order £ on the set :Z-=.2’ Ul as follows: each element of &
is larger than any element of .,?a, .‘LG,Z &y el — azsy the restriction of &£ to 'Za,
is the original order on ,Z , and the restriction of £ to &£ is the original order on
&£ . We also define an enumeration 2- : (2-‘1')= fi{z) -V(Z.‘l"“/)://{-’c) . Obviously, f‘, is
an L-semilattice and the natural embedding (! ) C :,?v is a K—morphism. By Theorem 1,
there exists c€ek making the diagram

commutative, where p, g are natural embeddings. By considering CL{Z) ., we obtain every-

thing we need.
, . e~ s
COROLLARY 3. We have the isomorphisms L =aaz = cg(Sﬂ) .

Proof. Suppose './fé, is an enumerated semilattice. The expression "‘Mt satisfies
Theorem 1 (Theorem:2)" has the following meaning: "the theorem obtained by replaci_rig aZ¢
by ./f/: * in the statement of Theorem 1 (Theorem 2) is valid." Suppose ez’,/,.f;' are non-
trivial (i.e., .Z’, .Zz are not singletons) enumerated semilattices with largest and smallest
elements satisfying’Theorems- 1 and 2. We will prove that ,‘[IQ—’-_ .Zz. In order to avoid
multilevel notation, some enumerated semilattices will be denoted by Gothic ‘letters (with
indices) without property distinguishing the semilattice and the enumeration. Let &, 0,,...
be an enumeration, possibly with repetitions, of all elements of £ ! different from [x' s
and let K . g,,.., be an enumeration, possibly with repetitions, of all elements of .,'iz
different from [ . We will construct a sequence of L-semilattices OZ 0/,, «.» and K—
morphisms / 02' 4"'"/5 ” l/ é ﬁ/ — £2 such that.;l;e- Give® /o /f‘ /f“_, f
1(}‘- (011,) , J?l/é (02 ), a 6?2(1-/ (% 2K+/ ), {K‘;/LZ(K—H) (OZZ(KH))‘ " Suppose % ~is a one=
element enumerated semilattice and ;”, , are the uniquely defined K -morphisms !o : d,,—"u'{vl,
&, 7[ —> -{2 . Assume that to step Z=ZK we have constructed I, v 9 /zl; .6 &n, and
7‘} ,/’ <n , satlsfylng the induction assumption. Suppose o is .‘f¢; . Let .W"'fﬂ (£) u
{GK} 6(0)=QK, f-’(.’l}+/)=},t%‘(.2) . Consider the enumerated set /—- <_/l[ {" N o2 /s
Obviously, the natural embedding /C,Z .1s a morphism of enumerated sets and j%ﬂ By
Theorem 2, there exists an L—semllattlce 02’,,+, , a morphism of enumerated sets a: /-—>OZ,H_/

and a /(-—morphlsm ;W.OZ °le such that }M'Q is an embedding ./{C.,Z' and f¢li”+l

ate
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a .
(X ,.,) . Let f; be the composite mapping (%k.ﬁf, / ~—*élﬂ+/. It is easy to see that

7!,2 is in fact a K -morphism. Applying Theorem 1, we obtain a K—morphism é’lﬁ:dﬂﬁ'/—‘
,Y; such that [ﬁ—/ﬁ,&, (dl’,,.../) and ﬁﬂ == A”_”'fn . At an odd step n=2x+t/ we proceed

1 2
analogously and include JK in the image of éﬂ+/ . We now define &:& — 4% | Suppose

¢! . . S -1
x€lL ; if d,‘=.[‘z,/ , then €(&) =_Z'.Zz , but if =4, , then ¢ (x)z-ﬁz“_/ (?ZK‘V (:c)) . In
view of our construction, £ is an isomorphic embedding of the semilattice ¥7 onto the semi-

2
lattice £° . Thus, Corollary 3 is proved.
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