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In the first part of this paper we consider the following upper semilattices; the semi- 

lattice ~ of recursively enumerable m-degrees, the semilattice a~-f{~e[LZ~ff} , 

where ~E~ e and tZ is not equal to the largest element of ~ , and the semilattices 

"~[~a) of computable enumerations of the classes ~{~, {4} ..... {~}), where ~-/,~ ..... We 

prove (Theorem i) that it is possible to provide the semilattice ~ (~,~C~a))with an 

enumeration ~ (~, $ respectively) such that in a suitable category of enumerated semilat- 

tices ~ ,Z(~,i) ~ ) possesses the "morphism extension property." Theorem i and Theorem 

2, which asserts, roughly speaking, the isolation of the largest element of .~ ~,~(~)~), 

characterize the semilattice (O~ (~n)) uniquely to within isomorphism. It follows, in 

particular, that the above-mentioned semilattices are isomorphic: ~ % ~ $ n )  . It had 

been conjectured that these semilattices are isomorphic. 

In the second part of this paper ("Structure ... II") we investigate by the methods of 

O ) and the semilattices of computable this first part the semilattice ~d__{~[~)I~ 

enumerations ~[~) , where ~ is a computable family of general recursive functions contain- 

ing exactly one limit point and is such that the semilattice ~(~), where ~ is the set of 

isolated points of ~ , is a one-element set. We will prove that ~--~-~e, where 

(respectively ~($I ) is obtained from the semilattice ~d (respectively ~(~) ) by 

externally adjoining a largest element. We begin a more detailed exposition. 

i. Preliminary Facts 

As a working definition we adopt the following definition of ~ -reducibility. Suppose 

,B C ~; we say that the set A is ~-reducible to the set ~ ,A~m~ , if either A is 

recursive or there exists a general recursive function f such that V~(~EA4-~fC~)~ ). 

The relation ~m is obviously a preorder on the set of all subsets of ~ ; we denote by 

~m the' corresponding equivalence relation: A~m~-~ ~ ~m~ ~ m ~  • The equivalence 

class of the set A relative to ~ is denoted by ~m(~) and is called the m-degree 

of A ; an ~-degree containing a recursively enumerable set is called recursively enumer- 

able. The relation ~m induces an order on the set of ~-degrees, and this ordered set is 

an upper semilattice, i.e., any two elements have a least upper bound. In the sequel, in- 

stead of "upper semilattice" we will simply write "semilattice." We denote the semilattice 

of ~-degree by ~m , and the set of recursively enumerable r~-degrees by ~g 
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Let us establish some conventions. We will denote a semilattice and its underlying set 

by the same letter, and the operation of taking the least upper bound by U ; thus, ~ ~ 

au ~--~. Suppose ,~,= <~,o> is a semilattice. The smallest element of £ (if it exists) 

will be denoted by O , and the largest (if it exists) by ~ ; sometimes these elements will 

be denoted more explicitly: O~,Z~ . A subset A ~  is called an ideal of the semilattice 

.~ if for all ~ , ~  we have the relations ~ - ' - ' - ~ o ~  ~ a £ A ~  ~.f~A. For 
recursively enumerable /~ -degrees we will use the following abbrevations. If ~, ~ e  , then 

It is easy to see that is an ideal of the semiiattice and that dml~) is the 

smallest element of and It follows from the computability of the family of all 

recursively enumerable subsets of ~ that the semilattice ~e possesses a largest element. 

We will also consider the semilattices =~_{~£,~e I~}, where ~E~ g and ~ is not equal 

to the largest element of ~e • and the semilattices of computable enumerations ,~IS~) , where 
~={~ ,{4~io.,~{a}} and ~=~ ..... Suppose ~ is a computable family of recursively 

enumerable sets and ~[$) is the semi lattice of computable efiumerations of $ (see [i]); by 

analogy with on-degrees, the element of ~($) defined by a computable enumeration f:~gnt~s 

will be denoted by ~m(f) . It can be shown that the semilattice ~(~ ) possesses largest 

and smallest elements (see [I]) and that the semilattice ~g is (naturally) isomorphic to 

the semilattice ~(~) . 

The concept of OZ-reducibility was introduced by Post [4]. In that same paper he 

introduced the concept of a creative set; it turns out (Myhill [5]) that dm(~)=l~ e if and 
only if ~ is a creative set. Yany (see [3]) observed that the ~-degree of a so-called 

maximal set ~ is minimal, i.e., satisfies the condition ~ (a~)~ 0 ~ ~¢~e (O~ ~ 

O~mI.~)-"~ff=O Vff=~m~./~)). Lachlan [6] proved that the largest element of ~# is inde- 

composable, i.e., aO~= 1---~-~o~-~r . Ershov [7] showed that 

i) ~F contains infinitely many minimal elements; 

2) there exist elements (~ O) under which there are no minimal ones; 

3) ~e is not a lattice; 

4) the elementary theory of the semilattice ~g is undecidable. 

It isproved in[8] thatfor any aE~ e" {O,Z}there exists ~E.~ e such that Q ~ ~ a  , 
8 

and that for any QEf e we have ~'=7 b 3¢~ (~<d<f) . It is proved in [ii] that for 

any OE~ ~ we have 

a-I "-_-Try.re(a< Vc e (c , d • e, avc=dO. 
Lachlan's paper [12] was a significant advance in the study of ~e , namely Lachlan proved 

that if ~0 is an L-semilattice (denoted by ~8 ' ~-- <~' O~ , where L is a semilattice and 

is an enumeration of ~ ; the definition of a Lachlan semilattice (L-semilattice) is given 

419 



below), then there exists e such that the semilattice ,,otl~,,,,{~E,,~'gl b ~ O ~  is isomorphic 

to ~ ; conversely, for each a~g there exists an enumeration 8:~onm~ ----~= such that (~)8 

is an L-semilattice. The last results on the semilattice ~g (and also ~[~) ) are the 

theorems of Ershov--Lavrov [13] and V'yugin [14]. Let us recall what they are. 

THEOREM (Ershov--eavrov [13]). If @C~ ~ ~ is a computable ideal, ~ C~g is a 

computable family of f~-degrees such that ~ =  ~ and I4~ U~ , then there exists 

~ such that ~.~g(~'~-+~ ~) and V ~  ( ~ is comparable with ~ ). 

THEOREM (V'yugin [14]). For any ~(~£ different from ~ and for an arbitrary L- 

semilattice ~, there exist ~ g  such that ~ ,  the semilattice =~ ~ {~(~#I~(C~} 

is isomorphic ~ and V~E.~g(~---~v~c). 
A complete description of the semilattice ~ is contained in Ershov [15] with the 

addendum~of Palyutin [16]. 

2. Definitions and Statements of Theorems 

A pair consisting of a (no more than countable) semilattice ~-- ~,U> and an enumera- 

tion ~: ~ onto~ of the underlying set ~ will be denoted by ~9 and called an en- 

umerated semilattice. We introduce the following category ~ : the object of ~ are the 
! " z , 1 

enumerated semilattices, and a morphism ~ :~_ ~ ~. ,  of an enumerated semilattice ~_=" 

C < ~ , U > , 9 1  into an enumerated semilattice ~=(<~,u>,~)is a mapping ~:.Z. " - - ' ~ . K -  

of the underlying set into the underlying set such that 

i) ~ is a multivalent; 

2) ~ is a semilattice homomorphism; 

3) ~(~J is an ideal of ~ ; 

4) there exists a general recursive function ~ such that ~£~ {~O{~ == ~(~}) (i.e., 

a is a morphism of the corresponding enumerated sets (see [i])). 

Suppose ~O is an enumerated semilattice. We will say that ~6~ is a Lachlan semilattice 

(L-semilattice) if there exists a sequence of finite preordered sets <~,~0>c~11 ~I>c.°., 

where ~. ~ , such that 

L1) {~'}i)O i s  a s t r o n g l y  computable  sequence of  f i n i t e  s e t s  (we w i l l  use the  f o l l o w -  

ing a b b r e v a t i o n s  : 

L2) the  o rde red  s e t  ~ .  i s  a d i s t r i b u t i v e  l a t t i c e ;  

ma,p n  > =  ro ervo  

the  l e a s t  upper  bound and the  l a r g e s t  and s m a l l e s t  e l emen t s ;  

L4) there exist general recursive functions &~C~,F,i), ~r(~,F, i )  such that 
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L5) there exists a recursive predicate P(~,~1~,o,~) such that for all ~,~,~ we have 

We mention one property of Lachlan semilattices that will be needed to prove Theorem 

I. Suppose ~O is an L-semilattice and F is a general recursive function such that 

/{~)~-~. Then ~8,{ is an L-semilattice. Indeed, suppose <~0,~o > C<~r~l~Co.. is a 

sequence ofl preordered sets satisfying conditions el)-e5) and such that ~ ~ )  ~-~ 

~6E~ (~g~) Suppose ~(~=~{f~)=~# (here ~ is the minimization operator). Since 

~{~)--- /%/ , the function ~ is general recursive and f~[~)= ~. Put ~ t= [~E~I/~)E~&. 

~~O(~[~I)}, ~:~ ~- ~,~E ~/~/(~)~/(~). It is easy to see that the sequence of 

preordered sets </~ ,~. > (11 <~, ~ > ... satisfies conditions el)-e5) and that "~(~)~ 

/(~) ~ : ~6E~ (~ ~). Thus, we have proved that ~# is an e-semilattice. 

Suppose i~3~O is a principal enumeration of the set of all one-place partial recur- 

sive functions. If we let q" be the domain of ~ , it is clear that {/7~ }~O is a 

principal enumeration of the class of all recursively enumerable subsets of N. We introduce 

an enumeration of the semilattice~: ~({~)---- ~ )  and an enumeration of the semilattice 

=~i~: ~(i) = ~U~(~) (the dependence of ~ on ~ is not indicated, but this will not lead 

to complications). We also introduce an enumeration of the semilattice ~(~) as follows. 

Let ~.(0)=~, /~.(~) = {~} for /-<~~+~/)--{~{~)} if /; (,Z)is defined and ~(~)E 

{~,...,~}, ~+~ ()-- #; otherwise,put ~(&')=~m (~.) (the dependence of the enumeration ~ 

on /z is" not indicated), 

We are now in a position to state Theorems i, i', and 2. We fix an enumerated semi- 

THEOREM i. Suppose in the diagram '" 

~; " C 

.go 

tha t  g ,~¢K,  2" t~" g (,,fro), and ,,~; i s  an L-semi la t t i ce .  

diagram commuta t i r e .  

THEORt~ 1 '  Suppose the diagram 

-t y r .  0 . -'- 

S O  / 

Then there exists ~£K making the 
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that ~,b~K', C,~ are morphisms of enumerated sets, b----~e~',. Z" ¢ C(])and ~ ;  is an L- 

semilattice. Then there exists ~ making the diagram commutative and such that B (~0 

n c C~) = b (,~° ),. 

" .THEOREM 2. Suppose ~ : ] - - ~  ~ i s  a morphism of enumerated se t s  such that  I C a ( l )  . 
amo  ,  mo eouoe a e  e   

morphism ~ ~ " Z~ such that a = C'b and -] '¢G(Z~') . .  

3. Proof of Theorems I and 2 

Recall that ~ ' ~ 0  is a principal enumeration of the set of all one-place partial re- 
cursive functions (p.r.f.), /7 l is the domain of ~. , and, therefore, {/7~}~, O is a 

principal enumeration of the set of all recurslvely enumerable subsets of ~ Fix a general 

recursive function (g.r.f.) C{~,~) effecting aone-to-onecorrespondence ~'~-~/V Z and such 

that C~,~) is nondecreasing in ~ and ~ , in particular, ~p(~,~)~ ~(~,~). Let ~I~,~,Z~ 

C~C~,~2. We give the definition of the eachlan ~ -operator (see [i0]). Suppose ~C 

is a set and A = ~ is a recursively enumerable (r.e.) set. Then we denote by ~ {~,A) the 

following ~-degree: if A-# , then@IU.A)--F~(¢); if A~ and { is a g.r.f, such 

that {{~)-A, then ~{~,A)-- ~({~U)), This definition is obviously correct, i.e., does 

not depend on the choice of f The following are the main properties of the Lachlan ~ - 

operator. 

01) The @-operator ~ i , ~(~,A) maps the set of r.e. subsets of ~ onto the set of 

A~ -degrees ~ {~); ~(U, N) = ~m (U); 

02) ~tU, Au~)- ~(u,A)u ~(u,~); 

03) If ~(U,~)~(V,B) and~nV~d,~D(~'V)~d, then there exists a p.r.f. { with 

domain A such that f(~) c~ and 2EA--~(~U-~w~xJEV) ; conversely, the existence of a 

p.r.f, f with these properties implies that ~(~,~)~ (~;~); in particular, if ~NU , 

AN(~kU) are recurslvely enumerable, then ~(~)-- ~ (~) ; 

04) If ~,~ are r.e, sets, ~ is a r.e. equivalence relation on ~ such that for any 

~reA t h e r e  e ~ i s t s  F" ~ E A n B A  m ~ ,  a~d ~or any ~ ,~eA  w e  h a v e  .~'vF"-~(.~@.U -: : -~eU),  
then ¢(U,A)~ ~ (U,~) • 

For example. 'let us prove . ~ ~ . 04) Suppose ~ { ( ~ ,  ) l ~  "~ a ~£~} The set ~ is recurslve ~ 

view of the first and third properties of ~ , there exists a p.r.f. ~ wlth domain A such 

that zEA--~(~,f(~))(~, and it follows from the second and fourth properties that the p.r.f. 

f also satisfies the relations ~ , {~KU~-~f{~)~U) and f(~)= ~. In view of 03), 

~ (u,~)- ¢ (u,~). 

Let us recall some facts about finite distributive lattices (see [12]). Suppose ~ i s  

a finite distributive lattice. An element ~(~ is called an atom if ~ O C  ~' (~V~;C. 

Suppose ~ , 4 are finite distributive lattices and ~:~--w~ is a mapping preserving the 

least upper bound and the largest and smallest elements. If ~(~ is an atom, we denote by 
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if(a) the set of minimal elements of the set~(a)~ {~CDIIO~ ~f~)~. We claim the following. 

DI) The set ff(O~) is nonempty and each element of if(a) is an atom. 

D2) If Q,#E~ are atoms and a~;# , then there exists a mapping ~: C(~)-~ff(~) such 
that ¢ (d) ~d. 

That C(~} is nonempty follows from the fact that 99 preserves the largest element. 

We will show that each element of C(~) is an atom. If ~Eff(~) and #.<CO~, then #--(~OC)U 

(~od),~Z~(~)=~((~C)U(#O~)) = ~(~C) U~(#O~) ; but ~ is an atom, hence ~(~OC) or 

a~(#nd). ~f, for definiteness, =-<¢(#ne) , then #nC~6(=) and #nC~#; but # is 

a minimal element of L~(R) , hence ~OC = ~ and ~$ . Let us prove D2). Since a~, it 

follows that ~(~)C B m) and, since ~(a) is finite, under each element there is a minimal 

one, i.e., the desired ~: ff(~) r- ff(i2) exists. 

We also introduce the concept of convergence. Suppose ~ .~ are sets and #(A,~) is 

the set of all partial mappings from ~ into ~ If ~E~(~,~), =E~ , then f(Q)f is 

an abbreviation for " f is defined at the point ~ ." Suppose {~}£~O is a sequence of ele- 

ments of ~ (~,~). We will say that the sequence [ ~ 8  converges if 

~f the sequence {F~]~,O converges and #~G(A, Zl), we will say tha~ # is the lim~ of 

,9=~r~ ~ , if for any a: 

Obviously, for a convergent sequence the limit exists and is uniquely defined. Note that if 

a sequence {~£~>0 converges and its limit ~----~ ~ is a function with finite domain 

then there e~ists ~ such that F~=# for all ~ . ~ndeed, suppose ~0 is such that 

Y~,# F=~A (~o~a~#,(=)l-~9~ m~! ) , and suppose 4 c A i s  the domain of ~ Since 

~0 is finite, there exists :~t~ 0 such that for ~ and ~0"~(~)is defined and 

~.(a)=~(=) Obviously, ~=~ for ~! . For functions ~l ~--~ ~( ~ an arbitrary set) 

and ~: ~ • ~ the equalities ~-~(~) = C (where C~ ~ ) and ~[~)=~ have the usual 

meaning, namely ~ ~(~) = if ~ (there exists ~E~ such that ~/~--~(~) -- ~ ), 

~f~(~)= 0o ~ (for each ~E~ there exists ~ such that ~--~/~)~fg ). Note that 

if ~ is ~(~,~) , then an equality ~_~(~)= 0 in the sense of the second definition im- 

plies the equality ~rg ~(~) "= 0 in the sense of the first, but not conversely. 

Other Conventions. The totality of subsets of a given set ~ will be denoted by $ (~). 

As usual, a partition ~ of a set A is a subset of $(~) ,~=$(~), such that each element 

is nonempty, the elements of ~ are pairwise disjoint, and the union of the elements of 

is ~ If ~ ,~ ~ ~ (A) are two partitions of ~ , then ~ is called a refinement of 

if each element of ~ is a subset of a suitable element of ~ If ~ and ~Pc ~(~) 
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is a partition of ~ , then we will denote by ~ i~ the following partition of ~ ; ~I E = 

To avoid obscuring the main ideas with Complex notation we analyze only the case 

~=~2 in Theorem i. The changes required for ~ ,~(~a)~ will be indicated later. 

THEOREM i. Suppose in the diagram 

~0 

that ~,{~, I ~{ (~0) and ~8 is an L-semilattice. Then there exists CE~ making the 

diagram commutative. 

Suppose 8 is the cylindrification of the enumeration 8 ; by definition, there exists 

a g.r.f. ~ such that 9= 8o~ ,~(?#)--~, and ~ assumes each of it values infinitely often 

(g is a function of large amplitude). In view of the remark immediately following the de- 

finition of L-semilattice, ~$ is an L-semilattice. Obviously, the identity mapping 

-~j ~ ~8- is a ~-isomorphism. Therefore, we may assume without loss of generality that 

the enumeration @ is itself a cylinder, i.e., ~=9'~ for some function ~ of large an- 
t t ~/> 

plitude. Suppose <2o,~ O > C <2, f, C . . .  is a sequence of finite preordered sets 

satisfying conditions LI)-L5) and such that ~(X)~ ~(~) ~ ~ (~[~) and suppose 

Uf(~,~,~). ~f{(2,~,~) are g.r.f, satisfying e4) (in connection with our sequence). Let 

be a semilattice obtained from ~¢ by externally adjoining a largest element. We define an 

enumeration of ~ .~: ~on~to~, as follows: /I(0)=i~ IF{~+{ ) = ~{~). We also define a 

sequence of preordered sets <J.~O,~o>C<D~,~<~>C.., and g.r.f. ~(~,~,~),gr(~,~,~) ; 

tz( y,i)= o. 

I 
+ I. 

It is easy to see that the sequence <DO,~o> C <~, ~,>C... and the function ~,~ satisfy 

conditions LI)-LS) and that /~[~)~/I~) ~ ; .77~/~ I~.Z F), in particular , ~ is an L-semi- 

lattice. We emphasize that throughout the proof of Theorem i, ~'X~&o,~L)3&t,f are the objects 

introduced in (*). We will also assume that ~6 • ~E~;. 

It is clear that the natural embedding ~gt C ~ is a K -morphism. Suppose ~ is the 

composite mapping ~-~-~9 C ~/~ . It suffices to prove that there exists c~A(, making 
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the diagram 

C 

Y 
commutative. Since the enumeration @ is a cylinder, there exists a g.r.f, f such that 

~0(~)=8~C~) and ~C~)~. Let ~)~f~)÷~. Obviously, ~(~)=~f(~)and~);~. The 

latter relation implies that the set f(~} is recursive (we denote it by ~ ), and the first 

relation implies the equality~(~}--~(~°}. This set ~ will be needed later. 

We will use (until the end of the proof of Theorem i) the following abbreviations: 

~ - ~  ~ ~ ~ ] ~ = { ~ E ~ I ~ ' ~ } ,  ~---{~]L I~E~ ~ " Suppose ~ is a subset 

of ~. We will say that A is an atom of ~- if the distributive lattice D~ contains 

an atom a such that ~=I~ I=~ [~]~ }. We introduce, following eachlan (see [12]), 

frames and towers. By a frame of length ~ we mean a sequence ~= (~0,.oo,£~), where 

~.C ~D/ ) (~ (~') is the totality of subsets of /_~/0 ), such that 

KI) ~ is a singleton; 

here C(~ is the totality of maximal (with respect to inclusion) elements of the set {{.]~.~. 
lu= 

We will denote the length of a frame ~ by In (=). A frame LY~ =(~0, .... ~ )  will be 

called good if, for each 74;~ , each element of ~. is an atom ~. It follows from con- 

ditions DI) and D2) that if ~ =~. is an atom of ~ , then there exists a unique good frame 

~---(~0,o°.,~) such that ~== {A} ; it is also easy to see that tSJ is an atom of ~ for 

all ~O , hence the sequence ~{{0~}, ,..,{{0~}) is a good frame. If ~---- (~O~,,.,~),,~ 

= C~o, .... ~.) are two frames, we will say that ~ is a subframe of ~ if 6~7 .~Y~ c ~ when 

e~ , and for ~+/ the set ~(~) computed in ~ is equal to ~(~) computed in 

We now define a tower. Suppose ~-~ is a finite set. A tower with base ~ and length 

is a sequence ~=(~0~,,.,~,~, .... ~) of partitions of ~ and mappings ~j : A~-~8(~.) such 

that 

BI) the partition A i is a singleton: ~----{~; 

B2) the partition Aj is a refinement of the partition Ai+f,7~i ; 

B3) for ~EAjq. I the restriction of ~. to {P~A~.IPc~}--Aj I~ is a bijection of this 

set onto ~(~j.,f ~)), where ~(~-+/ (~))is the totality of maximal (with respect to inclusion) 

elements of the set {~E ~ (~)I~ ~ ~j+f(~)O~.~p 7<~; 

B4) the sequence (~0(~o) .... ,~(~i}) is a frame. 
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The frame in B4) will be called the frame of the tower ~ The length of the tower 

~ will be denoted by in ~) , the frame by fr (~) , and the base by bs (~) . It is not 

difficult to show (see [12]) that for any frame ~ and any finite set ~ ~ containing suf- 

ficiently many elements there exists a tower ~ with base ~ and frame ~ Suppose 

A: ;j.p Ip,..., ~--- (A0,... , ,~0,...,~Z) is a tower, j~Z andP~ Wedenoteby tw (A ) thetower(~ 0 

18 ~0'"" ), where #~ , K-/, is the restriction of ~ to A~IR (in view of con- 
dition B2), ~K I~ is a subset of ~ ); we denote the frame of tw (l,j~P) by fr~A,7,P) 
We introduce a partial order on the frames. Suppose ~=[~o ..... ~i )' ~=~o,'." ~) are two 

frames of the same length, ~={A~ ,~i--{~} " We will say that ~ is less than ~ , ~  , 

if i) A ~ ~ and 2) for any 7<b, /_~E~i+f, ~E~.+¢ , if /~ ~ , then there exists a mapping 

: ~)--~(~) such that ~(~)= U , U6 C(~J, where ~) is totality of maximal (with 

respect to inclusion) elements of the set {~E~ IU-~/~ F]~} ; C(~)is defined analogously. 

It is easy to see that if ~= [~0,,.0,~),~-- (4,...,~) are good frames and ~----{A~ ,~={~3, 

then, in view of D2), ~ if and only if A = ~ . suppose ~--(~0'"',~',~0, .... ~" )I ~ = 

[~o"'"~', ~o ,°'', ~/" ) are towers with bases £~ respectively, where ~fl~=~ , and 

suppose K.<~R~ (~,i), ~ ~¢~ ~ E ~/C and fr (A,K,~)~ fr [~,K,~) . Then there exist mappings 

~ o : ~  l~'-',,~o~,L~,,..,~. :~I~---~ ~ such that ~e~a(~)-~ ~ (~) for ~'-<K~,RE:~'~ I~ . 
Indeed, since the sets ~ I~ ,~ ;~ are singletons, there exists a unique mapping ~' 

~ I ~ ---~ ~ I P and this mapping satisfies our condition by virtue of the relation fr (A, 

K, ~) ~ fr (~, K~ ~). Assume that we have constructed a mapping ~+f satisfying our con- 

dition. Using condition 2) in the definition of ~ and condition B3), we can easily define 

the desired @~ (not necessarily uniquely, of course). We will now construct a tower 

~=(~0,...~, ~,..o,~) with base ~U ~ . For ~K the partition ~ is obtained from 

the partition ~ by replacing each element ~e~ by ~--~U(u[T~I~I#F(~)=~}) , and 

for $> K by replacing each element ~ ~ by 

R~ ~ £ if 

RnP ÷d, 
- R n p = ~ r ;  

~e(~e (~) We denote this tower ~ by tw (~,~,K,~,~,. 

Let ~ be the recursive set introduced earlier with the property that ~IH) ~ ~(.~o) 

In the sequel we will consider only those frames O~ = 10~0,...,~),~= [A) , that satisfy 

the condition 

(**) A n H = ~ .  

We now in t roduce  a set  of  p a i r s  ~ .  A p a i r  ~=(OX, V )  is  an element of  ~ i f  and only  i f  the 

first component of =C is a frame~-=-(~o,....~;).~Z= {A3 , f=e(m,n,e) , and the second component 
is either i) the symbol I and then aeA (a pair of the first kind), or 2) V is the symbol II 

(a pair of the second kind), or 3) V is a set B such that AC ~ C~i+l and ~{]H## (a pair 

of the third kind). The length of a pair ~ (in (~) ) is the length of the first component 

of oc We define the norm of the pair ~ at step ~ (nr (~,~)). Suppose ~D- are the 
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g.r.f, introduced in (*), aE~ 0 is the smallest element of <~,~0> (it is the smallest 

in all </~ 7~i> ), and ~ c ~ is a finite set. We define ~ (~i), ~(~:b) by induction on 

the number of elements in A : ~(~,~)= ~z, gr(~,b)=O,~(~O {~},b)=Ll($g~tf (~,~), ~)ilf~4U{~.~, 
)=Zf(~,ZF(~,~),~') , where ~ is greater than all elements of ~ It is easy to see that 

we have an equivalence 

It follows from L5) that the second member of the equivalence is a ~V -predicate, hence 

there exists a g.r.f, p((~,[),~) that is nondecreasing in & and such that ~rrL ~((A,&),~)~ 

if and only if A c ~ and A is an atom of ~ Suppose ~----(~0 .... , ~) is a frame. 

Put ~(~,~)=~I(~,~),~)lj --< b~E ~y.}. Fix an effective one-to-one correspondence 

~:~'~-~ such that if ~(£%,~)=~i UJ(~, ~)-----7' and in (~)~ in (~) , then ~} , and 

for o£=(0~) put mr (~)----C(~(~),~)~o¢)) . We emphasize that if ~ is a subframe of 

~,~= (~,V~), andS= ~,Vz), then mr (~,~)~ nr (~,~) (and mr (~;~)i=(~,~)~ ~=~) . Put 

nr(o~) --- ~r~ nr (¢~,~) ~ nr(~) can assume the value o~ and nr~)E~ is equivalent to saying 

that the first component of o¢ is a good frame. We also introduce a computable sequence of 

r.e. sets { ~ 0  wit h the following property: if ~)=~(i), then ~m(Bz)=~9~'}, where 

i s  the  p r e v i o u s l y  f i x e d  g . r . f ,  r e p r e s e n t i n g  the morphism ~ ;  g~ - - - - ~  . Suppose ~ i s  
o . ~ /~e--  

.r.f. representing the morphism ,!~: "~1; ' ~ , and suppose ~(~)=~ (f(~)= .,~.). (here 
is the minimization operator). Put ~---~ , if b~f(/~), and 4----~(Z) , if ~Ef(~) . Ob- 

viously, the sequence {4}$'~0 is computable. In view of L5), there exists a g.r.f, p(~, 

~" ~) , that is nondecreasing in & and such that ~g.~ ~-~ ~rrg ~(~,~,~,~)~- ¢.o. Suppose 

~(~&)--- ~r~ ~(~,~)(~(~,~,~ } can assume the value ~o ), and suppose p~O) = O,p(~, 
~--~ 

p(~,i,~)V/<p(~,6)]}. The computability of the sequence {~=}~)0 and the fact that it 

satisfies our condition can be verified directly. 

We fix an effective procedure which at the even steps 0, 2, 4,... yields: 

either i) a triple (~,~, where A=(~ot...~i, ~,,..,~.) is a tower, 6~7 ' an~ 

or 2) a pair of E~ of the first kind, 

or 3) a natural number bE~ , 

or 4) a pair ~E~ of the third kind, each object occurring infinitely often, 

at the odd steps i, 3, 5,... yields elements of ~, each ~e~ occurring nr (~) times. 

We will describe, in general terms, a construction which leads to a proof of the exis- 

tence of the desired morphism C:~----~: At step ~ we will define for each ~E~ a 
/ 

partial mapping ~Z~ from ~ into the set of all towers and transfer certain elements into 

a set U ; that which we include in U up to step ~ will be denoted by U~ • The follow- 

ing relations will be satisfied: 
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3) ~ ( z ) !  ,. ( t h e  frame o f  the  tower  ~ (Z) i s  e q u a l  to  the  f i r s t  eomponent o f  ~C ). 

We w i l l  s a y  t h a t  t he  tower ~ e x i s t s  to s t e p  ~. i f  t h e r e  e x i s t  0~,0? (un ique ly  de te rmined  

~c I ~ A. The number ~ is said to be used to step by virtue of i)) such that (~)° ~C (~) =- & 

if either ~e {0,1} or ~ has been used to step ~ in the base of the tower, i.e., J~<~, 

~£~E~(~ 7(~)/Sb~6bs(~ac(~))) . Before turning to a detailed description of the con- 

struction we define several auxiliary functions. 

Suppose ~ is a creative set. Suppose ~,~,{~&~,{ A~ ~, {j~&~ are strongly computable 

sequences of finite functions and sets that are nondecreasing in & and such that /~ =U 

{ ~ i , ~ O ~  , and so on. 

We define the so-called indicators and heights. The indicator for pairs of the first 

kind. suppose 0¢= I~,_T) is a pair of the first kind, in (CJL)=G(17z~I?,8)--/, K=~p(I'I?,R) 
We define a function in (¢¢,~) . Let &0<~I"~2~ • • • be those even steps at which our 

procedure yields oC . If ~i~ , then in (~)= ~. If ~i< <i ~/4f ' then in I~,~)= in 

~¢,~+¢) . Suppose ~-7- ~+[ If 

i) the function ~,& is defined on the set 

= (,to,.. .,Ai, 
~o,...,~. )~ p~A~& ~ , ~  (p)}, 

2) for each ~ the number ~ (~) i s  used to step ~--/, 

3) for each ~6~ we have ~&U$_/'e-~/~(~I) 6U~.I, 

4) ¢~(~)~---- ~ ,where .~=Uibs(~,(~))l~,(F?!}, 
then ~¢e put in (~) = in (~r~-f) +1. Otherwise, in(~,¢)=in ~m(~-¢) 

The indicator for natural numbers. Suppose ~6ff , &=C(#,£) . Let ~0<~I<~< ,.. be 

those steps at which our procedure yields ~ We define a function in (4&) • If ~o • 

then in(~',~)--O. If ~ < ~ . / , + t ,  then in (~)= in (~,~+ [). Suppose ~--~-+/ ,gg= 

in(~,¢-/) . If 

A l) the function & is defined on the set {0,4,..,,a], 
2) for each ~ the number ~£(~) is used to step fi-/ , 

3) for each ~ we have ~E~ ~ ~ ~{~)~U~_¢ (recall that ~ is a g r.f. rep- 
o. ~('n),;~ 

resenting the morphism ~: ~V > -.. ) ' 

then we put in ([,~)-- in {~',~-/~ . Otherwise in (6,4)- in (~, ~--¢). 

Suppose ~ is a frame. We define a function ht (~,~) . Let ~.o.¢~¢</~ 2<... be those steps 

at which our procedure yields triples (A~0, ~). If ~0 ' put ht (~,&) -- ~. If~.<~ ~ ~j+1 

then ht(~,~i)----ht (~.+4). Suppose ~=~.#{ and at step ~ the,procedure yields (~,~,~P) . 
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If 

l) ~ = fr (A,~,P), 

2) the tower ~ exists to step ~-¢ and ~ ~$~ ~bs(~)0 U~_I= ~, 

then we put ht (~,~)= ht (~,~-/)+/ Otherwise, ht (~,~)----- ht(~,A-f) . 

We can now describe the construction. Before step 0 we assume the numbers 0, 1 to be 

used and transfer 1 into ~ , and for each .zE~ we put ~0 ~ ~" 

Step ~ . a) ~ is even. 

i) Our procedure at step ~ yields a triple (A,~'~P#. suppose ~--fr(A,~,P) , 

ht (~,~)= a • If ht (~/~, ~+/)=gg or at step ~ our procedure yields an element of QU/~ , 

then we,change nothing: ~+f----~ for all c~E~ . Suppose ht (~, ~I)=Q~'/ and therefore 

the tower ~ exists to step • ; ~(a~)---- ~ and suppose at step a our procedure yields 

{~,], ~) and ~= (~7],~) • Ifb=],~ =~' ~'<~/~, in(~)< in(~), the tower 

exists to step ~ : ~2(~}=~, bs ~)f]~i---- ~ , then we put ~+f(~) equal to tw I~,~, 

'~)' ~+I I~) is not defined, and there are no changes at the other points. 

2) Our procedure at step ~ yields a pair og= (~Z) of the first kind. suppose 

in (oc,~) = Cg. If in ~, A+4)= O., then we change nothing. Assume that in ~ ~4-/)---- L/q-/. 

Suppose ~ is the first point at which the function ~ is undefined. We take a sufficient- 

ly large initial segment of unused numbers ~ , construct a tower A with base ~ and frame 
o£ 

, and put ~+°¢¢[X)---- /4 , and for ~ we put ~+f(~)---- ~ (~) For the ~£~ such that 

mr (o~,&)<nr(~,~), we put ~# ---- ~, and for the remaining ~(*~) there are no changes: 

~£+f---- ~, 

3) Our procedure at step ~ yields a natural number &----C(/t,g) . Suppose in'(~',4)---- ~. 

If in (~j~#f)=(Z, then we change nothing. If in ~g, 4+])---- a~-f in particular, ~e,~ (~)/' sup- 

pose ~£(Q)=~. If to step ~ there exists no tower ~ such that ~E bs(~) . ~< in~), 

bs (~)f]~ = ~ , then we change nothing. Suppose such a tower ~ exists: J~----~)----~o,i..,~. , 
~o~ .... ~.) , and suppose ~E~ ,/7E~ ,~ = fr/~,~,P) . We form.~a pair oc---(C£,7) of the 

second kind and let ~ be the first point at which the function ~ is undefined. We put 

~¢ (~)= tw (~,~,~), ~¢ (~) is undefined, and there are no changes at the other points. 

4) Our procedure at step ~ yields a pair o~--(~,~) of the third kind. Let • be the 

is undefined. We take a sufficiently large initial first point at which the function ~ 

segment of unused numbers f , construct a tower ~ with base ~ and frame ~ , and put 

~!(a~)---- ~ . There are no changes at the other points. 

b) • is odd and at step g our procedure yields a pair ~c Put ~÷f ~- ~ , f--- 

for ~ Consider the elements of ~ If ~ is a pair of the first or second kind, 

~! i~)! and ~UE~ , then we transfer the base of the tower ~f(a3) into U if ~--(~,~) 

is a pair of the third kind, ln(C2)=g,j=tr{z~,['~), then for those ~ such that ~+f(~}/ 

~E~/.~ we transfer the base of the tower ~+£f I~) into U This completes the description 
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of step • of the construction. 

Let U=" u{~¢ I~>0} • Obviously, the set ~ is recursively enumerable. We will 

prove several lemmas. 

LEMMA i. Suppose that nr~)~ ~° for a pair ~6~. Then the sequence {~}~>8 con- 

and if ~ is a pair of the first or second kind, then ~---x~ ~Z -- ~ is a function verges, 

with finite domain. 

The proof will be carried out by induction on nr (~)£ ~ . Suppose the lemma is true 

for the elements ~0--{~E~ I nr~)< nr(~}} and let ~I--{~"~o I /3 be a pair of the first 
or second kind }.. It is obvious that the set ~0 is finite. Suppose ~ is such that 

~ ~>.~oc~ mr (~)..< nr(~)--~ nr(~,&)= nr(/3), &>~ nr(~)> nr(.~)--w nr(~,~)> nr (~). In view 

of the property of. our convergence mentioned directly after the definition, there exists 

~ (:ht (Z) can assume the ~f)~ such that ~ ~ ~G ~ ~ ~ Put ht (~)~ ~2t(~ 

value o~ ). Let ~={~I ~ be a subframe of ~} , where ~ is the first component of 

the pair og and ~-~{.,~,EK 0 lht(~) = oo}. Suppose {Z>~f is such that =~'~/ ( 'O\ .~ ' f~"<-~ ~" 
~ht (X) ----- ht(~,A), XE~I~&>~£ Z --ht(~{,&)> in(~) Fix "~.3~A.£ such that &>~5 i (our pro- 

cedure at step ~ yields the pair oc) ~ (4~ is even). We claim that if &~-.< 4b~ ~ ~& (~),/, 

then ~ (~),/ . Obviously, it suffices to consider the case ~= ~+{. Assume the contrary: 

~>~ ~3 8~ ~&=c (~)/ , but ~+f (~) is undefined. If at step {~ of the construction we are in 

case al), then there exists a frame ~{E ~8 such that ht (~,4)+ht~,~+f)~ in (~)>_. ht(~,&); 

but this is impossible in view of the choice of AO If we are in case a2) or a3), then, 

by choice of &0 ,'for some ~6~ we can extend the definition of ~&~ , but this is impos- 

sible in view of the choice of ~I Case a4) is obviously impossible, and case b) is im- 

possible by the choice of ~'3 " Contradiction. Now consider &>'~3 and ~ such that ~, (~)/ , 

and suppose ~,.c(~)= ( ~ , , , , , ~ ,  , . . . .  ~g~ ). Consider ~ , ;  as shown above, (~)1, so let 

~(~) = (~0,...,~, 4,.°., ~; ) From the description of the construction it is easy to 

see that for each ~.<& there exists a bijection ~.~: A~--~ such that ~$~ (/~)~ /~ (ob- 

viously, ~F.~ is uniquely determined). For ~-<6 we put ~;={/~A~ J~,~(P)~ /7~,~ 4 
for some #~>~} suppose ~0~>4~ is such that 

O 

for all e~<~ From the description of el) it now follows immediately that ]~0~ ~ G "c ~o 
= c o n v e r g e n c e  s e q u e n c e  prove . 

Before proving the second half of the lemma for o6 we make several remarks. Suppose 

~E~ O U{~G~[Tg ~ . We define a partial function ~ as follows: ~P(~)=~ ~ ~ 

~-+~ (~)./~E bsI~P(~# The sequence of finite functions J~>~O has the following pro- 

perties: a) it is strongly computable, b) it converges to ~ , and c) ~[~),/~ ~+41~)/ 

bsIG;~) ) c bs ($~C! (~)); therefore, the function ~# is partial recursive and the domain 

of ~# , which we denote by ///s , is a recursive!y enumerable set. If ~ is a pair of 

the first or second kind, then ~f~ is finite, hence ~(~HP)= ~ Suppose ~ o  is a 
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pair of the third kind, ~= ~,~). We calculate ~ ~,~PJ. Suppose K= in (~,7-- Lf I~, 

K~-I) . We claim that ~U,~/)=~ ~j) (where {~e}e~ois the computable sequence intro- 

duced earlier). Indeed, it is obvious, in the first place, that ~D~)=~ (see ease a4) 

of the construction), and, secondly, it follows from the description of the second part of 

case b) that for ~ we have ~ ~ "-~P~)~,~i' which, in conjunction with property 03) 

of the ~ -operator, yields the equality # (~7 ~/~ ~--- ~m I~" J- 

We will now prove the second half of the lemma for ~$ . We first analyze the case where 

is a pair of the first kind, ~= (~,f) ,in(~)=g(~,~,e)=~, K= ~ (m,~). Assume that the 

function ~= ~ ~ has an infinite domain. Then it follows from the description of case 

a2) of the construction that the domain of ~ is ~ , hence~(~)=~. Let ~----U{~ 

I~ I~) -- ~... ,~,~, .... ~ )~7~/E£~(P)~ ; it is clear that set ~ is recursive- 

ly enumerable and ~ ~/~ . It follows from the definition of pairs of the first kind that 

for each ~ we have H~ bsC~(~))~ =~, hence ~CH)--~ , and it follows from the description 

of the second part of case b) of the construction that for ~E~ ~ we have ~ ' ~ ~)~; 

this, in conjunction with property 03) of the ~ -operator, yields the equality ~(~,~= 

~ )  = ~- . We claim that the function f~ is defined on the set ~, ~ ~H)~---- 

and for each ~H we have ~--~£)~. Indeed, we would otherwise have ~r~ in~,~)~, 

while our assumption "the function ~ has an infinite domain" implies, as is easily seen, 

the equality ~L in~o~,~)=~o We call a tower ~ final if there exists ~# such that 

~>~ ---+ (the tower ~ exists to step • ). Put V-- ~ \ (o { bs (~) I ~ is a final tower}) 

The set V is recursively enumerable, as is the set VN(~U~. Therefore, by 03), ~(~, 

V) = £) . It follows from the description of case a2) of the construction that ~-VO (~J {~I 

I ~  U {,~}}, and it follows from the properties of ~ and 02) and 03) that _~---- ~ (6/,H#~ 

~(L/, ~U (o~[ ~ ~'~}))-- u{~(~,H~)I ~E~ } ~ ~(~) , which contradicts the 

assumptions of Theorem I. 

We now analyze the case where ~ is a pair of the second kind, ~= COf,~), in$~)=~ = C~,e). 

Assume that the function ~= ~ ~ has an infinite domain. Then it follows from the des- 

cription of case a3) of the construction that the domain of ~ is /~ , hence ~(H'~J= ~. 

It is also easy to see that for ~f~=¢ we have ~EU+-~)E~. Now consider the function 

fg We claim that ~ is a g.r.f, and that for each ~ we have ~/7~C~) --+ ~I~)K~( 

is the previosuly fixed g.r.f, representing the morphism ~:~ --->~ ). Indeed , in the 

contrary case we have ~F~ in[~j&) ~ ~, and our assumption "the function ~ has infinite 

domain" implies that ~ in(~,~)=~ . It follows from consideration of case a3) of the con- 

struction that for each ~ we have bs i~[~))N~ ( ~  , hence the image of the p.r.f. 

fo ~ is ~ This last fact, in conjunction with the relations .~ £ ~--~ i'vE ~ " ~ 

(X) ~/~ ~t~) -- ~(~)£~ and 03), yields the inequality ~ (~)-<~m (/7~t~))~ ~(~oj , which 

contradicts the assumptions of Theorem i. 

Lemma 1 is proved. 
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and ~ - ~n~ ~ for ~f~'~O (the sequence {~)~0 Suppose ~0= [~6~ [inr (~)£~} ~ 
~ "i-'~ c ~ -~ 

converges by Lemma i). Obviously, the tower ,"I is final if and only if there exist ~£~o 
j _--_ and ~¢~ such that G (~), aA ~(:~). Recall that V = /~N (U {bs<~) I ~ is a final 

tower}) and $~-<~ - ) ~£~z" (where {_~} ~0 is our sequence from (*). For each triple 
5e~ 

i~,~,6) such that ~£~.aZ6~.a . & ~ ~ ~< in(~) we introduce the set ~:~ = 0 ~/P i there 

exists ~EN such that &~(q)l~ &~(I/) = (~,, ..,~;, 9a, .', 99")a/76~:$Z6~:(/P)~ ; for each 
a '  a ~ "  L u ' ~t" ~ 6 . j 

triple ~,~,~) such that L = i ,(~)~°~6~6~£/~'n t, we introduce the set ~ .- ~_.~ =~ :f 

the first or second kind, while if c6= i~,~) is a pair of the third kind, then 

~ , and ~. --- U[bs~))l ~>0}, if ~ . We also put 

is a pair of 

if 

LENNA 2 • The set R~ is recursively enumerable and ~(U,R~. ) = ~(U)~+l ) • 

Let~0----- [~ [ ~is a frame 86 in (~)..<Z},/(7=~EKD[ht(~)# o/~ ~. Suppose ~0 is 

such thanked0 --~ [ht(~)=ht~,~)for ~E~f]~o ~t---- ~ for pairs ~ of the second 

kind and of length -<b~ . Put ~" U {~ I there exist ~0' ~E~I fEN such that 

2) ht (~, 4.)> in ( ~  (~/)) for al l  ~ ~ ~ r" ~ } • 

We also put R~' -- U [~:'g J~0 ~ ~ in(~)] . We claim that VU ! =Vu ~z~" The first 

set is obviously contained in the second. Let us prove the reverse inclusion. Suppose 
I 

6~.xV ; and suppose ~0 '~0 ~ '~o ~ ' ~ satisfy conditions i) and 2) in the 

definition of ~- and aE~ Since ~dV , it follows that for uniquely determined ~f~ 

$~' (~I) ! ~nE bs(~/ (~)). Let ~! (~)---- '~ ~o,' ,~)" Looking ~£~ we have £+I 

at the description of the construction, it is easy to see that by virtue of the choice of ~0 

and condition 2) we have in(~0)>~ in(=~l)~ b, and if ~I~0 , then in(~o)> in~) , but if 

~8--o~ , then ~o=~ Let ~ be the element of ~. containing ~ Again by the choice 

of % and condition 2), #D~O.~ ~'~I)]~'(~) ' hence ~ I~1) . Thus, ~+/,~,~;,/~! 

satisfy conditions i) and 2) and ~ =~ Continuing this argument, we obtain in ~ steps 

a sequence (~o,~o,~),' " ')~@,~,~) such thatln(~o)>~...) inlo~)>~&and if ~+f4=~ . , then 
in(c~/÷f) < in (~i) , but if °6:~"=°Q'~ 4 then ed~'!/t±'--~" ,ad the set ~q-~)c£4,~,Se au ~ satisfies conditions 

i) and 2) and /fro =P C,,,c 8 , and so on. The sequence {~,~,~)~ ~. obviously converges; 
; e • e ~ - U  

l e t  i ts  l i m i t .   learly, l mO and  herefore, the e uality 

V R , ; - - V u  ~ S  is proved and wi~h i t  the recursive enumerahility of the set V U R ~ ,  since 

• the set V U ~ .  is obviously recursively enumerable. Suppose ~ ' 2 ~  ~ Z =  In ~ )  . : t  is 

~ H ~ H .~ easy to see that the set is either empty or equal to ( is the set introduced in 

the proof of Lemma i, where we PrOved that it is recursively enumerable). But ~-----VuR~ 

uIu{~ ~, [~~b--in(~)~, hence the set ?~ is recursively enumerable. 

We will now prove the equality ~ (~, ~ ) ~ ¢ I~, ~+f ). 
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.,., = u { ~  I ~  = 

,~s. = U { R  *c " ~ =  

~7~)/ ~ ~'~(5! = (a~,...,a/, ~o,..., ~ ) 

3 /~Z~ ---- V U ~/. U R,~/~. The recursive enumer- It is obvious thanked---- V U ~I U ~" U R;~ ~ +f z~ 

~; ~U ~f is proved in the same way as the recursive cusser- ability of the sets MU ~ 

' R~. R' ability of VuRzz was proved in the first part. Obviously, ~lJ £~ VU 2~+I ' hence, in 

, ~(4) ) Consider the partition P of the set ~ U view of 02) ~(U, VuR/~) ~ ( U , V u  ..:~,+i 
f '~iA-i " ~ =- {VNU~ u[V A (~\U)~U ~the set appearing after the symbol U in the, de- 

finition of ~%,), and the equivalence relation connected with P on Vu~z1~¢l : £Z~{~-~- 
~" there exists 6~VU ~ (~,~)£O J It is obvious that for each ~ V U ! 

such that /?,~EVu~.~I : a~'-'~ ((Z~U"~&~U . Therefore, if we can 

prove the recursive enumerability of the equivalence ~ , then, in view of 04), we would have 
! 

~ (U, Vu~,~+l I~< ~(U, ~u~2/~ ) . Let ~0 = I~ I ~is a frame ~ in (~)-.< 6+/I~ .~[~£~0 1 

ht IZ~÷~ Suppose ~0 is such that ~%-- rh~IZ,~)=ht~Y) for Z~,]~[~$=~ ~ for 

pairs ~ of the second kind and of length ~<&q';] . Consider the family of sets @ : ~ = 

{Vf] U}U {VN (~\ U)I u [Q i there exist ~% ,o~£~ ~6N such that 

2) ht(*,@) > in(~(~)) for all ZE<-/~,). 

Obviously, the family ~ is computable and Pc~ . We will prove that for each Qg~ there 

exists PeP such that ~¢P . ~f #--VIDU or ~=Vf] (N\U), then this is so. Suppose 

that for certain ~o, ~0 ~, y#6N the set ~'~0,~0, ~ satisfies the above conditions i) 

and 2). Fix ~(# and denote ~ by ~0 If GCV , then arguing as in the first part, 

we obtain a sequenee {%,,~,#~)} ~.~ ~onverging to some triple (/,~, ~), where%¢~, •... 
hence ~ C p, and for some ~>~0 the set &+~,o~#, ~, R~ satisfies conditions i) and 2), 

hence ~6~ It remains to analyze the case G£ V. 

Suppose ~>~0 is such that ~ lies in the base of some tower to step ~+~ but not to 

step~+~+/. Arguing as in the first part, we obtain a sequence (og0,~0 , G0 ) , (~I, ~i~7)~ 

• ..7(~,~) such that ~0 C ~I C ...~ ~ and the set ~÷~, ~ , ~  satisfies conditions 

i) and 2). If we now look at the description of the construction and take into account the 

choice of do and condition 2), we see easily that either ~• ~ C V N U or ~c~cV N 

(~',U) It follows from what has been proved that U[Pk/~l~6~J = UI~x~ I ~ ~ ; 

but the second set is recursively enumerable in view of the computability of the family ~ , 

hence the equivalence ~ is recursively enumerable. Thus, the inequality ~(U, VuRI#I)~ 
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(U, Vu ~fj.. ) , hence also the equality ~ [U,V u ~. ) - ~(U, VUR 14+I ) is proved. In 

a completely analogous way we can prove that ~(U,R~o+I)m~(U,R~ ) for pairs o~; ~E~ 

It is easy to see that the set ~ \~. is finite• hence, the view of 02) and 03), 

~(U,~. )~(-~,~ ) . Thus• it remains to prove the inequalities 

2 

Let ..4"~1={~f..~X'~Ol~=(~'t,~) be a pair of the third kind ~in~)=~E~}, ...~Z{~..E.~,,L.~=(6'~'~ ) . 

a pa r o v ous t at 

~2~+, [~E~,} Therefore, it suffices to prove that ~(UIR~ )~(~/,~i),o~6~I 
~ 

and ~(U,~4.1)~ ~7 (U,R~), ~6~ 2 

Suppose ~E ~ ; ~-- (a,S), in (S)--Z, ~c2&'+f, ~E~, ~ n H =~ ~; let 7 =" 

0-($, &'+f). It follows at once from the definitions that ~. I/°( (the set ~'~ == was intro- 

duced in the proof of Lemma i), hence ~(~,~. ) ---- #(U,~)--~m (~ • ) ({~e } e~oiS the 

sequence introduced earlier, and the computation of ~ (~, H "~ ) is given in the proof of 

Lemma i). Let ~= [16~+2 I ~ -~< ~+2~ ~' ~ -- ~(F' ~'+2) " It is obvious that a) /~{#2~ ' 

hence ~m (~.)-~ (~) ; b) XC~ ; c) ~f]H~& #. Consider a pair of the third kind, p = 

(~,B) , where ~ is the sequence (I{0}},.. ,,{~0}}) of length 6+{ As we have already 

noted• ~f~ p(~•A)6N , hence nr (~)6~. Therefore, ~E~2 , and in view of a) 

Suppose ~E~, ~,=(C/{,~),  ~ f]H+~, l n C ~ ) =  ~'1"/, ~ C 2~+ z , ~6~ ; let 7=/.I . 
( ~ , Z + ; )  . We decompose the element ~:1 ~+~ of the d ~ s t r i b u t i v e  l a t t i c e  P~;+~ in to  atoms: 

  ere- 

fore. i t  suffices to prove that ~,. (~,) -- ~ ~U,R=~ ) .  ~enote i ,  by ~ ~et {E'<J~+,,..., 

[Ka]~+,~ be the totality of minimal elements of the set {[~]~÷I l~2~41~ ~+~ i }" In 

view of D2), each [M&] ~I is an atom of the distributive lattice ~&'+f , and since ~;~+Z ~ , 

it follows that for some ~8 we have 6~2~+~ Denote K&0 by ~ Suppose ~={~6~+i [ 

~I~+ I~} . If ~]H ~ ~ • consider the pair ~----(~) of the third kind, where ~ is 

the sequence ([[0}~,...,Li0}~) of length & In view of our assumptions, ~ and 

~2(~/,R~.~),~O/m(~m.)>~d/m(Z~) . It remains to analyze the case A ~]H= ~ . Suppose 

~"-.-(~/'0,.~,,,~"~+i) is the uniquely determined good frame such that oC~+l'= [A) 
and let~.--[i~+ ~ I~Z ~}. Obviously, ~C~. Consider the pair ~= ~,~) of the 

third kind. The following chain of equalities is a consequence of the definitions and the 
~/~ 

first part of the proof of Lemma 2 ~ (~)=~ (U,R~N~+,)-- ~ )=" ~'({..], 

(.U,R:~) • Thus, the proof of Lemma 2 is complete. 

We will use the following notation up to the end of the proof of Theorem i: if ~6~ 

then 
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clearly, 
2. 

We define a mapping 0 : ,~ --* Y~ as follows: C/~ (~)--  ~ ( U , R ~ = ) .  

Let us verify the correctness of the definition. Suppose ~(~)=~(~). Then, in view of L0), 

for some 6 we have ~ , ~  ~ ~ # . By Lemma 2, ~(U,R:~)--~7(U,~.)~ ~(U,R~): 
~ (g,~) Therefore, it suffices to prove that ~(g,~g) : ~ ( ~  ). Since ~ ,  

! ~ . Now suppose o¢ = (~I~) is a pair or third kind, in ~)= ~ , it follows that ~ . ---- ~ . 
_ -~  , ,~ ,,, 

~ ,  ~ ¢ ~  ; ~ t  ~--- ~' (ZL ,,+~). . Also, le t  Z~-- { ~ - ~ ,  I,' ~ '~, ~ _ , ,  ~ _ ~ ,  ~'=~" (2, ~÷,'). O~vio~sly, 

/ , , '~,~,  ,q~Z~, Z T n / - / *  # . Consider the pair /3=  (Z, Z~ ) of the third kind, where Z "  
is the sequence k(t0~,,.., {{0}~) of length 6 ; it is clear that ~ lies in ~ It 

follows from all of the above that ~ (g~.)- dm(~.)= ~(~)=~ (~;). In view of the 

symmetry of the situation, the equality ~(~U, ~g ) = ~( £7,~ff~ ) is proved, hence also the 

correctness of the definition of the mapping 

LEMMA 3. The mapping C:~ ~£ is an upper semilattice homomorphism, and the diagram 

is commutative. 

We must prove that for all ~ , ~  we haveC (~ (~lf) U//I (~/)FC~.~)LI~ (~).  Fix 2,~ ; in view 

of L0) and L3), there exists 6* such that ~,y6D i and /TU(~,~,~)=/~(~)U~(~); let 

U~ ~ U(X~,~). It follows immediately from the definition of an atom of a finite dis- 

tributive lattice that ~=cu~,&" ---- ~ O ~>b. ' so it suffices to prove that! ~ (U~xu~,g ) 

~(U,R~:) u~(U,R~). We have C(/.I(~c) o/.~(~)) : ~(U,~3Co,,I.): (/7(UtR~u .~ )u ~ J ( U, 

~/~(~)uM~(y ). o 

Suppose ~ -= (~ ,Z~)  is a pair of the third kind such that l~ (~)----4 ~ ¢ r 2 0 ,  ~ I t ~  B ; 
l e t  /=~r(Z~,~ '~- t ) .  We decompose the element ~3~+~ of the d is t r ibu t ive  l a t t i c e  ~ + ,  into 

atoms: ~']~-I./ : ~'j~÷iU,,.tJ~]~+f. Obviously ~ ( U , ~  ~ . ' .~u~,l, )~ '~ / - (~ ' , ) u . . . u0~m(z~ / .  ) . Suppose 

/ 0 f-<~-<Ig . Since ~#~ ~0~ and £]~#! is an atom of ~+! , it follows that either7~ ~ 

or 7~+~ . Suppose ~--{£E~+I[7~<~+~}, and ~ is the sequence (~[0Jl,...,~{0Jl) of 

length ~ ; if ~-- ~ )  it isobvious that ~f~O If ~+f~ then ~IU,~.) ~ ' @ 

~ ,h l u R" ~m ( ~ , )  ' and if j , ~  ~+t~ , then ~ (g, ) = ~ / ~  ( ~ . )  Consequently, ~r, , mU~,~ ) ~  
,~. 2. 2 '  • ,~, ~(U,~..~)o ~ (U,~.~ ) , hence ~(U,/~#gu~l,~)~ ~ (U,R~ )u ~ (U,R;~). The inequalities. 

=ug,~ ) 
can be proved in a completely analogous fashion. Thus, the first part of the lemma is proved. 

We will now prove that C°~=~ . 
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Let fbe the g.r.f, fixed earlier such that~f~)--~O(~)(recall that the H in condi- 

tion (**) is ~/} ). It suffices to show that 8~{~)--~{~) or, taking into account the 

equality ~I~)~-~f(~) , that ~f~=:)= ~) . Fix ~ and denote ~(~)by ~ ; suppose 

~.~ Then ~.l[~)=~(U~ ) It is easy to see that ~ • ~ = ~ (the notation was in- 

troduced before the statement of Lemma 3), since our frames satisfy condition (**). We will 

now prove that ~Iff, ff~)=~(~). Suppose ~--I~e~+~l ~-<~+IX) ~ 7--&r[~, ~/) , and o~ 

is the sequence ([{0]~ ,, ~O)~) of length ~ let ~=~ ~'). Obviously, ~ PO '7 ~+, 

and ~ (U,~)=~m (~ .) ---~0[~) (see the definition of ~8~O ), hence ~'d(~)~¢(U,~ ). 

Suppose 0£= (~,~) is a pair of the third kind such that in(~) = 6 '~' ~ O '  and let 

~[~,~'+1).. Then ~(U,<~)=~ (~)~(~S)-- ~Y[~)  . Therefore, ~ , ~  )= ~OI~) 
and the equality ~o~--~ is proved. 

LEMMA 4. The mapping 8 : ~--~ ~ ~ is one-to-one. 

We will first prove that ~[~)~g~[~) ~ ~ ~Z).<~). The right to left implication 

holds by virtue of Lemma 3. Let us verify the left to right implication. We have ~m (/7~(~))= 

~[~)-~I~)=~(~,~) . Therefore, by 03), there exists a g.r.f. ~ such that ~(~}r-A~ 

and ¢z~i~) ~ ~ ft f~)E~. Let b= g(/~,~). It follows from the definition of the indicator for 

natural numbers and our assumptions that in (~,&) = ~ . Let ~= (U ~£~o ~ 

~ In (o£)~)UIO[~ ~ l~0~& in(~ = ~J). We claim that I~(~f~))~uV • 

Assume the contrary and let = be the first element of the set ~\~) for which ~=~) 

does not lie in ~O~ . Since ~¢~ , there exists a final tower ~ such that ~ bs(~) 

(bs ( ~ n U  = ¢ ) ; since I ~ _ R ~ \ ~  , we have in(~)>~. 
struction is immediate; if a tower ~ exists to step ~ , 

and bs ( £ ) n  ball)#/, then in ~]~ In(~). Now suppose 

in~,~) = ~q-/ Let us see what must be done as step 

The following property of the con- 

a tower ~ exists to step ~+# , 

is such that in[~)= 

of the construction. First 

of all, it is Obvious that • is even, and at step ~. our procedure yields the number b and 

we have satisfied part a3) of the construction. Secondly (since in in(~&)@ in~,~+l)), 

~[~)I,~--~C~Uj. and there exists to step • a tower ~ such that ~ bs~) . This 

tower ~ must also possess the following propertieslni~# >InI~)>b and bsI~)f] ~ ---- ¢. 

Consequently. at step ~. we must satisfy the second part of a3), from which follows the in- 

equality in (~)~ ; but this contradicts our assumptions. Thus, the inclusion ~ (~,~(~)) 

C~O ~ is proved. This inclusion easily implies the inequality ~Rt ~/~f~)~ ¢[~.U~) 

~ (U~) We will now Compute ~(U~R). Suppose ~o,~- < ln~)=7~. If ~ is a 

pair of the first or second kind, then the set ~ is finite and ¢ I ~ ) =  ~ so suppose 

~-~[~'~) is a pair of the third kind, ~ I~o,..., ~')~7 ---- ~3" ~ - I f  ~ thence= ¢• 

Suppose ~ ~ ~ , ~--~ ~r(~,i+f),. We have ~'.7~ ~ (hence, ~+f~),]Z~)~(~°~ (since 

~fIH* ~ ), ~ I~,~)---~f~) s ~ - ~ [ ~  (the latter equality is proved by means 

of computations analogous to those of Lemma 3), and therefore ~ [~,~)----- 9U~). In s 

similar way we can compute ~(~,~ ) for ~ o  and in (~)-----~. Finally, there exists 

~E~÷f such that ~--~+I~' ~(U'R)'= ~)" and ~(~)~.(~o) We have C~V(~)----~(~) 

~ ~ (U,/~)=¢/~ (~)andF[~]~/~]; but the restriction of C to ~[~o~ is an isomorphic em- 

bedding, hence ~I~)~<>(~) and ~{~)~[~ , as required• 
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We will also need a property of distributive semilattices. The concept of distributive 

semilattice and the following lemma are due to Ershov [15] (in that paper he proved the 

equivalence of the concept of a distributive lattice and the concept of a semilattice satisfy- 

ing the "closure condition," which had been introduced earlier by Lachlan [i0]). A semilattice 

~-=<d~,U> is called distributive if for ~C,~,y e ~ it follows from ~<~UZ that there exist 

~t-<~,Zt-<Z such that X=~TtJZ ~ . 

LEMMA (Ershov [15]). Suppose ~=<~,U> is a distributive semilattice and A C ~ is 

a (nonempty) ideal. Suppose m~-~(rrL0~ A) ~ (there exists ~£A such that ~U£,=fO~), ~g/A 
is the class of the element ~ relative to the equivalence relation ~ ~> (IR0~A), ~= 

{~ l~e£),~=~EfI~), and Z (~) is the totality of ideals of ~ Then the mapping 

of ~ into ~/~}xT{~) that sends ~ into(~/~, ~fl~)is multivalent. 

We have the following easily verifiable implication: ( ~& is a Lachlan semilattice) 

----~(d~is a distributive semilattice). Therefore, our semilattice ~ is distributive. We 

now turn to the proof of Lemma 4. 

Assume that ~ (~) ~(~), but 0~{~)--0/4~. We will show that there exist X,~ /~ such 

that /i(X)~/i(~/), Cp[~)-~/~¢(~) and ~-<x~ , where K=~(X,~). Suppose f~= q¢/~(~'~} , and 

denote gg(~,f, nz,~ by ~ Then C / t 4 . ( ' ~ . ) - - - - - C / J [ ~ ) = . C / l ( ~ ) ,  and either y('~)#/LL(,~) or /Z(f)~/7(~). 
Suppose, for definiteness, that ~(~/If~); obviously, we then have ~0 • Since the enumera- 

tion 0: ~onto~¢ is a cylinder, we may assume that for all 7~Z such that gEDj ~ %~0 

the set {~i I ~g ~J/o ~ } contains at least /+[ elements. Suppose / = ~LL~(~,~,/R) , and 

 cZj is such that .< It is clear that s tisfy our conditions Fix 

a triple ~,K E ~ such that~ {¢)~f (~), C~ (¢}= C~I~),K=~p(:t, 9),~.<~ K~ We have 

C/LL(:C)= ~(U,~c) , c~(~) = ~ (U,~K), hence, in view of 03), there exists a p.r.f. 

f8 such that the domain of f~ is equal to ~,~ {~x)c~¢~, %E~#x "-~ (~ 6 U ~ " ~ (%) 

~ . If b--- C(~/,£), then X-<b and ~g~ (here C is the previously fixed g.r.f, effect- 

ingaone-to-one correspondence ~-~). Let [KI]~,.0,, [K#]~ be all atoms of the finite 

distributive lattice ~ lying under [0C]~ and let ~t]~,..,, [Kar]~, (~r) be all atoms 

of ~ lying under ~]~ We claim that there exists ~, fl<p~< ~J- such that {~ E.~ ]Kto 

~jO/~= ~. Indeed, otherwise we would have /i(/¢~+f~,,.~/d(K~.)~,I~; if ~--~(~+~)O.,. 
U~(/(~)6 ~(~) , then >(~g}U~=>(~)Og, i.e., /i(~)/ff,(,~°)--/i(~)/O-,(Y~) ; on the other 
hand, from the first part of the proof of Lemma 4 we obtain the chain of equalities 

i.e., ~(~) ~-(i --/Z (~) ~ (~) ; by Ershov's lemma, /i[~)=/i[~) , which contradicts our 
assumptions. Consequently, the desired p exists. If ~ = ~E~ [K~<~ )~) , then 

F A,  ¢ ,AnH -- # Suppose is the good frame determined 

by the atom ~ , and ~--(g~) is a pair of the first kind with first component equal to ~ . 

It follows from our assumptions concerning ~,f~8 that ~ in (~,~)--~ , and from part a2) 

of the construction that ~---- £ ~ ~  has infinite domain, which contradicts Lemma i. 
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LEMMA 5. The image C i~) of the mapping C:~'-"~,~ ' , is an ideal of the semilattice 

We begin with two preliminary remarks. First, suppose ~ is a frame, ~----in(C~) , and for 

each /~>~ there exist a final tower ~---- (AOt,.,,l~Ki ~0, °°" ~9 ) and a subset pcN such 

that K>- i , bs (~nU=#, P6./~,~= fr(~,~,P), and pt-lr/~ ~. Then bs(~L) ~c.o. 

Secondly, suppose ~ is a frame, ~----InIO~) , bsIO~)----c~o ,~==(~0,...,~K, ~,...,~) is a final 

tower of length ~; bs(A)nU = ~ , and suppose PE~ and fr(~,~)~-~. Then 

P~i +#" The proof of these two assertions is easy and is omitted. 

In view of property 01) of the : -operator, it suffices to prove that for each b there 

exists ~ such that C/~(~#= :(U,/7~). Fix b . Suppose A/,~..,/~8 are all atoms of ~' 
that do not meet H 11"1/"/= -----/len/-/=d), ~ , .  , are the good frames determined by 

these atoms. Consider those atoms ~p, such that for each 7 ~ there exist a final tower 

~----(AO .... ,~K~ ~O,*"'~) and a subset pc~ such that /(>~] ,Pe~,C~ P= fr(~,~, P ) ,  
and P fl/-'/~ ~. ~ . We may assume without loss of generality that A, ,...,A//_. r (/./]~ e.) are 

precisely those atoms satisfying this condition. Suppose Kf =LfI~I,~#~,o,~ Ku:-----b~(A r~), 
and ~ is such that [~]~=~KI]~ U...U~Ku~]~. We have ht (~0 = o** -- ht~r~=~o (the 

"first remark"), and if ~&~ , then there exists ~, /~<p~uJ-, such that ~ ~ ~p, hence 

~ ~P ; therefore, 

(***) if the final tower I~=(Ao~,o.~/~,~...~K) and subset P~ satisfy the conditions 

/< ~ ~ , P e/~f, ~ e ~. (p). and bs (~ ] n U--- ~, then P n/7~. # ~ (the "second remark"). 

On the other hand, there exists ~0~ ~ such that if the final tower ~---- 0,0.,,~, 

~O,''''~x) and subset P ~  satisfy the conditions K>~7o , P£A~ , ~ (P)= A~ , where 
~<~ ~, bs(~)~U=~, then p ~  --- # . 

Suppose ~= O {bs "~ . _~ . . " ~' (~ (~/)~logF- 0,~ ln(e~) ~ :o ~ ( ~ )  /] Then /~ c ~ U ~ U U  and 
#(~,g)e ~(Z °) (the notation ~ ; ~ , ~  was introduced before the statement of Lemma 3, 

and ) .  w i l l  pro e t h a t  h e n c e  
l ~ ( U , ~ g )  , and also that ¢ ( U , / 7 ~ f ~ . ) =  ~ ( U , ~ ) .  suppose cc=(£/f,~) is a pair of 

the third kind, ~= ln( ,~) .£~fl  , and suppose 7 = ~f/~, ~'4/), ~ ' ]  .+/---- [~t]~.~qU~..U ~d]~+t 
i s  a d e c o m p o s i t i o n  o f  t h e  e l e m e n t  o f  f i n i t e  d i s t r i b u t i v e  l a t t i c e  i n t o  t h e  

atoms. We have 

Fix _P,/~P~ ; since -.5"D] '-*+¢ is an atom of ~,', ,+_ it follows that for some --~ , /~U2,_ o 

we have/p~;~+/K ~ . Let ~----(~D~/ []~;~+1%~,~---- [~3 ). Then ~£~ O and ~(U,R~P') "= 
~'=C I I • ! 

~m(f~/f), hence ~(U,~)~[L/,R~# and :(U,R~)~: (U,~.~) . Now conslder the 

partition of the set R~ :~----~. OU~u ~V~(N,U)}o (( P ] there exist ~E~ O and 

~E]~ such that C7""(~)/ 8l., ~=¢($l)=- (Ao~.., ,~K,~Oi,,.,(pK)Sb K>~ ~, ~, PF-4~f~..~E ~0~, (P) & 
bs(~)fIU=~) and the equivalence relation connected with ~ on ~Z : =~-~(~,~).~U[P 
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~P IPcP}.. The recursive enumerability of the equivalence ~ can be proved by the methods 

of eemma 2; we also have LZ~ #--~ (L~ ~ U ~ ~ ~ ~ ) . In condition (***) it is actually 

asserted that for each ~ ~f. there exists ~ ~ f] ~" ) U ~ such that ~ ~ hence, ac- gC~ 
cording to 04), 

f f # (U,/7~; r1,~.) :- # (U, (~ nR~)u V)=# (U,R~). 
since ¢ (U,*)~ ~ (X°) , for some ~ we have &~{~)= ¢(U,n z f~). We now have the chain 

of equalities 

:~(U,R' 
which proves Lemma 5. 

LEMMA 6. 

each £ ~ 

Fix ~ 

the notation 
v~ 
ht(A)= ~Z #t 

ordering Of $ (~0 

), 

There exists a general recursive function ~ such that C/~(~)  = ~ (~ )  for 

Suppose K 0 -- {~ I ~ is a frame ~ ln(Z)-<~],<={.~eK0 I ht 
~0 ) is the totality of subsets of K0 For /~$(~0) we introduce 

V 
ht(~, ~)-- a:{ ht(~,~)l~eA ~, ht(~,~)----~L~[ ht(~,~) 1 I~ ~ ~ ~'; and 

(/I, ht  v ht (A,~.,I.,.') Let A,,,..o,I~ K be some linear 

) . For 6, ~ ~/(, put ~ = VU(U {Pl there exist ~< ~t (Ko'~A~) , 

such that~ ~ (~)/ ~¢ (~)----(~0,,.o,~j,~0,,..,~o )~ [~: <ht (Ko\A~,~)~ 

(m)v ~ = (~, ~) is a pair of the third kind ~/= ~ ~ P= bs (&;(>)) 

{~ER~,  I ~ <  ht, CA~ ) }  O U ; also, put 

3 x 

= ~ ~ ...)~ U~, 

where, as usual, Ao~--{2~ [xeA ~u{2x#/l~c~} ; obviously, ~(Ux,R~)= u{~ (U~,R~Z z )I 
f~<6 ~</~ . We will prove that ~ (U,~) = ~(U~,~). Suppose A~ ~4" Then either 
A " v . V i ~ ~ i 
ht ( oK \A °£ v ) # ~ or ht { 6)A~" -- c~. If ht{~,g )--co, then obviousl, y~ C U~ ,* hence ~':c'Rz~" 

= O; if htIA.)~ ~ , thenht(~0\~')---c~o , and the sets ~\ V , U~\ U are finite, which 
Z i A ~ ~o v implies that ¢(~:,~)'~0 • Now suppose A~-- ~! . Then ht(K 0 A~)= ,ht(Ab,)~ " o~ hence 

~ c- ~and the set U~ \ U is finite. It is easy to see that the set ~ \~£~ 

is also finite. Consequently, :(U~,R~)=:(U,~;c~) , hence#IUx,R:e)=~(U,R:ez)=c/u(~). 
In view of the uniform effectiveness of the construction and the fact that the enumeration 

{~ }6>.0 is principal, there exists a g.r.f. ~ such that for each X~ we have C~(~) = 

Thus, Theorem i is proved for the enumerated semilattice ~e Note that we have 

proved more than was required. Indeed, let ~ be the composite mapping ~8 c~ c ~qc. 

Then ~ K , ~,L~--~, and ~r~ :~ . We will use Theorem 1 in this strengthened form. Let 

us now indicate the changes that must be made in the proof of Theorem i for the semilattices 
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a~,, ~($)~ . The changes for ~ : in the definition of the indicator for natural 

numbers we must consider ~) ~ A , where ~--d m ~) , and in the proof of Lemma 5 we must 

assume that~ ~ ( ~ )  o The changes for ~(~n)~ are as follows• First note that the 

set of computable enumerations of is in a natural one-to-one correspondence with 

the set of sequences (~,..o,~) of pairwise disjoint,-recursively enumerable sets such that 

~ ~ # and ]~\lUlU,..U U~)~f~ , namely, 

f : :  el-'. f- ,  ({ 
(u, instead of U we must construct the sequence ~,e.~ ). Before step 0 we regard the 

numbers O,f, o e.~ fg as used, and transfer 1 into ~! ,, .. , and fg into ~ Instead of the 

creative set ~ we must use a sequence (g~/,o,0j~) such that the corresponding computable 
o n t o  

enumeration / :  l i e s  in the l arge s t  element of ) .  O h - - Z ,  the other changes 

are obvious. We give only the d e f i n i t i o n  of the ~ -operator  for ~ ( S ~ )  Suppose f ' ~ ° n t ° ' ¢  

i s  a computable enumeration and A c ]~ is  a r ecu r s ive ly  enumerable se t .  I f  A ~ ~ ,  then 

#If, A) = 0. Suppose A # 4  and ~ is a general  recurs ive  funct ion such tha t  ~ N ) =  A .  

The proof of Theorem ]' is analogous to that of Theorem i, but in the definition of the 

indicator for natural numbers we must take as ~ a g.r.f, representing the morphism ~ : / .~ 

We will now prove Theorem 2. Again, in order to avoid cumbersome notation that obscures 

the sssence of the matter we analyze only the case ~==<q £ The changes for ~ ,~(~)~ 

will be given later. 

£ 
THEOREM 2. Suppose ~,' I ~ ~; is a morphism of enumerated sets such that 7¢~ (~I • 
- - - -  f ! 

Then there exist an L-semilattice ~7 , a morphism of enumerated sets 8:1-'--~6, and a f - 

• ~__ .  e I .  z ¢ c ( ~ ' )  . morphism C o~6e'~ , ~ .  such that g g ( and 

Proof. Let #={f I F is a p.r.f. ~ V~,fE~ (~-~>~ /(~)/ > fC=)/)} and suppose 

[ ~. ~° = is a ~rincipal enumeration of 4; let ~ be a general recursive function represent- 
/ g  j ~ O  v - - - £ _ ~ - t  - 

ing the morphism = . P u t  Ao=lT_to~,A~+,=A~efl~a+o; B~=fi (A.), where fg=G(6,/) • 

Clearly, {~#}~.~O is a computable sequence of r.e. sets and ~={~ ~)]/~O} is the 

smallest ideal of ~£ containing ~ (~) . Since the largest element of ~g is indecomposable, 

~rCA We equip the semilattice A with the enumeration ~: ~[6)"~ (~) . In view of 

the computability of [4~O • the natural embedding Agc ~: is a ~ -morphism and, since 

[~ J~O ,is principal ~ :f--~A~ is a morphism of enumerated sets• By a theorem of 

Lachlan [12], ~, equipped with the enumeration /~ ,~ (~)m ~ (~,/7~), where ~ is a crea- 

tive set, is an L-semilattice. But the enumeration ~ is equivalent to the enumeration 

and, since ~2" is complete, is isomorphic to it, i.e., for some recursive permutation ~ we 

have q~---~P (see [2, p. 201])• Thus, ~: is an L-semilattice. By Theorem i, 

there exists a K -morphism C:~: , ~; s u c h  that I) T¢~ (~ ~) and 2) the composite 

mapping A~ ~ ~ ~---~.~ ~ ~ ;  . ~ is an embedding ~ ~ ~ . Taking in the role of ~ff~ and 

the composite mapping / ~A~ ~ ~ in the role'of ( , we obtain eve~r~ything we need• 
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Remarks for ~2~'~, , . ,  Z($a)~: the indecomposability of the largest element of ~7-.. ~Sn} 
follows from the theorem of Ershov [9] on the indecomposability of precomplet e enumerations 

representing the largest element of ~ ($n) (see [2, p. 210]); that ,,~;;,~{~)~ are L-semi- 

lattice was proved in [14]. 

3. Some Corollaries 

We now deduce several corollaries of our theorems. 

COROLLARY i. The Ershov--Lavrov Theorem [13] (see p. 4). 

We first prove an auxiliary assertion. Suppose ~F is an enumerated semilattice and 

the semilattice ~ is obtained from ~ by extremely adjoining a largest element. Assume 

there exists a Z-morphism~ :~ - ~--~ of the enumerated semilattice ~ into the L- 

semilattice We claim that there then exists an enumeration ~:~ onto~ of the semi- 
- 

lattice ~ such that is an L-semilattice and the natural embedding ~C~ O is a ~ - 

morphism. Suppose F is a general recursive function representing the morphism £Z , i.e., 

~X£~ (6Z ~I~)='~f[~)) , and suppose ~/_~O,~O>C%/.~f,~l>C... is a Sequence of preordered sets 

satisfying conditions LI)-L5) in the definition of an L-semilattice and such that ~{~}~;~ (~) 

--~£~(~D~) and {f(O) .... ~(&')~ C~Z.. Finally, let ~={~(0) ..... ,f(&)}. ~&)'=U~Ag't~)t 

/3&' -----{0-(~(~),~)I ~E~}, /_76 ' -~ {~I~ = OV/~<$~U {X-/)6~j.~7~<~ } , where L4&r 
• , V  t~2 

are the general recursive functions in L4), We introduce preorders on ~ : ~-.<~ O, I(0~<~ (~4-{)) 

and(X+/)~L I~') =-- Z~; ~. We also define general recursive functions ~, ~ : ~,0,~} ~- 

0, $Iz+1,y+4 ) =  (u ay, z, 
& • . 

"~{ ~/~ 4-/, 6 = ~s ) ~-O-(6e(~'~ '&)'~ ) )(Z ,6" 4-/.~ .~It is easy to see that the sequence 

<~.J~,~0 > c</_/~,~<l>c,., anlthe g.r.f. ~Z~T satisfy_ LI)-L5). Let ~-~ Q[~ ' ~>~01 ; 

we introduce an enumeration 8 of the semilattice ~ : the domain of ~ is~ and 

~(0)=~. , . ~ ( ~ + { ) = ~ )  . It follows from the above that the enumerated semilattice ~- 

is an L-semilattice (except that the domain of 0 is the recursively enumerable set A , 

and not all of ~ ) and the g.r.f. ~ ~-~ ~F(~{~),~{~), ~ ) represents the natural embedding 
-- --. 

~ C~@ . Passage from 8 to an enumeration ~ with domain ~ is obvious. We now begin 

the proof proper of the Ershov--Lavrov theorem. Suppose ~ C~ ~, A~ ~ is a computable ideal, 

and ~c-~ ~ is a computable family of [Tg-degree such that A~---/, lea u ~ Since A 

and ~ are computable, there exist enumerations V:Nonto A ,~.~onto~ U~ such that the 

natural embedding ~oc(Au~ , (Au~)~ c ~¢z are morphism of enumerated sets. Suppose the 

semilattice ~ is obtained from the semilattice ~ by externally adjoining a largest ele- 

merit, and ~ is an enumeration of ~ for which is an L-semilattice and the natural 

embedding A~C~ is a ~-morphism. Let ~ be the smallest ideal of ~e containing 

Au~ . Then I~ and there exists an enumeration ~' N°n-~t°~ for which the natural embedding 

I ~U~)~ c ~/x, ~/x ~ ~ are morphisms of enumerated sets. We collect the objects and 

morphisms in a single diagram: 

Av 7" @ 
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where //,~f~ ~,~ are natural embeddings. By Theorem i', there exists £e~ making the 

diagram commutative and such that ~(Y) f] ~ = ~ . By considering ~ (ff~) we obtain every- 

thing we need. 

COROLLARY 2. V'yugin's Theorem (see [14]). 

Suppose ~.~¢, ~ -  , and ~/~ is an L-semilattice. By a theorem of Lachlan [12], 
OntO~ 

there exists an enumeration ~: ~ ~ turning Z O. into an L-semilattice (~0 )~  and such 

that the natural embedding (~a)~ ~ ~ is a K-morphism. Assuming that the sets ~ and 

.~ are disjoint, we define an order ~< on the set ~=~O~ as follows: each element of 

is larger than any element of ~ ~ ~  ~ ~ ~;~ , the restriction of ~ to ~ 

is the original order on ~ , and the restriction of ~ to ~ is the original order on 

We also define an enumeration ~: ~(~70~)----- ~ , ~{~+l)=-/.l[~). Obviously, ~ is 

an L-semilattice and the natural embedding [~}~ C .-~ is a ~-morphism. By Theorem i, 

there exists ~£~ making the diagram 

commutative, where p, ~ are natural embeddings. By considering C~), we obtain every- 

thing we need. 

COROLLARY 3. We have the isomorphisms £~----~'~ ~ ~ (S~) • 

Proof. Suppose ~ is an enumerated semilattice. The expression " J~$ satisfies 

Theorem 1 (Theorem~.2~" has the following meaning: "the theorem obtained by replacing ~i0 

by ~4~" in the statement of Theorem I (Theorem 2)is valid." Suppose ~/ ~ , are non- 

trivial (i.e. £f, ~z • are not singletons) enumerated semilattices with largest and smallest 

elements satisfying Theorems 1 and 2. We will prove that ~/~'~ ,~2 ---- . In order to avoid 

multilevel notation, some enumerated semilattices will be denoted by Gothic letters (with 

indices) without property distinguishing the semilattice and the enumeration. Let ~o,~I,... 

be an enumeration, possibly with repetitions, of all elements of ~ i different from ~t , 

and let ~0' ~ .... be an enumeration, possibly with repetitions, of all elements of ~ 

different from ~ We will construct a sequence of L-semilattices ~0,~ °'' and ~- 

morphisms ~ "L:~.-"~L::~,+l j , ~4~ , ' " , , ~ j  f ~ : .~  ~ ~ o~ such that ~= ~+re~ , ~ - - - - ~ + l e ~  t " 
. f - ~  ( ~ )  t -~¢f~ (~)J  ~jCf~gjC, f (g~'Zl¢+t), ~K÷~}(~'2(~+O) • Suppose ~ is  a one-  

element  enumerated s e m i l a t t i c e  and ~o,~o a re  the  un ique ly  de f ined  ~ -morph i sms  ~ o  : 0 - -0 '  

~e : "~0 ---> ~ Assume that to step f/*-*?K we have constructed ~/~, ~, ~g , ~ *;fg, and 

~ . ,j ,=~ , satisfying the induction assumption. Suppose ~ is ~ . Let ~"f~ (~) O 

Cl~, ~ (O)=~j¢, ~ (~.+[) =~ ~) • Consider the enumerated set ~= <J~, ~: ~ onto_~> 

Obviously, the natural embedding ~ ~q is a morphism of enumerated sets and ~--~. By 

Theorem 2, there exists an L-semilattice ~#1 , a morphism of enumerated sets a:/--~+! 

and a K-morphism ~n+ :~+g--~ f such that fi~+to~ is an embedding ~ C£ ~ and ff~n+1 
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(~,/) . Let f~ be the composite mapping ~-~--~ / -~+$~+/. It is easy to see that 

is in fact a K-morphism. Applying Theorem i, we obtain a K-morphism ~n~ :~÷i --~ 

~; such that ~ ~n+f (~a+!) and ~ = ~41 ° fn At an odd step ~=~K+/ we proceed 

analogously and include ~ in the image of ~+/ We now define ~:~f---~ . Suppose 

; if ~=~¢ , then e(~) =~g , but if ~=ag , then # ~ ) = ~  (~ (~)). In 

view of our construction, e is an isomorphic embedding of the semilattice ~f onto the semi- 

lattice ~ Thus, Corollary 3 is proved. 
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