STRUCTURE OF THE UPPER SEMILATTICE OF RECURSIVELY ENUMERABLE m -DEGREES AND RELATED QUESTIONS. I

S. D. Denisov UDC 517:11,518:5

In the first part of this paper we consider the following upper semilattices; the semilattice L^e of recursively enumerable m -degrees, the semilattice $d^e=\{6\epsilon L^e\mid a\leq b\}$, where aeL^e and a is not equal to the largest element of L^e , and the semilattices $\mathscr{L}(\delta_n)$ of computable enumerations of the classes $\delta_n = {\phi, \{\iota\}, ..., \{\iota\}}$, where $n-1, 2, ...$ We prove (Theorem 1) that it is possible to provide the semilattice \mathscr{L}^{ℓ} ($_{a} \mathscr{L}$, $\mathscr{L}(\mathscr{S}_{a})$) with an enumeration π (ζ , ζ respectively) such that in a suitable category of enumerated semilattices $\mathscr{L}_{\mathscr{F}}$ $\left(\mathscr{L}_{\mathscr{F}},\mathscr{L}(\mathscr{S}_{n})_{\mathscr{F}}\right)$ possesses the "morphism extension property." Theorem 1 and Theorem 2, which asserts, roughly speaking, the isolation of the largest element of $\mathscr{L}_{\mathscr{R}}^e({}_{\alpha}\mathscr{L}_{\mathscr{L}}, \mathscr{L}(\mathscr{S}_n)_{\mathscr{F}})$, characterize the semilattice \mathscr{L}^{θ} ($_{\alpha}$ \mathscr{L} , \mathscr{L} (\mathscr{S}_{n})) uniquely to within isomorphism. It follows, in particular, that the above-mentioned semilattices are isomorphic: $\chi^2 \simeq \chi \ll (\delta_n)$. It had been conjectured that these semilattices are isomorphic.

In the second part of this paper ("Structure ... II") we investigate by the methods of this first part the semilattice $\mathscr{L}^d = \{d_{m}(A) \mid A \in \Delta_g^o \}$ and the semilattices of computable enumerations $\mathscr{L}(\mathcal{S})$, where $\mathcal S$ is a computable family of general recursive functions containing exactly one limit point and is such that the semilattice $\mathscr{L}(\mathfrak{F})$, where $\widetilde{\mathfrak{S}}$ is the set of isolated points of \int , is a one-element set. We will prove that $\overline{\mathscr{L}}\mathscr{L}\mathscr{L}(\overline{\mathscr{S}}) \simeq \mathscr{L}^e$, where $\widetilde{\mathscr{L}}^{d}$ (respectively $\widetilde{\mathscr{L}}(\widetilde{S})$) is obtained from the semilattice $~\mathscr{L}^{d}$ (respectively $\mathscr{L}(\widetilde{S})$) by externally adjoining a largest element. We begin a more detailed exposition.

1. Preliminary Facts

As a working definition we adopt the following definition of π -reducibility. Suppose $A.B \subset N$; we say that the set A is m -reducible to the set $B.A \leq_m B$, if either A is recursive or there exists a general recursive function f such that $\forall x \in \mathcal{N}$ $(x \in A \leftrightarrow f(x) \in B)$. The relation \leq_m is obviously a preorder on the set of all subsets of N ; we denote by \sim_m the corresponding equivalence relation: $A\sim_m B\leftrightharpoons A\leqslant_m B$ & $B\leqslant_m A$. The equivalence class of the set Λ relative to \sim_m is denoted by $d'_m(\Lambda)$ and is called the m -degree of \hat{A} ; an \hat{m} -degree containing a recursively enumerable set is called recursively enumerable. The relation \leq_m induces an order on the set of m -degrees, and this ordered set is an upper semilattice, i.e., any two elements have a least upper bound. In the sequel, instead of "upper semilattice" we will simply write "semilattice." We denote the semilattice of π -degree by \mathscr{L}^m , and the set of recursively enumerable π -degrees by \mathscr{L}^e .

Translated from Algebra i Logika, Vol. 17, No. 6, pp. 643-683, November-December, 1978. Original article submitted August 30, 1978.

Let us establish some conventions. We will denote a semilattice and its underlying set by the same letter, and the operation of taking the least upper bound by \cup ; thus, $a \le b \leftrightarrow$ $a\cup b=$ b . Suppose $2 = \langle 2, \cup \rangle$ is a semilattice. The smallest element of 2 (if it exists) will be denoted by \bm{o} , and the largest (if it exists) by \bm{I} ; sometimes these elements will be denoted more explicitly: o_{x} , I_{x} . A subset $A\subset\mathcal{L}$ is called an ideal of the semilattice L if for all $a, b \in \mathcal{L}$ we have the relations $a, b \in A \rightarrow a \cup b \in A$, $a \in A \otimes a \rightarrow b \in A$. For recursively enumerable π -degrees we will use the following abbrevations. If $a, \beta \in \mathcal{L}^e$, then

$$
a\mathcal{L}_{\delta} = \{c \in \mathcal{L}^e \mid a \le c \le \delta\}, \quad \mathcal{L}_{\delta} = \{c \in \mathcal{L}^e \mid c \le \delta\},
$$

$$
a\mathcal{L} = \{c \in \mathcal{L}^e \mid a \le c\}.
$$

It is easy to see that \mathscr{L}^ℓ is an ideal of the semilattice \mathscr{L}''' and that $d_m^-(\phi)$ is the smallest element of $\boldsymbol{\mathcal{Z}}$ and $\boldsymbol{\mathcal{Z}}$. It follows from the computability of the family of all recursively enumerable subsets of $~\cal N~$ that the semilattice $~\cal L~^{\cal E}~$ possesses a largest element. We will also consider the semilattices ${}_{a}\mathcal{L}=\{b\in\mathcal{L}^{\ell}~|~a\leq b\}$, where $a\in\mathcal{L}^{\ell}$ and a is not equal to the largest element of \mathscr{L}^e , and the semilattices of computable enumerations $\mathscr{L}({S_n})$, where $\{\emptyset, \bigin \{\emptyset, \{1\}, \ldots, \{n\}\}\}$ and $\emptyset = \{\emptyset, \ldots\}$. Suppose \emptyset is a computable family of recursively enumerable sets and $\mathscr{L}(S)$ is the semilattice of computable enumerations of S (see [1]); by analogy with m -degrees, the element of $\mathscr{L}(\mathcal{S})$ defined by a computable enumeration $f:\mathcal{N} \stackrel{\text{onto}}{\longrightarrow} \mathcal{S}$ will be denoted by $d_m(f)$. It can be shown that the semilattice $\mathscr{L}(\mathcal{S}_n$) possesses largest and smallest elements (see [1]) and that the semilattice \mathscr{L}^{ℓ} is (naturally) isomorphic to the semilattice $\mathscr{L}(\mathcal{S},\mathcal{V})$.

The concept of m -reducibility was introduced by Post $[4]$. In that same paper he introduced the concept of a creative set; it turns out (Myhill [5]) that $d_m(A) = I_{\varphi}e$ if and only if \overline{A} is a creative set. Yany (see [3]) observed that the \overline{m} -degree of a so-called maximal set M is minimal, i.e., satisfies the condition $d_m (M) \neq 0$ & $\forall \theta \in \mathcal{L}^e$ ($\boldsymbol{o} \le \theta \le$ $\alpha_{m}(\mathcal{M})\rightarrow b=0$ V $b=d_{m}(\mathcal{M})$). Lachlan [6] proved that the largest element of \mathcal{X} is indecomposable, i.e., $a\cup b=1\longrightarrow a=1\cup b=1$. Ershov [7] showed that

1) \mathcal{L}^{ℓ} contains infinitely many minimal elements;

- 2) there exist elements $(\neq 0)$ under which there are no minimal ones;
- 3) \mathscr{L}^{ℓ} is not a lattice;
- 4) the elementary theory of the semilattice \mathcal{L}^e is undecidable.

It is proved in [8] that for any $a \in \mathcal{L}^e \setminus \{0, I\}$ there exists $\int_{\mathcal{L}} e^e$ such that $a \neq b$ & $b \neq a$, and that for any $a \in \mathcal{L}^e$ we have $a \prec I \longrightarrow \exists b \in \mathcal{L}^e$ $(a \prec b \prec I)$. It is proved in [11] that for any $\mathscr{Q}\in \mathscr{L}^e$ we have

$$
a \leq F \longrightarrow \exists b \in \mathscr{L}^e (a < b \& \forall c \in \mathscr{L}^e (c \leq b \rightarrow c \leq a \vee c = b)).
$$

Lachlan's paper [12] was a significant advance in the study of $\boldsymbol{\mathcal{Z}}^{e}$, namely Lachlan proved that if \mathcal{L}_{g} is an L-semilattice (denoted by $\mathcal{L}_{g} : \mathcal{L} = \langle \mathcal{L}, \cup \rangle$, where L is a semilattice and θ is an enumeration of ${\mathcal L}$; the definition of a Lachlan semilattice (L-semilattice) is given below), then there exists $\alpha \in \mathcal{L}^e$ such that the semilattice \mathcal{L}_a $\{ \beta \in \mathcal{L}^e \mid \beta \leq a \}$ is isomorphic to $\mathscr L$; conversely, for each $a\in\mathscr L^c$ there exists an enumeration $\mathscr G:\mathcal N\stackrel{\text{onto}}{\longrightarrow}\mathscr L_a$ such that $(\mathscr L_a)_a$ is an L-semilattice. The last results on the semilattice \mathscr{L} (and also $\mathscr{L}(\mathcal{S}_a)$) are the theorems of Ershov-Lavrov [13] and V' yugin [14]. Let us recall what they are.

THEOREM (Ershov-Lavrov [13]). If $A \subset \mathcal{L}^e$, $A \neq \emptyset$ is a computable ideal, $B \subset \mathcal{L}^e$ is a computable family of m -degrees such that $A \cap B = d$ and $I \notin A \cup B$, then there exists $a \in \mathcal{L}^e$ such that $\forall \beta \in \mathcal{L}^e(\beta \leq a \leftrightarrow \beta \in A)$ and $\forall \beta \in \beta$ (a is comparable with β).

THEOREM (V'yugin [14]). For any $\boldsymbol{a} \boldsymbol{\epsilon}$ \boldsymbol{a} different from $\boldsymbol{\varLambda}$ and for an arbitrary Lsemilattice \mathcal{Z}_{\bullet} , there exist $\theta \in \mathcal{Z}$ such that $\theta \leq \theta$, the semilattice $\pi \mathcal{Z}_{\ell} = \{c \in \mathcal{Z} \mid d \leq c \leq \theta \}$ is isomorphic \mathscr{L} and $\forall c \in \mathscr{L}^e(c \leq b \rightarrow c \leq a \lor a \leq c)$.

A complete description of the semilattice \mathcal{L}^m is contained in Ershov [15] with the addendum of Palyutin [16].

2. Definitions and Statements of Theorems

A pair consisting of a (no more than countable) semilattice $\mathcal{L} = \langle \mathcal{L}, \mu \rangle$ and an enumeration θ : $\mathcal{N} \stackrel{\text{onto}}{\longrightarrow} \mathcal{X}$ of the underlying set \mathcal{L} will be denoted by \mathcal{L}_{ρ} and called an enumerated semilattice. We introduce the following category K : the object of K are the enumerated semilattices, and a morphism $a : \mathscr{L}'_a \longrightarrow \mathscr{L}'_a$ of an enumerated semilattice \mathscr{L}'_a $\langle\langle\mathcal{L},\cup\rangle,~g\,\rangle$ into an enumerated semilattice $\mathcal{L}^*=\langle\mathcal{L}\mathcal{L},~\cup\rangle$, ψ) is a mapping $~a:\mathcal{L}^*\longrightarrow\mathcal{L}^*$ of the underlying set \mathscr{L}' into the underlying set \mathscr{L}^2 such that

- 1) α is a multivalent;
- 2) α is a semilattice homomorphism;
- 3) $a(T')$ is an ideal of Z^3 ;

4) there exists a general recursive function f such that $\forall x \in \mathcal{N}$ $(a \theta(x) = \nu f(x))$ (i.e., a is a morphism of the corresponding enumerated sets (see $[1])$).

Suppose \mathscr{L}_{g} is an enumerated semilattice. We will say that \mathscr{L}_{g} is a Lachlan semilattice (L-semilattice) if there exists a sequence of finite preordered sets $\langle D_{a}, \leqslant_{a} \rangle \subset \langle D_{1}, \leqslant_{1} \rangle \subset ...$ where $D_i \subset \mathcal{N}$, such that

LO) $\theta(x) \leq \theta(y) \longrightarrow \exists i \in \mathcal{N} \quad (x \leq y);$

L1) $\{\mathcal{D}_{i}\}_{i\geq 0}$ is a strongly computable sequence of finite sets (we will use the following abbrevations :

$$
x \sim_i y \Longrightarrow x \leq_i y \land y \leq_i x, [x]_i - \{y \in N \mid x \sim_i y\}, \widetilde{D}_i - \{[x]_i \mid x \in D_i\}\},
$$

L2) the ordered set $\overline{\mathcal{D}}_i$ is a distributive lattice;

L3) the mapping $\widetilde{D}_i \to \widetilde{D}_{i+1}$ induced by the embedding $\langle D_i, \leq_i \rangle \subset \langle D_{i+1}, \leq_{i+1} \rangle$ preserves the least upper bound and the largest and smallest elements;

L4) there exist general recursive functions $\mathcal{U}(x,y,i)$, $\mathcal{V}(x,y,i)$ such that

$$
x, y \in D_i \longrightarrow u(x, y, i), \sigma(x, y, i) \in D_i,
$$

\n
$$
[x]_i \cup [y]_i - [u(x, y, i)]_i,
$$

\n
$$
[x]_i \cap [y]_i = [\sigma(x, y, i)]_i, \text{ where } x, y \in D_i,
$$

L5) there exists a recursive predicate $P(x, y, i, a, b)$ such that for all x, y, i we have $x \leq i$ $y \leftrightarrow \forall a \exists b \, P \, (x, y, i, a, b)$.

We mention one property of Lachlan semilattices that will be needed to prove Theorem Suppose \mathscr{L}_{ρ} is an L-semilattice and f is a general recursive function such that $f(N)=N$. Then $\mathscr{L}_{g\circ f}$ is an L-semilattice. Indeed, suppose $\langle D_g, \leqslant_o \rangle \subset \langle D_g, \leqslant_o \rangle$ C... is a sequence of preordered sets satisfying conditions L1)-L5) and such that $\theta(x) \leq \theta(y)$ - $-\exists i \in \mathbb{N}$ $(x \leq i \ y)$. Suppose $g(x) = \mu y (f(y) = x)$ (here μ is the minimization operator). Since $f'(N)=N$, the function q is general recursive and $f(x)=x$. Put $\mathcal{L}_f=\{x\in N\mid f'(x)\in \mathcal{L}_f\}$. $x,x \in \mathcal{D}(q~[1;1)], ~x \in \mathcal{Y} \implies x,y \in \mathcal{D}$, $x \notin \mathcal{D} \in \mathcal{D}$, It is easy to see that the sequence of preordered sets $\{ \mathscr{L}, \leqslant \geqslant \mathscr{S} \subset \{ \mathscr{L}, \leqslant , \mathscr{S}, \ldots \}$ satisfies conditions L1)-L5) and that $\partial f(x) \leqslant \mathscr{S}$ $f(y) \leftrightarrow \exists i \in \mathcal{N}$ $(x \leq i \ y)$. Thus, we have proved that $\mathcal{L}_{\theta \circ f}$ is an L-semilattice.

Suppose ${f_i}_{i\geq0}$ is a principal enumeration of the set of all one-place partial recursive functions. If we let $\sqrt{l'_i}$ be the domain of f_i , it is clear that $\{\sqrt{l'_i}\}_{i\geq0}$ is a principal enumeration of the class of all recursively enumerable subsets of N. We introduce an enumeration of the semilattice $\mathscr{L}^e\colon \pi(i)=d_m({\Pi}_i)$ and an enumeration of the semilattice $_{a}\mathcal{L}:\xi'(\vec{l})=\alpha\cup\pi(\vec{l})$ (the dependence of ξ' on α is not indicated, but this will not lead to complications). We also introduce an enumeration of the semilattice $\mathscr{L}(\mathcal{S}_n)$ as follows. Let $\overline{f}_i^T(0)=\emptyset$, $\overline{f}_i^T(x) = \{x\}$ for $\overline{f} \in \mathcal{X} \subseteq \mathcal{X}$, $\overline{f}_i^T(n+x+1) = \left[f_i^T(x) \right]$ if $f_i^T(x)$ is defined and $f_i^T(x) \in$ ${+,...,n}, ~\bar{f}_i(a+x+1)=\emptyset$; otherwise, put $\zeta(i)=d_m$ (\bar{f}_i) (the dependence of the enumeration ζ on π is not indicated).

We are now in a position to state Theorems $1, 1'$, and 2 . We fix an enumerated semilattice $\mathcal{L}_{\varphi} \in \{ \mathcal{L}_{\pi, a}^e \mathcal{L}_{\varphi}, \mathcal{L}(\mathcal{S}_a)_{\xi} \}.$

THEOREM 1. Suppose in the diagram

that $a,b\in K$, $I\notin b(\mathscr{L}^*)$, and \mathscr{L}^-_o is an L-semilattice. Then there exists $c\in\mathscr{K}$ making the diagram commutative.

THEOREM 1'. Suppose the diagram

that $a, b \in K$, c, d are morphisms of enumerated sets, $b = c \cdot d$, $I \notin c(y)$ and d' is an Lsemilattice. Then there exists $e \in K$ making the diagram commutative and such that $e(X')$ $n c(y) = b'(x^{\circ}).$

THEOREM 2. Suppose $a : y \rightarrow \mathcal{L}_{\varphi}$ is a morphism of enumerated sets such that $I \notin a(f)$. Then there exist an L-semilattice $\mathcal{L}_{\theta}^{\prime}$, a morphism of enumerated sets δ : $\gamma \rightarrow \mathcal{L}_{\theta}^{\prime}$, and a K morphism $c: \mathcal{Z}_{\mathbf{p}}' \longrightarrow \mathcal{L}_{\mathbf{p}}$ such that $a = c \cdot b$ and $I \notin c(\mathcal{Z}')$.

3. Proof of Theorems I and 2

Recall that ${f_i}_{i>0}$ is a principal enumeration of the set of all one-place partial recursive functions (p.r.f.), $\sqrt{7}$ is the domain of f_i , and, therefore, $\{\sqrt{7}t\}_{i\geq 0}$ is a principal enumeration of the set of all recursively enumerable subsets of N . Fix a general recursive function (g.r.f.) $c(x,y)$ effecting a one-to-one correspondence $\mathcal{N} \rightarrow \mathcal{N}^2$ and such that $c(x, y)$ is nondecreasing in x and y , in particular, $sup(x, y) \le c(x, y)$. Let $c(x, y, z)$ $c(x, c(y,z))$. We give the definition of the Lachlan ψ -operator (see [10]). Suppose $U \subset N$ is a set and $A \subseteq N$ is a recursively enumerable (r.e.) set. Then we denote by ψ (U,A) the following m -degree: if $A - \phi$, then $\psi(U,A) = \alpha'_m(\phi)$; if $A \neq \phi$ and f is a g.r.f. such that $f(N)=A$, then $\phi(U,A)=d_m(f^{-1}(U))$. This definition is obviously correct, i.e., does not depend on the choice of f . The following are the main properties of the Lachlan ψ operator.

01) The ψ -operator $A \mapsto \psi(U,A)$ maps the set of r.e. subsets of N onto the set of m -degrees $\leq d_m(U); \psi(U, N) = d_m(U);$

02) $\psi(U, A \cup B) = \psi(U, A) \cup \psi(U, B);$

03) If $\psi(U,A) \le \psi(V,B)$ and $B \cap V \ne \emptyset$, $B \cap (N \setminus V) \ne \emptyset$, then there exists a p.r.f. f with domain A such that $f(A) \subseteq B$ and $x \in A \longrightarrow (x \in U \longrightarrow f(x) \in V)$; conversely, the existence of a p.r.f. f with these properties implies that $\psi(U,A) \leq \psi(V,\beta)$; in particular, if $\Lambda \cap U$, $A \cap (N \setminus U)$ are recursively enumerable, then $\oint (U, A) = d_{\mathfrak{m}} (\phi)$;

04) If A, B are r.e. sets, \sim is a r.e. equivalence relation on A such that for any $x \in A$ there exists $y: y \in A \cap B \& x \sim y$, and for any $x, y \in A$ we have $x \sim y \rightarrow (x \in U \rightarrow y \in U)$, then ϕ (U, A) $\leq \phi$ (U, B).

For example. let us prove 04). Suppose $C = \{(x, y) | x \sim y \& y \in B\}$. The set C is recursive-
ly enumerable. $(x, y) \in C \rightarrow (x \in U \rightarrow y \in U)$. $x \in A \rightarrow y \in (x, y) \in C$, and $(x, y) \in C \rightarrow y \in B$. In view of the first and third properties of $~\mathcal C~$, there exists a p.r.f. f with domain A such that $x \in A \longrightarrow (x, f(x)) \in C$, and it follows from the second and fourth properties that the p.r.f. f also satisfies the relations $x \in A \longrightarrow (x \in U \longrightarrow f(x) \in U)$ and $f(A) \subset B$. In view of 03), ϕ (U, A) $\leq \phi$ (U, B).

Let us recall some facts about finite distributive lattices (see [12]). Suppose D is a finite distributive lattice. An element $a \in D$ is called an atom if $a \leq b$ u $c \rightarrow a \leq b$ v $a \leq c$. Suppose D_j , D_j are finite distributive lattices and $\varphi:\mathcal{D}_j\to\mathcal{D}_j$ is a mapping preserving the least upper bound and the largest and smallest elements. If $a\,\epsilon\,\mathcal{D}_z$ is an atom, we denote by

i (a) the set of minimal elements of the set $\beta(a) \rightleftharpoons {6 \epsilon D, |a \le \varphi(b)|}$. We claim the following. D1) The set $\mathcal{C}(\alpha)$ is nonempty and each element of $\mathcal{C}(\alpha)$ is an atom.

D2) If $a, b \in \mathcal{D}_2$ are atoms and $a \le b$, then there exists a mapping $\psi: \mathcal{C}(b) \to \mathcal{C}(a)$ such that ψ (d) $\leq d$.

That $C(\mathfrak{a})$ is nonempty follows from the fact that φ preserves the largest element. We will show that each element of $C(a)$ is an atom. If $\&\in C(a)$ and $\&\in C\cup\alpha'$, then $b=(b\cap c)\cup$ $(\mathcal{E} \cap d), a \leq \varphi(\mathcal{E}) = \varphi((\mathcal{E} \cap c) \cup (\mathcal{E} \cap d)) = \varphi(\mathcal{E} \cap c) \cup \varphi(\mathcal{E} \cap d)$; but a is an atom, hence $a \leq \varphi(\mathcal{E} \cap c)$ or $a \le \varphi(\ell \cap d)$. If, for definiteness, $a \le \varphi(\ell \cap c)$, then $\ell \cap c \in \mathcal{B}(a)$ and $\ell \cap c \le \ell$; but ℓ is a minimal element of $\beta(a)$, hence $m \in \mathcal{E}$ and $m \in \mathcal{E}$. Let us prove D2). Since $a \leq b$, it follows that $C(\mathbf{b}) \subset \mathbf{B}(\mathbf{a})$ and, since $\mathbf{B}(\mathbf{a})$ is finite, under each element there is a minimal one, i.e., the desired $\psi: C(\mathbf{b}) \subset C(\mathbf{a})$ exists.

We also introduce the concept of convergence. Suppose Λ . β are sets and $\ell(A, \beta)$ is the set of all partial mappings from Λ into Λ . If $f \in 4(A, \mathcal{B})$, $a \in \Lambda$, then $f(a)$, is an abbreviation for " f is defined at the point a ." Suppose ${g_4}_{4z0}$ is a sequence of elements of \forall (A, B). We will say that the sequence ${g_4}_{4}$, $_{20}$ converges if

- 1) \exists \forall u, σ \forall $a \in A$ ($s \le u \le \sigma$ $\&$ $q_u(a)$, \rightarrow $q_u(a)$, \Rightarrow
- 2) $\forall a \in A \exists s \; [\forall t \geq s \; (\exists g_t(a)!)$ or $\forall t \geq s \; (g_t(a)/g_t(a) = g_t(a))]$.

If the sequence ${g_1}_{4>0}$ converges and $g \in 4(A, \beta)$, we will say that g is the limit of $\{g_{\lambda}\}_{{\lambda \geq 0}}, g_{\lambda \text{min}} g_{\lambda}$, if for any a :

1) $\tau g(a)! \rightarrow \tau g \forall t \geq s \ (\tau g_{t}(a)!),$ 2) $g(a)! \rightarrow \exists a \forall t \geq s \ (g_t(a)/g_g(a) - g(a)).$

Obviously, for a convergent sequence the limit exists and is uniquely defined. Note that if a sequence $({\cal G}_\lambda)_{\lambda>\rho}$ converges and its limit $q-{\cal U}$ m ${\cal G}_\lambda$ is a function with finite domain, then there exists **4** such that $\mathcal{Y}_t = \mathcal{Y}$ for all $t \ge 4$. Indeed, suppose \mathcal{Y}_n is such that $\forall u, v \; \forall a \in A \; (s_a \leq u \leq v \; \& q_u(a) \cdot \rightarrow q_v(a) \cdot b)$, and suppose $A_a \subseteq A$ is the domain of g . Since A_{o} is finite, there exists $4,4$ ₀ such that for $t \ge 4$, and $a \in A_{o}$: $q_{t}(a)$ is defined and $g_{\mu}(\alpha) = g(\alpha)$. Obviously, $g_{\mu} = g$ for $t \ge 4$, For functions $f: N \to C$ (C an arbitrary set) and $f: N \longrightarrow N$ the equalities $~dim~f(4) = ~C$ (where $c \in C^-$) and $~dim~f(4) = ~$ have the usual meaning, namely $~(4) = c \leftrightarrow$ (there exists $R \in N$ such that $4 \ge R \rightarrow f(4) = c$), $\lim_{\Delta \to \infty} f(s) = \infty$ \longrightarrow (for each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $\Delta \ge m \longrightarrow f(4) \ge n$). Note that if $~U~$ is $4~(h,D)$, then an equality $~U\!m~f$ (1) = $C~$ in the sense of the second definition implies the equality $~\mathcal{L}m~f(4) = c$ in the sense of the first, but not conversely.

Other Conventions. The totality of subsets of a given set A will be denoted by $S(A)$. As usual, a partition P of a set A is a subset of $S(A)$, $P \subset S(A)$, such that each element $\bm{\not}P$ is nonempty, the elements of $\bm{\not}P$ are pairwise disjoint, and the union of the elements of P is A . If P , $Q \subset S(A)$ are two partitions of A , then P is called a refinement of **Q** if each element of P is a subset of a suitable element of Q . If $\beta \subset A$ and $P \subset S(A)$

is a partition of $~\acute{\!A}~$, then we will denote by $~\cancel{P}~|~\beta~$ the following partition of $~\beta$: $~\cancel{P}~|~\beta~$ = $\{CnB\}$ $C \in P$ & $CnB \neq \emptyset$.

To avoid obscuring the main ideas with Complex notation we analyze only the case $\mathscr{L}_{\varphi}=\mathscr{L}_{\varphi}^{\ell}$ in Theorem 1. The changes required for $_{\alpha}\mathscr{L}_{\zeta}$. $\mathscr{L}(\mathscr{S}_{\alpha})_{\zeta}$ will be indicated later. THEOREM 1. Suppose in the diagram

that $a,~b \in K$, $I \notin b~(~x^{\circ})$ and $~x'_{\rho}$ is an L-semilattice. Then there exists $c \in K$ making the diagram commutative.

Suppose $\vec{\theta}$ is the cylindrification of the enumeration θ ; by definition, there exists a g.r.f. q such that $\bar{\theta} = \theta \circ q$, $q(N)=N$, and q assumes each of it values infinitely often (g is a function of large amplitude). In view of the remark immediately following the definition of L-semilattice, $\mathscr{L}_{\vec{\theta}}'$ is an L-semilattice. Obviously, the identity mapping $\mathscr{L}'_{q} \longrightarrow \mathscr{L}'_{\bar{q}}$ is a \mathscr{K} -isomorphism. Therefore, we may assume without loss of generality that the enumeration θ is itself a cylinder, i.e., $\theta = \theta \cdot q$ for some function q of large amplitude. Suppose $\langle D'_0,\leq'\rangle\subset\langle D'_0,\leq'\rangle\subset\ldots$ is a sequence of finite preordered sets satisfying conditions L1)-L5) and such that $\theta(x) \leq \theta(y) \longrightarrow J \in N~\{x \leq j \ y\}$ and suppose $u'(x,y,i)$. $\sigma'(x,y,i)$ are g.r.f. satisfying L4) (in connection with our sequence). Let $\mathscr X$ be a semilattice obtained from \mathscr{L}' by externally adjoining a largest element. We define an enumeration of $\mathscr L$, μ : $\mathscr N \xrightarrow[]{{}_{\!\!\textnormal{onto\,\,}\!\!}} \mathscr L$, as follows: $\mu(o) = I_{\mathscr L}$, $\mu(x+j) = \theta(x)$. We also define a sequence of preordered sets $\langle D_{g}, \leqslant_{\rho} \rangle \subset \langle D_{f}, \leqslant_{\rho} \rangle \subset \ldots$ and g.r.f. $u(x, y, i)$, $\sigma(x, y, i)$;

$$
(\mathbf{x}) \quad D_i = \{x \in N \mid x = 0 \lor x \ge 1 \land x - i \in D_i^{\dagger}\},
$$
\n
$$
x \le y \implies x, y \in D_i \land [y = 0 \lor x, y \ge 1 \land (x - i) \le j^{\dagger}(y - i)]
$$
\n
$$
u(x, y, i) = \begin{cases} u'(x - i, y - i, i) + i & \text{if } x, y \ge 1, \\ 0 & \text{otherwise,} \end{cases}
$$
\n
$$
\sigma(x, y, i) = \begin{cases} x, & \text{if } y = 0, \\ y, & \text{if } x = 0, \\ \sigma'(x - i, y - i, i) + i, & \text{otherwise.} \end{cases}
$$

It is easy to see that the sequence $\langle D_{\rho}, \leq_{\rho} \rangle \subset \langle D_{\rho}, \leq_{\rho} \rangle$ C... and the function U, U satisfy conditions L1)-L5) and that $\mu(x) \in \mu(y) \longleftrightarrow \exists i \in N \ (x \in j \ y)$, in particular, \mathcal{L}_{μ} is an L-semilattice. We emphasize that throughout the proof of Theorem 1, $\langle D_i, \preceq_i \rangle$, ℓ , ℓ are the objects introduced in (*). We will also assume that $x \leq i \longrightarrow x \in \mathcal{D}_c$.

It is clear that the natural embedding $\mathcal{L}_q\sqsubseteq \mathcal{Z}$, is a K -morphism. Suppose $\mathcal U$ is the composite mapping $\mathcal{L}_j \longrightarrow \mathcal{L}_j \subset \mathcal{L}_j$. It suffices to prove that there exists $c\in K$, making

commutative. Since the enumeration Θ is a cylinder, there exists a g.r.f. f such that $a\nu(x)=\theta f(x)$ and $f(x)=x$. Let $\bar{f}(x)=f(x)^{+}/$. Obviously, $\bar{a}\nu(x)=\mu\bar{f}(x)$ and $f(x)=x$. The latter relation implies that the set $\bar{f}(N)$ is recursive (we denote it by H), and the first relation implies the equality $\mu(H)=\bar{a}(Z^{\circ})$. This set H will be needed later.

We will use (until the end of the proof of Theorem 1) the following abbreviations: $x \sim_i y \Rightarrow x \leq_i y \& y \leq_i x$, $[x]_i = \{y \in N | x \sim_i y\}$, $\widetilde{D}_i = \{[x]_i | x \in D_i\}$. Suppose A_{\sim} is a subset of $~\varPhi$. We will say that A is an atom of $~\varPhi$ if the distributive lattice $~\varPhi$ contains an atom α such that $A = \{x \in \mathcal{D}_i \mid a \leq [x]_i \}$. We introduce, following Lachlan (see [12]), frames and towers. By a frame of length ℓ we mean a sequence $\mathcal{X} = (\alpha_0, \ldots, \alpha_i)$, where $\alpha_j \subset \mathcal{S}(\mathcal{D}_j)$ ($\mathcal{S}(\mathcal{D}_j)$ is the totality of subsets of \mathcal{D}_j), such that

- K1) \mathcal{O}' , is a singleton;
- $K2)$ $\alpha_j = \cup \{C(\beta) | \beta \in \mathcal{O}'_{j+1}\}, j < i;$ K3) for $\mathcal{B}\in\mathcal{C}\mathcal{U}_{j+1},\mathcal{D}_j\cap\mathcal{B}=\cap\{\mathcal{U}\mid\mathcal{U}\in\mathcal{C}\left(\mathcal{B}\right)\},\ j\leq i$;

here $C(\mathcal{B})$ is the totality of maximal (with respect to inclusion) elements of the set $\{U \in \mathcal{X}_j\}$ $|U = B \cap D_i$.

We will denote the length of a frame α by ln (α) . A frame $\alpha = (x_0, ..., x_i)$ will be called good if, for each $j \leq i$, each element of \mathcal{O}'_j is an atom D'_j . It follows from conditions D1) and D2) that if $A \subseteq D_i$ is an atom of D_i , then there exists a unique good frame $c\mathcal{U}=(\alpha_0^*,\ldots,\alpha_i^*)$ such that $\alpha_i^*=\{A\}$; it is also easy to see that $\{0\}$ is an atom of D_i for all $i>0$, hence the sequence $({\{0\}}, \ldots,{\{0\}})$ is a good frame. If $\alpha=(\alpha_0,\ldots,\alpha_i),~$ = $(\mathcal{L}_{o}, ..., \mathcal{L}_{j}^{\prime})$ are two frames, we will say that \mathcal{U} is a subframe of \mathcal{L} if $i \in j$. $\mathcal{U}_{e} \subset \mathcal{L}_{e}$ when $e \leq i$, and for $\beta \in \mathcal{U}_{e+i}$ the set $C(\beta)$ computed in α is equal to $C(\beta)$ computed in $\mathcal L$. We now define a tower. Suppose $\mathscr{F}\mathsf{c}$ \mathscr{N} is a finite set. A tower with base $\mathscr F$ and length $\dot{\mathscr l}$ is a sequence $A=(A_0,...,A_j,\varphi_0,...,\varphi_i)$ of partitions of $\mathcal F$ and mappings $\varphi_j : A_j \rightarrow S(\mathcal{D}_j)$ such that

B1) the partition A_i is a singleton: $A_i = \{f\}$;

B2) the partition A_j is a refinement of the partition A_{j+j} , $j < i$;

B3) for $Q \in A_{j+1}$ the restriction of φ to $\{P \in A_j | P \subset Q\} = A_j | Q$ is a bijection of this set onto $C(\varphi_{j+1}(Q))$, where $C(\varphi_{j+1}(Q))$ is the totality of maximal (with respect to inclusion) elements of the set ${B \in \varphi_j(A_j)|B \supset \varphi_{j+j}(Q) \cap D_j}$, $j < i$;

B4) the sequence $(\varphi_{o}(A_{o}), ..., \varphi_{i}(A_{i}))$ is a frame.

The frame in B4) will be called the frame of the tower Λ . The length of the tower A will be denoted by ln (A) , the frame by fr (A) , and the base by bs (A) . It is not difficult to show (see [12]) that for any frame α and any finite set $\mathcal{F} \subset \mathcal{N}$ containing sufficiently many elements there exists a tower $\bm{\Lambda}$ with base $\bm{\mathcal{F}}$ and frame $\bm{\mathcal{O}}\!\!\ell$. Suppose $A = (A_0,..., A_i, \varphi_0,..., \varphi_i)$ is a tower, $j \leq i$ and $P \in A_j$. We denote by tw (A, j, P) the tower $(A_0 | P,..., A_i)$ A_j P_0 , $\overline{\varphi}_0$, ..., $\overline{\varphi}_j$), where $\overline{\varphi}_k$, $k \leq j$, is the restriction of φ_k to A_{κ} | P (in view of condition B2), A_{κ} | ρ is a subset of A_{κ}); we denote the frame of tw $(A_{i,j}, P)$ by $f_{r}(A_{i,j}, P)$. We introduce a partial order on the frames. Suppose $\mathscr{U}=(\mathscr{C}_0,\ldots,\mathscr{C}_i)$, $\mathscr{L}=(\mathscr{L}_0,\ldots,\mathscr{L}_i)$ are two frames of the same length, \mathscr{X}_{t} = $\{\mathscr{A}\}$, \mathscr{L}_{t} = $\{\mathscr{B}\}$. We will say that \mathscr{X} is less than \mathscr{L} , $\mathscr{X}\preccurlyeq \mathscr{L}$, if 1) $A \supseteq B$ and 2) for any $\int **U**$, $\mathcal{D} \in \mathcal{C}_{\ell+1}^k$, $\delta \in \mathcal{L}_{\ell+1}^k$, if $\mathcal{D} \supseteq \delta$, then there exists a mapping $\psi : C(D) \longrightarrow C(\mathcal{E})$ such that $\psi((U) \supset U'$, $U \in C(\mathcal{D})$, where $C(D)$ is totality of maximal (with respect to inclusion) elements of the set ${U \in \mathcal{C}'_j \mid U \supset D_j \cap D}$; $C(\hat{\delta})$ is defined analogously. It is easy to see that if $\mathcal{U}={(\mathcal{U}_0,...,\mathcal{U}_i)}$, $\mathcal{L}={(\mathcal{L}_0',...,\mathcal{L}_i)}$ are good frames and $\mathcal{U}_i={A}$, $\mathcal{L}_i={S}$, then, in view of D2), $\alpha \ll 1$ if and only if $A \supset B$. Suppose $A = (A_0, ..., A_i, \varphi_0, ..., \varphi_i), \quad B =$ $({\vec{\mathcal{B}}}_o,\ldots,{\vec{\mathcal{B}}}_j,~~{\vec{\mathcal{B}}}_o,\ldots,{\vec{\mathcal{B}}}_j)$ are towers with bases $\mathscr{F},{\vec{\mathcal{G}}}$ respectively, where $\tilde{\mathcal{F}}\cap{\vec{\mathcal{G}}}={\vec{\mathcal{P}}}$, and suppose $K \leq inf~(i,j)$, $\bar{P} \in A_{K}$, $Q \in B_{K}$ and fr $(A,K,P) \leq \text{ fr}(B,K,Q)$. Then there exist mappings $\mathcal{O}_{o}: \mathcal{B}_{o}$ | $\mathcal{Q} \to A_{o}$ | $\mathcal{P}, ..., \mathcal{Q}_{\kappa}: \mathcal{B}_{\kappa}$ | $\mathcal{Q} \to A_{\kappa}$ | \mathcal{P} such that $\mathcal{P}_{e} \mathcal{Q}_{e}(\mathcal{R}) \supset \mathcal{P}_{e}(\mathcal{R})$ for $e \leq \kappa$, $\mathcal{R} \in \mathcal{B}_{e}$ | \mathcal{Q} . Indeed, since the sets B_{κ} | Q , A_{κ} | P are singletons, there exists a unique mapping Θ_{κ} : B_{κ} | $Q \rightarrow A_{\kappa}$ | P and this mapping satisfies our condition by virtue of the relation fr $(A,$ K, P) \leq fr (B, K, Q) . Assume that we have constructed a mapping Θ_{eH} satisfying our condition. Using condition 2) in the definition of \leq and condition B3), we can easily define the desired θ_{ℓ} (not necessarily uniquely, of course). We will now construct a tower $C=(\mathcal{C}_0,\ldots,\mathcal{C}_i,~\overline{\varphi}_0,\ldots,\overline{\varphi}_i)$ with base $\mathcal{F}\cup\mathcal{Q}$. For $e\leqslant\kappa$ the partition \mathcal{C}_ρ is obtained from the partition A_{ℓ} by replacing each element $R \in A_{\ell}$ by $R^* \Rightarrow R \cup (\cup \{T \in B_{\ell} | Q | \theta_{\ell}(T) = R \})$, and for $e > K$ by replacing each element $R \in A_e$ by

$$
R^* = \left\{ \begin{array}{ccc} R \cup Q & \text{if} & R \cap P \neq \emptyset \\ R & \text{if} & R \cap P = \emptyset \end{array} \right.
$$

 $\overline{\varphi}_{\rho}(\overline{R}^*) \rightleftharpoons \varphi_{\rho}(\overline{R})$. We denote this tower C by tw (A, B, κ, P, Q) .

Let H be the recursive set introduced earlier with the property that $\mu(H) = \overline{a}(L^{\circ})$. In the sequel we will consider only those frames $\alpha = (\alpha_0, ..., \alpha_i)$, $\alpha_i = \{A\}$, that satisfy the condition

$$
(**) \quad A \cap H = \emptyset.
$$

 $\sim 10^6$

We now introduce a set of pairs $\mathcal Q$. A pair $\ll =\langle \mathcal O', \mathcal V \rangle$ is an element of $\mathcal Q$ if and only if the first component of \propto is a frame $\mathcal{C}=\{\mathcal{U}_0,\ldots,\mathcal{U}_i\}$, $\mathcal{U}_i=\{\mathcal{A}\}\$, $i=c(m,n,e)$, and the second component is either 1) the symbol I and then $n \in A$ (a pair of the first kind), or 2) V is the symbol II (a pair of the second kind), or 3) V is a set B such that $A\subseteq B\subseteq D_{i+1}$ and $B\cap H\neq\emptyset$ (a pair of the third kind). The length of a pair α (ln (α')) is the length of the first component of α . We define the norm of the pair α at step 4 (nr $(\alpha, 4)$). Suppose ℓ, ℓ are the

g.r.f. introduced in (*), $\alpha \in \mathcal{D}_0$ is the smallest element of $\langle \mathcal{D}_0, \leq v_0 \rangle$ (it is the smallest in all $\langle D_x, \leq_i \rangle$), and $A \subseteq N$ is a finite set. We define $\mu(A, i)$, $\sigma(A, i)$ by induction on the number of elements in $A : \mu(\emptyset, i) = \alpha$, $\sigma(\emptyset, i) = 0$, $\mu(A \cup {\alpha}, i) = \mu(x, \mu(A, i), i)$, $\sigma(A \cup {\alpha}, i)$ \vec{u})= \vec{v} ($x,\vec{v}(A,i),i$), where x is greater than all elements of A . It is easy to see that we have an equivalence

$$
[A \subseteq D_i \& A \text{ is an atom of } D_i] \rightarrow [A \subseteq D_i \& \forall x, y \in D_i \ (u \ (x, y, i) \in A \rightarrow x \in A \lor y \in A) \& \forall x \in D_i \ (v \ (A, i) \leq_i x \rightarrow x \in A)].
$$

It follows from L5) that the second member of the equivalence is a $J\mathbb{V}$ -predicate, hence there exists a g.r.f. $\rho((A,i),4)$ that is nondecreasing in 4 and such that $\lim_{\Delta\to\infty} \rho((A,i),4)\neq\infty$ if and only if $A \subseteq D_i$ and A is an atom of D_i . Suppose $\mathscr{U} = (\mathscr{X}_0, ..., \mathscr{X}_i)$ is a frame. Put $\rho({\mathcal{X}},\Delta)=\sup\{\rho({(A,j)},\Delta)\mid j\leq i\ \&\ A\in {\mathcal{C}}_j\}.$ Fix an effective one-to-one correspondence $\omega: \mathcal{Q} \leftrightarrow \mathcal{N}$ such that if $\omega(\alpha, V_j) = i$, $\omega(\mathcal{X}, V_2) = j$, and $\ln (\alpha) \leq \ln (\alpha)$, then $i \leq j$, and for $\alpha=(\alpha,\gamma)$ put nr $(\alpha,3)=C(\rho(\alpha,3),\omega(\alpha))$. We emphasize that if α' is a subframe of $\mathscr{L}, \alpha = (\mathscr{U}, V, \mathscr{V})$, and $\beta = (\mathscr{L}, V, \mathscr{V})$, then nr $(\alpha, 3) \leq n$ nr $(\beta, 4)$ (and n r $(\alpha, 3) = (\beta, 4) \leftrightarrow \alpha = \beta$). Put $nr(\alpha) = \lim_{\Delta \to \infty} nr(\alpha, \Delta)$; $nr(\alpha)$ can assume the value ∞ , and $nr(\alpha) \in \mathcal{N}$ is equivalent to saying that the first component of α is a good frame. We also introduce a computable sequence of r.e. sets $\{\beta_i\}_{i\geq 0}$ with the following property: if $\mu(i)=\mu f(j)$, then $\alpha_m'(\beta_i)=\delta v(j)$, where is the previously fixed g.r.f. representing the morphism $\mathcal{C}: \mathscr{L} \to \mathscr{L}$. Suppose \mathcal{G} is \mathcal{L} .r.f. representing the morphism \mathcal{L} : \mathcal{L}^0 \longrightarrow \mathcal{L} , and suppose $h(x) = \mu y \left(\overline{f}(y) = x \right)$ (here is the minimization operator). Put $A_i = \emptyset$, if $i \notin \overline{f}(N)$, and $A_i = \bigcap_{g \neq (i)}$, if $i \in \overline{f}(N)$. Obviously, the sequence $\{A_i\}_{i\geqslant 0}$ is computable. In view of L5), there exists a g.r.f. $\rho(x,$ $q, i, 1$, that is nondecreasing in λ and such that $x \sim y$, $y \leftrightarrow \mathcal{C}(x, y, i, 1) = \infty$. Suppose $\rho(x,y,\iota)=\lim_{\Delta\to\infty}\rho(x,y,\iota,\Delta)$ ($\rho(x,y,\iota$) can assume the value ∞), and suppose $\rho(x,\iota)=0$, $\rho(x,\iota)$ $\rho(x,y,i)v_j<\rho(x,i)]$. The computability of the sequence $\{\beta_x\}_{x\geq 0}$ and the fact that it satisfies our condition can be verified directly.

We fix an effective procedure which at the even steps 0, 2, 4,... yields:

either 1) a triple (A, i, P) , where $A=(A_0,...,A_j, %gamma_0,...,P_j)$ is a tower, $i \leq j$, and $P \epsilon A_i$,

- or 2) a pair $\alpha \in \Omega$ of the first kind,
- or 3) a natural number $\ell \in \mathcal{N}$,

or 4) a pair $\ll \epsilon \Omega$ of the third kind, each object occurring infinitely often,

at the odd steps 1, 3, 5,... yields elements of $\mathcal Q$, each $\alpha \in \mathcal Q$ occurring nr (α) times.

We will describe, in general terms, a construction which leads to a proof of the existence of the desired morphism $c:~\mathscr{L}_{\mu}\longrightarrow \mathscr{L}_{q}^e$. At step 4 we will define for each $\prec \epsilon \mathscr{L}$ a partial mapping G_{3+1}^{\preccurlyeq} from N into the set of all towers and transfer certain elements into a set U ; that which we include in U up to step Δ will be denoted by U_{Δ} . The following relations will be satisfied:

- 1) $\theta_i^{\alpha}(x)$, $\& \theta_i^{\beta}(y)$, $\& \text{bs}(\theta_i^{\alpha}(x)) \cap \text{bs}(\theta_i^{\beta}(y)) \neq \emptyset \rightarrow \alpha = \beta \& x = y;$ 2) $G_4^{\alpha}(x)$, \rightarrow bs $(G_4^{\alpha}(x)) \subset U_4$ v bs $(G_4^{\alpha}(x)) \subset \mathcal{N} \setminus U_4$;
- 3) $\int_{4}^{\infty} (x) dx$ (the frame of the tower $\int_{4}^{\infty} (x)$ is equal to the first component of ∞).

We will say that the tower \bm{A} exists to step $\bm{\downarrow}$ if there exist $\bm{\upalpha}, \bm{x}$ (uniquely determined by virtue of 1)) such that $\int_{4}^{\infty} (x) \cdot k \int_{4}^{\infty} (x) = A$. The number x is said to be used to step Δ if either $x \in \{0,1\}$ or x has been used to step λ in the base of the tower, i.e., $\exists t \leq \lambda$, $\prec \in \mathcal{Q}, y \in \mathcal{N}(\mathcal{G}_{\neq}^{\prec}(y) / \&x \in \text{bs}(\mathcal{G}_{\neq}^{\prec}(y))$. Before turning to a detailed description of the construction we define several auxiliary functions.

Suppose M is a creative set. Suppose $\{f_{l,1}\}, \{\Lambda_{l,4}\}, \{\Delta_{l,4}\}, \{\Lambda_{l,5}\}\}\$ are strongly computable sequences of finite functions and sets that are nondecreasing in $\frac{1}{2}$ and such that $f_i = U$ ${f_{i,4} \mid 4 \geq 0}$, and so on.

We define the so-called indicators and heights. The indicator for pairs of the first kind. Suppose $\alpha = (\alpha, 1)$ is a pair of the first kind, $\ln (\alpha) = C(m, \pi, \ell) = j$, $K = \sup(m, n)$. We define a function in (α, β) . Let $\delta_0 \leq \delta_1 \leq \delta_2 \leq \cdots$ be those even steps at which our procedure yields ∞ . If $3 \leq \frac{1}{n}$, then in $(\alpha,1)=0$. If $3/2 < 1 \leq \frac{1}{4}$, then in $(\alpha,1)=1$ n $(\alpha, 4, +1)$. Suppose $4 = 4 + 1$. If

1) the function $f_{\ell,i}$ is defined on the set

$$
\beta = \bigcup \{ P \mid \exists y \ (G_{\lambda-1}^{\alpha}(y)) \& G_{\lambda-1}^{\alpha}(y) = (A_0, \ldots, A_j),
$$

$$
\varphi_0, \ldots, \varphi_j \& P \in A_{\kappa} \& a \in \varphi_{\kappa}(P) \},
$$

2) for each $\psi \in \mathcal{B}$ the number $f_{\rho}(\psi)$ is used to step $4-\ell$,

3) for each $y \in B$ we have $y \in U_{s-1} \rightarrow f_{e}(y) \in U_{s-1}$, 4) $f_{e}(B) \cap \widetilde{B} = \emptyset$, where $\widehat{B} = U \{bs(\mathcal{C}_{4-t}^{\infty}(y))|\mathcal{C}_{4-t}^{\infty}(y) \},$

then we put in $(\alpha, \Delta) = \text{in} (\alpha, \Delta-1) + 1$. Otherwise, in $(\alpha, \Delta) = \text{in} (\alpha, \Delta-1)$.

The indicator for natural numbers. Suppose $\vec{c} \in \mathcal{N}$, $\vec{c} = C(n,e)$. Let $4_0 < 4_1 < 4_2 < ...$ be those steps at which our procedure yields $~\dot{\iota}$. We define a function in $(\dot{\iota},\dot{\iota})$. If $4\leqslant \dot{4}_o$, then in $(i,4)=0$. If $4^k-4\leq 4^k+1$, then in $(i,4)=$ in $(i,4+1)$. Suppose 4^k-4^k+1 , $a=$ $in(l, 4-l)$. If

1) the function $f_{\rho A}$ is defined on the set $\{0, 1, ..., a\}$,

2) for each $x \le \alpha$ the number $f_{\rho}(x)$ is used to step $b - f$,

3) for each $x \le a$ we have $x \in \Pi_{q(n), \mathcal{S}} \leftrightarrow f_e(x) \in U_{\mathcal{S}-i}$ (recall that q is a g.r.f. rep-
resenting the morphism $b: \mathcal{L}_{\mathcal{S}}^o \rightarrow \mathcal{L}_{\mathcal{S}}^o$), then we put in $(i,4)$ - in $(i,4-i)+1$. Otherwise in $(i,4)=$ in $(i, 4-i)$.

Suppose $\ell\ell$ is a frame. We define a function ht $(\ell\ell, \Delta)$. Let $\lambda_{\ell} < \lambda_{\ell} < \lambda_{2} < ...$ be those steps at which our procedure yields triples (A, i, P) . If $i \leq j_0$, put ht $(\alpha, i) = 0$. If $i_j \leq i \leq j_{j+1}$ then ht $({\alpha}, {\mathcal{L}})=$ ht $({\alpha}, {\mathcal{L}};+1)$. Suppose ${\mathcal{L}}={\mathcal{L}};+1$ and at step ${\mathcal{L}};$ the procedure yields (A, i, P) .

- 1) $\alpha = \text{tr} (A, i, P)$,
- 2) the tower \vec{A} exists to step $s-t$ and $P \cap \overline{\mathcal{O}}_{i,s} \neq \emptyset$ & bs(\vec{A}) $\cap \mathcal{O}_{s-t} = \emptyset$,
- 3) $\ln(A) \geq \text{ht}(\mathcal{O}_A, 4 1)$.

then we put ht $({\mathfrak{A}}, {\mathfrak{t}}) =$ ht $({\mathfrak{A}}, {\mathfrak{t}}-i)+1$. Otherwise, ht $({\mathfrak{A}}, {\mathfrak{t}}) =$ ht $({\mathfrak{A}}, {\mathfrak{t}}-i)$.

We can now describe the construction. Before step Q we assume the numbers 0, 1 to be used and transfer 1 into U , and for each $\measuredangle \in \mathcal{Q}$ we put $\mathcal{G}_0^{\propto} = \emptyset$.

Step \sharp . a) \sharp is even.

1) Our procedure at step Δ yields a triple (A, t, P) . Suppose $c^* = \text{fr}(A, t, P)$, ht $(\alpha^{\prime},\Delta)=a$. If ht $(\alpha^{\prime},\Delta+1)=a$ or at step a our procedure yields an element of $\mathcal{Q} \cup \mathcal{N}$, then we change nothing: $r_{i,j} = r_{i,j}$ for all $\alpha \in S^2$. Suppose ht $(\alpha, 4^2) = 2^2 + 1$ and therefore the tower \bm{A} exists to step $\bm{\omega}$; $\bm{\dot{u}_i}$ (\bm{x}) $=$ $\bm{\Lambda}$ and suppose at step $\bm{\mathcal{U}}$ our procedure yields $({\bf B}, j, {\bf Q})$ and ${\bf C} = ({\bf B}, j, {\bf Q})$. If $i=j$, ${\bf Q} \cap \bigcap_{i \in \Delta} J = \emptyset$, ${\bf C} \preccurlyeq {\bf C}$, $\bigcap_{i \in \Delta} J$, $\bigcap_{i \in \Delta} (A)$, the tower ${\bf B}$ exists to step Δ : $G_{\Delta}^{\beta} (y) = \beta$, bs $(\beta) \cap U_{\Delta} = \beta \hat{C}$, then we put $G_{\Delta + f}^{\beta} (y)$ equal to tw (β, A, i, \hat{C}) (Q, P) , G_{A+1}^{∞} (x) is not defined, and there are no changes at the other points.

2) Our procedure at step \mathfrak{t} yields a pair $\alpha = (\mathcal{X}, \mathcal{I})$ of the first kind. Suppose in $(\alpha, \beta) = \alpha$. If in $(\alpha, \beta, \beta, \gamma) = \alpha$, then we change nothing. Assume that in $(\alpha, \beta, \gamma, \gamma) = \alpha + \gamma$. Suppose x is the first point at which the function $G_{\mathbf{1}}^{\prec}$ is undefined. We take a sufficiently large initial segment of unused numbers $\mathcal F$, construct a tower A with base $\mathcal F$ and frame α , and put $G_{4+}^{\alpha}(x)=A$, and for $y\neq x$ we put $G_{4+}^{\alpha}(y)=G_{4}^{\alpha}(y)$. For the $\beta\in\mathcal{Q}$ such that $\text{snr } (\alpha, \Delta) < \text{nr } (\beta, \Delta)$, we put $\sigma^{\gamma} = \emptyset$, and for the remaining β ($\neq \infty$) there are no changes: $\sigma_{\ell+1} = \sigma_{\ell+1}$

3) Our procedure at step 4 yields a natural number $\dot{\mathcal{L}} = c(n,\mathcal{E})$. Suppose in $(\mathcal{i},\mathbf{i}) = \mathcal{Q}$. If in $(i, 4+1)=\alpha$, then we change nothing. If in $(i, 4+1)=\alpha+1$ in particular, $f_{\ell, 4}$ (a), suppose $f_e(a)=\delta$. If to step δ there exists no tower $\mathcal B$ such that $\delta \in \text{bs}(B)$. $i<\ln(B)$, bs $(B)\cap U_4' = \emptyset$, then we change nothing. Suppose such a tower B exists: $B = G_4^A(x) = (B_0,...,B_j,$ $\{\varphi_0,...,\varphi_r\}$, and suppose $\theta \in P$, $P \in \mathbb{B}_i$, $\mathcal{O}\ell = \text{fr}(\mathcal{B}, i,P)$. We form a pair $\infty = (\mathcal{C}, I)$ of the second kind and let ψ be the first point at which the function G_{Δ}^{∞} is undefined. We put $\mathcal{G}^{\infty}_{A\rightarrow A}$ (y)= tw $(\mathcal{B}, i, \mathcal{P})$, $\mathcal{G}^{\beta}_{A\rightarrow A}$ (x) is undefined, and there are no changes at the other points.

4) Our procedure at step \mathcal{L} yields a pair $\mathcal{L} = (\mathcal{C}', \mathcal{B})$ of the third kind. Let \mathcal{L} be the first point at which the function \mathcal{G}_{4}^{∞} is undefined. We take a sufficiently large initial segment of unused numbers $\mathcal F$, construct a tower $\mathcal A$ with base $\mathcal F$ and frame $\mathcal C\mathcal C$, and put $\mathcal{G}^{\infty}_{A+1}(\boldsymbol{x})=A$. There are no changes at the other points.

b) **4** is odd and at step **4** our procedure yields a pair \propto . Put $\int_{3+t}^{\infty} = \phi$. $\int_{4+t}^{\beta} = \int_{4}^{\beta}$ for $\rho \neq \infty$. Consider the elements of $\mathcal Q$. If γ is a pair of the first or second kind, G_{4+}^{γ} (x). and $x \in \mathcal{N}_4$, then we transfer the base of the tower $G_{4+}^{\gamma}(\alpha)$ into U . If $\gamma = (\alpha, \beta)$ is a pair of the third kind, $\ln{(c\ell)}=i,j=\ell(\beta,i+\ell)$, then for those x such that $\theta_{s+j}^{j'}(x)$. & $x \in B_{f,4}$ we transfer the base of the tower $c_{4+f}^{y}(x)$ into U . This completes the description

of step $\boldsymbol{\downarrow}$ of the construction.

Let $U = U \{U_{x} | 4 \ge 0\}$. Obviously, the set U is recursively enumerable. We will prove several lemmas.

LEMMA 1. Suppose that $nr(\alpha) \neq \infty$ for a pair $\alpha \in \Omega$. Then the sequence $\{\mathcal{G}_{\alpha}^{\alpha}\}_{\alpha > 0}$ converges, and if \propto is a pair of the first or second kind, then $\int_{0}^{\infty} \lim_{\Delta x \to 0} \int_{0}^{\infty}$ is a function with finite domain.

The proof will be carried out by induction on nr $(\le) \in \mathcal{N}$. Suppose the lemma is true for the elements $Q_{\rho} = {\rho \epsilon \Omega \mid \text{nr}(\rho) \lt \text{nr}(\alpha)}$ and let $\Omega_{\rho} = {\rho \epsilon \Omega_{\rho} \mid \beta}$ be a pair of the first or second kind $\}$. It is obvious that the set Ω_n is finite. Suppose Λ_n is such that $4 \geq \lambda_0 \& \text{ nr } (\beta) \leq \text{ nr } (\alpha) \rightarrow \text{ nr } (\beta, 1) = \text{ nr } (\beta), \quad 1 \geq \lambda_0 \& \text{ nr } (\beta) > \text{ nr } (\alpha) \rightarrow \text{ nr } (\beta, 1) > \text{ nr } (\alpha).$ In view of the property of. our convergence mentioned directly after the definition, there exists Δ , Δ such that Δ \geq Δ , $\&$ $\beta \in \mathcal{L}$, \Rightarrow $\mathcal{L}_{3}^{\beta} = \int_{\mathcal{L}}^{\beta}$. Put ht $(\mathcal{L}) = \lim_{\varepsilon \to 0} h(t(\mathcal{L}))$ (ht (\mathcal{L}) can assume the value ∞). Let $K_{\theta} = \{ \mathcal{L} \mid \mathcal{L}$ be a subframe of $\mathcal{U} \}$, where \mathcal{U} is the first component of the pair α and $K_r = {\mathcal{L} \in K_0 \mid \text{ht}(\mathcal{L}) = \infty}$. Suppose $s_2 > s_1$ is such that $\mathcal{L} \in K_0 \setminus K_1 \& s > s_2$ \oint ht (\mathcal{L}) = ht (\mathcal{L} , Δ), $\mathcal{L} \in \mathcal{K}$, $\&$ $\Delta \geq \Delta$ -ht(\mathcal{L} , Δ) > 1n (\mathcal{L}) . Fix $\Delta_3 \geq \Delta_2$ such that $\Delta \geq \Delta_3$ (our procedure at step Δ yields the pair α) \longrightarrow (Δ is even). We claim that if $\Delta_3 \leq \Delta \leq t \otimes \theta_{\Delta}^{\alpha}(\alpha)$, then $\mathcal{G}_{\mu}^{\alpha}$ (x)... Obviously, it suffices to consider the case $t = 4+1$. Assume the contrary: $~4\geqslant~4_3~\&~\mathcal{C}_4^{\ltimes}~(x)$, but $~\mathcal{C}_{4+}^{\ltimes}~(x)$ is undefined. If at step $~4$ of the construction we are in case al), then there exists a frame $\mathcal{L} \in K_g$ such that ht $(\mathcal{L},\mathcal{L}) \neq \text{ht}(\mathcal{L},\mathcal{L}+f)$ & $\ln(\mathcal{U}) \geq \text{ht}(\mathcal{L},\mathcal{L})$; but this is impossible in view of the choice of \mathcal{A}_{n} . If we are in case a2) or a3), then, by choice of δ_0 , for some $\beta \in \mathcal{L}_1$ we can extend the definition of β_4^{β} , but this is impossible in view of the choice of $\frac{1}{4}$. Case a4) is obviously impossible, and case b) is impossible by the choice of ζ_3 . Contradiction. Now consider $\zeta_3 \zeta_3$ and x such that $\int_{\zeta_4}^{\zeta_4} (x)$, and suppose $G_4^\infty(x) = (A_0,\ldots,A_i,\varphi_0,\ldots,\varphi_i)$. Consider $t \geq t$, as shown above, $G_t^\infty(x)$, so let $\mathcal{G}_{\neq}^{\prec}(x) = (B_0,\ldots,B_i^{\prime},\psi_0,\ldots,\psi_i^{\prime})$. From the description of the construction it is easy to see that for each $e \leq i$ there exists a bijection $\Theta_{e,t}: A_{e} \to B_{e}$ such that $\Theta_{e,t} (P) \supset P$ (obviously, $\theta_{e,t}$ is uniquely determined). For $e \leq i$ we put $A_e^{\circ} = \{ \rho \in A_e \mid \theta_{e,t} \neq 0 \}$ for some $t \ge 4$. Suppose $t_{\rho} \ge 4$ is such that

$$
\left\{P \in A_e \mid \theta_{e,t_o}(\mathcal{P}) \cap \mathcal{I}_{e,t_o} \neq \emptyset\right\} = A_e^{\circ}
$$

for all $e\leq i$. From the description of al) it now follows immediately that $t_0 \leq t \to 0$ $\mathcal{L}(\boldsymbol{x}) = \left. \mathcal{G}^{\mathcal{L}}_{t}(\boldsymbol{x}) \right.$ In convergence of the sequence $\left\{ \mathcal{G}^{\mathcal{L}}_{t} \right\}_{t \geq 0}$ is proved.

Before proving the second half of the lemma for α we make several remarks. Suppose $\beta \in \mathcal{L}_\sigma'$ \cup $\{\alpha\}, \mathcal{G}' = \mathcal{L}m$ $\forall f$, We define a partial function α^r as follows: $\beta^r(\mathcal{X}) = \mathcal{Y} \leftrightarrow$ \leftrightarrow $f'(y)$. $\& x \in b$ s $(b^{\prime\prime}(y))$ The sequence of finite functions $\{f^{+}_{a}\}_{a\leq a}$ has the following properties: a) it is strongly computable, b) it converges to $~b'~$, and c) $b'_{\lambda}~(x)$, $\&~b'_{i}~(x)$, $bs(f'_{\ell}(x))$ \subset bs $(f'_{\ell+1}, f(x))$; therefore, the function a^{ℓ} is partial recursive and the domain of a'' , which we denote by H' , is a recursively enumerable set. If $\beta \in \mathcal{L}$ is a pair of the first or second kind, then H^r is finite, hence $\varphi(U,\bm{\Pi}^r)=\bm{0}$. Suppose $\bm{\beta} \in \bm{\mathcal{Z}}_{\bm{\rho}}$ is a pair of the third kind, $\beta = (\mathcal{L}, \beta)$. We calculate $\oint (\mathcal{U}, H^{\beta})$. Suppose $K = \ln (\mathcal{L})$, $j = \sigma (\beta, \pi)$ $K+1$). We claim that $\psi(U,H')=d_{m}(B_{j})$ (where $\{\beta_{e}\}_{e\geq0}$ is the computable sequence introduced earlier). Indeed, it is obvious, in the first place, that $g^{\beta}(H^{\beta})=N$ (see case a4) of the construction), and, secondly, it follows from the description of the second part of case b) that for $\mathcal{X} \in \mathcal{H}$ we have $\mathcal{X} \in U \leftrightarrow \mathcal{Y}$ ($\mathcal{X} \in \mathcal{B}_{\ell}$, which, in conjunction with property 03) of the φ -operator, yields the equality φ $(\varnothing, H'$ $)$ = α_{m} (\varnothing, J) .

We will now prove the second half of the lemma for α . We first analyze the case where α is a pair of the first kind, $\alpha = (\alpha, 1)$, $\ln(\alpha) = c(m, n, e) = i$, $\alpha = \sup(m, n)$. Assume that the function \int_{4}^{∞} = $\lim_{\Delta \to \infty}$ \int_{4}^{∞} has an infinite domain. Then it follows from the description of case a2) of the construction that the domain of G^{∞} is N , hence $g^{\infty}(H^{\infty})=N$. Let $\widetilde{H}=U\{P\}$ $\mathcal{I}_{\mathcal{I}}(f_{\alpha}(x) = \{A_{\alpha},\ldots,A_{\alpha},\beta_{\alpha},...,\beta_{\alpha}\}\&\mathcal{P}\in\mathcal{A}_{\alpha}\&\mathcal{R}\in\mathcal{P}_{\alpha}\}\; ;$ it is clear that set \mathcal{H} is recursively enumerable and $H\mathbf{\subseteq} H^{\top}$. It follows from the definition of pairs of the first kind that for each x we have $\widetilde{H} \cap \text{bs}(G^{\infty}(x)) \neq \emptyset$, hence $g^{\infty}(\widetilde{H})=N$, and it follows from the description of the second part of case b) of the construction that for $\alpha \in H^{\infty}$ we have $x \in U \longrightarrow g^{\infty}(x) \in \mathcal{M}$; this, in conjunction with property 03) of the ψ -operator, yields the equality $\psi(\mathcal{U}, \widetilde{\mathcal{H}})$ = $\alpha'_{m}(M) = I$. We claim that the function f_{e} is defined on the set \widetilde{H} , $f_{e}(\widehat{H}) \cap H^{\infty} = \emptyset$ and for each $x \in \widetilde{H}$ we have $x \in U \leftrightarrow f_{\ell}(x) \in U$. Indeed, we would otherwise have $\lim_{\Delta x \to \infty} \ln(\alpha, 1) \in N$, while our assumption "the function G^{∞} has an infinite domain" implies, as is easily seen, the equality $~\mathcal{L}m~$ in $~\mathcal{\mid} \mathcal{A}, 1 = \infty$. We call a tower $~A~$ final if there exists $~\mathcal{A}$ such that ~>~ ---+ (the tower ~ exists to step •). Put V-- ~ \ (o { bs (~) I ~ is a final tower}) The set V is recursively enumerable, as is the set $\forall n$ ($N \vee U$). Therefore, by 03), $\oint (U,$ V) = θ . It follows from the description of case a2) of the construction that $N=V\cup\left(\bigcup_{i}H^{i}\right)$ $\{\rho \in \Omega_p \cup \{\alpha\}\}\)$, and it follows from the properties of f_e and 02) and 03) that $I = \psi(0, \widetilde{H}) \le$ $\psi(U, V \cup (U \{H^{\beta} \mid \beta \in \mathcal{L}_a\})) = U \{\psi(U, H^{\beta}) \mid \beta \in \mathcal{L}_a\} \in \mathcal{E}(\mathcal{L}^{\mathfrak{o}})$, which contradicts the assumptions of Theorem I.

We now analyze the case where α is a pair of the second kind, $\alpha = (\alpha, \ell)$, $\ln (\alpha) = i = c(n, \ell)$. Assume that the function $\sigma = \omega n ~ b$, has an infinite domain. Then it follows from the description of case a3) of the construction that the domain of $~G~$ is $~N$, hence $~\mathcal{Q}~$ (H $~J=\mathcal{N}$. It is also easy to see that for $x \in \mathbb{R}^{\infty}$ we have $x \in U \leftrightarrow \varphi^{\infty}(x) \in \mathcal{N}$. Now consider the function f_g . We claim that f_g is a g.r.f. and that for each x we have $x \in \mathcal{N}_{g/g}$ \leftrightarrow $f_g(x) \in U$ (is the previosuly fixed g.r.f. representing the morphism $b:\mathcal{L}_j\longrightarrow\mathcal{L}_{\pi}$). Indeed, in the contrary case we have $\lim_{\Delta \to \infty}$ in $(i,4) \in \mathbb{N}$, and our assumption "the function β^{∞} has infinite domain" implies that $\lim_{\Delta \to \infty} \ln(i, \Delta) = \infty$. It follows from consideration of case a3) of the construction that for each x we have bs $\left(\mathcal{G}^{\alpha}(x)\right)\cap\mathcal{f}_{\ell}(N)\neq\emptyset$, hence the image of the p.r.f. g^* f_e is N. This last fact, in conjunction with the relations $x \in H^{\infty} \to (x \in U \leftrightarrow g^{\infty})$ $(x) \in \mathcal{N}$, $x \in \mathcal{N}_{g(n)} \longrightarrow f_e(x) \in U$ and 03), yields the inequality $d_m(\mathcal{N}) \leq d_m(\mathcal{N}_{g(n)}) \in \mathcal{S}(\mathcal{L}^o)$, which contradicts the assumptions of Theorem i.

Lemma 1 is proved.

Suppose $\mathcal{Q}_g = \{\mathbf{c} \in \mathcal{L} \mid \text{nr } (\mathbf{c}) \in \mathcal{N} \}$ and $\mathcal{G} = \lim_{\mathbf{c} \to \mathbf{c}} \mathcal{G}_{\mathbf{c}}$ for $\mathbf{c} \in \mathcal{L}_g$ (the sequence $\{\mathcal{G}_{\mathbf{c}}\}_{\mathbf{c} > 0}$) converges by Lemma 1). Obviously, the tower $\mathcal{A} \to \infty$ and $x \in \mathcal{N}$ such that $G^{\infty}(x)$, $\& \mathcal{A} = G^{\infty}(x)$. Recall that $V = \mathcal{N} \setminus (U \{bs(A) | A \text{ is a final})\}$ tower}) and $x \leq l \longrightarrow x \in \mathcal{D}_i$ (where $\{\mathcal{D}_i\}_{i \geq 0}$ is our sequence from $(*)$. For each triple $(\propto x, i)$ such that $\propto \epsilon \Omega_a \& x \epsilon D$. $\& i \leq 1$ n(\propto) we introduce the set $\mathcal{R}_{\bullet i}^{\infty} = \cup \{\mathcal{P} \mid \text{there} \}$ α exists $\gamma \in N$ such that $G'(y) \times G'(y) = (A_0, \ldots, A_j, \varphi_0, \ldots, \varphi_j) \times P \in A_i \times \mathbb{Z} \underset{\sim}{\mathbb{Z}} (\mathcal{P})^j$; for each triple (α, x, i) such that $i = \ln(\alpha) \& \alpha \in \Omega_q \& x \in \mathbb{D}_i$ we introduce the set $\widetilde{R}_{xi}^{\alpha}$: $\widetilde{R}_{xi}^{\alpha} = \phi$ if α is a pair of the first or second kind, while if $\boldsymbol{\infty} = (\boldsymbol{\mathcal{X}},\boldsymbol{\mathcal{B}})$ is a pair of the third kind, then if $x \notin \mathcal{B}$, and $\mathcal{K}_{\pi} = \bigcup \{bs(\sigma(y)) | y \ge 0 \}$, if $x \in \mathcal{B}$. We also put

$$
R_{xi} = \bigvee \bigcup \big(\bigcup \big\{ R_{xi}^{\alpha} \mid \alpha \in \Omega_0 \& \ i \leq \ln \ (\alpha) \big\} \big) \bigcup \big(\bigcup \big\{ \widetilde{R}_{xi}^{\alpha} \mid \alpha \in \Omega_0 \& \ i = \ln \ (\alpha) \big\} \big).
$$

LEMMA 2. The set R_{xi} is recursively enumerable and $\psi(U,R_{\text{xi}}) = \psi(U,R_{\text{xi+1}})$.

Let $K_n = \{X \mid X$ is a frame $\&$ ln $(Z) \leq i \}$, $K_i = \{X \in K_n | \text{ht}(Z) \neq \infty \}$. Suppose Δ_n is such that $\lambda \geq \lambda_0 \longrightarrow |\text{ht}(\mathcal{X})=$ ht $(\mathcal{X},\mathcal{Y})$ for $\mathcal{X} \in \mathcal{K}$, δ or σ for pairs $\alpha \in \mathcal{S}$ of the second kind and of length $\leq i$. Put $Q'_{ri} = U \{\rho \mid \text{there exist } i \geq i_0 : \alpha \in \Omega, \ y \in N \text{ such that }$

1)
$$
\int_{4}^{\infty} (y) \cdot 8 \cdot G_{4}^{\infty}(y) = (A_{0},...,A_{j},\rho_{0},..., \rho_{j}) \& \text{is } \rho \in A_{i} \& \text{are } \rho_{i} \ (P);
$$

2) ht $(\mathcal{L}, \mathbf{1}) > \ln (G_{4}^{\infty}(y))$ for all $\mathcal{L} \in K_{0} \setminus K_{j}$.

We also put $R'_{\bm{x}\bm{i}} = \cup \{R_{\bm{x}\bm{i}}^{\bm{c}} \mid \bm{\alpha} \in \mathcal{Q}_o \ \& \ \bm{i} \in \text{ln}(\bm{\alpha})\}$. We claim that $\forall \cup R_{\bm{x}\bm{i}}^{\prime} = \forall \cup Q_{\bm{x}\bm{i}}^{\prime}$. The first set is obviously contained in the second. Let us prove the reverse inclusion. Suppose $a \in \mathbb{Q}'_{n} \setminus V$; and suppose $\exists \geq \delta_0$, $\alpha_0 \in \mathcal{Q}$, $\gamma_0 \in \mathcal{N}$, \mathcal{P}_0 satisfy conditions 1) and 2) in the definition of \mathcal{U}_{σ} and $\alpha \in P$. Since $\alpha \notin V$, it follows that for uniquely determined α , ϵ 5 $y, \in \mathbb{N}$ we have $f_{4+1}^{(1)}(y_1)$! $\&$ $a \in b s(\mathcal{F}_{4+1}^{(1)}(y_1))$. Let $f_{4+1}^{(1)}(y_1) = (\mathcal{B}_0, \ldots, \mathcal{B}_k, \mathcal{V}_0, \ldots, \mathcal{V}_k)$. Looking at the description of the construction, it is easy to see that by virtue of the choice of \mathcal{A}_{ρ} and condition 2) we have $\ln(\alpha_0) \geq \ln(\alpha_1) > i$, and if $\alpha_1 \neq \alpha_0$, then $\ln(\alpha_0) > \ln(\alpha_1)$, but if $\alpha_{\sigma} = \alpha_{\sigma}$, then $\gamma_{\sigma} = \gamma_{\sigma}$. Let P_{σ} be the element of \mathbb{B}_{l} containing α . Again by the choice of s_{ρ} and condition 2), $P_{\rho} \supset P_{\rho} \& \psi_{i}'(P_{\rho}) \supset \varphi_{i}'(P_{\rho})$, hence $x \in \psi_{i}'(P_{\rho})$. Thus, $4+f$, α_{ρ} , $\psi_{i}P_{\rho}$ satisfy conditions 1) and 2) and $\frac{\rho}{\rho} \subset \frac{\rho}{\rho}$. Continuing this argument, we obtain in t steps a sequence $(\alpha_0, \beta_0, P_o), \ldots, (\alpha_t, \beta_t, P_t)$ such that $\ln(\alpha_0) \geq \ldots \geq \ln(\alpha_t) \geq \lambda$ and if $\alpha_{t+1} \neq \alpha_t$, then $\ln(\alpha_{j+f})$ < $\ln(\alpha'_j)$, but if $\alpha'_{j+f} = \alpha'_j$, then $y'_{j+f} = y'_j$, the set $1+t, \alpha'_t, y_t, P_t$ satisfies conditions 1) and 2) and $P_g \subset P_i \subset ... \subset P_g$, and so on. The sequence $\{\alpha_t, \gamma_t, \beta_t\}$, $\neq 0$ obviously converges; let (y, z, \mathcal{S}) be its limit. Clearly, $\sqrt{\epsilon} \mathcal{Q}_0$ & ln $(y) \geq i$ and $a \in \mathbb{R}$. Therefore, the equality $V \cup R_{xi}' = V \cup Q_{xi}'$ is proved and with it the recursive enumerability of the set V $U R_{xi}'$, since the set $VUQ'_{\alpha i}$ is obviously recursively enumerable. Suppose $\alpha \in \mathcal{L}_p$ $\alpha \in \mathbb{R}$ in (α) . It is easy to see that the set $\tilde{\mathcal{R}}_{\alpha i}^{\alpha}$ is either empty or equal to \mathcal{H}^{α} (\mathcal{H}^{α} is the set i the proof of Lemma 1, where we proved that it is recursively enumerable). But $R_{xi} = V \cup R_{xi}'$ $U(U)$ $\{R_{ri}^{\alpha} \mid \alpha \in \mathcal{L}_0 \& i=ln(\alpha)\}\,$, hence the set R_{ri} is recursively enumerable.

We will now prove the equality $\psi\left(\mathcal{U}, R_{xi}\right) = \psi\left(\mathcal{U}, R_{xi+1}\right)$.

$$
R_{xi}^{'} = \cup \{R_{xi}^{\alpha} \mid \alpha \in \Omega_{0} \& \text{ } i+j \in \text{ in } (\alpha)\};
$$

\n
$$
R_{xi}^{2} = \cup \{R_{xi}^{\alpha} \mid \alpha \in \Omega_{0} \& \text{ } i = \text{ in } (\alpha)\};
$$

\n
$$
R_{xi}^{3} = \cup \{R_{xi}^{\alpha} \mid \alpha \in \Omega_{0} \& \text{ } i = \text{ in } (\alpha)\};
$$

\n
$$
R_{xi+1}^{'} = \cup \{P \mid \text{ there exist } \alpha \in \Omega_{0} \& \text{ } i = \text{ in } (\alpha)\};
$$

\n
$$
R_{xi+1}^{'} = \cup \{P \mid \text{ there exist } \alpha \in \Omega_{0} \text{ and } y \in N \text{ such that}
$$

\n
$$
G^{\alpha}(y) \cdot \& \quad G^{\alpha}(y) = (A_{0}, ..., A_{j}, \varphi_{0}, ..., \varphi_{j}) \&
$$

\n
$$
\& \quad i+j \in j \& \quad P \in A_{i+j} \& \quad \alpha \in \varphi_{i+j} (P) \} = \cup \{R_{xi+1}^{\alpha} \mid \alpha \in \Omega_{0} \& \text{ } i+j = \text{ in } (\alpha)\}.
$$

It is obvious that $R_{\bm{r}} = V \cup R_{\bm{r}}' \cup R_{\bm{r}}' \cup R_{\bm{r}}'$, $R_{\bm{r}i+1} = V \cup R_{\bm{r}}' \cup R_{\bm{r}}'$. The recursive enumerability of the sets $V\mathcal{U}\mathcal{K}_r$; $\mathcal{Y}\mathcal{U}\mathcal{K}_{r}$; is proved in the same way as the recursive enumerability of \forall U $R_{\bm{x}i}$ was proved in the first part. Obviously, \forall U $R_{\bm{x}i}^{'} \in \forall$ U $R_{\bm{x}i+1}^{'}$, hence, in view of 02), ϕ $(U, V \cup R'_{\tau i}) \le \phi$ $(U, V \cup R''_{\tau i+1})$. Consider the partition P of the set $V \cup$ $f(x_i): P = \{V \cap U\}$ \cup $\{V \cap (N \setminus U)\}$ U (the set appearing after the symbol U in the definition of ~%,), and the equivalence relation connected with P on Vu~z1~¢l : **£Z~{~-~-** (a,b) EU{ $\mathcal{P} \times \mathcal{P}$ | $\mathcal{P} \in \mathcal{P}$ }. It is obvious that for each $a \in V \cup \mathcal{R}^{\prime}_{\bullet,\bullet}$ there exists $b \in V \cup \mathcal{R}^{\prime}$ such that $a\!\sim\!b$ and for $a,b\!\in\!V\cup\mathcal{K}_{r+1}$, : $a\!\sim\!b\longrightarrow\!a\!\in\!U\rightarrow\!\!\!\rightarrow b\!\in\!U$). Therefore, if we can prove the recursive enumerability of the equivalence \sim , then, in view of 04), we would have \mathbf{r} ψ (U, VU $\kappa_{x,i}$, ψ = ψ (U, VU $\kappa_{x,i}$). Let $\kappa_{a} = \{X \mid X \text{ is a frame } \& \text{ ln }(\mathcal{X}) \leq \iota + i\}, \kappa_{f} = \{\iota \in \kappa_{a}\}$ ht $(\mathscr{L})\neq o\overline{)}$. Suppose \mathscr{L}_{o} is such that $\mathscr{L}_{\mathscr{L}_{o}} \to [\text{ht}(\mathscr{L},\mathscr{L})=\text{ht}(\mathscr{L})$ for $\mathscr{L}\in\mathscr{K}_{\mathscr{L}}]$ & $[\mathscr{L}_{\mathscr{L}}^{\infty}=\mathscr{L}^{\infty}$ for pairs ∞ of the second kind and of length $\leq i+1$. Consider the family of sets $Q: Q =$ $\{V\cap U\}$ U $\{V\cap (N\setminus U)\}\cup \{Q\}$ there exist $\{S\}\subseteq S_{0}$, $\alpha\in\mathcal{Q},~y\in\mathcal{N}$ such that $1) \mathcal{G}_{4}^{\infty}(y) \cdot k \mathcal{G}_{4}^{\infty}(y) = (A_{0},...,A_{j},\varphi_{0},...,\varphi_{j}) \& j \geq i + 12 \mathcal{Q} \in A_{i+j} \& x \in \varphi_{i+j} (Q),$ 2) ht $(\mathscr{L},\mathscr{L}) > \ln(G_{\mathscr{L}}^{\infty}(y))$ for all $\mathscr{L} \in \mathscr{K}_{\gamma} \setminus \mathscr{K}_{\gamma}$.

Obviously, the family Q is computable and $P \subset Q$. We will prove that for each $Q \in Q$ there exists $P \in \mathcal{P}$ such that $Q \subset \mathcal{P}$. If $Q = V \cap U$ or $Q = V \cap (N \setminus U)$, then this is so. Suppose that for certain $\lambda \geq \lambda_0$, $\alpha_0 \in \Omega$, $\gamma_0 \in N$ the set $\lambda, \alpha_0, \gamma_0, \mathcal{Q}$ satisfies the above conditions 1) and 2). Fix $a \in \mathcal{Q}$ and denote \mathcal{Q} by \mathcal{Q}_0 . If $a \notin V$, then arguing as in the first part, **we obtain a sequence** $\{(\alpha_+, \mu_+, Q_+) \}_{+,~\circ}$ **converging to some triple** (j', z, P) **, where** $Q_{\rho} \subseteq Q$ **,** \subset **, ...** hence $\mathcal{U} \subseteq \mathcal{P}$, and for some $\mathcal{I} \geq \mathcal{O}$ the set $4+t$, \mathcal{A}_t , \mathcal{Y}_t , \mathcal{Y}_t , \mathcal{Y}_t satisfies conditions 1) and 2), hence $P \in \mathbb{P}$. It remains to analyze the case $a \in V$.

Suppose $t > 0$ is such that α lies in the base of some tower to step $+ t$ but not to step $3+t+1$. Arguing as in the first part, we obtain a sequence (α_0, ψ_0, d_0) , $(\alpha_1, \psi_1, \alpha_1)$, $\ldots, (x_f, y_f, Q_f)$ such that $Q_0 \subset Q_1 \subset \ldots \subset Q_f$ and the set $\Delta + \epsilon$, α_f , y_f , Q_f satisfies conditions i) and 2). If we now look at the description of the construction and take into account the choice of ϕ_o and condition 2), we see easily that either $Q \subset Q_f \subset V \cap U$ or $Q_i \subset Q_f \subset V \cap U$ $(N \setminus U)$. It follows from what has been proved that $U\{\{Px\}\neq P\} = U\{QxQ \mid Q \in Q\}$; but the second set is recursively enumerable in view of the computability of the family \bm{Q} , hence the equivalence \sim is recursively enumerable. Thus, the inequality $\psi\left(\mathcal{U}, \mathcal{V}\cup \mathcal{R}_{\mathbf{X}^{i+1}}^{1}\right)$

 ψ (U, VU R'_{xi}), hence also the equality ψ (U, V u R'_{xi}) = ψ (U, V u R'_{xi+1}) is proved. In a completely analogous way we can prove that $\psi(U,R_{x,i+1}^{\alpha^{(m)}})=\psi(U,R_{x,i}^{\alpha^{(m)}})$ for pairs $\alpha:\alpha\in\mathcal{L}_0^{\infty}$ & $i+j \leq 1$ n ($\lt \lt$)

It is easy to see that the set $\mathcal{R}_{x_i}^3 \searrow \mathcal{R}_{x_i}^2$ is finite, hence, the view of 02) and 03), $\psi((U,R_{\textbf{\textit{ri}}}^3)\leqslant \psi((U,R_{\textbf{\textit{ri}}}^2)$. Thus, it remains to prove the inequalities

$$
\psi\left(\mathcal{U},\mathcal{R}_{xi}^{2}\right)\leq\psi\left(\mathcal{U},\mathcal{R}_{xi+1}\right),\,\psi\left(\mathcal{U},\mathcal{R}_{xi+1}^{2}\right)\leq\psi\left(\mathcal{U},\mathcal{R}_{xi}\right).
$$

Let $\mathcal{Q}_1 = {\alpha \in \mathcal{Q}_0 | \alpha = (\emptyset, \beta)}$ be a pair of the third kind $\alpha \ln \alpha = i \alpha x \in \beta$, $\mathcal{Q}_2 = {\alpha \in \mathcal{Q}_0 | \alpha = (\emptyset, \beta)}$ **a** pair of the third kind $\boldsymbol{\alpha}$ in $(\boldsymbol{\alpha}) = \boldsymbol{b} + \boldsymbol{b}$ and $\boldsymbol{x} \in \mathcal{D}$, and it is obvious that $\left\{\mathcal{R}^{\perp}_{\mathbf{x}i+1}~|~\ll\epsilon~\mathcal{L}_j~\right\}$. Therefore, it suffices to prove that $\varphi~(U,\mathcal{R}^{\infty}_{\mathbf{x}i})\leqslant\varphi(U,\mathcal{R}_{\mathbf{x}i+1}),~\ll\epsilon~\mathcal{Q}_j$ and $\psi(U,\widetilde{R}_{xi+1}) \leq \psi(U,R_{xi})$, $\propto \epsilon \mathcal{L}_2$.

Suppose $\alpha \in \mathcal{L}_7$; $\alpha = (\alpha, \beta)$, $\ln(\alpha) = i$, $\beta \subset \mathcal{D}_{i+j}$, $\alpha \in \beta$, $\beta \cap H \neq \emptyset$; let $j =$ $\mathcal{T}(\mathcal{D}, b+1)$. It follows at once from the definitions that $K_{\bm{n},t} = \mathcal{H}^{\bm{\alpha}}$ (the set $\mathcal{H}^{\bm{\alpha}}$ was introduced in the proof of Lemma 1), hence $\psi(V,K_{m};J=\psi(U,H^{-})=d_{m}\left(S;J\right)\left(\left\{S_{m}\right\}_{m\geq 0}$ is the sequence introduced earlier, and the computation of ψ (U, H^{∞}) is given in the proof of Lemma 1). Let β = $\{ \psi \in \mathcal{D}_{i+2} \mid j \leqslant i+2\frac{\psi}{2}, \varrho = \psi(\beta, i+2) \right.$ It is obvious that a) $j \sim_{i+2} q$, hence a_m (D. $r = a_m$ (D. I ; b) $x \in D$; c) $\beta \cap H \neq \emptyset$. Consider a pair of the third kind, $\beta = 0$ $({\mathcal L}',\tilde{\beta}')$, where ${\mathcal L}'$ is the sequence $({\{\{0\}\},\ldots,\{\{0\}\})}$ of length i^{+} . As we have already noted, $\lim_{n \to \infty} \rho(x, s) \in N$, hence nr $(\beta) \in N$. Therefore, $\beta \in \mathcal{Q}_2$, and in view of a),

$$
\psi\left(\mathcal{U},\widetilde{R}_{\text{xi}}^{\text{d}}\right)=a_{m}'\left(B_{j}\right)=a_{m}'\left(B_{q}\right)=\psi\left(\mathcal{U},\widetilde{R}_{\text{xi}}^{\text{d}}\right)=\psi\left(\mathcal{U},R_{\text{xi}+j}\right).
$$

Suppose $\ll \epsilon~\mathcal{Q}_2$; $\ll =(\mathcal{O}, \mathcal{B})$, $\mathcal{B} \cap \mathcal{H} \neq \emptyset$, $\ln(\mathcal{O})= i+1$, $\mathcal{B} \subset \mathcal{D}_{i+2}$, $x \in \mathcal{B}$; let $j=\mathcal{J}$ $(\beta, i+2)$. We decompose the element $[j]_{i+2}$ of the distributive lattice \tilde{D}_{i+2} into atoms: $\left[\hat{U}\right]_{i\dot{z}+2} = \left[\hat{U}_1\right]_{i\dot{z}+2} \cup \ldots \cup \left[\hat{U}_n\right]_{i\dot{z}+2}$. Obviously, $\phi(\tilde{U}, \tilde{X}_{x\dot{i}+1}) = d_m(\beta_i) = \cup \left\{d_m(\beta_i) \mid i \leq \ell \leq n\right\}$. Therefore, it suffices to prove that $d_m(B_{j_\ell}) \leq \psi(U,R_{xi})$. Denote j_ℓ by χ . Let $\left[[K_r]_{i+r},\ldots,$ K_{m} $_{i+1}$ } be the totality of minimal elements of the set $\{[\mathcal{Y}]_{i+1} | \mathcal{Y} \in \mathcal{D}_{i+1}^{*} \& \mathcal{Y} \leq_{i+2} \mathcal{Y} \}$. In view of D2), each K_1 $_{i+1}$ is an atom of the distributive lattice \mathcal{D}_{i+r} , and since $g_{\leq_{i+2}} x$, it follows that for some s_{q} we have $K_{s_{q}}s_{\zeta+q}x$. Denote $K_{s_{q}}$ by ω . Suppose $A=\{\psi\in\mathcal{D}_{i+1}\mid$ $w \leq_{i+1} y$. If $\Lambda \cap H \neq \emptyset$, consider the pair $\beta = (\mathcal{L}, \Lambda)$ of the third kind, where \mathcal{L} is the sequence $({0}~;...,{0}~;)$ of length i . In view of our assumptions, $\beta \in \mathcal{Q}_1$ and $\psi((U,\widetilde{R}_{x\dot{t}}^{\beta})=d_{m}'(B_{ur})\geq d_{m}'(B_{q})$. It remains to analyze the case $A\cap H=\emptyset$. Suppose $\mathcal{L} = (\mathcal{L}_p, ..., \mathcal{L}_{i+j}')$ is the uniquely determined good frame such that $\mathcal{L}_{i+j} = \{A\}$ and let $\overline{B}=\{y\in\mathcal{D}_{i+2}~|~g\leq_{i+2} y\}$. Obviously, $x\in A\subset\overline{B}$. Consider the pair $\beta=(\mathcal{L},\overline{B})$ of the third kind. The following chain of equalities is a consequence of the definitions and the first part of the proof of Lemma 2: d_{m} (B_{q}) = ϕ ($U, \widetilde{R}_{xi+j}^{\beta}$) = ϕ (U, R_{xi+j}^{β}) = ϕ (U, R \oint $(U,\mathcal{R}_{\bm{x}})$. Thus, the proof of Lemma 2 is complete.

We will use the following notation up to the end of the proof of Theorem 1: if $\mathcal{X}\in\mathbb{Z}_2^N$, then

$$
R'_{\mathbf{x}i} \geq (\cup \{R_{\mathbf{x}i}^{\alpha} \mid \alpha \in \Omega_0 \& i \leq \mathrm{ln}(\alpha)\}) \cup V,
$$

$$
R_{\mathbf{x}i}^{2} \geq \cup \{\tilde{R}_{\mathbf{x}i}^{\alpha} \mid \alpha \in \Omega_0 \& i = \mathrm{ln}(\alpha)\};
$$

clearly, $R_{m} = R_{m}^{f}$, U R_{m}^{z} . We define a mapping $c: \mathcal{L} \to \mathcal{L}^{e}$ as follows: $c\mu(x) = \psi(U, R_{m}^{f})$. Let us verify the correctness of the definition. Suppose $\mu(x)=\mu(y)$. Then, in view of L0), for some \emph{l} we have $x,y\in\mathcal{D}_i$ & $x\sim_i\ y$. By Lemma 2, $\psi\left(\emph{U},\emph{R}_{xi}\right)=\psi\left(\emph{U},\emph{R}_{xx}\right),\ \psi\left(\emph{U},\emph{R}_{ui}\right)=1$ ψ (U,K_{uu}) . Therefore, it suffices to prove that ψ (U,K_{ni}) = ψ (U,K_{ui}). Since $x\gamma$ **4** it follows that $K_{xi} = K_{yi}$. Now suppose $\alpha = (\alpha, \beta)$ is a pair or third kind, \ln ($\alpha = \alpha$, $\mathcal{A} \in \mathcal{G}_{\alpha}$, $\mathcal{X} \in \mathcal{B}'$; let $j = \mathcal{U}(\mathcal{B}, \nu+1)$. Also, let $\mathcal{B} = \{Z \in \mathcal{D}_{i+1} \mid j \leq j+1 \leq k \leq k \}$, $\mathcal{Q} = \mathcal{U}(\mathcal{B}, \nu+1)$. Obviously, $j \sim_{i+1} q$, $y \in \tilde{B}$, $\tilde{B} \cap H \neq \emptyset$. Consider the pair $\beta = (\mathcal{L}, \tilde{B})$ of the third kind, where \mathcal{L} is the sequence $(\{0\},\ldots,\{\{0\}\})$ of length 6 ; it is clear that β lies in \mathcal{L}_α . It follows from all of the above that ψ $(\nu, \tilde{\beta}_{x}^{\alpha})$ - $\alpha'_{m}(\beta_{j})$ = $\alpha'_{m}(\beta_{q})$ = ψ $(\nu, \tilde{\beta}_{y}^{\ \beta})$. In view of the symmetry of the situation, the equality $\psi(u, K_{\tau i}) = \psi([U, K_{i,i})]$ is proved, hence also the correctness of the definition of the mapping c .

LEMMA 3. The mapping $c: Z \longrightarrow Z^e$ is an upper semilattice homomorphism, and the diagram

is commutative.

We must prove that for all x,y we have $C(\mu(x) \cup \mu(y))$ - $c\mu(x) \cup c\mu(y)$. Fix x,y ; in view of L0) and L3), there exists \vec{c} such that $x,y \in \mathcal{D}_i$ and $\mu u(x,y,i) = \mu(x) \cup \mu(y)$; let $x\cup y = u(x,y,i)$. It follows immediately from the definition of an atom of a finite distributive lattice that $K_{m_1,\ldots,m_r} = K_{m_1}$ \cup K_{m_2} , so it suffices to prove that ψ (U, K_{m_1,\ldots,m_r}^2). $\oint (U,\mathcal{R}_{\bm{x}}^2)$ \cup $\psi(U,\mathcal{R}_{\mu}^2)$. We have $\mathcal{C}(\mu(\bm{x}) \cup \mu(\mu)) = \oint (U,\mathcal{R}_{\bm{x},i}^2) = \oint (U,\mathcal{R}_{\bm{x},i}^{\prime}$ $)$ \cup ψ (U , $c\mu(x)\cup c\mu(y)$.

Suppose $\ll=(\alpha, \beta)$ is a pair of the third kind such that $\ln (\alpha) = i$, $\ll \epsilon \mathcal{Q}_0$, $\tau \cup \gamma \in \beta$; let j = $\sigma(\beta, i+j)$. We decompose the element $[j]_{i+j}$ of the distributive lattice \bar{D}_{i+j} into atoms: $[j]'_{i\mu} = [j']_{i\mu}^{i+1}$, $[j']_{i\mu}^{i}$. Obviously, $\psi\left(\mathcal{U},\mathcal{R}_{n...}^{*}\right)$ = $d_{m}(\mathcal{B}_{i})$ μ . $\mathcal{U}_{m}(\mathcal{B}_{i})$. Suppose $f\leqslant \ell \leqslant \ell$. Since $f_{\ell}\leqslant_{i+j}^{r} x\cup y$ and $f_{\ell}\geqslant_{i+j}^{r}$ is an atom of D_{i+j}^{r} , it follows that either $f_{\ell}\leqslant_{i+j}^{r} x$ or $j_e \leq i$, y . Suppose $\widetilde{\beta} = \{z \in \mathcal{D}_{i+1} \mid j_e \leq i$, and \mathcal{L} is the sequence $(\{\{0\}\}, \ldots, \{\{0\}\})$ of length \vec{u} ; if $\rho = (\mathcal{L}, \mathcal{B})$ it isobvious that $\beta \in \mathcal{Q}_0$. If $j_e \in \mathcal{L}_i$, then $\psi(\mathcal{U}, \widetilde{\mathcal{R}}_{\mathbf{x} i}^{\beta})$ $d_m (B_{j_e})$, and if $j_e \leq i_f$, then $\psi (U, \widetilde{R}_{yi}^{\beta}) = d_m (B_{j_e})$. Consequently, $\psi (U, \widetilde{R}_{x \cup y, i}^{\alpha}) \leq$ $\psi\left(U,\mathcal{R}_{x_i}^{z_i}\right)\cup\psi\left(U,\mathcal{R}_{y_i}^{z}\right)$, hence $\psi\left(U,\mathcal{R}_{x\cup y_i}^{z}\right)\in\psi\left(U,\mathcal{R}_{xi}^{z}\right)\cup\psi\left(U,\mathcal{R}_{yi}^{z}\right)$. The inequalities.

$$
\psi\left(\mathcal{U},\mathcal{R}_{xi}^{2}\right)\leq\psi\left(\mathcal{U},\mathcal{R}_{x_{\text{U}}y_{\text{y}},i}^{2}\right),\,\psi\left(\mathcal{U},\mathcal{R}_{yi}^{2}\right)\leq\psi\left(\mathcal{U},\mathcal{R}_{x_{\text{U}}y_{\text{y}},i}^{2}\right)
$$

can be proved in a completely analogous fashion. Thus, the first part of the lemma is proved. We will now prove that $c \cdot \overline{a} = b$.

Let \overline{f} be the g.r.f. fixed earlier such that $\mu f(x)=\overline{a}v(x)$ (recall that the H in condition (**) is $\bar{f}(N)$). It suffices to show that $c\bar{a}v(x) = \frac{\partial v(x)}{\partial r}$ or, taking into account the equality $\bar{\alpha}v(x)=\mu\bar{f}(x)$, that $c\mu\bar{f}(x)=bv(x)$. Fix x and denote $\bar{f}(x)$ by y , suppose $\psi \in D_i$. Then $c\mu(y)=\psi((U, R_{yi}^i))$. It is easy to see that $R_{yi}^i=\phi$ (the notation was introduced before the statement of Lemma 3), since our frames satisfy condition (**). We will now prove that $\psi((U, R_{ui}^2)-\delta v(x))$. Suppose $\tilde{\beta}=\left\{z\in \mathcal{D}_{i+1}~|~y\leq_{i+1}z\right\}$, $j=\sigma(\check{\beta}, i+\iota)$, and \mathcal{L} is the sequence $({0}~; ,..., {}_{0}~;)$ of length i ; let $\beta = (\mathcal{L}, \mathcal{B})$. Obviously, $\beta \in \mathcal{Q}_{g}$, $j \sim_{i+1} g$ and $\psi (U,R_{gi}^{\rho})=d_{m}(\beta;\theta)=g_{\nu}(x)$ (see the definition of $\{\beta_{e}\}_{e\geq0}$), hence $\ell^{y}(x)\leq\psi(U,R_{yi}^{2})$. Suppose $\alpha = (\alpha, \beta)$ is a pair of the third kind such that $\ln(\alpha) = i$, $y \in \beta$, $\alpha \in \mathcal{Q}_0$, and let $f=f(\beta,i+1)$. Then $\psi\left(\mathcal{U},\mathcal{R}_{\mu i}^{\infty}\right)=d_{m}(\beta_{i})\leq d_{m}(\beta_{\mu})=$ $f\psi(x)$. Therefore, $\psi\left(\mathcal{U},\mathcal{R}_{\mu i}^{2}\right)=$ $f\psi(x)$ and the equality $~\mathcal{C}$ e α = α is proved.

LEMMA 4. The mapping $c: \mathcal{L} \to \mathcal{L}^e$ is one-to-one.

We will first prove that $\phi v(x) \in c\mu(q) \longrightarrow \overline{\alpha}v(x) \in \mu(q)$. The right to left implication holds by virtue of Lemma 3. Let us verify the left to right implication. We have d_m $(\eta_{g(x)})$ = $~f\circ(\bm{x})\leq C\mu(\bm{y})=\psi(U,R_{\bm{y}\bm{y}})$. Therefore, by 03), there exists a g.r.f. f_e such that $f_e(N)\subset R_{\bm{y}\bm{y}}$ and $a\in\mathbb{Z}_{g(x)} \leftrightarrow f_{e}(a)\in U$. Let $b=c(n,e)$. It follows from the definition of the indicator for natural numbers and our assumptions that $\lim_{\delta \to 0} \text{ln}(l, \delta) = \infty$. Let $\mathcal{K} = \{U\} \mathcal{K}_{\infty} \cup \{S \in \mathcal{L}_{\infty} \}$ $y \leq \ln (\alpha) \leq b$]U $(\cup \{X_{\mu\nu}\}\cup \{\alpha\in \mathcal{L}_\rho \alpha\}$ in $(\alpha) = y$]. We claim that $\mathcal{T}_{\ell}(N^{1/2}(\alpha)) \subseteq \mathcal{K} \cup V$. Assume the contrary and let = be the first element of the set ~\~) for which ~=~) does not lie in $K \cup V$. Since $\partial \not\in V$, there exists a final tower $~\pmb{\Lambda}~$ such that $~\pmb{\delta} \in \tt{bs}(\pmb{\Lambda})$, (bs $(A \cap U = \emptyset)$; since $\bigwedge^2 E_{\alpha\alpha} \setminus R$, we have $\ln(A) > b$. The following property of the construction is immediate; if a tower $\bm{\mathcal{D}}$ exists to step $\bm{\mathcal{U}}$, a tower $\bm{\mathcal{U}}$ exists to step $\bm{\mathcal{U}}$ +/ , and bs $(\mathcal{B})\cap$ bs $(\mathcal{C})\neq\emptyset$, then ln (\mathcal{B}) \geqslant 1 n((\mathcal{C}) . Now suppose \sim is such that in $(\mathcal{C},\mathbf{1})$ = $\ln{(l_1, \Delta H)} = Q +$. Let us see what must be done as step Δ of the construction. First of all, it is obvious that \overline{b} is even, and at step \overline{b} our procedure yields the number \overline{b} and we have satisfied part a3) of the construction. Secondly (since in $\ln(\zeta, \Delta) \neq \ln(\zeta, \Delta + 1)$), $f_{e_4}(a)'.$, $\beta = f_{e}(a) \notin U_{e}$ and there exists to step 4 a tower B such that $\beta \in b$ s (B) . This tower B must also possess the following properties $\ln(B) > \ln(A) > b$ and bs $(B) \cap U_i = \emptyset$. Consequently, at step Δ we must satisfy the second part of a3), from which follows the inequality ln $(A) \leq i$; but this contradicts our assumptions. Thus, the inclusion $f_{\alpha}(N \setminus \eta_{\alpha(\alpha)})$ $\subset \mathcal{R} \cup V$ is proved. This inclusion easily implies the inequality $\alpha_m~(\Pi_{g(\mathcal{X})}) \leq \psi(\mathcal{U}, \mathcal{R} \cup V)$ = ψ (U,R). We will now compute ψ (U,R). Suppose $\ll \epsilon \mathcal{L}_o$, $y \leq 1 \ln(\epsilon) = j \leq i$. If α is a pair of the first or second kind, then the set $K_{\mu\nu}$ is finite and $\psi~(U,K_{\mu\nu}~)=~U$, so suppose $\mathcal{A} = (\mathcal{U}, \mathcal{B})$ is a pair of the third kind, $\mathcal{U} = (\mathcal{U}_o, ..., \mathcal{U}_r)$, $\mathcal{U}_i = \{A\}$. If $\mathcal{Y} \notin \mathcal{A}$, then $K_{uu} = \emptyset$. Suppose $\forall \epsilon A \subseteq B$, $q \rightleftharpoons r(B,j+1)$. We have $q \leq_{j+1} y$ (hence, $q \leq_{i+1} y$), $\mu(q) \epsilon \bar{a} (z^{\circ})$ (since $~f\cap H \neq \emptyset$), $\psi\left(\overline{U}, \overline{R}_{\mu\nu}^{\alpha}\right) = d_m(\overline{B}_q)$, $\zeta\mu\left(\overline{g}\right) = d_m(\overline{B}_q)$ (the latter equality is proved by means of computations analogous to those of Lemma 3), and therefore ϕ $(U, R_{yy}^{\alpha}) = c\mu(g)$. In a similar way we can compute $\psi(U, \widetilde{R}_{yy}^{\infty})$ for $\propto \epsilon \Omega_{g}$ and $\ln (\alpha) = y$. Finally, there exists $Q \in \mathcal{D}_{i+j}$ such that $Q \leq_{i+j} y$, $\psi\left(\bigcup \mathcal{R}\right) = \psi\left(q\right)$, and $\psi\left(q\right) \in \bar{\alpha}\left(\mathcal{L}^o\right)$. We have $c\bar{a} \nu(x) = b\nu(x)$ $\phi~(\tilde{U},R)=c\mu~(q)$ and $\mu(q)\leq \mu(q)$; but the restriction of C to $\bar{\alpha}({\mathscr L}^{\circ})$ is an isomorphic embedding, hence $\bar{\alpha} \nu(x) \le \mu(q)$ and $\bar{\alpha} \nu(x) \le \mu(q)$, as required.

We will also need a property of distributive semilattices. The concept of distributive semilattice and the following lemma are due to Ershov [15] (in that paper he proved the equivalence of the concept of a distributive lattice and the concept of a semilattice satisfying the "closure condition," which had been introduced earlier by Lachlan [i0]). A semilattice $\mathscr{L}=\langle \mathscr{L},\cup \rangle$ is called distributive if for $\mathscr{L},\mathscr{Y},\mathscr{Z}\in \mathscr{L}$ it follows from $\mathscr{I}\leq \mathscr{Y}\cup \mathscr{Z}$ that there exist $y_1 \le y$, $z_1 \le z$ such that $x = y_1 \cup z_1$.

LEMMA (Ershov [15]). Suppose $\mathcal{L} = \langle \mathcal{L}, U \rangle$ is a distributive semilattice and $A \subset \mathcal{L}$ is a (nonempty) ideal. Suppose $x \sim y$ (mod A) \Rightarrow (there exists $z \in A$ such that $x \cup z = y \cup z$), x / A is the class of the element x relative to the equivalence relation $x \sim y$ (mod A), $x / A =$ ${x/\lambda}$ ${x \in \mathscr{L}},~\hat{x}$ = ${y \in \mathscr{L}}$ ${y \in \mathscr{L}}$, and \mathscr{I} (\mathscr{L}) is the totality of ideals of \mathscr{L} . Then the mapping of $\mathscr L$ into $\mathscr L/\mathscr A X \times \mathscr L(X)$ that sends x into $(x/\mathscr A, \hat x \cap \mathscr A)$ is multivalent.

We have the following easily verifiable implication: ($\mathcal{M}_{\mathcal{L}}$ is a Lachlan semilattice) \longrightarrow ($\mathcal M$ is a distributive semilattice). Therefore, our semilattice $\mathcal L$ is distributive. We now turn to the proof of Lemma 4.

Assume that $\mu (\bar{x}) \neq \mu (\bar{y})$, but $c\mu (\bar{x})=c\mu (\bar{y})$. We will show that there exist $x,y \in N$ such that $\mu(x) \neq \mu(y)$, $c\mu(x) = c\mu(y)$ and $x \leqslant_K y$, where $K = \sup(x, y)$. Suppose $m = \sup(\overline{x}, \overline{y})$, and denote $\mu\left(\bar{x}, \bar{y}, m\right)$ by y . Then $c\mu(\bar{x}) = c\mu(\bar{y})$, and either $\mu(\bar{x}) \neq \mu(y)$ or $\mu(\bar{y}) \neq \mu(y)$. Suppose, for definiteness, that $\mu(\bar{x}) \neq \mu(y)$; obviously, we then have $\bar{x} \neq 0$. Since the enumeration θ : $N \xrightarrow{\text{onto }} \mathscr{L}'$ is a cylinder, we may assume that for all j, z such that $z \in \mathscr{D}_j$ & $z \neq 0$ the set ${x \in D_j \mid \alpha \sim_j x }$ contains at least $j+f$ elements. Suppose $j = {supp}(\bar{x}, y, m)$, and $x \in D_j$ is such that $x \sim_j \bar{x}$ x_j $\leq x$. It is clear that x, y satisfy our conditions. Fix a triple $x, y, \kappa \in N$ such that $\mu(x) \neq \mu(y)$, $c\mu(x) = c\mu(y)$, $\kappa = \sup(x, y)$, $x \leq \kappa y$ We have $c\mu(x) = \psi(0, K_{xx}), c\mu(y) = \psi(0, K_{yy}),$ hence, in view of 03), there exists a p.r.f. f_{ρ} such that the domain of f_{ρ} is equal to $K_{ijk}f_{\rho}$ ($K_{\mu\nu}$) $K_{\sigma\sigma}$, $Z \in K_{\mu\nu} \longrightarrow (E \in U \longrightarrow f_{\rho}(\mathbb{Z})$ U). If $i = c(x, y, e)$, then $x \le i$ and $x \le i$ (here C is the previously fixed g.r.f. effecting a one-to-one correspondence $N^3 \rightarrow N$). Let $\left[K_1 \right]_i, \ldots, \left[K_f \right]_i$ be all atoms of the finite distributive lattice \widetilde{D}_i lying under $[\mathfrak{A}]_i$ and let $\left[\kappa, \right]_i, \ldots, \left[\kappa_w \right]_i$ ($f < \omega$) be all atoms of \widetilde{D}_i lying under $[\mathcal{Y}]_i$. We claim that there exists $\rho,~f < \rho \leq w$ such that $\{z \in \mathcal{D}_i \mid \kappa_\rho\}$ $\{z, z\} \cap H = \emptyset$. Indeed, otherwise we would have $\mu(K_{f+1}),...,\mu(K_{g-}) \in \overline{\alpha}(X^0);$ if $z = \mu(K_{f+1})\cup...$ $U\mu$ (K_{ur}) $\in \bar{a}$ (\mathscr{L} °), then μ ($x)Uz=\mu(y)Uz$, i.e., $\mu(x)/\bar{\alpha}$ (\mathscr{L}^o) - $\mu(y)/\bar{\alpha}$ (\mathscr{L}^o); on the other hand, from the first part of the proof of Lemma 4 we obtain the chain of equalities

$$
\begin{aligned}\n\{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z) \leq \mu(x)\} &= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
\delta \delta(z) &\leq c \mu(\alpha)\} &= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z) \leq c \mu(y)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z)\} \\
&= \{\bar{a}(z) \mid z \in \mathcal{L} \land \bar{\alpha}(z
$$

i.e., $\hat{\mu(x)} \cap \bar{\alpha(x^{\circ})} = \hat{\mu(y)} \cap \bar{\alpha(x^{\circ})}$; by Ershov's lemma, $\mu(x) = \mu(y)$, which contradicts our assumptions. Consequently, the desired ρ exists. If $A = {x \in \mathcal{D}_i | k_\rho \leq i x}$, then $\mathcal{Y} \in \mathcal{A}$, $x \notin \mathcal{A}$, $\mathcal{A} \cap \mathcal{H} = \emptyset$. Suppose $\mathcal{X} = (\mathcal{X}_0, \dots, \mathcal{X}_i)(\mathcal{X}_i = \{A\})$ is the good frame determined by the atom A , and $\alpha = (\mathcal{C}\mathcal{L},I)$ is a pair of the first kind with first component equal to α . It follows from our assumptions concerning $~x,y,e~$ that $~\omega m~$ in $~(\propto, 1)~\equiv~$ \sim , and from part a2) of the construction that $\sigma = \mathcal{L}m$ σ , has infinite domain, which contradicts Lemma 1.

LEMMA 5. The image $c(X)$ of the mapping $c: Z \rightarrow Z^e$ is an ideal of the semilattice Z^e .

We begin with two preliminary remarks. First, suppose $~\mathcal{U}~$ is a frame, $\dot{\iota} = \ln(\mathcal{U})$, and for each $j \geq i$ there exist a final tower $A = (A_0, ..., A_K, \varphi_0, ..., \varphi_K)$ and a subset $P \subset N$ such that $K\geq j$, bs $(A)\cap U=\emptyset$, $\varphi\in A_{i}$, $\emptyset i$ = fr (A,i,P) , and $P\cap\mathcal{D}_{i}\neq\emptyset$. Then bs $(\emptyset i)=\infty$. Secondly, suppose $\mathscr U$ is a frame, $\dot \iota = \ln(\mathscr U)$, $bs(\mathscr U) = \infty$, $\mathbb A = (A_0,\ldots,A_k,~\varphi_0,\ldots,\varphi_k)$ is a final tower of length $\Rightarrow i$, bs(A) $0 \cup -\emptyset$, and suppose $P \in A_i$ and $\text{fr}(A, i, P) \preccurlyeq \emptyset$. Then $P \cap I_i \neq \emptyset$. The proof of these two assertions is easy and is omitted.

In view of property 01) of the ψ -operator, it suffices to prove that for each \dot{b} there exists x such that $c\mu(x) = \psi(U, \mathcal{N}_i)$. Fix $\dot{\iota}$. Suppose $\mathcal{A}_i, ..., \mathcal{A}_e$ are all atoms of \mathcal{D}_i that do not meet H $(A, \cap H = \ldots = A, \cap H = \emptyset)$, $\alpha', \ldots, \alpha^e$ are the good frames determined by these atoms. Consider those atoms A_p , such that for each $j \geq l$ there exist a final tower $A=(A_0, ..., A_K,~\varphi_0, ..., \varphi_K)$ and a subset $P\subset \mathcal{N}$ such that $K\geq j$, $P\in A_i$, $\alpha^{P} = \text{fr}(A,i,P)$, and $P \cap \Pi_i^+ \neq \emptyset$. We may assume without loss of generality that $A_i, ..., A_{nr}$ ($\emptyset \leq \emptyset$) are. precisely those atoms satisfying this condition. Suppose $K_f = \sigma(A_f, i), ..., K_{\omega} = \sigma(A_{\omega}, i)$, and $\mathcal{X} \in \mathcal{D}_i$ is such that $[\mathcal{X}]_i = [K_i]_i \cup ... \cup [K_w]_i$. We have ht $(\mathcal{X}') = ... = \text{ht}(\mathcal{X}^{\mathcal{W}}) = \infty$ (the "first remark"), and if $x \in A_{q}$, then there exists ρ , $\sqrt{\epsilon \rho} \leq w$, such that $A_{q} \supseteq A_{\rho}$, hence $\alpha^2 \ll \alpha^P$; therefore,

(***) if the final tower $A=(A_0,\ldots,A_{\kappa},\varphi_0,\ldots,\varphi_{\kappa})$ and subset $P\subset \mathcal{N}$ satisfy the conditions $x \geq i$, $P \in A_i$, $x \in \varphi_i(P)$, and $bs(A) \cap U = \varphi$, then $P \cap \Pi_i \neq \varphi$ (the "second remark").

On the other hand, there exists $f_0 \geq b$ such that if the final tower $A=(A_0,\ldots,A_\kappa,$ $\varphi_0,\ldots,\varphi_\kappa$ and subset $P\subset \mathcal{N}$ satisfy the conditions $\kappa\geq j_\varrho$, $P\in A_j$, φ_i $(P)=A_\varrho$, where $W < q \leq e$, bs $(A) \cap U = \emptyset$, then $P \cap \Pi_i = \emptyset$.

Suppose $R = \cup \{bs(\mathcal{G}^{\mathcal{K}}(\mathcal{Y}))|\alpha \in \mathcal{Q}_{\rho} \& \ln(\alpha) \leq \int_{\mathcal{G}} \& \mathcal{G}^{\mathcal{K}}(\mathcal{Y})'.\}$. Then $\mathcal{D}_{\mathcal{E}} \subset \mathcal{R}_{\mathcal{I}\mathcal{E}}' \cup \mathcal{R} \cup \mathcal{U}$ and $\phi ~(\cup,\mathcal{R}) \in \mathcal{B}(\mathcal{L}^o)$ (the notation $\mathcal{R}^1_{r_i}, \mathcal{R}^2_{r_i}$ was introduced before the statement of Lemma 3, and $K_{\pi i} = K_{\pi i} U K_{\pi i}$. We will prove that $\psi \{U, R_{\pi i} \neq \psi (U, R_{\pi i})\}$, hence ψ $(U,R_{\bullet i}^1)$, and also that ψ $(U,\Pi;\Pi;R_{\bullet i}^1)=\psi$ $(U,R_{\bullet ii}^1)$. Suppose $\alpha=(\alpha,\beta)$ is a pair of the third kind, $\dot{\iota} = \ln(\alpha)$. $x \in \beta$, and suppose $j = \sigma(\beta, \dot{\iota}+)$, $\alpha \left[j\right]_{\dot{\iota}+j} = \left[j_1\right]_{\dot{\iota}+j} \cup \left[j_d\right]_{\dot{\iota}+j}$ is a decomposition of the element $[j]_{i+f}$ of the finite distributive lattice \widetilde{D}_{i+f} into the atoms. We have

$$
\psi\left(\mathcal{U},\widetilde{R}_{xi}^{\alpha}\right)=d_{m}\left(B_{j}\right)-d_{m}\left(B_{j}\right)\cup\ldots\cup d_{m}\left(B_{j}\right),
$$
\n
$$
\left[\kappa_{1}\right]_{i\neq j}\cup\ldots\cup\left[\kappa_{w}\right]_{i\neq j}=\left[\mathbf{x}\right]_{i\neq j}\ge\left[\int_{i}\right]_{i\neq j}\cup\ldots\cup\left[\int_{d}\right]_{i\neq j}.
$$

Fix ρ ,/ $\leqslant \rho \leqslant d$; since $\left\lfloor j_{\rho}\right\rfloor$, \cdot is an atom of \mathcal{D}_{j+l} , it follows that for some q , / $\leqslant q \leqslant w$, we have $j_P \leq j_H$, K_q . Let $D = \{g \in D_{j+1} \mid f_P \leq j_+, g = (W', B)$. Then $\beta \in \mathcal{L}_q$ and $\varphi(U, K_{xi}) = d_m(\beta; \alpha)$, hence $\varphi((U, \widetilde{K}_{ni}^{\alpha}) \leq \varphi(U, K_{ni}^{\alpha})$ and $\varphi(U, \widetilde{K}_{ni}^{\alpha}) \leq \varphi(U, K_{ni}^{\alpha})$. Now consider the partition of the set \mathcal{K}_{α} : $\mathcal{F} = \{K_{\alpha} : 0 \cup \{V\} \cup \{V\} \cup \{V\} \cup \{V\} \cup \{V\} \}$ there exist $\propto \epsilon \leq \epsilon$ $y \in \mathcal{N}$ such that $G^{\infty}(y)$, $\& G^{\infty}(y) = (A_0, \ldots, A_\kappa, \varphi_0, \ldots, \varphi_\kappa) \& \kappa \geq i \& P \in A_i \& x \in \varphi_i(\mathcal{P}) \&$ bs(A) $0 \cup = \emptyset$) and the equivalence relation connected with P on R_{xi}^{y} : $a \sim b = (a, b) \in \cup \{P\}$

 $\mathfrak{p}(\mathcal{P})$ *PP*. The recursive enumerability of the equivalence \sim can be proved by the methods of Lemma 2; we also have $a \sim b \rightarrow (\alpha \in U \leftrightarrow b \in U)$. In condition (***) it is actually asserted that for each $\alpha \in R_{\nu i}^{\prime}$ there exists $\beta \in (Q_i \cap R_{\nu i}^{\prime})$ U V such that $\alpha \sim \beta$, hence, according to 04),

$$
\psi(U, \Pi_i \cap R_{\mathbf{x}i}^{\prime}) = \psi(U, (\Pi_i \cap R_{\mathbf{x}i}^{\prime}) \cup V) = \psi(U, R_{\mathbf{x}i}^{\prime}).
$$

since $\psi\left(\bigcup R\right) \in b\left(\mathcal{L}^o\right)$, for some ψ we have $c\mu\left(\psi\right)=\psi\left(\bigcup \{I_i\cap R\}\right)$. We now have the chain of equalities

$$
\psi(U, \Pi_i) = \psi(U, \Pi_i \cap R_{xi}^{\prime}) \cup \psi(U, \Pi_i \cap R) =
$$

= $\psi(U, R_{xi}^{\prime}) \cup c \mu(y) = \psi(U, R_{xi}) \cup c \mu(y) = c \mu(x) \cup c \mu(y) = c (\mu(x) \cup \mu(y)),$

which proves Lemma 5.

LEMMA 6. There exists a general recursive function $\bm{\mathcal{U}}$ such that $c\mu\left(\bm{x}\right)=\bm{\mathscr{U}}\bm{\mathscr{K}}(\bm{x})$ for each $x \in \mathcal{N}$.

Fix \bm{x} the notation $V_{\text{ht}}(A) = \lim_{h \to 0} \int_{h}^{h} (A, 1), V_{\text{ht}}(A) = \lim_{h \to 0} \int_{h}^{v} (A, 1), V_{\text{ht}}(A, 1)$ Let A_{t} , A_{t} be some linear ordering of **d** (K_n) **),** Suppose K_q = { Z | Z is a frame $\&$ ln(Z) $\leq x$ }, K_q = { $Z \in K_q$ | ht $({\bf \chi}_a)$ is the totality of subsets of ${\bf \chi}_a$. For $A\in {\cal S}({\bf \chi}_a)$ we introduce $\hat{H}_{\text{ht}}(A, s) = \inf_{\mathcal{H}} \{ \text{ ht}(\mathcal{L}, s) | \mathcal{L} \in \mathcal{A} \}$, $\text{ ht}(\mathcal{A}, s) = \sup_{s \in \mathcal{H}} \{ \text{ ht}(\mathcal{L}, s) | \mathcal{L} \in \mathcal{A} \}$; and). For $\iota, \iota \leq \iota \leq K$, put $K_{\iota} = V \cup \{U\}$ there exist $\iota \leq h$ ι $(K_{\iota} \setminus A_{\iota})$, such that $J_{\mathcal{A}}$ (*Y*)! $\alpha J_{\mathcal{A}}$ (*Y*)= $\{\mathsf{A}_o,\ldots,\mathsf{A}_i,\varphi_o,\ldots,\varphi_i\}$ & $\lfloor x \leq \ldots \leq \kappa \rfloor$ ($K_o\setminus A_{i,1}$) & $(V \vee V \preceq = (\mathcal{U}, \mathcal{B})$ is a pair of the third kind $\mathcal{X}_f = \mathcal{X} \mathcal{Z} \mathcal{B}$ $V = \mathcal{B} \mathcal{B} \left(f_x \left(\mathcal{Y} \right) \right)$ ${y \in K_{\bm{T}}}$ $y \leq h t$ $(h; l)$ \cup U ; also, put

$$
\mathcal{R}_{x} = (\dots ((\mathcal{R}_{x}^{'} \oplus \mathcal{R}_{x}^{2}) \oplus \mathcal{R}_{x}^{3}) \oplus \dots) \oplus \mathcal{R}_{x}^{k},
$$

$$
U_{x} = (\dots ((U_{x}^{'} \oplus U_{x}^{2}) \oplus U_{x}^{3}) \oplus \dots) \oplus U_{x}^{k},
$$

where, as usual, $A\oplus B = \{2x \mid x \in A\} \cup \{2x+/|x \in B\}$; obviously, $\psi(\cup_{x} R_{x}) = \cup \{\psi(\cup_{x}^{i}, R_{x}^{i})\}$ $f\leqslant t\leqslant k$. We will prove that $\varphi((U,K_{\bm{\pi}\bm{\pi}})=\varphi((U_{\bm{\pi}},K_{\bm{\pi}}))$. Suppose $A_{\bm{\pi}}\neq K_{\bm{\pi}}$. Then either $A(y, y)$ is $y \neq 0$. $y \neq 0$, $y \neq 0$ ht $(\Lambda_n \setminus A_f) \neq \infty$ or ht $(A_f) = \infty$. If ht $(A_f) = \infty$, then obviously $\Lambda_n \subseteq U_n$, hence $\psi \left(U_n, \Lambda_n \right)$ = $0;$ if ht $(A.) \neq \infty$, then ht $(X_0 \setminus A) \neq \infty$, and the sets $\mathcal{X}_n \setminus \mathcal{Y}$, $U_n \setminus U$ are finite, which implies that $\phi\left(\mathcal{U}^i_{r}, \mathcal{R}^i_{r}\right) = \mathbf{0}$. Now suppose $A_i = K_i$. Then $\Lambda^{\bullet}_{r}(K_{\mathbf{0}} \setminus A_i) = \infty$, $\Lambda^{\bullet}_{r}(A_i) \neq \infty$, hence $K_{\bm{\tau} \bm{\tau}} \subseteq \mathcal{K}_{\bm{\tau}}$ and the set $U_{\bm{\tau}} \setminus U$ is finite. It is easy to see that the set $\mathcal{K}_{\bm{\sigma}} \setminus \mathcal{K}_{\bm{\tau} \bm{\sigma}}$ is also finite. Consequently, $\psi(U_{\bm x}^{\bm\iota},R_{\bm x}^{\bm\nu})=\psi\left(U,R_{\bm x\bm x}\right)$, hence $\psi\left(U_{\bm x},R_{\bm x}\right)=\psi\left(U,R_{\bm x\bm x}\right)=c\mu(\bm x).$ In view of the uniform effectiveness of the construction and the fact that the enumeration ${~}^{\{\right.}\!\!{n}_i\}_{i\,;\geqslant\,0}$ is principal, there exists a g.r.f. h such that for each $x\epsilon\mathcal{N}$ we have $c\mu\,(x)$ $\psi\left(\mathcal{U}_r, \mathcal{R}_r\right) = \alpha_m \left(\mathcal{U}_{h(r)}\right).$

Thus, Theorem 1 is proved for the enumerated semilattice $\mathscr{L}_{\mathscr{G}}^e$. Note that we have proved more than was required. Indeed, let \overline{c} be the composite mapping $\mathscr{L}'_{\theta} \subset \mathscr{L}_{\mu} \xrightarrow{c} \mathscr{L}_{\pi}$. Then $\bar{c} \in K$, $\bar{c} \cdot a = \bar{b}$, and $\bar{f} \notin \bar{c}(\mathcal{L}^{\prime})$. We will use Theorem 1 in this strengthened form. Let us now indicate the changes that must be made in the proof of Theorem 1 for the semilattices

 α , $\mathcal{L}(\delta_n)$ μ . The changes for $\alpha \mathcal{L}(\delta_n)$: in the definition of the indicator for natural numbers we must consider $H_{Q(n)} \nabla A$, where $\alpha = \alpha_m (A)$, and in the proof of Lemma 5 we must assume that $a \le \psi (U, \Pi_i)$. The changes for $\mathscr{L}(\mathcal{S}_n)_{\xi}$ are as follows. First note that the set of computable enumerations of δ_{a} is in a natural one-to-one correspondence with the set of sequences $(\mathcal{U}_1,...,\mathcal{U}_n)$ of pairwise disjoint, recursively enumerable sets such that $U_i \neq \emptyset$ and $N \setminus (U_i \cup ... \cup U_n) \neq \emptyset$, namely,

 $f \mapsto (f^{-1}(\{1\}), \ldots, f^{-1}(\{n\}));$

instead of U we must construct the sequence $(U_1, ..., U_n)$. Before step 0 we regard the numbers $0, 1, ..., n$ as used, and transfer 1 into $U_1, ...,$, and n into U_n . Instead of the creative set $\mathcal N$ we must use a sequence $(\mathcal N_1,\ldots,\mathcal N_n)$ such that the corresponding computable enumeration $f: N \xrightarrow{\text{onto}} S_n$ lies in the largest element of $\mathcal{L}(S_n)$, $d'_m(f) = I$; the other changes are obvious. We give only the definition of the ψ -operator for $\mathscr{L}(S_{q})$. Suppose $f:\mathcal{N} \xrightarrow[]{} \mathcal{N}_{q}$ is a computable enumeration and $A \subseteq V$ is a recursively enumerable set. If $A = \emptyset$, then $\psi(f, A) = 0$. Suppose $A \neq \emptyset$ and g is a general recursive function such that $g(N) = A$.
Put $\overline{g}(0) = \emptyset$, $\overline{g}(i) = \{i\}$, $1 \leq i \leq n$, $\overline{g}(x + n + 1) = fg(x)$ and $\psi(f, A) = a'_m(\overline{g})$.

The proof of Theorem $1'$ is analogous to that of Theorem 1, but in the definition of the indicator for natural numbers we must take as q a g.r.f. representing the morphism $c : y \rightarrow$ χ_{φ} .

We will now prove Theorem 2. Again, in order to avoid cumbersome notation that obscures the essence of the matter we analyze only the case $\mathscr{L}_{\varphi}=\mathscr{L}_{\widehat{\kappa}}$. The changes for $_{\alpha}\mathscr{L}_{\varphi}$, $\mathscr{L}(\mathscr{S}_{n})_{\varphi}$ will be given later.

£ THEOREM 2. Suppose α ; $\gamma \rightarrow \mathscr{L}_{\sigma}$ is a morphism of enumerated sets such that $1\neq \alpha$ (γ) . Then there exist an L-semilattice d' , a morphism of enumerated sets $\beta:\gamma\longrightarrow\mathcal{L}'$, and a K morphism $c: \mathcal{L}'_a \longrightarrow \mathcal{L}'_c$ such that $a = c \cdot b$ and $I \notin c \ (\mathcal{L}'')$.

<u>Proof.</u> Let $4 = \{f \mid f \text{ is a p.r.f. } \& \forall x, y \in \mathcal{N} \text{ (}x \leq y \& f(y) \text{)} \rightarrow f(x) \text{)} \}$ and suppose $\{f_i^*\}_{i\geqslant 0}$ is a principal enumeration of 4; let g be a general recursive function representing the morphism α . Put $A_{\rho} = \Pi_{\alpha(0)}, A_{i+j} = A_i \oplus \Pi_{\alpha(i+j)}$; $B_{\rho} = \tilde{f}_i^{-1}(A_i)$, where $\kappa = c(i,j)$. Clearly, $\{\Delta_{n}\}_{n>0}$ is a computable sequence of r.e. sets and $A=\{\alpha_{m}~(\Delta_{n}\mid n\geq 0\}$ is the smallest ideal of $~\mathscr{L}~^{\mathcal{E}}~$ containing α (γ). Since the largest element of $~\mathscr{L}~^{\mathcal{E}}~$ is indecomposable, $\mathcal{I} \notin \mathcal{A}$. We equip the semilattice A with the enumeration $\mathcal{V}: \mathcal{V}(i) = \mathcal{A}_m (B_i)$. In view of the computability of $\{\beta_i\}_{i\geqslant 0}$, the natural embedding $A_y\subset \mathscr{L}^e_{\pi}$ is a K -morphism and, since $\{\tilde{f}_i\}_{i\geqslant 0}$, is principal $a:\gamma\rightarrow A_{\gamma}$ is a morphism of enumerated sets. By a theorem of Lachlan [12], χ^e , equipped with the enumeration μ , μ (i) \neq (μ, π, π) , where $\mathcal M$ is a creative set, is an L-semilattice. But the enumeration μ is equivalent to the enumeration \bar{x} and, since $\mathscr E$ is complete, is isomorphic to it, i.e., for some recursive permutation $\bm p$ we have $\overline{\mathcal{R}} = \mu \cdot \rho$ (see [2, p. 201]). Thus, $\mathcal{L}_{\mathcal{R}}^{\ell}$ is an L-semilattice. By Theorem 1, there exists a K -morphism $c: \mathcal{Z}_\sigma \longrightarrow \mathcal{Z}_\sigma$ such that 1) $1 \notin c \times \mathcal{Z}$ and 2) the composite mapping $A_{\nu} \subseteq \mathcal{Z}_{\varpi} \longrightarrow \mathcal{Z}_{\varpi}$ is an embedding $A_{\nu} \subseteq \mathcal{Z}_{\varpi}$. Taking \mathcal{Z}_{ϖ} in the role of \mathcal{Z}_{φ}' and the composite mapping $y \xrightarrow{\alpha} A_{\alpha} \subset \mathcal{Z}_{\alpha}$ in the role of θ , we obtain everything we need.

Remarks for $_{a}$ \mathcal{L}_{z} , $\mathcal{L}(\mathcal{S}_{n})_{z}$: the indecomposability of the largest element of $\mathcal{L}(\mathcal{S}_{n})$ follows from the theorem of Ershov [9] on the indecomposability of precomplete enumerations representing the largest element of $\mathscr{L}(S_n)$ (see [2, p. 210]); that $\mathscr{L}_{\mathscr{L}} \mathscr{L}(S_n)$ are L-semilattice was proved in [14].

3. Some Corollaries

We now deduce several corollaries of our theorems.

COROLLARY 1. The Ershov-Lavrov Theorem [13] (see p. 4).

We first prove an auxiliary assertion. Suppose \mathcal{L}_{ν} is an enumerated semilattice and the semilattice \vec{x} is obtained from \vec{x} by extremely adjoining a largest element. Assume there exists a K -morphism $\alpha : {\mathscr L}_y \longrightarrow {\mathscr L}_\mu^o$ of the enumerated semilattice ${\mathscr L}_y$ into the Lsemilattice $\mathscr{L}_{\mu}^{\bullet}$. We claim that there then exists an enumeration $\theta : \mathcal{N} \xrightarrow[]{} \mathcal{N} \mathcal{N}$ of the semilattice \bar{x} such that \bar{z}_g is an L-semilattice and the natural embedding $\bar{z}_g \in \bar{z}_g$ is a K morphism. Suppose f is a general recursive function representing the morphism α , i.e., $\forall x \in \mathcal{N}$ ($\alpha \vee (\alpha) = \mu f(x)$), and suppose $\langle D_{\alpha}, \leq_{\alpha} \rangle \subset \langle D_{\alpha}, \leq_{\alpha} \rangle$, is a sequence of preordered sets satisfying conditions L1)-L5) in the definition of an L-semilattice and such that $\mu(x) \le \mu(y)$ --~£~(~D~) and {f(O) ~(&')~ C~Z.. Finally, let ~={~(0) ,f(&)}. ~&)'=U~Ag't~)t $\mathcal{D}_i = \{U(x, g(i), i) | x \in \mathcal{D}_i\}$, $\mathcal{D}_i = \{x | x = 0 \lor i \leq x \land (x - i) \in \mathcal{D}_i\}$ $\mathcal{D}_i \leq i$, where \mathcal{U}, \mathcal{U} are the general recursive functions in L4). We introduce preorders on $\widetilde{\mathcal{D}_i}$: $\mathbf{x} \leqslant_i^{\prime} 0$, $\neg \left(0 \leqslant_i^{\prime} (x+1)\right)$ and $(x+)/\epsilon'_i$ $(y+1) \leftrightarrow x \leq_i y$. We also define general recursive functions $\widetilde{u}, \widetilde{v} : \widetilde{u}(x,0,i) =$ $\tilde{u}(0, y, i) = 0$, $\tilde{u}(x+i, y+i, i) = \sigma(u(x, y, i), g(i), i) + i \tilde{\sigma}(x, 0, i) = x$, $\tilde{\sigma}(0, y, i) = y$, $\mathcal{L}\left(x+f,y+f,i\right) = \mathcal{J}\left(\mathcal{J}\left(x,y,i\right),g(i),i\right)+1$. It is easy to see that the sequence $\langle \mathcal{L}_{a}, \mathcal{L}_{a} \rangle$ \sim $\langle \mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L} \rangle$ and the g.r.f. \mathcal{L}, \mathcal{U} satisfy L1)-L5). Let $\mathcal{L} = \mathcal{U} \{\mathcal{L}, \mathcal{U}\}\; ;$ we introduce an enumeration $\bar{\delta}$ of the semilattice \bar{x} : the domain of $\bar{\delta}$ is $\bar{\delta}$ and $\overline{\theta}(0)=\int_{\overline{\mathcal{G}}}, \overline{\theta}(x+f)=\mu(x)$. It follows from the above that the enumerated semilattice $\overline{\mathcal{J}}_{\overline{\theta}}$ is an L-semilattice (except that the domain of $\overline{\theta}$ is the recursively enumerable set A^{\bullet} , and not all of π) and the g.r.f. $i \mapsto r(f(i), g(i), i)$ represents the natural embedding $\mathscr{L}_{\mathsf{V}}\subseteq \overline{\mathscr{L}}_{\overline{\theta}}$. Passage from $\overline{\theta}$ to an enumeration θ with domain $\mathcal N$ is obvious. We now begin the proof proper of the Ershov-Lavrov theorem. Suppose $A\subset\mathscr{L}^e$, $A\neq\emptyset$ is a computable ideal, and $B\subset\mathscr L^e$ is a computable family of π -degree such that $A\cap B=\emptyset,$ $\mathcal I\notin A\cup B$. Since A and β are computable, there exist enumerations $v : N \xrightarrow{onto} A$, $\zeta : N \xrightarrow{onto} A \cup B$ such that the natural embedding $A_{\nu}c(A\cup B)_{\zeta}$, $(A\cup B)_{\zeta}$ $\subset \mathcal{L}_{\bar{x}}^e$ are morphism of enumerated sets. Suppose the semilattice \bar{Z} is obtained from the semilattice A by externally adjoining a largest element, and $~\theta~\,$ is an enumeration of $~\overline {\mathscr L}~$ for which $\overline {\mathscr L}_{\overline {\theta}}~$ is an *L*-semilattice and the natural embedding $A_{\nu} \subset \bar{Z}_{\rho}$ is a κ -morphism. Let $\bar{\mathcal{L}}$ be the smallest ideal of \mathcal{L}^e containing $A \cup B$. Then $I \notin C$ and there exists an enumeration $\mu: N \longrightarrow C$ for which the natural embedding $(A\cup B)_{\chi} \subset C_{\mu}$, $C_{\mu} \subset \mathcal{L}_{\pi}^e$ are morphisms of enumerated sets. We collect the objects and morphisms in a single diagram:

where $u,~v,~\rho,~q$ are natural embeddings. By Theorem 1', there exists $e \in K$ making the diagram commutative and such that $\ell(\bar{Y}) \cap C = A$. By considering $\ell(\bar{I}_{\bar{Q}})$ we obtain everything we need.

COROLLARY 2. V'yugin's Theorem (see [14]).

Suppose $Q \in \mathcal{Z}$, $\alpha \neq \mathcal{L}$, and \mathcal{Z}_{μ} is an L-semilattice. By a theorem of Lachlan [12],
there exists an enumeration $\mathcal{G}:\mathcal{N} \longrightarrow \mathcal{Z}_{\alpha}$ turning \mathcal{Z}_{α} into an L-semilattice $(\mathcal{Z}_{\alpha})_{\alpha}$ and s that the natural embedding $({\mathcal L}_a)_{\rho} \subset {\mathcal L}_a^e$ is a κ -morphism. Assuming that the sets ${\mathcal L}_a$ and $\mathcal L$ are disjoint, we define an order \leq on the set $\overline{\mathscr L}=\mathscr L_\alpha\cup\mathscr L$ as follows: each element of $\mathscr L$ is larger than any element of \mathscr{L}_a , $x \in \mathscr{L}_a$ & $y \in \mathscr{L} \longrightarrow x \leq y$, the restriction of \leq to \mathscr{L}_a is the original order on \mathcal{L}_{α} , and the restriction of \leq to $\mathcal {L}$ is the original order on **L** . We also define an enumeration $\overline{\mathcal{L}}$: $v(2x) = \theta(x)$, $v(2x+1) = \mu(x)$. Obviously, $\overline{\mathcal{L}}$, is an L-semilattice and the natural embedding $({\mathscr L}_a)_{\rho}\subset\bar{{\mathscr L}}_{\nu}$ is a ℓ -morphism. By Theorem 1, there exists $c \in K$ making the diagram

commutative, where ρ , q are natural embeddings. By considering $c(\mathcal{I}_{\overline{d}})$, we obtain everything we need.

COROLLARY 3. We have the isomorphisms $\mathscr{L}^e \cong_{\alpha} \mathscr{L} \cong \mathscr{L}(S_\alpha)$.

<u>Proof.</u> Suppose $\mathscr{M}_{\mathscr{L}}$ is an enumerated semilattice. The expression " $\mathscr{M}_{\mathscr{L}}$ satisfies Theorem 1 (Theorem 2)" has the following meaning: "the theorem obtained by replacing \mathcal{X}_{φ} by M_{ρ} " in the statement of Theorem 1 (Theorem 2) is valid." Suppose \mathscr{L}'_{ν} , \mathscr{L}'_{μ} are nontrivial (i.e., χ^{\prime} , χ^2 are not singletons) enumerated semilattices with largest and smallest elements satisfying Theorems 1 and 2. We will prove that ${y'}\cong {z^2}$. In order to avoid multilevel notation, some enumerated semilattices will be denoted by Gothic letters (with indices) without property distinguishing the semilattice and the enumeration. Let a_{0},a_{1},\ldots be an enumeration, possibly with repetitions, of all elements of f' different from f' , and let b_0' , b_1' ,... be an enumeration, possibly with repetitions, of all elements of χ^2 different from \mathcal{L}_{φ^2} . We will construct a sequence of L-semilattices $\mathcal{X}_0, \mathcal{O}'_1, \ldots$ and K morphisms $f_i: \mathcal{X}_i \rightarrow \mathcal{X}_{i+1}$, $g_i: \mathcal{X}_i \rightarrow \mathcal{Y}'_j$, $h_i: \mathcal{X}_i \rightarrow \mathcal{X}^2_{\mu}$ such that $g_i = g_{i+1} \cdot f_i$, $h_i = h_{i+1} \cdot f_i$, $I\notin~q$; $({\mathfrak{A}}_i)$, $I\notin h_i({\mathfrak{A}}_i)$, $a_{\kappa} \in q_{2\kappa+1}$ ($\alpha_{2\kappa+1}$), $b_{\kappa} \in h_{2(\kappa+1)}({\mathfrak{A}}_{2(\kappa+1)})$. Suppose ${\mathfrak{A}}_n$ is a oneelement enumerated semilattice and q_a, r_a are the uniquely defined κ -morphisms $q_a : \emptyset_a \rightarrow z_j$, $h_e : \mathcal{X}_o \longrightarrow \mathcal{L}_{\mu}^2$. Assume that to step $a=2\kappa$ we have constructed \mathcal{X}_i , g_i , h_i , $i \leq \kappa$, and f_j , j \leq n , satisfying the induction assumption. Suppose α_n is \mathscr{L}_{φ} . Let $\mathscr{M}=g_n(\mathscr{L})$ O $\{\alpha_{\kappa}\}\,$, $\xi'(0) = \alpha_{\kappa}$, $\xi'(x+1) = \beta_{\kappa} \xi(x)$. Consider the enumerated set $\beta = \langle \mathcal{M}, \xi' : \mathcal{N} \text{ on } \mathbb{R} \rangle$. Obviously, the natural embedding $q' \subset \mathcal{L}_v$ is a morphism of enumerated sets and $\mathcal{I} \notin \mathcal{M}$. By Theorem 2, there exists an L-semilattice \mathscr{A}_{n+1} , a morphism of enumerated sets $a: \rightarrow \infty$ _{n+f} and a K-morphism $g_{n+1} : \mathcal{X}_{n+1} \to \mathcal{X}_{n}$ such that $g_{n+1} \circ a$ is an embedding $M \subset \mathcal{X}'$ and $I \notin \mathcal{Y}_{n+1}$

 $({\mathscr{A}}_{n+1})$. Let f_a be the composite mapping ${\mathscr{A}}_n \xrightarrow{g_n} f \xrightarrow{a} {\mathscr{X}}_{n+1}$. It is easy to see that is in fact a K -morphism. Applying Theorem 1, we obtain a K -morphism $h_{n+1}: \mathcal{U}_{n+1} \rightarrow$ $f_{\boldsymbol{n}}$. such that $I \notin h_{n+1}$ (\mathcal{O}_{n+1}) and $h_n = h_{n+1} \cdot f_n$. At an odd step $n=2 \kappa + 1$ we proceed analogously and include \mathscr{b}_{κ} in the image of h_{n+j} . We now define $e:\mathscr{L}'\to\mathscr{L}^2$. Suppose $x \in \mathcal{X}'$; if $x = I_{\mathcal{Y}'}$, then $e(x) = I_{\mathcal{Y}^2}$, but if $x = a_{\kappa}$, then $e(x) = h_{2\kappa + 1} (g_{2\kappa + 1}^{-1}(x))$. In view of our construction, ℓ is an isomorphic embedding of the semilattice ℓ^f onto the semilattice χ^2 . Thus, Corollary 3 is proved.

LITERATURE CITED

- I. Yu. L. Ershov, Theory of Enumerations [in Russian], Nauka, Moscow (1977).
- 2. A. I. Mal'tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).
- 3 H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill (1967).
- 4. E. L. Post, "Recursively enumerable sets of positive integers and their decision problems, Bull. Am. Math. Soc., 50, 284-316 (1944).
- 5. I. Myhill, "Creative sets," Z. Math. Logic Grundl. Math., i, No, 2, 97-108 (1955).
- 6, A. H. Lachlan, "A note on universal sets," J. Symb. Logic, 31, 573-574 (1966).
- 7. Yu. L. Ershov, "Hyperhypersimple ~-degrees," Algebra Logika, 8, No. 5, 523-552 (1969).
- 8. S. D. Denisov, "On m -degrees of recursively enumerable sets," Algebra Logika, 9, No. 4, 422-427 (1970).
- Yu. L. Ershov, "Inseparable pairs," Algebra Logika, 9, No. 6, 661-666 (1970). 9.
- A. H. Lachlan, "Initial segments of many-one degrees," Can. J. Math., 22, No. i, 75-85 (1970). I0.
- A. H. Lachlan, "Two theorems on many-one degrees of recursively enumerable sets," Algebra Logika, ii, No. 2, 216-229 (1972). ii.
- A. H. Lachlan, "Recursively enumerable many-one degrees," Algebra Logika 11, No. 3,, 326-358 (1972). 12.
- 13. Yu. L. Ershov and I. A. Lavrov, "The upper semilattice $\mathscr{L}(y)$," Algebra Logika, 12, No. 2, 167-189 (1973).
- 14. V. V. V'yugin, "Segments of recursively enumerable π -degrees," Algebra Logika, 13, No. 6, 635-654 (1974).
- Yu. L. Ershov, "The upper semilattice of enumerations of a finite set," Algebra Logika, 14, No. 3, 258-284 (1975). 15.
- E. A. Palyutin, "Addendum to Yu. L. Ershov's article 'The upper semilattice of enumerations of a finite set'," Algebra Logika, 14 , No. 3, 284-287 (1975). 16.