STRUCTURE OF THE UPPER SEMILATTICE OF RECURSIVELY ENUMERABLE m -DEGREES AND RELATED QUESTIONS. I

S. D. Denisov

UDC 517:11,518:5

In the first part of this paper we consider the following upper semilattices; the semilattice \mathcal{L}^{ℓ} of recursively enumerable m-degrees, the semilattice ${}_{a}\mathcal{L} = \{b \in \mathcal{L}^{\ell} | a \leq b\}$, where $a \in \mathcal{L}^{\ell}$ and a is not equal to the largest element of \mathcal{L}^{ℓ} , and the semilattices $\mathcal{L}(\delta_{n})$ of computable enumerations of the classes $\delta_{n} = \{\phi, \{1\}, \dots, \{n\}\}$, where $n = 1, 2, \dots$. We prove (Theorem 1) that it is possible to provide the semilattice $\mathcal{L}^{\ell}(a, \mathcal{L}, \mathcal{L}(\delta_{n}))$ with an enumeration π (\mathcal{L}, ξ respectively) such that in a suitable category of enumerated semilattices $\mathcal{L}_{\pi}^{\ell}(a\mathcal{L}_{\varphi}, \mathcal{L}(\delta_{n})\xi)$ possesses the "morphism extension property." Theorem 1 and Theorem 2, which asserts, roughly speaking, the isolation of the largest element of $\mathcal{L}_{\pi}^{\ell}(a\mathcal{L}_{\varphi}, \mathcal{L}(\delta_{n})\xi)$, characterize the semilattice $\mathcal{L}^{\ell}(a, \mathcal{L}, \mathcal{L}(\delta_{n}))$ uniquely to within isomorphism. It follows, in particular, that the above-mentioned semilattices are isomorphic: $\mathcal{L}_{\pi}^{\ell}(\mathcal{L}, \mathcal{L}(\delta_{n}))$. It had been conjectured that these semilattices are isomorphic.

In the second part of this paper ("Structure ... II") we investigate by the methods of this first part the semilattice $\mathcal{L}^{d} = \{d_{m}(A) \mid A \in \Lambda_{2}^{o}\}$ and the semilattices of computable enumerations $\mathcal{L}(S)$, where S is a computable family of general recursive functions containing exactly one limit point and is such that the semilattice $\mathcal{L}(\tilde{S})$, where \tilde{S} is the set of isolated points of S, is a one-element set. We will prove that $\overline{\mathcal{L}^{d}} \simeq \overline{\mathcal{L}(S)} \simeq \mathcal{L}^{e}$, where $\overline{\mathcal{L}^{d}}$ (respectively $\overline{\mathcal{L}(S)}$) is obtained from the semilattice \mathcal{L}^{d} (respectively $\mathcal{L}(S)$) by externally adjoining a largest element. We begin a more detailed exposition.

1. Preliminary Facts

As a working definition we adopt the following definition of m-reducibility. Suppose $A, B \subset N$; we say that the set A is m-reducible to the set $B, A \leq_m B$, if either A is recursive or there exists a general recursive function f such that $\forall x \in N \ (x \in A \leftrightarrow f(x) \in B)$. The relation \leq_m is obviously a preorder on the set of all subsets of N; we denote by \sim_m the corresponding equivalence relation: $A \sim_m B \Leftrightarrow A \leq_m B \& B \leq_m A$. The equivalence class of the set A relative to \sim_m is denoted by $d_m(A)$ and is called the m-degree of A; an m-degree containing a recursively enumerable set is called recursively enumerable. The relation \leq_m induces an order on the set of m-degrees, and this ordered set is an upper semilattice, i.e., any two elements have a least upper bound. In the sequel, instead of "upper semilattice" we will simply write "semilattice." We denote the semilattice of m-degrees by \mathcal{L}^{m} .

Translated from Algebra i Logika, Vol. 17, No. 6, pp. 643-683, November-December, 1978. Original article submitted August 30, 1978. Let us establish some conventions. We will denote a semilattice and its underlying set by the same letter, and the operation of taking the least upper bound by U; thus, $a \leq b \Leftrightarrow a \cup b = b$. Suppose $\mathcal{L} = \langle \mathcal{L}, \cup \rangle$ is a semilattice. The smallest element of \mathcal{L} (if it exists) will be denoted by $\mathbf{0}$, and the largest (if it exists) by \mathbf{I} ; sometimes these elements will be denoted more explicitly: $\mathbf{0}_{\mathcal{L}}, \mathbf{1}_{\mathcal{L}}$. A subset $A \subset \mathcal{L}$ is called an ideal of the semilattice \mathcal{L} if for all $a, b \in \mathcal{L}$ we have the relations $a, b \in A \rightarrow a \cup b \in A$, $a \in A \ge b \le a \rightarrow b \in A$. For recursively enumerable π -degrees we will use the following abbreviations. If $a, b \in \mathcal{L}^{\ell}$, then

$$a\mathcal{I}_{\beta} = \{c \in \mathcal{I}^{e} | a \leq c \leq b\}, \quad \mathcal{I}_{\beta} = \{c \in \mathcal{I}^{e} | c \leq b\},$$
$$a\mathcal{I} = \{c \in \mathcal{I}^{e} | a \leq c\}.$$

It is easy to see that \mathcal{L}^{ℓ} is an ideal of the semilattice \mathcal{L}^{m} and that $d_{m}(\phi)$ is the smallest element of \mathcal{L}^{m} and \mathcal{L}^{ℓ} . It follows from the computability of the family of all recursively enumerable subsets of \mathcal{N} that the semilattice \mathcal{L}^{ℓ} possesses a largest element. We will also consider the semilattices ${}_{\alpha}\mathcal{L} = \{\delta \in \mathcal{L}^{\ell} \mid \alpha < \delta\}$, where $\alpha \in \mathcal{L}^{\ell}$ and α is not equal to the largest element of \mathcal{L}^{ℓ} , and the semilattices of computable enumerations $\mathcal{L}(\mathcal{S}_{n})$, where $\mathcal{S}_{n} = \{\phi \ ,\{t\}, \ldots, \{n\}\}$ and $n = 4, 2, \ldots$. Suppose δ is a computable family of recursively enumerable sets and $\mathcal{L}(\mathcal{S})$ is the semilattice of computable enumerations of δ (see [1]); by analogy with m-degrees, the element of $\mathcal{L}(\mathcal{S})$ defined by a computable enumeration $f: \mathcal{N} \xrightarrow{\operatorname{onto}} \mathcal{S}$ will be denoted by $d_{m}(f)$. It can be shown that the semilattice \mathcal{L}^{ℓ} is (naturally) isomorphic to the semilattice $\mathcal{L}(\mathcal{S})$.

The concept of *m*-reducibility was introduced by Post [4]. In that same paper he introduced the concept of a creative set; it turns out (Myhill [5]) that $d_m(A) = I_{\mathcal{L}^e}$ if and only if A is a creative set. Yany (see [3]) observed that the *m*-degree of a so-called maximal set \mathcal{M} is minimal, i.e., satisfies the condition $d_m(\mathcal{M}) \neq 0$ & $\forall b \in \mathcal{L}^e$ ($o < b < d_m(\mathcal{M}) \rightarrow b = 0 \lor b = d_m(\mathcal{M})$). Lachlan [6] proved that the largest element of \mathcal{L}^e is indecomposable, i.e., $a \cup b = I \rightarrow a = I \cup b = I$. Ershov [7] showed that

1) \mathcal{L}^{ℓ} contains infinitely many minimal elements;

- 2) there exist elements ($\neq 0$) under which there are no minimal ones;
- 3) \mathcal{L}^{ℓ} is not a lattice;
- 4) the elementary theory of the semilattice \mathcal{L}^{ℓ} is undecidable.

It is proved in [8] that for any $a \in \mathcal{L}^e \setminus \{0, I\}$ there exists $b \in \mathcal{L}^e$ such that $a \neq b \otimes b \neq a$, and that for any $a \in \mathcal{L}^e$ we have $a < I \longrightarrow \exists b \in \mathcal{L}^e$ (a < b < I). It is proved in [11] that for any $a \in \mathcal{L}^e$ we have

$$a < I \longrightarrow \exists b \in \mathcal{I}^{\ell} (a < b \& \forall c \in \mathcal{I}^{\ell} (c < b \longrightarrow c \leq a \lor c = b)).$$

Lachlan's paper [12] was a significant advance in the study of \mathcal{L}^{e} , namely Lachlan proved that if \mathcal{L}_{g} is an L-semilattice (denoted by $\mathcal{L}_{g}: \mathcal{L} = \langle \mathcal{L}, \cup \rangle$, where L is a semilattice and θ is an enumeration of \mathcal{L} ; the definition of a Lachlan semilattice (L-semilattice) is given below), then there exists $a \in \mathcal{I}^{\ell}$ such that the semilattice $\mathcal{I}_{a} = \{b \in \mathcal{I}^{\ell} | b \in a\}$ is isomorphic to \mathcal{I} ; conversely, for each $a \in \mathcal{I}^{\ell}$ there exists an enumeration $\theta \colon \mathcal{N} \xrightarrow{\text{onto}} \mathcal{I}_{a}$ such that $(\mathcal{I}_{a})_{\theta}$ is an L-semilattice. The last results on the semilattice \mathcal{I}^{ℓ} (and also $\mathcal{I}(S_{a})$) are the theorems of Ershov-Lavrov [13] and V'yugin [14]. Let us recall what they are.

THEOREM (Ershov-Lavrov [13]). If $A \subset \mathcal{L}^{\ell}$, $A \neq \phi$ is a computable ideal, $B \subset \mathcal{L}^{\ell}$ is a computable family of m-degrees such that $A \cap B = \phi$ and $I \notin A \cup B$, then there exists $a \in \mathcal{L}^{\ell}$ such that $\forall b \in \mathcal{L}^{\ell}(b < a \leftrightarrow b \in A)$ and $\forall b \in B$ (a is comparable with b).

THEOREM (V'yugin [14]). For any $\alpha \in \mathcal{I}^{e}$ different from I and for an arbitrary L-semilattice \mathcal{I}_{g} , there exist $\delta \in \mathcal{I}^{e}$ such that $\alpha \leq \delta$, the semilattice $\alpha \mathcal{I}_{\delta} = \{c \in \mathcal{I}^{e} | \alpha \leq c \leq \delta\}$ is isomorphic \mathcal{I} and $\forall c \in \mathcal{I}^{e} (c \leq \delta \longrightarrow c \leq \alpha \lor \alpha \leq c)$.

A complete description of the semilattice \mathcal{Z}^m is contained in Ershov [15] with the addendum of Palyutin [16].

2. Definitions and Statements of Theorems

A pair consisting of a (no more than countable) semilattice $\mathcal{I} = \langle \mathcal{I}, U \rangle$ and an enumeration $\boldsymbol{\theta} \colon \mathcal{N} \xrightarrow{\text{onto}} \mathcal{I}$ of the underlying set \mathcal{I} will be denoted by $\mathcal{I}_{\boldsymbol{\theta}}$ and called an enumerated semilattice. We introduce the following category \mathcal{K} : the object of \mathcal{K} are the enumerated semilattices, and a morphism $\mathcal{A} \colon \mathcal{I}_{\boldsymbol{\theta}}^{\prime} \to \mathcal{I}_{\mathcal{V}}^{2}$ of an enumerated semilattice $\mathcal{I}_{\boldsymbol{\theta}}^{\prime} = (\langle \mathcal{I}, U \rangle, \boldsymbol{\theta})$ into an enumerated semilattice $\mathcal{I}_{\mathcal{V}}^{\prime} = (\langle \mathcal{I}, U \rangle, \boldsymbol{\theta})$ is a mapping $\mathcal{A} \colon \mathcal{I}^{\prime} \to \mathcal{I}^{2}$ of the underlying set \mathcal{I}^{\prime} into the underlying set \mathcal{I}^{2} such that

- 1) **a** is a multivalent;
- 2) **a** is a semilattice homomorphism;
- 3) $a(\mathbf{I}')$ is an ideal of \mathbf{I}' ;

4) there exists a general recursive function f such that $\forall x \in \mathbb{N} (a \in (x) = \forall f(x))$ (i.e., *a* is a morphism of the corresponding enumerated sets (see [1])).

Suppose \mathscr{L}_{θ} is an enumerated semilattice. We will say that \mathscr{L}_{θ} is a Lachlan semilattice (L-semilattice) if there exists a sequence of finite preordered sets $\langle \mathcal{D}_{\theta}, \leq_{\theta} \rangle \subset \langle \mathcal{D}_{1}, \leq_{1} \rangle \subset ...$, where $\mathcal{D}_{i} \subset \mathcal{N}$, such that

LO) $\theta(x) \leq \theta(y) \longrightarrow \exists i \in \mathbb{N} \ (x \leq_i y);$

L1) $\{\mathcal{D}_i\}_{i \ge \theta}$ is a strongly computable sequence of finite sets (we will use the follow-ing abbreviations:

$$x \sim_i y \rightleftharpoons x \leq_i y \& y \leq_i x, [x]_i - \{y \in \mathbb{N} \mid x \sim_i y\}, \widetilde{\mathcal{D}}_i - \{[x]_i \mid x \in \mathcal{D}_i\},$$

L2) the ordered set $\bar{\mathcal{D}}_{i}$ is a distributive lattice;

L3) the mapping $\widetilde{\mathcal{D}}_{i} \to \widetilde{\mathcal{D}}_{i+i}$ induced by the embedding $\langle \mathcal{D}_{i}, \leq_{i} \rangle \subset \langle \mathcal{D}_{i+i}, \leq_{i+i} \rangle$ preserves the least upper bound and the largest and smallest elements;

L4) there exist general recursive functions $\mathcal{U}(x,y,i)$, $\mathcal{J}(x,y,i)$ such that

$$\begin{aligned} x, y \in \mathcal{D}_{i} &\longrightarrow u(x, y, i), \sigma(x, y, i) \in \mathcal{D}_{i}, \\ [x]_{i} \cup [y]_{i} &= [u(x, y, i)]_{i}, \\ [x]_{i} \cap [y]_{i} &= [\sigma(x, y, i)]_{i}, \text{ where } x, y \in \mathcal{D}_{i}; \end{aligned}$$

L5) there exists a recursive predicate P(x,y,i,a,b) such that for all x,y,i we have $x \leq_i y \leftrightarrow \forall a \exists b P(x,y,i,a,b)$.

We mention one property of Lachlan semilattices that will be needed to prove Theorem 1. Suppose \mathcal{L}_{θ} is an L-semilattice and f is a general recursive function such that f(N) = N. Then $\mathcal{L}_{\theta \circ f}$ is an L-semilattice. Indeed, suppose $\langle \mathcal{D}_{0}, \leq_{0} \rangle \subset \langle \mathcal{D}_{1}, \leq_{1} \rangle \subset \ldots$ is a sequence of preordered sets satisfying conditions L1)-L5) and such that $\theta(x) \leq \theta(y) \longrightarrow$ $\exists i \in N \ (x \leq_{i} y)$. Suppose $g(x) = \mu y (f(y) = x)$ (here μ is the minimization operator). Since f(N) = N, the function g is general recursive and fg(x) = x. Put $\mathcal{D}_{i}' = \{x \in N \mid f(x) \in \mathcal{D}_{i} \in \mathcal{L}_{i} \in \mathcal{L}_{i}$

Suppose $\{f_i\}_{i\geq 0}$ is a principal enumeration of the set of all one-place partial recursive functions. If we let $/_i$ be the domain of f_i , it is clear that $\{/_i\}_{i\geq 0}$ is a principal enumeration of the class of all recursively enumerable subsets of N. We introduce an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = d_m(/_i)$ and an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = d_m(/_i)$ and an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = d_m(/_i)$ and an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = a_{\ell}(/_i)$ and an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = a_{\ell}(/_i)$ and an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = a_{\ell}(/_i)$ and an enumeration of the semilattice $\mathcal{L}^{\ell}: \pi(i) = a_{\ell}(/_i)$ and $\pi(i)$ and $\pi(i)$ and $\pi(i) = a_{\ell}(/_i)$ and $\pi(i)$

We are now in a position to state Theorems 1, 1', and 2. We fix an enumerated semilattice $\mathcal{L}_{\varphi} \in \{\mathcal{L}_{\pi}^{e}, \mathcal{L}_{\varphi}, \mathcal{L}(\mathcal{S}_{\pi})_{\xi}\}$.

THEOREM 1. Suppose in the diagram

that $a, b \in K, I \notin b(\mathcal{L}^{\circ})$, and \mathcal{L}_{θ}' is an L-semilattice. Then there exists $c \in K$ making the diagram commutative.

THEOREM 1'. Suppose the diagram

that $a, b \in K$, c, d are morphisms of enumerated sets, $b = c \cdot d, I \notin c(\gamma)$ and \mathcal{L}'_{θ} is an L-semilattice. Then there exists $l \in K$ making the diagram commutative and such that $e(\mathcal{L}') \cap c(\gamma) = b(\mathcal{L}^{\circ})$.

<u>THEOREM 2.</u> Suppose $a: y \to \mathcal{L}_{\phi}$ is a morphism of enumerated sets such that $I \notin a(y)$. Then there exist an L-semilattice \mathcal{L}_{ϕ}' , a morphism of enumerated sets $b: y \to \mathcal{L}_{\phi}'$, and a K-morphism $c: \mathcal{L}_{\phi}' \to \mathcal{L}_{\phi}$ such that $a = c \cdot b$ and $I \notin c(\mathcal{L}')$.

3. Proof of Theorems 1 and 2

Recall that $\{f_i\}_{i\geq 0}$ is a principal enumeration of the set of all one-place partial recursive functions (p.r.f.), Π_i is the domain of f_i , and, therefore, $\{\Pi_i\}_{i\geq 0}$ is a principal enumeration of the set of all recursively enumerable subsets of N. Fix a general recursive function (g.r.f.) C(x,y) effecting a one-to-one correspondence $N \longrightarrow N^2$ and such that C(x,y) is nondecreasing in x and y, in particular, $\sup(x,y) \le C(x,y)$. Let C(x,y,z) = C(x,C(y,z)). We give the definition of the Lachlan ψ -operator (see [10]). Suppose $U \subset N$ is a set and $A \subset N$ is a recursively enumerable (r.e.) set. Then we denote by $\psi(U,A)$ the following *m*-degree: if $A = \phi$, then $\psi(U,A) = d_m(\phi)$; if $A \neq \phi$ and f is a g.r.f. such that f(N) = A, then $\psi(U,A) = d_m(f^{-1}(U))$. This definition is obviously correct, i.e., does not depend on the choice of f. The following are the main properties of the Lachlan ψ -operator.

01) The ψ -operator $A \mapsto \psi(U, A)$ maps the set of r.e. subsets of N onto the set of m -degrees $\leq d_m(U); \psi(U, N) = d_m(U);$

02) $\psi(U, A \cup B) = \psi(U, A) \cup \psi(U, B);$

03) If $\psi(U,A) \leq \psi(V,B)$ and $B \cap V \neq \emptyset$, $B \cap (N \setminus V) \neq \emptyset$, then there exists a p.r.f. f with domain A such that $f(A) \subseteq B$ and $x \in A \longrightarrow (x \in U \leftrightarrow f(x) \in V)$; conversely, the existence of a p.r.f. f with these properties implies that $\psi(U,A) \leq \psi(V,B)$; in particular, if $A \cap U$, $A \cap (N \setminus U)$ are recursively enumerable, then $\psi(U,A) = d_m(\emptyset)$;

04) If A,B are r.e. sets, \sim is a r.e. equivalence relation on A such that for any **z** $\in A$ there exists $\mathcal{Y}: \mathcal{Y}\in A\cap B \otimes \mathcal{Z} \sim \mathcal{Y}$, and for any $\mathcal{z},\mathcal{Y}\in A$ we have $\mathcal{Z}\sim \mathcal{Y} \longrightarrow (\mathcal{Z}\in U \iff \mathcal{Y}\in U)$, then $\mathcal{Y}(U,A) < \mathcal{Y}(U,B)$.

For example, let us prove 04). Suppose $\mathcal{C} \Rightarrow \{(x,y) \mid x \sim y \notin y \notin B\}$. The set \mathcal{C} is recursively enumerable, $(x,y) \in \mathcal{C} \rightarrow (x \in U \rightarrow y \in U)$, $x \in A \rightarrow \exists y ((x,y) \in \mathcal{C})$, and $(x,y) \in \mathcal{C} \rightarrow y \in \mathcal{B}$. In view of the first and third properties of \mathcal{C} , there exists a p.r.f. f with domain A such that $x \in A \rightarrow (x, f(x)) \in \mathcal{C}$, and it follows from the second and fourth properties that the p.r.f. f also satisfies the relations $x \in A \rightarrow (x \in U \rightarrow f(x) \in U)$ and $f(A) \subset \mathcal{B}$. In view of 03), $\psi(U, A) \in \psi(U, \mathcal{B})$.

Let us recall some facts about finite distributive lattices (see [12]). Suppose \mathcal{D} is a finite distributive lattice. An element $a \in \mathcal{D}$ is called an atom if $a < \delta \cup c \rightarrow a < \delta \lor a < c$. Suppose \mathcal{D}_{i} , \mathcal{D}_{i} are finite distributive lattices and $\varphi: \mathcal{D}_{i} \rightarrow \mathcal{D}_{i}$ is a mapping preserving the least upper bound and the largest and smallest elements. If $a \in \mathcal{D}_{i}$ is an atom, we denote by $\mathcal{C}(a)$ the set of minimal elements of the set $\mathcal{B}(a) \rightleftharpoons \{ \delta \in \mathcal{D}_{f} | a \leq \varphi(\delta) \}$. We claim the following. D1) The set $\mathcal{C}(a)$ is nonempty and each element of $\mathcal{C}(a)$ is an atom.

D2) If $a, b \in D_2$ are atoms and $a \le b$, then there exists a mapping $\psi: C(b) \to C(a)$ such that $\psi(d) \le d$.

That $\mathcal{C}(a)$ is nonempty follows from the fact that φ preserves the largest element. We will show that each element of $\mathcal{C}(a)$ is an atom. If $b \in \mathcal{C}(a)$ and $b \leq c \cup d$, then $b = (b \cap c) \cup (b \cap d), a \leq \varphi(b) = \varphi((b \cap c) \cup (b \cap d)) = \varphi(b \cap c) \cup \varphi(b \cap d)$; but a is an atom, hence $a \leq \varphi(b \cap c)$ or $a \leq \varphi(b \cap d)$. If, for definiteness, $a \leq \varphi(b \cap c)$, then $b \cap c \in \mathcal{B}(a)$ and $b \cap c \leq b$; but b is a minimal element of $\mathcal{B}(a)$, hence $b \cap c = b$ and $b \leq c$. Let us prove D2). Since $a \leq b$, it follows that $\mathcal{C}(b) \subset \mathcal{B}(a)$ and, since $\mathcal{B}(a)$ is finite, under each element there is a minimal one, i.e., the desired ψ : $\mathcal{C}(b) \subset \mathcal{C}(a)$ exists.

We also introduce the concept of convergence. Suppose A, \mathcal{B} are sets and $4(A, \mathcal{B})$ is the set of all partial mappings from A into \mathcal{B} . If $f \in 4(A, \mathcal{B})$, $a \in A$, then f(a)! is an abbreviation for "f is defined at the point a." Suppose $\{g_1\}_{1 \ge 0}$ is a sequence of elements of $4(A, \mathcal{B})$. We will say that the sequence $\{g_1\}_{1 \ge 0}$ converges if

- 1) $\exists s \forall u, \sigma \forall a \in A \ (s \leq u \leq \sigma \& g_u(a)! \longrightarrow g_{\sigma}(a)!),$
- 2) $\forall a \in A \exists s \left[\forall t \geq s \ (\neg g_t(a)!) \text{ or } \forall t \geq s \ (g_t(a)! \& g_t(a) = g_t(a)) \right].$

If the sequence $\{g_1\}_{s \ge 0}$ converges and $g \in 4(A, B)$, we will say that g is the limit of $\{g_s\}_{s \ge 0}, g = \lim_{s \to \infty} g_s$, if for any α :

1) $\neg g(a)! \longrightarrow \mathcal{J}_{s} \forall t \ge s \quad (\neg g_{t}(a)!),$ 2) $g(a)! \longrightarrow \mathcal{J}_{s} \forall t \ge s \quad (g_{t}(a)! \& g_{t}(a) = g(a)).$

Obviously, for a convergent sequence the limit exists and is uniquely defined. Note that if a sequence $\{g_{i}\}_{i \ge 0}$ converges and its limit $g = \lim_{t \ge \infty} g_{i}$ is a function with finite domain, then there exists Δ such that $g_{i} = g$ for all $t \ge \Delta$. Indeed, suppose Δ_{0} is such that $\forall u, \sigma \ \forall a \in A \ (\Delta_{0} \le u \le \sigma \And g_{u}(a)! \rightarrow g_{\sigma}(a)!)$, and suppose $A_{0} \subset A$ is the domain of g. Since A_{0} is finite, there exists $\Delta_{i} \ge \Delta_{i}$ such that for $t \ge \Delta_{i}$ and $a \in A_{0} : g_{i}(a)$ is defined and $g_{i}(a) = g(a)$. Obviously, $g_{i} = g$ for $t \ge \Delta_{1}$. For functions $f: N \rightarrow C$ (C an arbitrary set) and $f: N \rightarrow N$ the equalities $\lim_{t \ge \sigma} f(\Delta) = C$ (where $c \in C$) and $\lim_{t \ge \sigma} f(\Delta) = c$), $\lim_{t \to \infty} f(\Delta) = \infty \rightarrow ($ (for each $n \in N$ there exists $m \in N$ such that $\Delta \ge m \rightarrow f(\Delta) = c$), $\lim_{t \to \infty} f(\Delta) = \infty \rightarrow ($ (for each $n \in N$ there exists $m \in N$ such that $\Delta \ge m \rightarrow f(\Delta) \ge \alpha$). Note that if C is 4(A, B), then an equality $\lim_{t \to \infty} f(\Delta) = C$ in the sense of the second definition implies the equality $\lim_{t \to \infty} f(\Delta) = c$ in the sense of the first, but not conversely.

<u>Other Conventions.</u> The totality of subsets of a given set A will be denoted by S(A). As usual, a partition P of a set A is a subset of S(A), $P \subset S(A)$, such that each element P is nonempty, the elements of P are pairwise disjoint, and the union of the elements of P is A. If $P, Q \subset S(A)$ are two partitions of A, then P is called a refinement of Q if each element of P is a subset of a suitable element of Q. If $B \subset A$ and $P \subset S(A)$ is a partition of A, then we will denote by $P \mid B$ the following partition of $B : P \mid B = \{C \cap B \mid C \in P \& C \cap B \neq \phi\}$.

To avoid obscuring the main ideas with complex notation we analyze only the case $\mathcal{L}_{\varphi} = \mathcal{L}_{\pi}^{e}$ in Theorem 1. The changes required for $\alpha \mathcal{L}_{\chi} \cdot \mathcal{L}(S_{\pi})_{\chi}$ will be indicated later. THEOREM 1. Suppose in the diagram

that $a, b \in K$, $I \notin b(\mathcal{L}^{\circ})$ and $\mathcal{L}_{\theta}^{\prime}$ is an L-semilattice. Then there exists $C \in K$ making the diagram commutative.

Suppose $\overline{\theta}$ is the cylindrification of the enumeration θ ; by definition, there exists a g.r.f. g such that $\overline{\theta} = \theta \cdot g$, g(N) = N, and g assumes each of it values infinitely often (g is a function of large amplitude). In view of the remark immediately following the definition of L-semilattice, $\mathcal{L}_{\overline{\theta}}'$ is an L-semilattice. Obviously, the identity mapping $\mathcal{L}_{\theta}' \leftrightarrow \mathcal{L}_{\overline{\theta}}'$ is a \mathcal{K} -isomorphism. Therefore, we may assume without loss of generality that the enumeration θ is itself a cylinder, i.e., $\theta = \theta \cdot g$ for some function g of large amplitude. Suppose $\langle \overline{D}_{0}', \leq_{0}' \rangle \subset \langle \overline{D}_{1}', \leq_{1}' \rangle \subset \ldots$ is a sequence of finite preordered sets satisfying conditions L1)-L5) and such that $\theta(x) \leq \theta(y) \leftrightarrow \exists i \in N$ ($x \leq_{i}' y$) and suppose $\mathcal{U}'(x, y, i)$. $\mathcal{O}'(x, y, i)$ are g.r.f. satisfying L4) (in connection with our sequence). Let \mathcal{L} be a semilattice obtained from \mathcal{L}' by externally adjoining a largest element. We define an enumeration of $\mathcal{L}_{\cdot}\mu: N \xrightarrow{\text{onto}} \mathcal{L}_{\cdot}$ as follows: $\mu(0) = I_{\mathcal{L}} \cdot \mu(x+i) = \theta(x)$. We also define a sequence of preordered sets $\langle \overline{D}_{0}, \leq_{0} \rangle \subset \langle \overline{D}_{1}, \leq_{i} \rangle \subset \ldots$ and g.r.f. $\mathcal{U}(x, y, i), \mathcal{J}'(x, y, i)$;

(*)
$$D_i = \{x \in N \mid x = 0 \lor x \ge i \& x - i \in D_i^{i}\},$$

 $x \le_i y \rightleftharpoons x, y \in D_i \& [y = 0 \lor x, y \ge i \& (x - i) \le_i^{i} (y - i)]$
 $u(x, y, i) = \begin{cases} u'(x - i, y - i, i) + i & \text{if } x, y \ge i, \\ 0, & \text{otherwise,} \end{cases}$
 $v(x, y, i) = \begin{cases} x, & \text{if } y = 0, \\ y, & \text{if } x = 0, \\ v'(x - i, y - i, i) + i, & \text{otherwise.} \end{cases}$

It is easy to see that the sequence $\langle \mathcal{D}_0, \leq_0 \rangle \subset \langle \mathcal{D}_i, \leq_i \rangle \subset \ldots$ and the function \mathcal{U}, \mathcal{U} satisfy conditions L1)-L5) and that $\mu(x) \leq \mu(y) \leftrightarrow \exists i \in \mathbb{N} \ (x \leq_i \mathcal{U})$, in particular, \mathcal{L}_{μ} is an L-semilattice. We emphasize that throughout the proof of Theorem 1, $\langle \mathcal{D}_i, \leq_i \rangle, \mathcal{U}, \mathcal{U}$ are the objects introduced in (*). We will also assume that $x \leq_i \rightarrow x \in \mathcal{D}_i$.

It is clear that the natural embedding $\mathcal{L}'_{\theta} \subset \mathcal{L}_{\mu}$ is a \mathcal{K} -morphism. Suppose \overline{a} is the composite mapping $\mathcal{L}'_{\gamma} \xrightarrow{a} \mathcal{L}'_{\theta} \subset \mathcal{L}_{\mu}$. It suffices to prove that there exists $c \in \mathcal{K}$, making

commutative. Since the enumeration θ is a cylinder, there exists a g.r.f. f such that $av(x) = \theta f(x)$ and $f(x) \ge x$. Let $\overline{f}(x) \rightleftharpoons f(x) + 1$. Obviously, $\overline{a}v(x) = \mu \overline{f}(x)$ and $\overline{f}(x) \ge x$. The latter relation implies that the set $\overline{f}(N)$ is recursive (we denote it by H), and the first relation implies the equality $\mu(H) = \overline{a}(\mathcal{L}^{\circ})$. This set H will be needed later.

We will use (until the end of the proof of Theorem 1) the following abbreviations: $\mathcal{X} \sim_i \mathcal{Y} \rightleftharpoons \mathcal{X} \leq_i \mathcal{Y} \& \mathcal{Y} \leq_i \mathcal{X}, [\mathcal{I}]_i = \{\mathcal{Y} \in \mathcal{N} \mid \mathcal{X} \sim_i \mathcal{Y}\}, \quad \widetilde{D}_i = \{[\mathcal{I}]_i \mid \mathcal{X} \in \mathcal{D}_i\} \}$. Suppose \mathcal{A} is a subset of \mathcal{D}_i . We will say that \mathcal{A} is an atom of \mathcal{D}_i if the distributive lattice $\widetilde{\mathcal{D}}_i$ contains an atom \mathcal{A} such that $\mathcal{A} = \{\mathcal{X} \in \mathcal{D}_i \mid \mathcal{A} \leq [\mathcal{X}]_i\}$. We introduce, following Lachlan (see [12]), frames and towers. By a frame of length i we mean a sequence $\mathcal{C} \mathcal{U} = (\mathcal{O}_{\mathcal{O}}, \ldots, \mathcal{O}_i)$, where $\mathcal{O}_i \subset \mathcal{S}(\mathcal{D}_i)$ is the totality of subsets of \mathcal{D}_i , such that

- K1) \mathcal{O}_i is a singleton;
- K2) $\mathcal{O}_{j} = \cup \{ \mathcal{C}(\mathcal{B}) | \mathcal{B} \in \mathcal{O}_{j+i} \}, j < i;$ K3) for $\mathcal{B} \in \mathcal{O}_{j+i}, \mathcal{D}_{j} \cap \mathcal{B} = \cap \{ U | U \in \mathcal{C}(\mathcal{B}) \}, j < i;$

here $\mathcal{C}(\mathcal{B})$ is the totality of maximal (with respect to inclusion) elements of the set $\{U \in \mathcal{O}_{t_{j}} : U \supseteq \mathcal{B} \cap \mathcal{D}_{j}\}$.

We will denote the length of a frame \mathcal{O} by ln (\mathcal{O}) . A frame $\mathcal{O} = (\mathcal{O}_{i_0}, \dots, \mathcal{O}_{i_i})$ will be called good if, for each j < i, each element of \mathcal{O}_{i_j} is an atom \mathcal{D}_j . It follows from conditions D1) and D2) that if $A = \mathcal{D}_i$ is an atom of \mathcal{D}_i , then there exists a unique good frame $\mathcal{O} = (\mathcal{O}_{i_0}, \dots, \mathcal{O}_{i_i})$ such that $\mathcal{O}_i = \{A\}$; it is also easy to see that $\{0\}$ is an atom of \mathcal{D}_i for all $i \ge 0$, hence the sequence $(\{\{0\}\}, \dots, \{\{0\}\}\})$ is a good frame. If $\mathcal{O} = (\mathcal{O}_{i_0}, \dots, \mathcal{O}_{i_i}), \mathcal{L} = (\mathcal{L}_{i_0}, \dots, \mathcal{L}_{i_i})$ are two frames, we will say that \mathcal{O} is a subframe of \mathcal{L} if $i \le j$, $\mathcal{O}_i \subseteq \mathcal{L}_i$ when $e \le i$, and for $\mathcal{B}\in\mathcal{O}_{i_0+i_1}$ the set $\mathcal{O}(\mathcal{B})$ computed in \mathcal{O} is equal to $\mathcal{O}(\mathcal{B})$ computed in \mathcal{L} . We now define a tower. Suppose $\mathcal{F} \subset \mathcal{N}$ is a finite set. A tower with base \mathcal{F} and length i is a sequence $A = (A_{i_0}, \dots, A_{i_i}, \mathcal{O}_{i_0}, \dots, \mathcal{O}_i)$ of partitions of \mathcal{F} and mappings $\mathcal{P}_i : A_i \to \mathcal{S}(\mathcal{D}_i)$ such that

B1) the partition A_i is a singleton: $A_i = \{\mathcal{F}\}$;

B2) the partition A_i is a refinement of the partition A_{i+i} , j < i;

B3) for $Q \in A_{j+1}$, the restriction of φ_i to $\{P \in A_j | P \subset Q\} = A_j | Q$ is a bijection of this set onto $\mathcal{C}(\varphi_{j+1}(Q))$, where $\mathcal{C}(\varphi_{j+1}(Q))$ is the totality of maximal (with respect to inclusion) elements of the set $\{B \in \varphi_j(A_j) | B \supset \varphi_{j+1}(Q) \cap D_j\}, j < i$;

B4) the sequence $(\varphi_{o}(A_{o}), ..., \varphi_{i}(A_{i}))$ is a frame.

The frame in B4) will be called the frame of the tower A . The length of the tower A will be denoted by ln (A), the frame by fr (A), and the base by bs (A). It is not difficult to show (see [12]) that for any frame \mathscr{O} and any finite set $\mathscr{F} \subset \mathcal{N}$ containing sufficiently many elements there exists a tower $m{\lambda}$ with base ${\cal F}$ and frame ${\cal O}$. Suppose $\mathbf{A} = (\mathbf{A}_0, \dots, \mathbf{A}_i, \varphi_0, \dots, \varphi_i) \text{ is a tower, } j \leq i \text{ and } P \in \mathbf{A}_j. \text{ We denote by tw} (\mathbf{A}, j, P) \text{ the tower} (\mathbf{A}_0 | P, \dots, \varphi_i) \text{$ $A_j | P_j, \overline{\varphi}_j, ..., \overline{\varphi}_j$), where $\overline{\varphi}_{\kappa}$, $\kappa < j$, is the restriction of φ_{κ} to $A_{\kappa} | P$ (in view of condition B2), $A_{\kappa} | P$ is a subset of A_{κ}); we denote the frame of tw (A, j, P) by fr(A, j, P). We introduce a partial order on the frames. Suppose $\mathcal{U} = (\mathcal{U}_1, \dots, \mathcal{U}_i), \mathcal{L} = (\mathcal{L}_1, \dots, \mathcal{L}_i)$ are two frames of the same length, $\mathcal{U}_i = \{A\}$, $\mathcal{L}_i = \{B\}$. We will say that \mathcal{U} is less than \mathcal{L} , $\mathcal{U} \preccurlyeq \mathcal{L}$, if 1) $A \supset B$ and 2) for any j < i, $D \in \mathcal{U}_{j+1}$, $\delta \in \mathcal{L}_{j+1}$, if $D \supset \delta$, then there exists a mapping $\psi : \mathcal{C}(\mathcal{D}) \longrightarrow \mathcal{C}(\mathcal{E})$ such that $\psi(\mathcal{U}) \supset \mathcal{U}$, $\mathcal{U} \in \mathcal{C}(\mathcal{D})$, where $\mathcal{C}(\mathcal{D})$ is totality of maximal (with respect to inclusion) elements of the set $\{U \in \mathcal{C}_i \mid U \supset D_i \cap D\}$; $\mathcal{C}(\mathcal{E})$ is defined analogously. It is easy to see that if $\mathcal{C}_i = (\mathcal{C}_i, ..., \mathcal{C}_i), \mathcal{L} = (\mathcal{L}_i, ..., \mathcal{L}_i)$ are good frames and $\mathcal{C}_i = \{A\}, \mathcal{L}_i = \{B\}$, then, in view of D2), $\mathcal{A} \neq \mathcal{L}$, if and only if $A \supset B$. Suppose $A = (A_0, ..., A_i, \varphi_0, ..., \varphi_i), B =$ $(\mathcal{B}_0, \dots, \mathcal{B}_j, \psi_0, \dots, \psi_j)$ are towers with bases \mathcal{F}, \mathcal{G} respectively, where $\mathcal{F} \cap \mathcal{G} = \phi$, and suppose $\kappa \leq \inf(i,j)$, $P \in A_{\kappa}$, $Q \in B_{\kappa}$ and fr $(A, \kappa, P) \leq fr(B, \kappa, Q)$. Then there exist mappings $\theta_0: \mathcal{B}_0 \mid \mathcal{Q} \to \mathcal{A}_0 \mid \mathcal{P}, \dots, \theta_\kappa: \mathcal{B}_\kappa \mid \mathcal{Q} \to \mathcal{A}_\kappa \mid \mathcal{P} \text{ such that } \varphi_e \theta_e(\mathcal{R}) \supset \varphi_e(\mathcal{R}) \text{ for } e \leq \kappa, \mathcal{R} \in \mathcal{B}_e \mid \mathcal{Q}.$ Indeed, since the sets $\mathcal{B}_{\kappa} | \mathcal{Q}_{\kappa} | \mathcal{P}_{\kappa}$ are singletons, there exists a unique mapping θ_{κ} : $\mathcal{B}_{\kappa} \mid \mathcal{Q} \rightarrow \mathcal{A}_{\kappa} \mid \mathcal{P}$ and this mapping satisfies our condition by virtue of the relation fr (A, $(\kappa, P) \preccurlyeq \text{ fr}(\mathcal{B}, \kappa, \mathcal{Q})$. Assume that we have constructed a mapping $\Theta_{\ell+\ell}$ satisfying our condition. Using condition 2) in the definition of \measuredangle and condition B3), we can easily define $\mathcal{C} = (\mathcal{C}_0, \dots, \mathcal{C}_i, \overline{\varphi}_0, \dots, \overline{\varphi}_i)$ with base $\mathcal{F} \cup \mathcal{Q}$. For $\ell \leq \kappa$ the partition \mathcal{C}_{ℓ} is obtained from the partition A_{ρ} by replacing each element $R \in A_{\rho}$ by $R^* \Rightarrow R \cup (\cup \{T \in B_{\rho} \mid Q \mid \Theta_{\rho}(T) = R\})$, and for $\ell > K$ by replacing each element $\mathcal{R} \in \mathbf{A}_{\ell}$ by

$$R^* \rightleftharpoons \begin{cases} R \cup Q & \text{if } R \cap P \neq \emptyset, \\ R & \text{if } R \cap P = \emptyset; \end{cases}$$

 $\overline{\varphi}_{\varrho}(R^{\star}) \rightleftharpoons \varphi_{\varrho}(R) \quad \text{We denote this tower } \mathcal{C} \text{ by tw } (A, \mathcal{B}, \kappa, \mathcal{P}, \mathcal{Q}).$

Let \mathcal{H} be the recursive set introduced earlier with the property that $\mu(\mathcal{H}) = \overline{a}(\mathcal{L}^{\circ})$. In the sequel we will consider only those frames $\mathcal{O} = (\mathcal{O} \ell_0, \dots, \mathcal{O} \ell_i), \mathcal{O} \ell_i = \{A\}$, that satisfy the condition

$$(**) AnH = \phi.$$

g.r.f. introduced in (*), $\alpha \in D_0$ is the smallest element of $\langle D_0, \leq_0 \rangle$ (it is the smallest in all $\langle D_i, \leq_i \rangle$), and $A \subseteq N$ is a finite set. We define $u(A, i) \cdot \sigma(A, i)$ by induction on the number of elements in $A : u(\phi, i) = \alpha \cdot \sigma(\phi, i) = 0 \cdot u(A \cup \{x\}, i) = u(x, u(A, i), i), \sigma(A \cup \{x\}, i) = \sigma(x, \sigma(A, i), i)$, where x is greater than all elements of A. It is easy to see that we have an equivalence

$$\begin{bmatrix} A \subset D_i & A \text{ is an atom of } D_i \end{bmatrix} \leftrightarrow \begin{bmatrix} A \subset D_i & \forall x, y \in D_i & (u(x, y, i) \in A \rightarrow x \in A \lor y \in A) & \forall x \in D_i & (\sigma(A, i) \leq x \rightarrow x \in A) \end{bmatrix}.$$

It follows from L5) that the second member of the equivalence is a $\mathcal{F} \forall$ -predicate, hence there exists a g.r.f. $\rho((A,i), \Delta)$ that is nondecreasing in Δ and such that $\lim_{A \to \infty} \rho((A,i), \Delta) \neq \infty$ if and only if $A \subset D_i$ and A is an atom of D_i . Suppose $\mathcal{O} = (\mathcal{O}_0, \dots, \mathcal{O}_i)$ is a frame. Put $\rho(\mathcal{O}', \mathbf{s}) = \sup \{ \rho((A, j), \mathbf{s}) \mid j \leq i \& A \in \mathcal{O}'_i \}$. Fix an effective one-to-one correspondence $\omega: \mathcal{Q} \leftrightarrow \mathcal{N}$ such that if $\omega(\alpha, \mathcal{V}_i) = i$, $\omega(\mathcal{Z}, \mathcal{V}_2) = j$, and $\ln(\alpha) \leq \ln(\mathcal{Z})$, then $i \leq j$, and for $\alpha = (\mathcal{A}, \forall)$ put nr $(\alpha, \mathfrak{s}) = C(\rho(\mathcal{A}, \mathfrak{s}), \omega(\alpha))$. We emphasize that if \mathcal{A} is a subframe of $\mathcal{L}, \boldsymbol{\alpha} = (\mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{\lambda}_{1}), \text{ and } \boldsymbol{\beta} = (\mathcal{L}, \boldsymbol{\lambda}_{2}), \text{ then nr } (\boldsymbol{\alpha}, \boldsymbol{\beta}) \leq \text{ nr } (\boldsymbol{\beta}, \boldsymbol{\beta}) \text{ (and nr } (\boldsymbol{\alpha}, \boldsymbol{\beta}) = (\boldsymbol{\beta}, \boldsymbol{\beta}) \longleftrightarrow \boldsymbol{\alpha} = \boldsymbol{\beta}). \text{ Put}$ $\operatorname{nr}(\alpha) = \lim_{\Delta \to \infty} \operatorname{nr}(\alpha, \Delta);$ $\operatorname{nr}(\alpha)$ can assume the value ∞ , and $\operatorname{nr}(\alpha) \in N$ is equivalent to saying that the first component of \propto is a good frame. We also introduce a computable sequence of r.e. sets $\{\beta_i\}_{i \ge 0}$ with the following property: if $\mu(i) = \mu \overline{f}(j)$, then $d_m(\beta_i) = \delta v(j)$, where \overline{f} is the previously fixed g.r.f. representing the morphism $\overline{a}: \mathscr{L}_{y}^{o} \rightarrow \mathscr{L}_{\mu}$. Suppose g is a g.r.f. representing the morphism $b: \mathcal{L}_{v}^{o} \longrightarrow \mathcal{L}_{x}$, and suppose $h(x) = \mu y(\bar{f}(y) = x)$ (here μ is the minimization operator). Put $A_i = \phi$, if $i \notin \bar{f}(N)$, and $A_i = \prod_{gh(i)}$, if $i \in \bar{f}(N)$. Obviously, the sequence $\{A_i\}_{i \ge 0}$ is computable. In view of L5), there exists a g.r.f. $\rho(x, x)$ y, i, 1, that is nondecreasing in A and such that $x \sim_i y \leftrightarrow \lim_{x \to \infty} \rho(x, y, i, 1) = \infty$. Suppose $\rho(x, y, i) = \lim_{x \to \infty} \rho(x, y, i, 1) (\rho(x, y, i))$ can assume the value ∞), and suppose $\rho(x, 0) = 0$. $\rho(x, 0) = 0$. $i+i) = \sup\left\{ \widetilde{\rho(x,y,i)} \mid y \in \mathcal{D}_i \cap \overline{f(N)} \right\} (\sup(\phi) = 0). \quad \text{Put } \mathcal{B}_x = \left\{ c(i,y,j) \mid y \in \mathcal{D}_i \& [j \in A_y \& j < 0] \right\}$ $\rho(x,y,i) \lor j < \rho(x,i)$. The computability of the sequence $\{\beta_x\}_{x \ge 0}$ and the fact that it satisfies our condition can be verified directly.

We fix an effective procedure which at the even steps 0, 2, 4,... yields:

either 1) a triple (A, i, P), where $A = (A_0, ..., A_j, \varphi_0, ..., \varphi_j)$ is a tower, $i \le j$, and $P \in A_i$,

- or 2) a pair $\boldsymbol{\prec} \in \boldsymbol{\hat{\mathcal{Q}}}$ of the first kind,
- or 3) a natural number $i \in N$,

or 4) a pair $\measuredangle \mathcal{L} \mathcal{Q}$ of the third kind, each object occurring infinitely often,

at the odd steps 1, 3, 5,... yields elements of \mathcal{Q} , each $\propto \epsilon \mathcal{Q}$ occurring nr (lpha) times.

We will describe, in general terms, a construction which leads to a proof of the existence of the desired morphism $C: \mathscr{L}_{\mu} \longrightarrow \mathscr{L}_{\pi}^{\ell}$. At step 4 we will define for each $\prec \in \mathcal{Q}$ a partial mapping $\mathcal{G}_{4+1}^{\prec}$ from \mathcal{N} into the set of all towers and transfer certain elements into a set \mathcal{U} ; that which we include in \mathcal{U} up to step 4 will be denoted by \mathcal{U}_{4} . The following relations will be satisfied:

1)
$$\mathcal{G}_{i}^{\alpha}(x)! \& \mathcal{G}_{i}^{\beta}(y)! \& \operatorname{bs}(\mathcal{G}_{i}^{\alpha}(x)) \cap \operatorname{bs}(\mathcal{G}_{i}^{\beta}(y)) \neq \emptyset \to \alpha = \beta \& x = y;$$

2) $\mathcal{G}_{i}^{\alpha}(x)! \to \operatorname{bs}(\mathcal{G}_{i}^{(\alpha)}(x)) \subset \mathcal{U}_{i} \vee \operatorname{bs}(\mathcal{G}_{i}^{\alpha}(x)) \subset \mathcal{N} \setminus \mathcal{U}_{i};$

3) $\mathcal{G}_{\mathfrak{s}}^{\mathfrak{a}}(\mathfrak{x}) \xrightarrow{l} \to$ (the frame of the tower $\mathcal{G}_{\mathfrak{s}}^{\mathfrak{a}}(\mathfrak{x})$ is equal to the first component of \mathfrak{a}).

We will say that the tower A exists to step \mathcal{L} if there exist \mathcal{L}, \mathcal{I} (uniquely determined by virtue of 1)) such that $\mathcal{G}_{\mathbf{L}}^{\mathcal{L}}(\boldsymbol{x}) \stackrel{*}{=} A$. The number \mathcal{I} is said to be used to step \mathcal{L} if either $\boldsymbol{x} \in \{0,1\}$ or \boldsymbol{x} has been used to step \mathcal{L} in the base of the tower, i.e., $\mathcal{I}_{\mathcal{L}} \leq \mathcal{L},$ $\mathcal{L} \in \mathcal{L}, \boldsymbol{y} \in \mathcal{N}(\mathcal{G}_{\mathcal{L}}^{\mathcal{L}}(\boldsymbol{y}) \stackrel{*}{=} \mathcal{K} \in \mathrm{bs}(\mathcal{G}_{\mathcal{L}}^{\mathcal{L}}(\boldsymbol{y})))$. Before turning to a detailed description of the construction we define several auxiliary functions.

Suppose \mathcal{M} is a creative set. Suppose $\{f_{i,1}\}, \{\mathcal{N}_{i,2}\}, \{\mathcal{N}_{i,3}\}, \{\mathcal{N}_{i,3}\}$ are strongly computable sequences of finite functions and sets that are nondecreasing in \mathcal{L} and such that $f_i = \mathcal{U}$ $\{f_{i,4} \mid A \ge 0\}$, and so on.

We define the so-called indicators and heights. The indicator for pairs of the first kind. Suppose $\alpha = (\mathcal{U}, \overline{I})$ is a pair of the first kind, $\ln(\mathcal{U}) = C(m, n, \ell) = j$, $\kappa = \mathfrak{sup}(m, n)$. We define a function in (α, \mathfrak{s}) . Let $\mathfrak{s}_0 < \mathfrak{s}_1 < \mathfrak{s}_2 < \cdots$ be those even steps at which our procedure yields ∞ . If $\mathfrak{s} < \mathfrak{s}_0$, then in $(\alpha, \mathfrak{s}) = 0$. If $\mathfrak{s}_i < \mathfrak{s} < \mathfrak{s}_{i+1}$, then in $(\alpha, \mathfrak{s}) = in$ $(\alpha, \mathfrak{s}_i + 1)$. Suppose $\mathfrak{s} = \mathfrak{s}_i + 1$. If

1) the function $f_{\ell,s}$ is defined on the set

$$\begin{split} \mathcal{B} &= \cup \{ \mathcal{P} \mid \exists y \; (G_{s-1}^{\prec}(y)! \& G_{s-1}^{\prec}(y) = (A_{o}, \dots, A_{j}, \\ \varphi_{o}, \dots, \varphi_{j}) \& \; \mathcal{P} \in A_{\kappa} \& \; n \in \varphi_{\kappa}(\mathcal{P}) \}, \end{split}$$

2) for each $y \in \mathcal{B}$ the number $f_{\rho}(y)$ is used to step 4-1,

3) for each $y \in \mathcal{B}$ we have $y \in U_{i-1} \nleftrightarrow f_e(y) \in U_{i-1}$, 4) $f_e(\mathcal{B}) \cap \widetilde{\mathcal{B}} = \emptyset$, where $\widehat{\mathcal{B}} = \bigcup \{ bs(G_{i-1}^{\checkmark}(y)) | G_{i-1}^{\checkmark}(y) \} \}$,

then we put in $(\alpha, \beta) = in (\alpha, \beta-1) + 1$. Otherwise, $in (\alpha, \beta) = in (\alpha, \beta-1)$.

The indicator for natural numbers. Suppose $i \in N$, $i = C(n, \ell)$. Let $s_0 < s_1 < s_2 < \ldots$ be those steps at which our procedure yields i. We define a function in (i, s). If $s < s_0$, then in (i, s) = 0. If $s_1 < s < s_{j+1}$, then in $(i, s) = in (i, s_j + 1)$. Suppose $s = s_j + 1$, $\alpha = in(i, s-1)$. If

1) the function $f_{\mu,\lambda}$ is defined on the set $\{0, 1, \dots, a\}$,

2) for each $x \leq a$ the number $f_{\rho}(x)$ is used to step 3-1,

3) for each $x \leq a$ we have $x \in \Pi_{g(n), \underline{s}} \leftrightarrow f_{\mathfrak{c}}(x) \in U_{\underline{s}-1}$ (recall that g is a g.r.f. representing the morphism $b: \mathcal{L}_{v}^{o} \to \mathcal{L}_{\pi}^{e}$), then we put in $(i, \underline{s}) = \text{ in } (i, \underline{s}-1)+1$. Otherwise in $(i, \underline{s}) = \text{ in } (i, \underline{s}-1)$.

Suppose \mathcal{U} is a frame. We define a function ht $(\mathcal{U}, \mathfrak{s})$. Let $\mathfrak{s}_{0} < \mathfrak{s}_{1} < \mathfrak{s}_{2} < \ldots$ be those steps at which our procedure yields triples (A, i, P). If $\mathfrak{s} < \mathfrak{s}_{0}$, put ht $(\mathcal{U}, \mathfrak{s}) = 0$. If $\mathfrak{s}_{1} < \mathfrak{s} < \mathfrak{s}_{j+1}$ then ht $(\mathcal{U}, \mathfrak{s}) = \mathfrak{ht} (\mathcal{U}, \mathfrak{s}_{1} + 1)$. Suppose $\mathfrak{s} = \mathfrak{s}_{j} + 1$ and at step \mathfrak{s}_{j} the procedure yields (A, i, P).

- 1) $\mathcal{O}_{l} = fr(A, i, P),$
- 2) the tower A exists to step $\mathfrak{s}-\mathfrak{l}$ and $\mathcal{P}\cap \Pi_{\mathfrak{i},\mathfrak{s}}\neq \phi \& \operatorname{bs}(A)\cap U_{\mathfrak{s}-\mathfrak{l}}=\phi$,
- 3) $\ln(A) \ge ht(O', 1-1)$.

then we put ht $(\mathcal{A}, \mathfrak{s}) = \operatorname{ht} (\mathcal{A}, \mathfrak{s}-1) + 1$. Otherwise, ht $(\mathcal{A}, \mathfrak{s}) = \operatorname{ht} (\mathcal{A}, \mathfrak{s}-1)$.

We can now describe the construction. Before step \mathcal{Q} we assume the numbers 0, 1 to be used and transfer 1 into \mathcal{U} , and for each $\checkmark \in \mathcal{Q}$ we put $\mathcal{G}_0^{\backsim} = \not o$.

Step 5 . a) 5 is even.

1) Our procedure at step 4 yields a triple (A, i, P). Suppose $\mathcal{L} = \operatorname{fr}(A, i, P)$, ht $(\mathcal{L}, 4) = a$. If ht $(\mathcal{L}, 4+i) = a$ or at step a our procedure yields an element of $\mathcal{Q} \cup N$, then we change nothing: $\mathcal{G}_{4+i}^{\mathscr{A}} = \mathcal{G}_{5}^{\mathscr{A}}$ for all $\mathscr{A} \in \mathcal{D}$. Suppose ht $(\mathcal{L}, 4+i) = a+i$ and therefore the tower A exists to step $4: \mathcal{G}_{4}^{\mathscr{A}}(x) = A$ and suppose at step a our procedure yields $(\mathcal{B}, j, \mathcal{Q})$ and $\mathcal{C} = (\mathcal{B}, j, \mathcal{Q})$. If $i = j \cdot \mathcal{Q} \cap \bigcap_{i, 4} = \phi$. $\mathcal{C} \preceq \mathcal{L}$, $\ln(\mathcal{B}) < \ln(\mathcal{A})$, the tower \mathcal{B} exists to step $4: \mathcal{G}_{4}^{\mathscr{B}}(y) = \mathcal{B}$, bs $(\mathcal{B}) \cap \mathcal{U}_{4} = \phi$, then we put $\mathcal{G}_{4+i}^{\mathscr{B}}(y)$ equal to tw $(\mathcal{B}, \mathcal{A}, i, \mathcal{Q}, P)$, $\mathcal{G}_{4+i}^{\mathscr{A}}(x)$ is not defined, and there are no changes at the other points.

2) Our procedure at step 4 yields a pair $\alpha = (\mathcal{U}, \mathcal{I})$ of the first kind. Suppose in $(\alpha, 4) = \alpha$. If in $(\alpha, 4+1) = \alpha$, then we change nothing. Assume that in $(\alpha, 4+1) = \alpha+1$. Suppose \mathcal{X} is the first point at which the function G_4^{α} is undefined. We take a sufficiently large initial segment of unused numbers \mathcal{F} , construct a tower A with base \mathcal{F} and frame \mathcal{U} , and put $G_{4+1}^{\alpha}(\mathcal{X}) = A$, and for $\mathcal{Y} \neq \mathcal{X}$ we put $G_{4+1}^{\alpha}(\mathcal{Y}) = G_4^{\alpha}(\mathcal{Y})$. For the $\beta \in \mathcal{Q}$ such that $\operatorname{nr}(\alpha, 4) \leq \operatorname{nr}(\beta, 4)$, we put $G^{\beta} = \emptyset$, and for the remaining $\beta(\neq \alpha)$ there are no changes: $G_{4+1}^{\beta} = G_{4}^{\beta}$.

3) Our procedure at step 1 yields a natural number i = c(n, e). Suppose in (i, 1) = a. If in (i, 1+i) = a, then we change nothing. If in (i, 1+i) = a + i in particular, $f_{\ell,1}(a)$, suppose $f_{\ell}(a) = b$. If to step 1 there exists no tower B such that $b \in bs(B)$. i < ln(B), bs $(B) \cap U_1 = \phi$, then we change nothing. Suppose such a tower B exists: $B = G_1^{A}(x) = (B_0, \dots, B_j, \phi_0, \dots, \phi_j)$, and suppose $b \in P$, $P \in B_i$, C = lr(B, i, P). We form a pair $\alpha = (C, I)$ of the second kind and let ψ be the first point at which the function G_1^{α} is undefined. We put $G_{i+i}^{\alpha}(\psi) = tw(B, i, P)$, $G_{i+i}^{\beta}(x)$ is undefined, and there are no changes at the other points.

4) Our procedure at step \mathfrak{L} yields a pair $\mathfrak{a} = (\mathfrak{A}, \mathfrak{B})$ of the third kind. Let \mathfrak{a} be the first point at which the function $\mathcal{G}_{\mathfrak{L}}^{\mathfrak{a}}$ is undefined. We take a sufficiently large initial segment of unused numbers \mathfrak{F} , construct a tower \mathfrak{A} with base \mathfrak{F} and frame \mathfrak{C} , and put $\mathcal{G}_{\mathfrak{s}+\mathfrak{f}}^{\mathfrak{a}}(\mathfrak{a}) = \mathfrak{A}$. There are no changes at the other points.

b) \mathbf{A} is odd and at step \mathbf{A} our procedure yields a pair \mathbf{x} . Put $\mathcal{G}_{\mathbf{s}+\mathbf{f}}^{\mathbf{x}} = \mathbf{\phi} \quad \mathcal{G}_{\mathbf{s}+\mathbf{f}}^{\mathbf{\beta}} = \mathcal{G}_{\mathbf{A}}^{\mathbf{\beta}}$ for $\mathbf{\beta} \neq \mathbf{x}$. Consider the elements of \mathbf{Q} . If \mathbf{f} is a pair of the first or second kind, $\mathcal{G}_{\mathbf{s}+\mathbf{f}}^{\mathbf{f}}(\mathbf{x})$! and $\mathbf{x} \in \mathcal{M}_{\mathbf{s}}$, then we transfer the base of the tower $\mathcal{G}_{\mathbf{s}+\mathbf{f}}^{\mathbf{f}}(\mathbf{x})$ into U. If $\mathbf{f} = (\mathcal{A}, \mathcal{B})$ is a pair of the third kind, $\ln(\mathcal{O}t) = i, j = \sigma(\mathcal{B}, i+1)$, then for those \mathbf{x} such that $\mathcal{G}_{\mathbf{s}+\mathbf{f}}^{\mathbf{f}}(\mathbf{x})$! & $\mathbf{x} \in \mathcal{B}_{\mathbf{f}+\mathbf{s}}$ we transfer the base of the tower $\mathcal{G}_{\mathbf{s}+\mathbf{f}}^{\mathbf{f}}(\mathbf{x})$ into U. This completes the description of step 1 of the construction.

Let $U = U \{ U_1 | 1 \ge 0 \}$. Obviously, the set U is recursively enumerable. We will prove several lemmas.

LEMMA 1. Suppose that $\operatorname{nr}(\boldsymbol{\omega}) \neq \infty$ for a pair $\boldsymbol{\omega} \in \boldsymbol{\omega}$. Then the sequence $\{\boldsymbol{\beta}_{\mathtt{s}}^{\boldsymbol{\omega}}\}_{\mathtt{s} \geq 0}$ converges, and if $\boldsymbol{\omega}$ is a pair of the first or second kind, then $\boldsymbol{\beta} = \lim_{\mathtt{s} \to \infty} \boldsymbol{\beta}_{\mathtt{s}}^{\boldsymbol{\omega}}$ is a function with finite domain.

The proof will be carried out by induction on nr () ϵN . Suppose the lemma is true for the elements $\mathcal{Q}_0 = \{\beta \in \mathcal{Q} \mid \operatorname{nr}(\beta) < \operatorname{nr}(\alpha)\}$ and let $\mathcal{Q}_1 = \{\beta \in \mathcal{Q}_0 \mid \beta \text{ be a pair of the first}\}$ or second kind $\}$. It is obvious that the set \mathscr{Q}_n is finite. Suppose \mathscr{L}_n is such that $1 \ge 1_0 \& \operatorname{nr}(\beta) \le \operatorname{nr}(\alpha) \longrightarrow \operatorname{nr}(\beta, 1) = \operatorname{nr}(\beta), 1 \ge 1_0 \& \operatorname{nr}(\beta) > \operatorname{nr}(\alpha) \longrightarrow \operatorname{nr}(\beta, 1) > \operatorname{nr}(\alpha).$ In view of the property of our convergence mentioned directly after the definition, there exists value ∞). Let $\mathcal{K}_0 = \{\mathcal{L} \mid \mathcal{L} \text{ be a subframe of } \mathcal{A}\}$, where $\mathcal{O}_{\mathcal{K}}$ is the first component of the pair \propto and $\mathcal{K}_7 = \{\mathcal{L} \in \mathcal{K}_0 \mid ht(\mathcal{L}) = \infty\}$. Suppose $\mathcal{L}_2 \ge \mathcal{L}_7$ is such that $\mathcal{L} \in \mathcal{K}_0 \setminus \mathcal{K}_1 \otimes \mathcal{L} \ge \mathcal{L}_2 \longrightarrow \mathcal{L}_1$ $bht(\mathcal{L}) = ht(\mathcal{L}, \mathfrak{s}), \ \mathcal{L} \in \mathcal{K}, \ \mathfrak{k} \mathfrak{s} \ge \mathfrak{s}_2 \longrightarrow ht(\mathcal{L}, \mathfrak{s}) > \ln(\mathcal{O} \mathcal{L})$. Fix $\mathfrak{s}_3 \ge \mathfrak{s}_2$ such that $\mathfrak{s} \ge \mathfrak{s}_3$ (our procedure at step Δ yields the pair α) \longrightarrow (Δ is even). We claim that if $\Delta_3 \leq \Delta \leq t \otimes G_{\Delta}^{\infty}(x)$, then $\mathcal{G}_{4}^{\star}(x)!$. Obviously, it suffices to consider the case t = 4+i. Assume the contrary: $\mathfrak{s} \geq \mathfrak{s}_{\mathfrak{s}} \overset{\circ}{\mathscr{E}} \mathcal{G}_{\mathfrak{s}}^{\prec}(\mathfrak{x})$, but $\mathcal{G}_{\mathfrak{s}+\prime}^{\prec}(\mathfrak{x})$ is undefined. If at step \mathfrak{s} of the construction we are in case al), then there exists a frame $\mathcal{L} \in \mathcal{K}_{a}$ such that $\operatorname{ht} (\mathcal{L}, \mathfrak{s}) \neq \operatorname{ht} (\mathcal{L}, \mathfrak{s}+1) \& \operatorname{ln} (\mathcal{U}) \geq \operatorname{ht} (\mathcal{L}, \mathfrak{s});$ but this is impossible in view of the choice of $\boldsymbol{\delta}_{\boldsymbol{\rho}}$. If we are in case a2) or a3), then, by choice of s_o , for some $eta \in \mathcal{Q}_1$ we can extend the definition of $\mathcal{G}_{s}^{\prime \beta}$, but this is impossible in view of the choice of $\boldsymbol{s}_{\boldsymbol{t}}$. Case a4) is obviously impossible, and case b) is impossible by the choice of s_3 . Contradiction. Now consider $s \ge s_3$ and x such that $G_4^{-}(x)$, and suppose $\mathcal{G}_{1}^{\checkmark}(x) = (A_{0}, \dots, A_{i}, \varphi_{0}, \dots, \varphi_{i})$. Consider $t \ge 1$, as shown above, $\mathcal{G}_{t}^{\backsim}(x)$, so let $\mathcal{G}_{\mathcal{A}}^{\prec}(x) = (\mathcal{B}_{0}, \dots, \mathcal{B}_{i}, \psi_{0}, \dots, \psi_{i})$. From the description of the construction it is easy to see that for each $\ell \leq i$ there exists a bijection $\theta_{e,t} \colon A_{\ell} \longrightarrow B_{\ell}$ such that $\theta_{e,t}(P) \supset P$ (obviously, $\theta_{\ell,t}$ is uniquely determined). For $\ell \leq i$ we put $A_{\ell} = \{P \in A_{\ell} | \theta_{\ell,t}(P) \cap \Pi_{\ell,t} \neq \phi\}$ for some $t \ge s$. Suppose $t_0 \ge s$ is such that

$$\left\{ \mathcal{P} \in \mathcal{A}_{e} \mid \mathcal{O}_{e, t_{o}} \left(\mathcal{P} \right) \cap \Pi_{e, t_{o}} \neq \emptyset \right\} = \mathcal{A}_{e}^{\circ}$$

for all $e \leq i$. From the description of al) it now follows immediately that $t_0 \leq t \rightarrow G_{t_0}^{\prec}$ $(x) = G_t^{\prec}(x)$. The convergence of the sequence $\{G_1^{\prec}\}_{1 \geq 0}$ is proved.

Before proving the second half of the lemma for \ll we make several remarks. Suppose $\beta \in \Omega_0 \cup \{\alpha\}, G^\beta = \lim_{A \to \infty} G_{\pm}^\beta$. We define a partial function g^β as follows: $g^\beta(x) = \mathcal{Y} \iff G^\beta(\mathcal{Y}), \& x \in \operatorname{bs}(G^\beta(\mathcal{Y}))$ The sequence of finite functions $\{G_{\mu}^\beta\}_{\lambda \geq 0}$ has the following properties: a) it is strongly computable, b) it converges to G^β , and c) $G_{\pm}^\beta(x), \& G_{\pm+}^\beta(x), \to \operatorname{bs}(G_{\pm+}^\beta(x)) \subset \operatorname{bs}(G_{\pm+}^\beta(x));$ therefore, the function g^β is partial recursive and the domain of g^β , which we denote by \mathcal{H}^β , is a recursively enumerable set. If $\beta \in \Omega_0$ is a pair of the first or second kind, then \mathcal{H}^β is finite, hence $\mathcal{Y}(\mathcal{U}, \mathcal{H}^\beta) = 0$. Suppose $\beta \in \Omega_0$ is a

pair of the third kind, $\beta = (\mathscr{L}, \beta)$. We calculate $\psi(U, H^{\beta})$. Suppose $\mathcal{K} = \ln(\mathscr{L})$, $j = \mathcal{U}(\beta, \mathcal{K}+1)$. We claim that $\psi(U, H^{\beta}) = d_m(\beta_j)$ (where $\{\beta_e\}_{e \ge 0}$ is the computable sequence introduced earlier). Indeed, it is obvious, in the first place, that $g^{\beta}(H^{\beta}) = \mathcal{N}$ (see case a4) of the construction), and, secondly, it follows from the description of the second part of case b) that for $\mathcal{X} \in \mathcal{H}^{\beta}$ we have $\mathcal{X} \in \mathcal{U} \leftrightarrow g^{\beta}(\mathcal{X}) \in \beta_j$, which, in conjunction with property 03) of the ψ -operator, yields the equality $\psi(U, \mathcal{H}^{\beta}) = d_m(\beta_j)$.

We will now prove the second half of the lemma for \measuredangle . We first analyze the case where \propto is a pair of the first kind, $\propto = (\mathcal{O}, \mathcal{I}), \ln(\mathcal{O}) = c(m, n, e) = i, K = \sup(m, n)$. Assume that the function $\mathcal{G}^{\prec} = \lim_{s \to \infty} \mathcal{G}^{\prec}_{s}$ has an infinite domain. Then it follows from the description of case a2) of the construction that the domain of \mathcal{G}^{∞} is \mathcal{N} , hence $g^{\infty}(\mathcal{H}^{\infty}) = \mathcal{N}$. Let $\widetilde{\mathcal{H}} = \cup \{\mathcal{P}\}$ $| \mathcal{F}_{\mathcal{X}} \left(\mathcal{G}^{\prec}(x) = (A_{o}, \ldots, A_{i}, \varphi_{o}, \ldots, \varphi_{i} \right) \& \mathcal{P} \in A_{k} \& \pi \in \varphi_{k}(\mathcal{P}) \} ; \text{ it is clear that set } \widetilde{\mathcal{H}} \text{ is recursive-ly enumerable and } \widetilde{\mathcal{H}} \subset \mathcal{H}^{\prec} .$ It follows from the definition of pairs of the first kind that for each x we have $\widetilde{\mathcal{H}} \cap bs(\mathcal{G}^{\prec}(x)) \neq \emptyset$, hence $g^{\prec}(\widetilde{\mathcal{H}}) = \mathcal{N}$, and it follows from the description of the second part of case b) of the construction that for $x \in \mathcal{H}^{\prec}$ we have $x \in \mathcal{U} \longrightarrow g^{\prec}(x) \in \mathcal{M}$; this, in conjunction with property 03) of the ψ -operator, yields the equality $\psi(U, \widetilde{H}) =$ $a'_m(\mathcal{M}) = I$. We claim that the function f_e is defined on the set $\widetilde{\mathcal{H}}, f_e(\widehat{\mathcal{H}}) \cap \mathcal{H}^{\prec} = \phi$ and for each $x \in \widetilde{\mathcal{H}}$ we have $x \in \mathcal{U} \leftrightarrow f_{\ell}(x) \in \mathcal{U}$. Indeed, we would otherwise have $\lim_{x \to \infty} in(\alpha, x) \in \mathcal{N}$, while our assumption "the function \mathcal{G}^{\star} has an infinite domain" implies, as is easily seen, the equality $\lim_{s \to \infty} in(\alpha, s) = \infty$. We call a tower A final if there exists s_0 such that $s \ge s_0 \to \infty$ (the tower A exists to step s). Put $V = N \setminus (U \{ bs(A) \mid A \text{ is a final tower} \})$ The set V is recursively enumerable, as is the set $V \cap (N \setminus U)$. Therefore, by 03), $\psi(U,$ V) = O. It follows from the description of case a2) of the construction that $N = V \cup \left(\cup \left\{ H^{\beta} \right\} \right)$ $|\rho \in \Omega_0 \cup \{\alpha\}\}$, and it follows from the properties of f_e and 02) and 03) that $I = \psi(U, \widetilde{H}) \leq I = \psi(U, \widetilde{H})$ $\psi(U, \forall U (U \{ H^{\beta} | \beta \in \mathcal{G}_{0} \})) = U \{ \psi(U, H^{\beta}) | \beta \in \mathcal{G}_{0} \} \in \mathcal{B} (\mathcal{L}^{o}) \text{, which contradicts the}$ assumptions of Theorem 1.

We now analyze the case where \propto is a pair of the second kind, $\propto = (\mathcal{U}, \mathbb{I})$, $\ln(\mathcal{U}) = i = \mathcal{C}(\pi, \ell)$. Assume that the function $\mathcal{G}^{\approx} = \lim_{x \to \infty} \mathcal{G}^{\approx}_{x}$ has an infinite domain. Then it follows from the description of case a3) of the construction that the domain of \mathcal{G}^{\approx} is \mathcal{N} , hence $\mathcal{G}^{\approx}(\mathcal{H}^{\ll}) = \mathcal{N}$. It is also easy to see that for $\mathcal{I} \in \mathcal{H}^{\ll}$ we have $\mathcal{I} \in \mathcal{U} \leftrightarrow \mathcal{G}^{\ll}(x) \in \mathcal{M}$. Now consider the function f_{ℓ} . We claim that f_{ℓ} is a g.r.f. and that for each \mathcal{I} we have $\mathcal{I} \in \mathcal{I}_{q(\pi)} \leftrightarrow f_{\ell}(x) \in \mathcal{U}$ (\mathcal{G} is the previously fixed g.r.f. representing the morphism $\delta: \mathcal{L}_{\mathcal{Y}}^{\circ} \to \mathcal{L}_{\pi}^{\circ}$). Indeed, in the contrary case we have $\lim_{t \to \infty} \inf(i, t) \in \mathcal{N}$, and our assumption "the function \mathcal{G}^{\approx} has infinite domain" implies that $\lim_{t \to \infty} \inf(i, t) = \infty$. It follows from consideration of case a3) of the construction that for each \mathcal{I} we have bs $(\mathcal{G}^{\approx}(x)) \cap f_{\ell}(\mathcal{N}) \neq \emptyset$, hence the image of the p.r.f. $\mathcal{G}^{\sim} = f_{\ell}$ is \mathcal{N} . This last fact, in conjunction with the relations $\mathcal{I} \in \mathcal{H}^{\propto} \to (\mathfrak{I} \in \mathcal{L}^{\circ})$, which contradicts the assumptions of Theorem 1.

Lemma 1 is proved.

Suppose $\mathcal{D}_0 = \{ \alpha \in \mathcal{D} \mid \operatorname{nr}(\alpha) \in N \}$ and $\mathcal{D}^{\alpha} = \lim_{t \to \infty} \mathcal{D}^{\alpha}_t$ for $\alpha \in \mathcal{D}_0$ (the sequence $\{ \mathcal{D}^{\alpha}_t \}_{t \geq 0}$ converges by Lemma 1). Obviously, the tower A is final if and only if there exist $\alpha \in \mathcal{D}_0$ and $\mathfrak{x} \in N$ such that $\mathcal{D}^{\alpha}(\mathfrak{x}) / \& A = \mathcal{D}^{\alpha}(\mathfrak{x})$. Recall that $V = N \setminus \{ \cup \{ \operatorname{bs}(A) \mid A \text{ is a final tower} \} \}$ and $\mathfrak{x} \in \mathcal{I} \longrightarrow \mathfrak{x} \in \mathcal{D}_i$ (where $\{ \mathcal{D}_i \}_{i \geq 0}$ is our sequence from (*). For each triple $\{ \alpha, \mathfrak{x}, i \}$ such that $\alpha \in \mathcal{D}_0 \& \mathfrak{x} \in \mathcal{D}_i \& i \leq \operatorname{ln}(\alpha)$ we introduce the set $\mathcal{R}^{\alpha}_{\mathfrak{x}i} = \cup \{ \mathcal{P} \mid \text{ there exists } \mathfrak{g} \in N \text{ such that } \mathcal{D}^{\alpha}(\mathfrak{g}) / \& \mathcal{D}^{\alpha}(\mathfrak{g}) = (A_0, \dots, A_i, \mathcal{Q}_0, \dots, \mathcal{Q}_i) \& \mathcal{D} \in A_i \& \mathfrak{x} \in \mathcal{Q}_i(\mathcal{D}) \}$; for each triple $(\alpha, \mathfrak{x}, i)$ such that $i = \operatorname{ln}(\alpha) \& \alpha \in \mathcal{Q}_0 \& \mathfrak{x} \in \mathcal{D}_i$ we introduce the set $\mathcal{R}^{\alpha}_{\mathfrak{x}i} : \mathcal{R}^{\alpha}_{\mathfrak{x}i} = \emptyset$ if α is a pair of the first or second kind, while if $\alpha = (\alpha, \beta)$ is a pair of the third kind, then $\mathcal{R}^{\alpha}_{\mathfrak{x}i} = \emptyset$, if $\mathfrak{x} \notin \beta$, and $\mathcal{R}^{\alpha}_{\mathfrak{x}i} = \cup \{ \operatorname{bs}(\mathcal{D}^{\alpha}(\mathfrak{g})) \mid \mathfrak{g} \geq 0 \}$, if $\mathfrak{x} \in \beta$. We also put

$$\mathcal{R}_{xi} = \bigvee \cup \left(\cup \left\{ \mathcal{R}_{xi}^{\prec} \mid \alpha \in \mathcal{Q}_{o} \& i \leq \ln (\alpha) \right\} \right) \cup \left(\cup \left\{ \widetilde{\mathcal{R}}_{xi}^{\prec} \mid \alpha \in \mathcal{Q}_{o} \& i = \ln (\alpha) \right\} \right).$$

<u>LEMMA 2.</u> The set \mathcal{R}_{xi} is recursively enumerable and $\psi(U, \mathcal{R}_{xi}) = \psi(U, \mathcal{R}_{xi+1})$.

Let $\mathcal{K}_0 = \{\mathcal{L} \mid \mathcal{L} \text{ is a frame } \mathcal{U} \mid n(\mathcal{L}) \leq i\}, \mathcal{K}_r = \{\mathcal{L} \in \mathcal{K}_0 \mid \text{ht}(\mathcal{L}) \neq \infty\}$. Suppose \mathbf{i}_0 is such that $\mathbf{i} \geq \mathbf{i}_0 \longrightarrow [\text{ht}(\mathcal{L}) = \text{ht}(\mathcal{L}) \text{ for } \mathcal{L} \in \mathcal{K}_1] \mathcal{U} = \mathcal{G}_{\mathbf{i}}^{\infty} = \mathcal{G}^{\infty}$ for pairs $\mathbf{x} \in \mathcal{L}_0$ of the second kind and of length $\leq i$]. Put $\mathcal{Q}'_{\mathbf{x}i} = \mathcal{U} \{\mathcal{P} \mid \text{ there exist } \mathbf{i} \geq \mathbf{i}_0, \mathbf{x} \in \mathcal{L}, \mathbf{y} \in \mathcal{N} \text{ such that}$

1)
$$G_{\mathbf{s}}^{\infty}(y)$$
! & $G_{\mathbf{s}}^{\infty}(y) = (\mathbf{A}_{0}, \dots, \mathbf{A}_{j}, \varphi_{0}, \dots, \varphi_{j})$ & $i \leq j$ & $P \in \mathbf{A}_{i}$ & $x \in \varphi_{i}(P)$;
2) ht $(\mathcal{L}, \mathbf{s}) > \ln (G_{\mathbf{s}}^{\infty}(y))$ for all $\mathcal{L} \in \mathcal{K}_{0} \setminus \mathcal{K}_{1}$.

We also put $R'_{xi} = \bigcup \{ R'_{xi} \mid \alpha \in \mathcal{Q}_0 \& i \leq \ln(\alpha) \}$. We claim that $\bigvee \bigcup R'_{xi} = \bigvee \bigcup Q'_{xi}$. The first set is obviously contained in the second. Let us prove the reverse inclusion. Suppose $a \in Q'_{ri} \setminus V$; and suppose $1 \ge \delta_0$, $\alpha_0 \in Q$, $y_0 \in N$, P_0 satisfy conditions 1) and 2) in the definition of $\mathcal{Q}'_{\mathbf{x}i}$ and $\boldsymbol{\alpha} \in \mathcal{P}_{0}$. Since $\boldsymbol{\alpha} \notin V$, it follows that for uniquely determined $\boldsymbol{\alpha}, \in \mathcal{Q}$, $\boldsymbol{y}, \in \mathcal{N}$ we have $\mathcal{G}_{\mathbf{y}+i}^{\boldsymbol{\alpha}}(\boldsymbol{y}_{1})$! & $\boldsymbol{\alpha} \in \operatorname{bs}(\mathcal{G}_{\mathbf{y}+i}^{\boldsymbol{\alpha}}(\boldsymbol{y}_{1}))$. Let $\mathcal{G}_{\mathbf{y}+i}^{\boldsymbol{\alpha}}(\boldsymbol{y}_{1}) = (\mathcal{B}_{0}, \ldots, \mathcal{B}_{K}, \boldsymbol{\psi}_{0}, \ldots, \boldsymbol{\psi}_{K})$. Looking at the description of the construction, it is easy to see that by virtue of the choice of s_{o} and condition 2) we have $\ln(\alpha_0) \ge \ln(\alpha_1) \ge i$, and if $\alpha_1 \neq \alpha_0$, then $\ln(\alpha_0) > \ln(\alpha_1)$, but if $\boldsymbol{\mathbf{x}}_{\boldsymbol{\sigma}} = \boldsymbol{\mathbf{x}}_{\boldsymbol{\sigma}}$, then $\boldsymbol{\mathbf{y}}_{\boldsymbol{\sigma}} = \boldsymbol{\mathbf{y}}_{\boldsymbol{\sigma}}$. Let $\boldsymbol{P}_{\boldsymbol{\sigma}}$ be the element of $\boldsymbol{B}_{\boldsymbol{\mu}}$ containing $\boldsymbol{\boldsymbol{\alpha}}$. Again by the choice of \mathbf{s}_{o} and condition 2), $P_{i} \supset P_{o} \And \psi_{i}(P_{i}) \supset \varphi_{i}(P_{o})$, hence $\mathbf{x} \in \psi_{i}(P_{i})$. Thus, $\mathbf{t} + \mathbf{i}, \mathbf{x}_{i}, \psi_{i}, P_{i}$ satisfy conditions 1) and 2) and $\rho_{a} \subset \rho_{1}$. Continuing this argument, we obtain in t steps a sequence $(\alpha_0, y_0, \mathcal{P}_0), \ldots, (\alpha_t, y_t, \mathcal{P}_t)$ such that $\ln(\alpha_0) \ge \ldots \ge \ln(\alpha_t) \ge i$ and if $\alpha_{j+1} \ne \alpha_j$, then $\ln(\alpha_{j+1}) < \ln(\alpha_j)$, but if $\alpha_{j+1} = \alpha_j$, then $y_{j+1} = y_j$, the set $1+t, \alpha_t, y_t, P_t$ satisfies conditions 1) and 2) and $P_{q} \subset P_{t} \subset \dots \subset P_{t}$, and so on. The sequence $\{(\alpha_{t}, y_{t}, P_{t})\}_{t \ge 0}$ obviously converges; let (y, z, S) be its limit. Clearly, $j \in \mathcal{G}_0 \& \ln(y) \ge i$ and $a \in \mathcal{R}_{z_i}^{y'}$. Therefore, the equality $\bigvee \mathcal{R}'_{xi} = \bigvee \mathcal{Q}'_{xi}$ is proved and with it the recursive enumerability of the set $\bigvee \mathcal{R}'_{xi}$, since the set $\bigvee \mathcal{Q}_{xi}$ is obviously recursively enumerable. Suppose $\alpha \in \mathcal{Q}_{a}$ & $i = \ln (\alpha)$. It is easy to see that the set $\tilde{\mathcal{R}}_{xi}^{\infty}$ is either empty or equal to $\mathcal{H}^{\infty}(\mathcal{H}^{\infty})$ is the set introduced in the proof of Lemma 1, where we proved that it is recursively enumerable). But $R_{xi} = V \cup R'_{xi}$ $U(U\{\hat{\mathcal{R}}_{xi}^{\alpha} \mid \alpha \in \mathcal{G}_{a} \& i = \ln(\alpha)\},$ hence the set \mathcal{R}_{xi} is recursively enumerable.

We will now prove the equality $\psi(U, R_{xi}) = \psi(U, R_{xi+1})$.

$$\begin{aligned} \mathcal{R}_{xi}^{\prime} &= \cup \left\{ \mathcal{R}_{xi}^{\prec} \mid \boldsymbol{\alpha} \in \mathcal{Q}_{0} \& i + l \leq \ln (\boldsymbol{\alpha}) \right\}; \\ \mathcal{R}_{xi}^{2} &= \cup \left\{ \widetilde{\mathcal{R}}_{xi}^{\prec} \mid \boldsymbol{\alpha} \in \mathcal{Q}_{0} \& i = \ln (\boldsymbol{\alpha}) \right\}; \\ \mathcal{R}_{xi}^{3} &= \cup \left\{ \mathcal{R}_{xi}^{\prec} \mid \boldsymbol{\alpha} \in \mathcal{Q}_{0} \& i = \ln (\boldsymbol{\alpha}) \right\}; \\ \mathcal{R}_{xi+l}^{\prime} &= \cup \left\{ \mathcal{P} \mid \text{there exist} \quad \boldsymbol{\alpha} \in \mathcal{Q}_{0} \text{ and } \boldsymbol{\gamma} \in \mathcal{N} \text{ such that} \\ \mathcal{G}^{\prec}(\boldsymbol{\gamma}) l \& \mathcal{G}^{\prec}(\boldsymbol{\gamma}) = (\mathcal{A}_{0}, \dots, \mathcal{A}_{j}, \boldsymbol{\varphi}_{0}, \dots, \boldsymbol{\varphi}_{j}) \& \\ \& i + l \leq j \& \mathcal{P} \in \mathcal{A}_{i+l} \& x \in \boldsymbol{\varphi}_{i+l} (\mathcal{P}) \right\} (= \cup \left\{ \mathcal{R}_{xi+l}^{\prec} \mid \boldsymbol{\alpha} \in \mathcal{Q}_{0} \& i + l \leq \ln(\boldsymbol{\alpha}) \right\}; \\ \mathcal{R}_{xi+l}^{2} &= \cup \left\{ \widetilde{\mathcal{R}}_{xi+l}^{\prec} \mid \boldsymbol{\alpha} \in \mathcal{Q}_{0} \& i + l = \ln (\boldsymbol{\alpha}) \right\}. \end{aligned}$$

It is obvious that $R_{xi} = \bigvee \bigcup R'_{xi} \bigcup R^2_{xi} \bigcup R^3_{xi}$, $R_{xi+i} = \bigvee \bigcup R'_{xi} \bigcup R^2_{xi}$. The recursive enumerability of the sets $\bigvee \bigcup R'_{xi}$, $\bigvee \bigcup R'_{xi+i}$ is proved in the same way as the recursive enumerability of $\bigvee \bigcup R'_{xi}$ was proved in the first part. Obviously, $\bigvee \bigcup R'_{xi} \subseteq \bigvee \bigcup R'_{xi+i}$, hence, in view of 02), $\psi (\bigcup, \bigvee \bigcup R'_{xi}) \in \psi (\bigcup, \lor \bigcup R^{(0)}_{xi+i})$. Consider the partition P of the set $\bigvee \bigcup R'_{xi+i}$, hence, in r_{i} , $i \in P = \{\bigvee \cap \bigcup \bigcup \bigcup (\bigvee \cap (\bigvee \cap \bigcup))\} \cup$ (the set appearing after the symbol \bigcup in the definition of R'_{xi+i}), and the equivalence relation connected with P on $\bigvee \bigcup R'_{xi+i}$: $a \sim b \leftrightarrow (a,b) \in \bigcup \{P \times P \mid P \in P\}$. It is obvious that for each $Q \in \bigcup \cup R'_{xi+i}$ there exists $b \in \bigvee \cup R'_{xi}$ such that $a \sim b$ and for $a, b \in \bigvee \bigcup R'_{xi+i}$: $a \lor b \to (a \in \bigcup \to b \in \bigcup)$. Therefore, if we can prove the recursive enumerability of the equivalence \sim , then, in view of 04), we would have $\psi (\bigcup, \bigvee R'_{xi+i}) \leq \psi (\bigcup, \lor R'_{xi})$. Let $K_0 = \{\mathcal{L} \mid \mathcal{L} \text{ is a frame } \& \ln (\mathcal{L}) \leq i+i \}$, $K_i \in \{\mathcal{L} \in K_0 \mid h \in (\mathcal{L}) \neq \infty\}$. Suppose a_0 is such that $4 \not z \not a_0 \to [h \in (\mathcal{L}, \zeta) = h \in (\mathcal{L})$ for $\mathcal{L} \in K_i] \otimes [G^{\infty}_{\mathcal{L}} = G^{\infty}$ for pairs ∞ of the second kind and of length $\leqslant i+i]$. Consider the family of sets $Q : Q = \{\bigvee \cap \bigcup \bigcup \bigcup \{V \cap (N \setminus \bigcup)\} \cup \{Q \mid \text{ there exist } 4 \not a \not a_i , x \in \mathcal{P}_i \in (Q), 2 \not a_i , y \in (Q, \dots, A_i), \varphi_0, \dots, \varphi_i) \otimes i \geqslant i+i \land \& Q \in A_{i+i} \otimes x \in \varphi_{i+i} (Q), 2 \not a_i , (Q, i) \otimes (Q \setminus \bigcup (X \cup X'_{\mathcal{L}}))$ for all $\mathcal{L} \in K_0 \setminus K_i$.

Obviously, the family Q is computable and $P \subset Q$. We will prove that for each $Q \in Q$ there exists $P \in P$ such that $Q \subset P$. If $Q = \vee \cap U$ or $Q = \vee \cap (N \vee U)$, then this is so. Suppose that for certain $4 \ge 4_0$, $\alpha_0 \in Q$, $y_0 \in N$ the set $4, \alpha_0, y_0, Q$ satisfies the above conditions 1) and 2). Fix $a \in Q$ and denote Q by Q_0 . If $a \notin \vee$, then arguing as in the first part, we obtain a sequence $\{(\alpha_t, y_t, Q_t)\}_{t \ge 0}$ converging to some triple (y, z, P), where $Q_0 \subset Q_1 \subset \dots$ hence $Q \subset P$, and for some $t \ge 0$ the set $4 + t, \alpha_t, y_t, Q_t$ satisfies conditions 1) and 2), hence $P \in P$. It remains to analyze the case $a \in \vee$.

Suppose $t \ge 0$ is such that a lies in the base of some tower to step i + t but not to step i + t + i. Arguing as in the first part, we obtain a sequence (α_0, y_0, β_0) , (α_1, y_1, β_1) , $\dots, (\alpha_t, y_t, \beta_t)$ such that $\beta_0 \subseteq \beta_1 \subseteq \dots \subseteq \beta_t$ and the set i + t, α_t, y_t, β_t satisfies conditions 1) and 2). If we now look at the description of the construction and take into account the choice of δ_0 and condition 2), we see easily that either $\beta \subseteq \beta_t \subseteq \vee \cap \cup \cup \beta_t \subseteq \beta_t \subseteq \vee \cap$ $(N \setminus \cup)$. It follows from what has been proved that $\cup \{P \times P \mid P \in P\} = \cup \{Q \times Q \mid Q \in Q\}$; but the second set is recursively enumerable in view of the computability of the family Q, hence the equivalence \sim is recursively enumerable. Thus, the inequality $\psi(\bigcup, \vee \cup \beta_{xi+1}') \leq$ $\psi(U, \forall \cup R'_{xi})$, hence also the equality $\psi(U, \forall \cup R'_{xi}) = \psi(U, \forall \cup R'_{xi+i})$ is proved. In a completely analogous way we can prove that $\psi(U, R'_{xi+i}) = \psi(U, R'_{xi})$ for pairs $\alpha : \alpha \in \mathcal{G}_{0}$ & $i+i \leq \ln(\alpha)$.

It is easy to see that the set $R_{xi}^3 \sim R_{xi}^2$ is finite, hence, the view of 02) and 03), $\psi(U, R_{xi}^3) \leq \psi(U, R_{xi}^2)$. Thus, it remains to prove the inequalities

$$\psi\left(U, \mathcal{R}_{xi}^{2}\right) \leq \psi\left(U, \mathcal{R}_{xi+i}\right), \psi\left(U, \mathcal{R}_{xi+i}^{2}\right) \leq \psi\left(U, \mathcal{R}_{xi}\right).$$

Let $\mathcal{L}_{i} = \{ \boldsymbol{\alpha} \in \mathcal{L}_{0} | \boldsymbol{\alpha} = (\mathcal{O}, \mathcal{B}) \text{ be a pair of the third kind & } \ln (\boldsymbol{\alpha}) = i \& \boldsymbol{x} \in \mathcal{B} \}, \ \mathcal{L}_{2} = \{ \boldsymbol{\alpha} \in \mathcal{L}_{0} | \boldsymbol{\alpha} = (\mathcal{O}, \mathcal{B}) \text{ be a pair of the third kind & } \ln (\boldsymbol{\alpha}) = i + i \& \boldsymbol{x} \in \mathcal{B} \} \text{.}$ It is obvious that $\mathcal{R}_{\mathcal{I}i}^{2} = \bigcup \{ \widetilde{\mathcal{R}}_{\mathcal{I}i}^{\alpha} | \boldsymbol{\alpha} \in \mathcal{L}_{1} \}, \mathcal{R}_{\mathcal{I}i+1}^{2} = \bigcup \{ \widetilde{\mathcal{R}}_{\mathcal{I}i+1}^{\alpha} | \boldsymbol{\alpha} \in \mathcal{L}_{1} \} \text{.}$ Therefore, it suffices to prove that $\psi(U, \widetilde{\mathcal{R}}_{\mathcal{I}i}^{\alpha}) \leq \psi(U, \mathcal{R}_{\mathcal{I}i+1}), \boldsymbol{\alpha} \in \mathcal{L}_{1} \}$ and $\psi(U, \widetilde{\mathcal{R}}_{\mathcal{I}i+1}^{\alpha}) \leq \psi(U, \mathcal{R}_{\mathcal{I}i}), \boldsymbol{\alpha} \in \mathcal{L}_{2} \text{.}$

Suppose $\alpha \in \mathcal{Q}_{i}$; $\alpha = (\mathcal{Q}, \mathcal{B})$, $\ln(\mathcal{O}_{i}) = i$, $\mathcal{B} \subset \mathcal{D}_{i+1}$, $x \in \mathcal{B}$, $\mathcal{B} \cap \mathcal{H} \neq \emptyset$; let $j = \mathcal{J}(\mathcal{B}, i+1)$. It follows at once from the definitions that $\mathcal{R}_{xi}^{\infty} = \mathcal{H}^{\alpha}$ (the set \mathcal{H}^{α} was introduced in the proof of Lemma 1), hence $\psi(\mathcal{U}, \mathcal{R}_{xi}^{\alpha}) = \psi(\mathcal{U}, \mathcal{H}^{\alpha}) = d_{m}(\mathcal{B}_{j})(\{\mathcal{B}_{e}\}_{e \geq 0})$ is the sequence introduced earlier, and the computation of $\psi(\mathcal{U}, \mathcal{H}^{\alpha})$ is given in the proof of Lemma 1). Let $\mathcal{B} = \{y \in \mathcal{D}_{i+2} \mid j \leq i+2\psi\}, q = \mathcal{J}(\mathcal{B}, i+2)$. It is obvious that a) $j \sim_{i+2} q$, hence $d_{m}(\mathcal{B}_{j}) = d_{m}(\mathcal{B}_{q})$; b) $x \in \mathcal{B}$; c) $\mathcal{B} \cap \mathcal{H} \neq \emptyset$. Consider a pair of the third kind, $\mathcal{B} = (\mathcal{L}, \mathcal{B})$, where \mathcal{L} is the sequence $(\{\{0\}\}, \dots, \{\{0\}\}\})$ of length i+i. As we have already noted, $\lim_{x \to \infty} \mathcal{P}(\mathcal{L}, \mathbf{L}) \in \mathcal{N}$, hence $\operatorname{nr}(\mathcal{B}) \in \mathcal{N}$. Therefore, $\mathcal{B} \in \mathcal{G}_{2}$, and in view of a),

$$\psi(U, \widetilde{\mathcal{R}}_{xi}^{\prime}) = d'_m(\mathcal{B}_{i}) = d'_m(\mathcal{B}_{q}) = \psi(U, \widetilde{\mathcal{R}}_{xi+1}^{\prime}) \leq \psi(U, \mathcal{R}_{xi+1}).$$

Suppose $\boldsymbol{\alpha} \in \mathcal{Q}_2$; $\boldsymbol{\alpha} = (\mathcal{U}, \mathcal{B}), \ \mathcal{B} \cap \mathcal{H} \neq \mathcal{P}, \ \ln(\mathcal{U}) = i + \ell, \ \mathcal{B} \subset \mathcal{D}_{i+2}, \ \boldsymbol{x} \in \mathcal{B}$; let $j = \sigma$ $(\mathcal{B}, i+2)$. We decompose the element $[j]_{i+2}$ of the distributive lattice $\widetilde{\mathcal{D}}_{i+2}$ into atoms: $[j]_{i+2} = [j_1]_{i+2} \cup \ldots \cup [j_n]_{i+2}$. Obviously, $\boldsymbol{\psi}(\mathcal{U}, \mathcal{R}_{\mathbf{x}i+1}^{\boldsymbol{\alpha}}) = d_m(\mathcal{B}_j) = \cup \{d_m(\mathcal{B}_{j_j}) | \ell \in \mathbb{C} < n\}$. Therefore, it suffices to prove that $d_m(\mathcal{B}_{j_\ell}) \leq \boldsymbol{\psi}(\mathcal{U}, \mathcal{R}_{\mathbf{x}i})$. Denote j_ℓ by \mathcal{G} . Let $\{[K_1]_{i+1}, \ldots, [K_m]_{i+1}\}$ be the totality of minimal elements of the set $\{[\mathcal{G}_1]_{i+1} \mid \mathcal{G} \in \mathcal{D}_{i+1} \land \mathcal{G} \leq i+2 \ \mathcal{G}\}$. In view of D2), each $[K_1]_{i+1}$ is an atom of the distributive lattice $\widetilde{\mathcal{D}}_{i+1}$, and since $\mathcal{G}_{i+2} \ \mathcal{G}$, it follows that for some \mathcal{A}_0 we have $\mathcal{K}_{\mathcal{A}_0 \in \mathcal{G}_1} \mathcal{I}$. Denote $\mathcal{K}_{\mathcal{A}_0}$ by \mathcal{U} . Suppose $\mathcal{A} = \{\mathcal{Y} \in \mathcal{D}_{i+1}\}$ $(\mathcal{G} \in \mathcal{G}_{i+1})$ is the veloced the pair $\mathcal{B} = (\mathcal{L}, \mathcal{A})$ of the third kind, where \mathcal{L} is the sequence $(\{\{0\}\}, \ldots, \{\{0\}\}\})$ of length i. In view of our assumptions, $\mathcal{B} \in \mathcal{D}_i$ and $\mathcal{U}(\mathcal{R}_{\mathbf{x}i}) = d_m(\mathcal{B}_m) \ge d_m(\mathcal{B}_q)$. It remains to analyze the case $\mathcal{A} \cap \mathcal{H} = \mathcal{P}$. Suppose $\mathcal{L} = (\mathcal{L}_i, \mathcal{B}) = d_m(\mathcal{B}_q) \ge d_m(\mathcal{B}_q)$. It remains to analyze the case $\mathcal{A} \cap \mathcal{H} = \mathcal{A}$. Suppose $\mathcal{L} = (\mathcal{L}_i, \mathcal{B}) = d_m(\mathcal{B}_{i+1}) \ge \mathcal{A}$. Obviously, $\mathbf{x} \in \mathcal{A} \subset \mathcal{B}$. Consider the pair $\mathcal{B} = (\mathcal{L}, \mathcal{B})$ of the third kind. The following chain of equalities is a consequence of the definitions and the first part of the proof of Lemma 2: $\mathcal{Q}_m(\mathcal{B}_q) = \mathcal{\Psi}(\mathcal{U}, \mathcal{R}_{\mathbf{x}i+1}) = \mathcal{\Psi}(\mathcal{U}, \mathcal{R}_{\mathbf{x}i+1}) = \mathcal{\Psi}(\mathcal{U}, \mathcal{R}_{\mathbf{x}i}) \le \mathcal{\Psi}(\mathcal{U}, \mathcal{R}_{\mathbf{x}i})$. Thus, the proof of Lemma 2 is complete.

We will use the following notation up to the end of the proof of Theorem 1: if $\pmb{x} \epsilon D_{j}$, then

$$R_{xi}^{\prime} \rightleftharpoons \left(\bigcup \left\{ R_{xi}^{\alpha} \mid \alpha \in \mathcal{Q}_{g} \& i \leq \ln (\alpha) \right\} \right) \bigcup V,$$

$$R_{xi}^{2} \rightleftharpoons \bigcup \left\{ \tilde{R}_{xi}^{\alpha} \mid \alpha \in \mathcal{Q}_{g} \& i = \ln (\alpha) \right\};$$

clearly, $R_{xi} = R_{xi}' \cup R_{xi}^2$. We define a mapping $C: \mathcal{L} \to \mathcal{L}^e$ as follows: $C\mu(x) = \psi(U, R_{xx})$. Let us verify the correctness of the definition. Suppose $\mu(x) = \mu(y)$. Then, in view of LO), for some *i* we have $x, y \in D_i$ & $x \sim_i y$. By Lemma 2, $\psi(U, R_{xi}) = \psi(U, R_{xx}), \psi(U, R_{ui}) = \psi(U, R_{yy})$. Therefore, it suffices to prove that $\psi(U, R_{xi}) = \psi(U, R_{yi})$. Since $x \sim_i y$, it follows that $R'_{xi} = R'_{yi}$. Now suppose $\alpha = (\alpha, \beta)$ is a pair or third kind, ln $(\alpha) = i$, $\alpha \in \mathcal{Q}_0, x \in \beta$; let $j = U(\beta, i+i)$. Also, let $\tilde{B} = \{x \in D_{i+1} \mid j \leq_{j+1} x\}, q = U(\tilde{B}, i+i)$. Obviously, $j \sim_{i+1} q, y \in \tilde{B}, \tilde{B} \cap H \neq \phi$. Consider the pair $\beta = (\alpha, \beta)$ of the third kind, where α is the sequence $(\{\{0\}\}, \ldots, \{\{0\}\}\})$ of length *i*; it is clear that β lies in \mathcal{Q}_0 . It follows from all of the above that $\psi(U, \tilde{R}_{xi}) - d_m(\beta_j) = d_m(\beta_q) = \psi(U, \tilde{R}_{yi})$. In view of the symmetry of the situation, the equality $\psi(U, R_{xi}) = \psi(U, R_{yi})$ is proved, hence also the correctness of the definition of the mapping c.

LEMMA 3. The mapping $c: \mathscr{L} \to \mathscr{L}^{e}$ is an upper semilattice homomorphism, and the diagram

is commutative.

Suppose $\boldsymbol{\measuredangle} = (\mathcal{O}, \mathcal{B})$ is a pair of the third kind such that $\ln(\mathcal{O}) = i, \boldsymbol{\triangleleft} \in \mathcal{D}_{o}, \boldsymbol{\pounds} \cup \boldsymbol{\varPsi} \in \mathcal{B}$; let $j = \sigma(\mathcal{B}, i+i)$. We decompose the element $[j]_{i+i}$ of the distributive lattice $\widetilde{\mathcal{D}}_{i+i}$ into atoms: $[j]_{i+i} = [j_{i}]_{i+i} \cup \bigcup \cup [j_{n}]_{i+i}$. Obviously, $\boldsymbol{\psi}(U, \widetilde{\mathcal{R}}_{\boldsymbol{\pounds} \cup \boldsymbol{\varPsi}, i}^{\boldsymbol{\pounds}}) = \mathcal{A}_{m}(\mathcal{B}_{j_{1}}) \cup \ldots \cup \mathcal{A}_{m}(\mathcal{B}_{j_{n}})$. Suppose $i \leq \ell \leq \pi$. Since $j_{\ell} \leq j_{\ell+i} \mathcal{X} \cup \mathcal{Y}$ and $[j_{\ell}]_{i+i}$ is an atom of $\widetilde{\mathcal{D}}_{i+i}$, it follows that either $j_{\ell} \leq j_{\ell+i} \mathfrak{X}$ or $j_{\ell} \leq j_{\ell+i} \mathcal{Y}$. Suppose $\widetilde{\mathcal{B}} = \{z \in \mathcal{D}_{i+i} \mid j_{\ell} \in j_{\ell+i} \mathcal{Z}\}$, and \mathcal{L} is the sequence $(\{[0\}\}, \ldots, \{[0]\}\})$ of length i; if $\beta = \langle \mathcal{L}, \mathcal{B} \rangle$ it is obvious that $\beta \in \mathcal{D}_{0}$. If $j_{\ell} \leq j_{\ell+i} \mathfrak{X}$, then $\psi(U, \widetilde{\mathcal{R}}_{\boldsymbol{\pounds}}^{\beta}) = \mathcal{A}_{m}(\mathcal{B}_{j_{\ell}})$. Consequently, $\psi(U, \mathcal{R}_{\boldsymbol{\pounds}, i}^{\beta}) \in \mathcal{U}(U, \mathcal{R}_{\boldsymbol{\pounds}, i}^{\beta})$ is $\psi(U, \mathcal{R}_{\boldsymbol{\pounds}, i}^{\beta}) = \mathcal{A}_{m}(\mathcal{B}_{j_{\ell}}) \cup \psi(U, \mathcal{R}_{\boldsymbol{\pounds}, i}^{\beta})$. The inequalities.

$$\psi(U, \mathcal{R}_{xi}^{2}) \leq \psi(U, \mathcal{R}_{xvy,i}^{2}), \psi(U, \mathcal{R}_{yi}^{2}) \leq \psi(U, \mathcal{R}_{xvy,i}^{2})$$

can be proved in a completely analogous fashion. Thus, the first part of the lemma is proved. We will now prove that $C \cdot \bar{a} = \delta$.

Let \overline{f} be the g.r.f. fixed earlier such that $\mu \overline{f}(x) = \overline{a} \nu(x)$ (recall that the \mathcal{H} in condition (**) is $\overline{f}(\mathcal{N})$). It suffices to show that $C\overline{a}\nu(x) = b\nu(x)$ or, taking into account the equality $\overline{a}\nu(x) = \mu \overline{f}(x)$, that $c\mu \overline{f}(x) = b\nu(x)$. Fix x and denote $\overline{f}(x)$ by \mathcal{Y} ; suppose $\mathcal{Y} \in \mathcal{D}_i$. Then $c\mu(\mathcal{Y}) = \psi(\mathcal{U}, \mathcal{R}_{\mathcal{Y}_i})$. It is easy to see that $\mathcal{R}'_{\mathcal{Y}_i} = \phi$ (the notation was introduced before the statement of Lemma 3), since our frames satisfy condition (**). We will now prove that $\psi(\mathcal{U}, \mathcal{R}'_{\mathcal{Y}_i}) = b\nu(x)$. Suppose $\widetilde{\mathcal{B}} = \{z \in \mathcal{D}_{i+1} \mid \mathcal{Y} \leq_{i+1} z\}$, $j = \sigma(\widetilde{\mathcal{B}}, i+1)$, and \mathcal{L} is the sequence $(\{\{0\}\}, \dots, \{\{0\}\})$ of length i; let $\beta = (\mathcal{L}, \widehat{\beta})$. Obviously, $\beta \in \mathcal{D}_0$, $j \sim_{i+1} \mathcal{Y}$ and $\psi(\mathcal{U}, \mathcal{R}'_{\mathcal{Y}_i}) = d_m(\mathcal{B}_i) = \beta\nu(x)$ (see the definition of $\{\mathcal{B}_e\}_{e \ge 0}$), hence $b\nu(x) \le \psi(\mathcal{U}, \mathcal{R}'_{\mathcal{Y}_i})$. Suppose $\mathcal{A} = (\mathcal{C}, \mathcal{B})$ is a pair of the third kind such that $\ln(\mathcal{C}) = i$, $\mathcal{Y} \in \mathcal{B}$, $\boldsymbol{\alpha} \in \mathcal{D}_0$, and let $j = \sigma(\mathcal{B}, i+1)$. Then $\psi(\mathcal{U}, \widetilde{\mathcal{R}'_{\mathcal{Y}_i}) = d_m(\mathcal{B}_i) \le d_m(\mathcal{B}_{\mathcal{Y}}) = b\nu(x)$. Therefore, $\psi(\mathcal{U}, \mathcal{R'_{\mathcal{Y}_i}) = b\nu(x)$ and the equality $C \circ \overline{\alpha} = b$ is proved.

LEMMA 4. The mapping $c: \mathcal{L} \to \mathcal{L}^{e}$ is one-to-one.

We will first prove that $\delta v(x) \leq c \mu(y) \leftrightarrow \bar{\alpha} v(x) \leq \mu(y)$. The right to left implication holds by virtue of Lemma 3. Let us verify the left to right implication. We have $\alpha'_m(\Pi_{g(x)}) =$ $\delta v(x) \leq C \mu(y) = \psi(U, R_{yy})$. Therefore, by 03), there exists a g.r.f. f_e such that $f_e(N) \subset R_{yy}$ and $a \in \Pi_{q(x)} \leftrightarrow f_e(a) \in U$. Let i = c(n,e). It follows from the definition of the indicator for natural numbers and our assumptions that $\lim_{x \to \infty} \ln(i, s) = \infty$. Let $R = (\bigcup \{ R_{yy}^{\alpha} | \alpha \in \mathcal{L}_{0} \& y \in \mathbb{N} \}$ $\mathcal{L}_{0} \in \mathcal{L}_{0} \otimes \mathbb{N}$ $\mathcal{L}_{0} \in \mathcal{L}_{0} \otimes \mathbb{N}$. Let $R = (\bigcup \{ R_{yy}^{\alpha} | \alpha \in \mathcal{L}_{0} \& \mathbb{N} \}$. We claim that $f_{e}(N \setminus \mathcal{I}_{g(x)}) \subset R \cup V$. Assume the contrary and let a be the first element of the set $N \setminus \Pi_{g(x)}$ for which $b = f_{e}(a)$ does not lie in RUV. Since $b \notin V$, there exists a final tower A such that $b \in bs(A)$ $(bs(A \cap U = \phi); since \ b \in R_{yy} \setminus R$, we have ln(A) > i. The following property of the construction is immediate; if a tower ${\cal B}$ exists to step t , a tower ${\cal C}$ exists to step t+1 , and bs $(\mathcal{B}) \cap bs(\mathcal{C}) \neq \phi$, then $\ln(\mathcal{B}) \ge \ln(\mathcal{C})$. Now suppose \mathcal{A} is such that $\ln(i, \mathcal{A}) = a$, in(i,4+i) = a+i. Let us see what must be done as step 4 of the construction. First of all, it is obvious that \mathbf{L} is even, and at step \mathbf{L} our procedure yields the number $\dot{\mathbf{i}}$ and we have satisfied part a3) of the construction. Secondly (since in $in(i, 4) \neq in(i, 4+7)$), $f_{e_1}(a)$, $b = f_{e_1}(a) \notin U_1$ and there exists to step 1 a tower B such that $b \in bs(B)$. This tower \mathcal{B} must also possess the following properties $\ln(\mathcal{B}) > \ln(\mathcal{A}) > i$ and $\operatorname{bs}(\mathcal{B}) \cap U_{\mathfrak{L}} = \phi$. Consequently, at step $\boldsymbol{4}$ we must satisfy the second part of a3), from which follows the inequality $\ln(\Lambda) \leq i$; but this contradicts our assumptions. Thus, the inclusion $f_e(N \setminus \Pi_{\alpha(\alpha)})$ $\subset \mathcal{R} \cup \mathcal{V}$ is proved. This inclusion easily implies the inequality $\mathcal{A}_m(\Pi_{g(x)}) \leq \psi(U, \mathcal{R} \cup \mathcal{V}) =$ $\psi(U,R)$. We will now compute $\psi(U,R)$. Suppose $\propto \in \mathcal{Q}_{o}, y \leq \ln(\alpha) = j \leq i$. If \propto is a pair of the first or second kind, then the set R_{yy}^{∞} is finite and $\Psi(U, R_{yy}^{\infty}) = 0$, so suppose $\alpha = (\mathcal{O}t, \mathcal{B})$ is a pair of the third kind, $\mathcal{O}t = (\mathcal{O}t_0, \dots, \mathcal{O}t_j), \mathcal{O}t_j = \{A\}$. If $\psi \notin A$, then $R_{yy}^{\infty} = \phi$. Suppose $y \in A \subset B$, $q \rightleftharpoons \sigma(B, j+1)$. We have $q \leq_{j+1} \psi$ (hence, $q \leq_{i+1} \psi$), $\mu(q) \in \overline{\alpha}(\mathcal{L}^{\circ})$ (since $\mathcal{B} \cap \mathcal{H} \neq \emptyset$), $\psi(U, \mathcal{R}_{yy}^{\alpha}) = d_m(\mathcal{B}_q)$, $\mathcal{G}(q) = d_m(\mathcal{B}_q)$ (the latter equality is proved by means of computations analogous to those of Lemma 3), and therefore $\psi(U, R_{yy}^{\alpha}) = c\mu(g)$. In a similar way we can compute $\psi(U, \widetilde{R}_{yy}^{\alpha})$ for $\alpha \in \mathcal{Q}_{0}$ and $\ln(\alpha) = y$. Finally, there exists $q \in \mathcal{D}_{i+1}$ such that $q \leq_{i+1} \mathcal{Y}$, $\psi(U, \overline{R}) = c\mu(q)$, and $\mu(q) \in \overline{\alpha}(\mathcal{L}^{\circ})$. We have $c\overline{\alpha}v(x) = bv(x)$ $\ll \psi(U,R) = c\mu(q)$ and $\mu(q) \le \mu(q)$; but the restriction of C to $\overline{\alpha}(\mathcal{L}^{\circ})$ is an isomorphic embedding, hence $\bar{\alpha}\nu(x) \leq \mu(q)$ and $\bar{\alpha}\nu(x) \leq \mu(q)$, as required.

We will also need a property of distributive semilattices. The concept of distributive semilattice and the following lemma are due to Ershov [15] (in that paper he proved the equivalence of the concept of a distributive lattice and the concept of a semilattice satisfying the "closure condition," which had been introduced earlier by Lachlan [10]). A semilattice $\mathcal{L} = \langle \mathcal{L}, U \rangle$ is called distributive if for $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \mathcal{L}$ it follows from $\mathcal{I} \leqslant \mathcal{Y} \cup \mathcal{I}$ that there exist $\mathcal{Y}_1 \in \mathcal{Y}, \mathcal{I}_1 \leq \mathcal{I}$ such that $\mathcal{X} = \mathcal{Y}_1 \cup \mathcal{I}_1$.

<u>LEMMA (Ershov [15]).</u> Suppose $\mathscr{L} = \langle \mathscr{L}, U \rangle$ is a distributive semilattice and $A \subset \mathscr{L}$ is a (nonempty) ideal. Suppose $\mathfrak{X} \sim \mathscr{Y}(\mathsf{mod} A) \rightleftharpoons$ (there exists $\mathfrak{X} \in A$ such that $\mathfrak{X} \cup \mathfrak{Z} = \mathscr{Y} \cup \mathfrak{Z}$), $\mathfrak{X} \mid A$ is the class of the element \mathfrak{X} relative to the equivalence relation $\mathfrak{X} \sim \mathscr{Y}(\mathsf{mod} A)$, $\mathscr{L} \mid A = \{\mathfrak{X} \mid A \mid \mathfrak{X} \in \mathscr{L}\}$, $\hat{\mathfrak{X}} = \{\mathfrak{Y} \in \mathscr{L} \mid \mathfrak{Y} \leq \mathfrak{X}\}$, and $\mathcal{I}(\mathscr{L})$ is the totality of ideals of \mathscr{L} . Then the mapping of \mathscr{L} into $(\mathscr{L} \mid A) \times \mathcal{I}(\mathscr{L})$ that sends \mathfrak{X} into $(\mathfrak{X} \mid A, \hat{\mathfrak{X}} \cap A)$ is multivalent.

We have the following easily verifiable implication: ($\mathcal{M}_{\mathcal{L}}$ is a Lachlan semilattice) $\longrightarrow (\mathcal{M}$ is a distributive semilattice). Therefore, our semilattice \mathcal{L} is distributive. We now turn to the proof of Lemma 4.

Assume that $\mu(\bar{x}) \neq \mu(\bar{y})$, but $c_{\mu}(\bar{x}) = c_{\mu}(\bar{y})$. We will show that there exist $x, y \in N$ such that $\mu(x) \neq \mu(y), c\mu(x) = c\mu(y)$ and $x \leq_{\kappa} y$, where $\kappa = \sup(x, y)$. Suppose $m = \sup(\overline{x}, \overline{y})$, and denote $\mu(\overline{x}, \overline{y}, m)$ by y. Then $c\mu(\overline{x}) = c\mu(\overline{y}) = c\mu(y)$, and either $\mu(\overline{x}) \neq \mu(y)$ or $\mu(\overline{y}) \neq \mu(y)$. Suppose, for definiteness, that $\mu(\bar{x}) \neq \mu(y)$; obviously, we then have $\bar{x} \neq 0$. Since the enumeration $\theta: N \xrightarrow{\text{onto}} \mathcal{I}'$ is a cylinder, we may assume that for all j, z such that $z \in D_j \& z \neq 0$ the set $\{\tau \in D_j \mid \tau \sim_j \tau\}$ contains at least j+1 elements. Suppose $j = \sup(\overline{x}, y, m)$, and $x \in D_j$ is such that $x \sim_j \overline{x} \& j \leq x$. It is clear that x, y satisfy our conditions. Fix a triple $x, y, \kappa \in \mathbb{N}$ such that $\mu(x) \neq \mu(y), c\mu(x) = c\mu(y), \kappa = \sup(x, y), x \leq_{\kappa} y$ We have $c\mu(x) = \psi(U, R_{xx}), \quad c\mu(y) = \psi(U, R_{yx}), \text{ hence, in view of 03), there exists a p.r.f.}$ $f_e \text{ such that the domain of } f_e \text{ is equal to } R_{yk}, f_e(R_{yx}) \subset R_{xx}, \quad z \in R_{yx} \longrightarrow (z \in U \longrightarrow f_e(z) \in U)$ U). If i = c(x, y, e), then $x \le i$ and $x \le i y$ (here C is the previously fixed g.r.f. effecting a one-to-one correspondence $N^3 \leftrightarrow N$). Let $[K_1]_i, \ldots, [K_f]_i$ be all atoms of the finite distributive lattice $\widetilde{\mathcal{D}}_i$ lying under $[x]_i$ and let $[\kappa,]_i, \dots, [\kappa_w]_i$ (f < w) be all atoms of $\widetilde{\mathcal{D}}_i$ lying under $[\mathcal{Y}]_i$. We claim that there exists ρ , $f < \rho \leq w$ such that $\{z \in \mathcal{D}_i \mid \kappa_{\rho}\}$ $\leq z \in \mathcal{I} \cap \mathcal{H} = \emptyset. \text{ Indeed, otherwise we would have } \mu(\mathcal{K}_{f+1}), \dots, \mu(\mathcal{K}_{f}) \in \overline{\alpha}(\mathcal{L}^{0}); \text{ if } z = \mu(\mathcal{K}_{f+1}) \cup \dots$ $\cup \mu\left(\mathcal{K}_{w}\right) \in \overline{a}\left(\mathcal{L}^{\circ}\right) \text{ , then } \mu\left(x\right) \cup z = \mu(y) \cup z \text{ , i.e., } \mu\left(x\right) / \overline{a}\left(\mathcal{L}^{\circ}\right) = \mu(y) / \overline{a}\left(\mathcal{L}^{\circ}\right) \text{ ; on the other }$ hand, from the first part of the proof of Lemma 4 we obtain the chain of equalities

$$\{ \overline{a}(z) \mid z \in \mathcal{L}^{\circ} \& \ \overline{a}(z) \leq \mu(x) \} = \{ \overline{a}(z) \mid z \in \mathcal{L}^{\circ} \& \& b(z) \leq c\mu(y) \} = \{ \overline{a}(z) \mid z \in \mathcal{L}^{\circ} \& \ \overline{a}(z) \leq \mu(y) \},$$

i.e., $\mu(x) \cap \overline{\alpha}(\mathcal{L}^{\circ}) = \mu(y) \cap \overline{\alpha}(\mathcal{L}^{\circ})$; by Ershov's lemma, $\mu(x) = \mu(y)$, which contradicts our assumptions. Consequently, the desired \mathcal{P} exists. If $A = \{x \in \mathcal{D}_{i} \mid \mathcal{K}_{\mathcal{P}} \leq i \mathcal{K}\}$, then $\mathcal{Y} \in A$, $x \notin A$, $A \cap \mathcal{H} = \emptyset$. Suppose $\mathcal{U} = (\mathcal{U}_{0}, \dots, \mathcal{U}_{i})(\mathcal{U}_{i} = \{A\})$ is the good frame determined by the atom A, and $\alpha = (\mathcal{U}, \mathcal{I})$ is a pair of the first kind with first component equal to \mathcal{U} . It follows from our assumptions concerning $x, \mathcal{Y}, \mathcal{E}$ that $\lim_{x \to \infty} in (\alpha, s) = \infty$, and from part a2) of the construction that $\mathcal{G}^{\alpha} = \lim_{x \to \infty} \mathcal{G}_{s}^{\alpha}$ has infinite domain, which contradicts Lemma 1.

LEMMA 5. The image $\mathcal{C}(\mathcal{L})$ of the mapping $\mathcal{C}:\mathcal{L}\to\mathcal{L}^e$ is an ideal of the semilattice \mathcal{L}^e .

We begin with two preliminary remarks. First, suppose \mathcal{O}_{k} is a frame, $i = \ln(\mathcal{O}_{k})$, and for each $j \ge i$ there exist a final tower $A = (A_{0}, \dots, A_{K}, \varphi_{0}, \dots, \varphi_{K})$ and a subset $\mathcal{P} \subset \mathcal{N}$ such that $K \ge j$, bs $(A) \cap U = \emptyset$, $\mathcal{P} \in A_{i}, \mathcal{O}_{k} = \operatorname{fr}(A, i, \mathcal{P})$, and $\mathcal{P} \cap \Pi_{i} \ne \emptyset$. Then bs $(\mathcal{O}_{k}) = \infty$. Secondly, suppose \mathcal{O}_{k} is a frame, $i = \ln(\mathcal{O}_{k})$, bs $(\mathcal{O}_{k}) = \infty$, $A = (A_{0}, \dots, A_{K}, \varphi_{0}, \dots, \varphi_{K})$ is a final tower of length $\ge i$, bs $(A) \cap U = \emptyset$, and suppose $\mathcal{P} \in A_{i}$ and fr $(A, i, \mathcal{P}) \preccurlyeq \mathcal{O}_{k}$. Then $\mathcal{P} \cap \Pi_{i} \ne \emptyset$. The proof of these two assertions is easy and is omitted.

In view of property 01) of the ψ -operator, it suffices to prove that for each i there exists x such that $c\mu(x) = \psi(U, \Pi_i)$. Fix i. Suppose A_1, \dots, A_ℓ are all atoms of \mathcal{D}_i : that do not meet $H(A_1 \cap H = \dots = A_\ell \cap H = \phi)$, $\mathcal{U}', \dots, \mathcal{U}''$ are the good frames determined by these atoms. Consider those atoms A_ρ , such that for each $j \ge i$ there exist a final tower $A = (A_0, \dots, A_K, \varphi_0, \dots, \varphi_K)$ and a subset $\mathcal{P} \subset \mathcal{N}$ such that $K \ge j$, $\mathcal{P} \in A_i$, $\mathcal{U}'' = \mathrm{fr}(A, i, \mathcal{P})$, and $\mathcal{P} \cap \Pi_i \neq \phi$. We may assume without loss of generality that A_1, \dots, A_w ($\mathcal{W} \le \ell$) are precisely those atoms satisfying this condition. Suppose $K_1 = \mathcal{U}(A_1, i), \dots, K_w = \mathcal{U}(A_w, i)$, and $x \in \mathcal{D}_i$ is such that $[x]_i = [K_1]_i \cup \dots \cup [K_w]_i$. We have ht $(\mathcal{U}') = \dots = \mathrm{ht}(\mathcal{U}'') = \infty$ (the "first remark"), and if $x \in A_q$, then there exists \mathcal{P} , $1 \le \mathcal{P} \le \mathcal{W}$, such that $A_q \supseteq A_\rho$, hence $\mathcal{U}^p \preccurlyeq \mathcal{U}^p$; therefore,

(***) if the final tower $A = (A_0, ..., A_k, \varphi_0, ..., \varphi_k)$ and subset $P \subset N$ satisfy the conditions $k \ge i$, $P \in A_i$, $x \in \varphi_i(P)$, and $bs(A) \cap U = \phi$, then $P \cap \Pi_i \neq \phi$ (the "second remark").

On the other hand, there exists $j_0 \ge i$ such that if the final tower $\mathbf{A} = (\mathbf{A}_0, \dots, \mathbf{A}_{\kappa}, \varphi_0, \dots, \varphi_{\kappa})$ and subset $\mathcal{P} \subseteq \mathcal{N}$ satisfy the conditions $\kappa \ge j_0$, $\mathcal{P} \in \mathbf{A}_i$, $\varphi_i(\mathcal{P}) = \mathcal{A}_g$, where $\mathcal{U} < q \le e$, bs $(\mathbf{A}) \cap \mathcal{U} = \phi$, then $\mathcal{P} \cap \Pi_i = \phi$.

Suppose $R = \bigcup \{ bs(G^{\mathcal{L}}(y)) | \alpha \in \mathcal{Q}_0 \& \ln(\alpha) \leq j_0 \& G^{\mathcal{L}}(y)! \}$. Then $\Pi_i \subset R_{xi} \cup R \cup U$ and $\psi(U,R) \in b(\mathcal{L}^0)$ (the notation R_{xi}^{i}, R_{xi}^{2} was introduced before the statement of Lemma 3, and $R_{xi} = R_{xi}^{i} \cup R_{xi}^{2}$). We will prove that $\psi(U, R_{xi}^{2}) \leq \psi(U, R_{xi}^{1})$, hence $\psi(U, R_{xi}) = \psi(U, R_{xi}^{1})$, and also that $\psi(U, \Pi_i \cap R_{xi}^{1}) = \psi(U, R_{xi}^{1})$. Suppose $\alpha = (\mathcal{U}, \mathcal{B})$ is a pair of the third kind, $i = \ln(\alpha) \cdot x \in \mathcal{B}$, and suppose $j = \sigma(\mathcal{B}, i+1), \alpha[j]_{i+1} = [j_{i}]_{i+1} \cup \ldots \cup [j_{d}]_{i+1}$ is a decomposition of the element $[j]_{i+1}$ of the finite distributive lattice $\widetilde{\mathcal{D}}_{i+1}$ into the atoms. We have

$$\psi(U, \widetilde{R}_{xi}^{d}) = d_m(B_i) = d_m(B_{j_1}) \cup \dots \cup d_m(B_{j_d}),$$

[K_1]_{i+1} \cup \dots \cup [K_w]_{i+1} = [x]_{i+1} \ge [j_1]_{i+1} \cup \dots \cup [j_d]_{i+1}.

Fix $p, i \leq p \leq d$; since $[j_p]_{i+1}$ is an atom of $\tilde{\mathcal{D}}_{i+1}$, it follows that for some q, $i \leq q \leq d$, we have $j_p \leq j_{i+1} \leq q$. Let $\tilde{\mathcal{B}} = \{x \in \mathcal{D}_{i+1} \mid j_p \leq j_{i+1} z\}, \beta = (\mathcal{U}^q, \delta)$. Then $\beta \in \mathcal{Q}_0$ and $\psi(U, R_{xi}^\beta) = d_m(\beta_{j_p})$, hence $\psi(U, \tilde{R}_{xi}^\alpha) \leq \psi(U, R_{xi}')$ and $\psi(U, R_{xi}^2) \leq \psi(U, R_{xi}')$. Now consider the partition of the set $R_{xi}' : P = \{R_{xi}' \cap U\} \cup \{V \cap (N \setminus U)\} \cup \{V \cap (N \setminus U)\} \cup \{P \mid \text{there exist } \alpha \in \mathcal{Q}_0 \text{ and } y \in N \text{ such that } \mathcal{G}^{\alpha}(y) : \& \mathcal{G}^{\alpha}(y) = (A_0, \dots, A_k, \varphi_0, \dots, \varphi_k) \& K \geq i \& P \in A_i \& x \in \varphi_i(P) \& bs(A) \cap U = \phi\}$ and the equivalence relation connected with P on $R_{xi}' : \alpha \sim b = (a,b) \in \cup \{P \mid P\}$ $x \mathcal{P} | \mathcal{P} \in \mathcal{P}$. The recursive enumerability of the equivalence \sim can be proved by the methods of Lemma 2; we also have $a \sim b \rightarrow (a \in U \leftrightarrow b \in U)$. In condition (***) it is actually asserted that for each $a \in R'_{xi}$ there exists $b \in (\mathcal{N}_i \cap R'_{xi}) \cup V$ such that $a \sim b$, hence, according to 04),

$$\psi(U,\Pi_i \cap \mathcal{R}'_{xi}) = \psi(U, (\Pi_i \cap \mathcal{R}'_{xi}) \cup V) = \psi(U, \mathcal{R}'_{xi}).$$

since $\psi(U,R) \in \mathcal{E}(\mathcal{L}^{\circ})$, for some y we have $c \mu(y) = \psi(U,\Pi_i \cap R)$. We now have the chain of equalities

$$\begin{aligned} \psi\left(U,\Pi_{i}\right) &= \psi\left(U,\Pi_{i}\cap R_{xi}'\right) \cup \psi\left(U,\Pi_{i}\cap R\right) = \\ &= \psi\left(U,R_{xi}'\right) \cup c\mu\left(y\right) = \psi\left(U,R_{xi}\right) \cup c\mu\left(y\right) = c\mu\left(x\right) \cup c\mu\left(y\right) = c\left(\mu\left(x\right) \cup \mu\left(y\right)\right), \end{aligned}$$

which proves Lemma 5.

LEMMA 6. There exists a general recursive function h such that $c_{\mu}(x) = \pi h(x)$ for each $x \in N$.

$$\begin{aligned} \mathcal{R}_{x} &= \big(\dots \big(\big(\mathcal{R}_{x}' \oplus \mathcal{R}_{x}^{2} \big) \oplus \mathcal{R}_{x}^{3} \big) \oplus \dots \big) \oplus \mathcal{R}_{x}^{\kappa} ,\\ \mathcal{U}_{x} &= \big(\dots \big(\big(\mathcal{U}_{x}' \oplus \mathcal{U}_{x}^{2} \big) \oplus \mathcal{U}_{x}^{3} \big) \oplus \dots \big) \oplus \mathcal{U}_{x}^{\kappa} , \end{aligned}$$

where, as usual, $A \oplus B = \{2x \mid x \in A\} \cup \{2x+1 \mid x \in B\}$; obviously, $\psi(U_x, R_x) = \cup \{\psi(U_x^i, R_x^i) \mid 1 \leq i \leq K\}$. We will prove that $\psi(U, R_{xx}) = \psi(U_x, R_x)$. Suppose $A_i \neq K_i$. Then either $ht(K_0 \setminus A_i) \neq \infty$ or $ht(A_i) = \infty$. If $ht(A_i) = \infty$, then obviously $R_x^i \subset U_x^i$, hence $\psi(U_x^i, R_x^i) = 0$; if $ht(A_i) \neq \infty$, then $ht(K_0 \setminus A_i) = \infty$, and the sets $R_x^i \setminus V = U_x^i \setminus U$ are finite, which implies that $\psi(U_x^i, R_x^i) = 0$. Now suppose $A_i = K_i$. Then $ht(K_0 \setminus A_i) = \infty$, $ht(A_i) \neq \infty$, hence $R_{xx} \subset R_x^i$ and the set $U_x^i \setminus U$ is finite. It is easy to see that the set $R_x^i \setminus R_{xx}$ is also finite. Consequently, $\psi(U_x^i, R_x^i) = \psi(U, R_{xx})$, hence $\psi(U_x, R_x) = \psi(U, R_{xx}) = c\mu(x)$. In view of the uniform effectiveness of the construction and the fact that the enumeration $\{\Pi_i\}_{i \geq 0}$ is principal, there exists a g.r.f. h such that for each $x \in N$ we have $c\mu(x) = \psi(U_x, R_x) = d_m(\Pi_{h(x)})$.

Thus, Theorem 1 is proved for the enumerated semilattice \mathcal{L}_{π}^{e} . Note that we have proved more than was required. Indeed, let \overline{c} be the composite mapping $\mathcal{L}_{\theta}^{\prime} \subset \mathcal{L}_{\mu} \xrightarrow{c} \mathcal{L}_{\pi}^{e}$. Then $\overline{c} \in \mathcal{K}$, $\overline{c} \cdot a = b$, and $\mathcal{I} \notin \overline{c} (\mathcal{L}^{\prime})$. We will use Theorem 1 in this strengthened form. Let us now indicate the changes that must be made in the proof of Theorem 1 for the semilattices $a \not\leq z, \not\leq (\vartheta_n) \not\in$. The changes for $a \not\leq z$: in the definition of the indicator for natural numbers we must consider $\Pi_{g(n)} \oplus A$, where $\alpha = d_m(A)$, and in the proof of Lemma 5 we must assume that $\alpha \leq \psi(U, \Pi_i)$. The changes for $\mathcal{L}(\vartheta_n) \not\in$ are as follows. First note that the set of computable enumerations of ϑ_n is in a natural one-to-one correspondence with the set of sequences (U_1, \dots, U_n) of pairwise disjoint, recursively enumerable sets such that $U_i \neq \phi$ and $N \setminus (U_1 \cup \dots \cup U_n) \neq \phi$, namely,

$$f \mapsto (f^{-\prime}(\{1\}), \ldots, f^{-\prime}(\{n\}));$$

instead of \mathcal{U} we must construct the sequence $(\mathcal{U}_1, \dots, \mathcal{U}_n)$. Before step \mathcal{O} we regard the numbers $0, 1, \dots, n$ as used, and transfer 1 into \mathcal{U}_1, \dots, n , and n into \mathcal{U}_n . Instead of the creative set \mathcal{M} we must use a sequence $(\mathcal{M}_1, \dots, \mathcal{M}_n)$ such that the corresponding computable enumeration $f: \mathcal{N} \xrightarrow{\text{onto}} S_n$ lies in the largest element of $\mathcal{L}(S_n), d_m(f) = I$; the other changes are obvious. We give only the definition of the ψ -operator for $\mathcal{L}(S_n)$. Suppose $f: \mathcal{N} \xrightarrow{\text{onto}} S_n$ is a computable enumeration and $\mathcal{A} \subseteq \mathcal{N}$ is a recursively enumerable set. If $\mathcal{A} = \phi$, then $\psi(f, \mathcal{A}) = 0$. Suppose $\mathcal{A} \neq \phi$ and g is a general recursive function such that $g(\mathcal{N}) = \mathcal{A}$. Put $\overline{g}(0) = \phi$, $\overline{g}(i) = \{i\}$, $1 \leq i \leq n$, $\overline{g}(x+n+1) = fg(x)$ and $\psi(f, \mathcal{A}) = d_m(\overline{g})$.

The proof of Theorem 1' is analogous to that of Theorem 1, but in the definition of the indicator for natural numbers we must take as g a g.r.f. representing the morphism $c: \gamma \rightarrow \mathcal{L}_{\varphi}$.

We will now prove Theorem 2. Again, in order to avoid cumbersome notation that obscures the essence of the matter we analyze only the case $\mathcal{L}_{\varphi} = \mathcal{L}_{\pi}^{e}$. The changes for $a\mathcal{L}_{\varphi}$, $\mathcal{L}(S_{n})_{\xi}$ will be given later.

<u>THEOREM 2.</u> Suppose $a: y \to \mathcal{L}_{\alpha}^{e}$ is a morphism of enumerated sets such that $I \notin a(y)$. Then there exist an L-semilattice \mathcal{L}_{α}' , a morphism of enumerated sets $b: y \to \mathcal{L}_{\alpha}'$, and a K-morphism $c: \mathcal{L}_{\alpha}' \to \mathcal{L}_{\alpha}'$ such that $\alpha = c \cdot b$ and $I \notin c(\mathcal{L}')$.

<u>Proof.</u> Let $4 = \{f \mid f \text{ is a p.r.f. & } \forall x, y \in \mathcal{N} \ (x \leq y \& f(y)! \longrightarrow f(x)!) \}$ and suppose $\{\tilde{f}_i\}_{i \geq 0}$ is a principal enumeration of 4; let q be a general recursive function representing the morphism α . Put $A_0 = \prod_{g(0)}, A_{i+i} = A_i \oplus \prod_{g(i+i)}; B_n = \tilde{f}_i^{-1}(A_i), \text{ where } \pi = c(i,j).$ Clearly, $\{B_n\}_{n\geq 0}$ is a computable sequence of r.e. sets and $A = \{d_m(B_n) \mid n \geq 0\}$ is the smallest ideal of \mathcal{L}^e containing $\alpha(y)$. Since the largest element of \mathcal{L}^e is indecomposable, $I \notin A$. We equip the semilattice A with the enumeration $v: v(i) = d_m(B_i)$. In view of the computability of $\{B_i\}_{i\geq 0}$, the natural embedding $A_v \subseteq \mathcal{L}_m^e$ is a K-morphism and, since $\{\tilde{f}_i\}_{i\geq 0}$, is principal $\alpha: \gamma \to A_y$ is a morphism of enumerated sets. By a theorem of Lachlan [12], \mathcal{L}^e , equipped with the enumeration μ . $\mu(i) = \psi(\mathcal{M}, \Pi_i)$, where \mathcal{M} is a creative set, is an L-semilattice. But the enumeration μ is equivalent to the enumeration π and, since π is complete, is isomorphic to it, i.e., for some recursive permutation p we have $\pi = \mu \cdot \rho$ (see [2, p. 201]). Thus, \mathcal{L}_{π}^e is an L-semilattice. By Theorem 1, there exists a K-morphism $C: \mathcal{L}_{\pi}^e \to \mathcal{L}_{\pi}^e$ such that 1) $I \notin C(\mathcal{L}_{\pi}^e)$ and 2) the composite mapping $A_y \subseteq \mathcal{L}_{\pi}^e \subset \mathcal{L}_{\pi}^e$ is an embedding $A_y \subseteq \mathcal{L}_{\pi}^e$. Taking \mathcal{L}_{π}^e in the role of \mathcal{L}_{g}^e and the composite mapping $\gamma \cong A_{\gamma} \subset \mathcal{L}_{\pi}^e$ in the role of θ , we obtain everything we need. Remarks for ${}_{a}\mathcal{L}_{\zeta}$, $\mathcal{L}(S_{n})_{\xi}$: the indecomposability of the largest element of $\mathcal{L}(S_{n})$ follows from the theorem of Ershov [9] on the indecomposability of precomplete enumerations representing the largest element of $\mathcal{L}(S_{n})$ (see [2, p. 210]); that ${}_{a}\mathcal{L}_{\zeta}, \mathcal{L}(S_{n})_{\zeta}$ are L-semi-lattice was proved in [14].

3. Some Corollaries

We now deduce several corollaries of our theorems.

COROLLARY 1. The Ershov-Lavrov Theorem [13] (see p. 4).

We first prove an auxiliary assertion. Suppose $\mathscr{L}_{\boldsymbol{v}}$ is an enumerated semilattice and the semilattice $ar{m{z}}$ is obtained from $m{z}$ by extremely adjoining a largest element. Assume there exists a K-morphism $\alpha: \mathscr{L}_v \longrightarrow \mathscr{L}_\mu^\circ$ of the enumerated semilattice \mathscr{L}_v into the Lsemilattice $\mathscr{L}_{\mu}^{\bullet}$. We claim that there then exists an enumeration $\partial: \mathcal{N} \xrightarrow{\mathrm{onto}} \overline{\mathscr{Z}}$ of the semilattice $\overline{\mathcal{I}}$ such that $\overline{\mathcal{I}}_{\mathcal{O}}$ is an L-semilattice and the natural embedding $\mathcal{I}_{\mathcal{V}} \subset \overline{\mathcal{I}}_{\mathcal{O}}$ is a Kmorphism. Suppose f is a general recursive function representing the morphism lpha , i.e., $\forall x \in \mathcal{N} \ (\alpha \lor (x) = \mu f(x)), \text{ and suppose } < \mathcal{D}_{o}, \leq_{o} > \subset < \mathcal{D}_{i}, \leq_{i} > \subset ... \text{ is a sequence of preordered sets}$ satisfying conditions L1)-L5) in the definition of an L-semilattice and such that $\mu(x) \leq \mu(y)$ $\xrightarrow{} \mathcal{J}_i \in \mathcal{N} (x \leq_i \mathcal{U}) \quad \text{and} \quad \{f(0), \dots, f(i)\} \subset \mathcal{D}_i \quad \text{Finally, let} \quad A_i = \{f(0), \dots, f(i)\}, \quad g(i) = \mathcal{U}(A_i, i), \\ \overline{\mathcal{D}}_i = \{\sigma(x, g(i), i) \mid x \in \mathcal{D}_i\}, \quad \widetilde{\mathcal{D}}_i = \{x \mid x = 0 \; \forall l \leq x \; \& \; (x-l) \in \mathcal{D}_j \; \& \; j \leq i\} \quad , \text{ where } \mathcal{U}, \mathcal{U} \}$ are the general recursive functions in L4). We introduce preorders on $\widetilde{\mathcal{D}}_i: x \stackrel{\sim}{\leftarrow}_i 0, \neg (\emptyset \stackrel{\sim}{\leftarrow}_i (x + i))$ and $(x+1) \stackrel{\sim}{\leqslant}_i (y+1) \leftrightarrow x \leq_i y$. We also define general recursive functions $\widetilde{\mathcal{U}}, \widetilde{\mathcal{F}}: \widetilde{\mathcal{U}}(x,0,i) =$ $\widetilde{\mathcal{U}}(o,y,i) = 0, \quad \widetilde{\mathcal{U}}(x+1,y+1,i) = \mathcal{V}(\mathcal{U}(x,y,i),\mathcal{G}(i),i) + 1 \quad \widetilde{\mathcal{V}}(x,0,i) = x, \quad \widetilde{\mathcal{V}}(o,y,i) = y,$ $\widetilde{\sigma}(x+1,y+1,i) = \sigma(\sigma(x,y,i),g(i),i) + 1.$ It is easy to see that the sequence $<\widetilde{D}_{o},\widetilde{\leq}_{o} > \subset <\widetilde{D}_{i},\widetilde{\leq}_{i} > \subset ...$ and the g.r.f. $\widetilde{\mathcal{U}},\widetilde{\mathcal{O}}$ satisfy L1)-L5). Let $A = \cup \{\widetilde{D}_{i} \mid i \ge 0\}$; we introduce an enumeration $oldsymbol{ar{ heta}}$ of the semilattice $oldsymbol{ar{ar{ heta}}}$: the domain of $oldsymbol{ar{ heta}}$ is $oldsymbol{ar{ heta}}$ and $\overline{\theta}(o) = I_{\overline{q}}, \ \overline{\theta}(x+1) = \mu(x)$. It follows from the above that the enumerated semilattice $\overline{Z}_{\overline{p}}$ is an L-semilattice (except that the domain of $\bar{m{ heta}}$ is the recursively enumerable set $m{A}$, and not all of N) and the g.r.f. $i \mapsto \sigma(f(i), g(i), i)$ represents the natural embedding $\mathcal{L}_{v} \subset \overline{\mathcal{I}}_{\overline{\theta}}$. Passage from $\overline{\theta}$ to an enumeration θ with domain \mathcal{N} is obvious. We now begin the proof proper of the Ershov-Lavrov theorem. Suppose $A \subset \mathcal{L}^{e}$, $A \neq \phi$ is a computable ideal, and $\mathcal{B} \subset \mathscr{L}^{\ell}$ is a computable family of *m*-degree such that $A \cap \mathcal{B} = \emptyset$, $I \notin A \cup B$. Since Aand \mathcal{B} are computable, there exist enumerations $\mathcal{V}: \mathcal{N} \xrightarrow{\text{onto}} \mathcal{A}, \mathcal{Z}: \mathcal{N} \xrightarrow{\text{onto}} \mathcal{A} \cup \mathcal{B}$ such that the natural embedding $A_{\nu} \subset (A \cup B)_{z}$, $(A \cup B)_{z} \subset \mathcal{I}_{\pi}^{e}$ are morphism of enumerated sets. Suppose the semilattice $ar{m{\mathcal{I}}}$ is obtained from the semilattice A by externally adjoining a largest element, and $\, artheta \,$ is an enumeration of $\, \overline{\!\mathcal{I}} \,$ for which $\, \overline{\!\mathcal{I}}_{\, \overline{\!m{g}}} \,$ is an L-semilattice and the natural embedding $A_v \subset \tilde{\mathcal{I}}_{A}$ is a K-morphism. Let $\hat{\mathcal{C}}$ be the smallest ideal of \mathcal{L}^e containing $A \cup B$. Then $I \not\in \mathcal{C}$ and there exists an enumeration $\mu \colon N \xrightarrow{\text{onto}} \mathcal{C}$ for which the natural embedding $(A \cup B)_{\mathcal{L}} \subset \mathcal{C}_{\mu}, \mathcal{C}_{\mu} \subset \mathcal{L}_{\pi}^{e}$ are morphisms of enumerated sets. We collect the objects and morphisms in a single diagram:

where $\mathcal{U}, \mathcal{J}, \mathcal{P}, \mathcal{Q}$ are natural embeddings. By Theorem 1', there exists $e \in \mathcal{K}$ making the diagram commutative and such that $e(\overline{\mathcal{I}}) \cap C = A$. By considering $e(I_{\overline{\mathcal{I}}})$ we obtain everything we need.

COROLLARY 2. V'yugin's Theorem (see [14]).

Suppose $a \in \mathscr{L}^{\ell}, a \neq \overline{I}$, and \mathscr{L}_{μ} is an L-semilattice. By a theorem of Lachlan [12], there exists an enumeration $\theta: N \xrightarrow{\text{onto}} \mathscr{L}_a$ turning \mathscr{L}_a into an L-semilattice $(\mathscr{L}_a)_{\theta}$ and such that the natural embedding $(\mathscr{L}_a)_{\theta} \subset \mathscr{L}_{\pi}^{\ell}$ is a \mathcal{K} -morphism. Assuming that the sets \mathscr{L}_a and \mathscr{L} are disjoint, we define an order \leq on the set $\overline{\mathscr{I}} = \mathscr{L}_a \cup \mathscr{L}$ as follows: each element of \mathscr{L} is larger than any element of $\mathscr{L}_a, \mathfrak{x} \in \mathscr{L}_a \& \mathfrak{Y} \in \mathscr{L} \longrightarrow \mathfrak{X} \leq \mathfrak{Y}$, the restriction of \leq to \mathscr{L}_a is the original order on \mathscr{L}_a , and the restriction of \leq to \mathscr{L} is the original order on \mathscr{L} . We also define an enumeration $\overline{\mathscr{I}} : v(2\mathfrak{X}) = \theta(\mathfrak{X}) \cdot v(2\mathfrak{X}+t) = \mu(\mathfrak{X})$. Obviously, $\overline{\mathscr{I}}_{\mathcal{Y}}$ is an L-semilattice and the natural embedding $(\mathscr{L}_a)_{\theta} \subset \overline{\mathscr{I}}_{\mathcal{Y}}$ is a \mathscr{K} -morphism. By Theorem 1, there exists $\mathcal{C} \in \mathscr{K}$ making the diagram

commutative, where ρ , q are natural embeddings. By considering $\mathcal{C}(\mathbb{Z}_{p})$, we obtain every-thing we need.

COROLLARY 3. We have the isomorphisms $\mathcal{L}^{e} \cong_{\alpha} \mathcal{L} \cong \mathcal{L}(S_{n})$.

<u>Proof.</u> Suppose M_{γ} is an enumerated semilattice. The expression " M_{χ} satisfies Theorem 1 (Theorem 2)" has the following meaning: "the theorem obtained by replacing \mathcal{L}_{o} by M_{z} " in the statement of Theorem 1 (Theorem 2) is valid." Suppose $\mathcal{L}_{y}^{1}, \mathcal{L}_{\mu}^{2}$ are nontrivial (i.e., \mathcal{L}^{\prime} , \mathcal{L}^{2} are not singletons) enumerated semilattices with largest and smallest elements satisfying Theorems 1 and 2. We will prove that $\mathcal{L}' \cong \mathcal{L}^2$. In order to avoid multilevel notation, some enumerated semilattices will be denoted by Gothic letters (with indices) without property distinguishing the semilattice and the enumeration. Let a_0, a_1, \ldots be an enumeration, possibly with repetitions, of all elements of \mathscr{L}' different from $I_{\mathscr{L}'}$, and let b'_{g}, b'_{g}, \ldots be an enumeration, possibly with repetitions, of all elements of χ^{2} different from I_{2^2} . We will construct a sequence of L-semilattices $\mathcal{O}_0, \mathcal{O}_1, \ldots$ and Kmorphisms $f_i: \mathcal{O}_i \to \mathcal{O}_{i+1}, g_i: \mathcal{O}_i \to \mathcal{I}_{v}^{\prime}, h_i: \mathcal{O}_i \to \mathcal{I}_{\mu}^{2}$ such that $g_i = g_{i+1} \circ f_i$, $h_i = h_{i+1} \circ f_i$, $I \notin g_i(\mathcal{O}_i), I \notin h_i(\mathcal{O}_i), \alpha_{\kappa} \in g_{2\kappa+1}(\mathcal{O}_{2\kappa+1}), \quad b_{\kappa} \in h_{2(\kappa+1)}(\mathcal{O}_{2(\kappa+1)}).$ Suppose \mathcal{O}_0 is a oneelement enumerated semilattice and g_0, h_0 are the uniquely defined K-morphisms $g_0: \mathcal{O}_0 \to \mathcal{I}_{v}^{\prime},$ $h_o: \mathcal{O}_o \longrightarrow \mathcal{L}^2_\mu$. Assume that to step $n=2\kappa$ we have constructed $\mathcal{O}_i, g_i, h_i, i \leq n$, and f_j , j < n, satisfying the induction assumption. Suppose \mathcal{U}_n is \mathcal{L}_{φ} . Let $\mathcal{M} = g_n(\mathcal{L})$ U $\{a_{\kappa}\}, \ \xi(0) = a_{\kappa}, \ \xi(x+1) = g_{\kappa} \xi(x) \ . \ \text{Consider the enumerated set} \ y = \langle \mathcal{M}, \xi : \mathcal{N} \xrightarrow{\text{onto}} \mathcal{M} \rangle \ .$ Obviously, the natural embedding $j \subset \mathcal{L}_{v}$ is a morphism of enumerated sets and $I \notin \mathcal{M}$. By Theorem 2, there exists an L-semilattice \mathcal{C}_{n+1} , a morphism of enumerated sets $a: j \to \mathcal{C}_{n+1}$ and a K-morphism $g_{n+1}: \mathcal{O}_{n+1} \to \mathcal{L}_{v}^{1}$ such that $g_{n+1} \circ \mathcal{Q}$ is an embedding $\mathcal{M} \subset \mathcal{L}^{1}$ and $\mathcal{I} \notin g_{n+1}$

 (\mathcal{U}_{n+1}) . Let f_n be the composite mapping $\mathcal{O}_n \xrightarrow{g_n} \mathcal{V} \xrightarrow{a} \mathcal{O}_{n+1}$. It is easy to see that f_n^2 is in fact a K-morphism. Applying Theorem 1, we obtain a K-morphism $h_{n+1}: \mathcal{U}_{n+1} \rightarrow \mathcal{U}_{n+1}$ such that $I \notin h_{n+1}(\mathcal{O}_{n+1})$ and $h_n = h_{n+1} \circ f_n$. At an odd step $n=2\kappa+1$ we proceed analogously and include \mathcal{B}_{κ} in the image of h_{n+1} . We now define $e: \mathcal{L}^1 \longrightarrow \mathcal{L}^2$. Suppose $x \in \mathcal{L}'$; if $x = I_{\mathcal{L}'}$, then $\ell(x) = I_{\mathcal{L}}^2$, but if $x = a_k$, then $\ell(x) = h_{2\kappa+1}(q_{\ell\kappa+1}^{-1}(x))$. In view of our construction, e is an isomorphic embedding of the semilattice x' onto the semilattice \mathcal{L}^2 . Thus, Corollary 3 is proved.

LITERATURE CITED

- 1. Yu. L. Ershov, Theory of Enumerations [in Russian], Nauka, Moscow (1977).
- 2. A. I. Mal'tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).
- 3. H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill (1967).
- E. L. Post, "Recursively enumerable sets of positive integers and their decision problems, 4. Bull. Am. Math. Soc., 50, 284-316 (1944).
- I. Myhill, "Creative sets," Z. Math. Logic Grundl. Math., 1, No. 2, 97-108 (1955).
 A. H. Lachlan, "A note on universal sets," J. Symb. Logic, <u>31</u>, 573-574 (1966). 5.
- 6.
- Yu. L. Ershov, "Hyperhypersimple *m*-degrees," Algebra Logika, 8, No. 5, 523-552 (1969). S. D. Denisov, "On *m*-degrees of recursively enumerable sets," Algebra Logika, <u>9</u>, No. 7.
- 8. 4, 422-427 (1970).
- 9.
- Yu. L. Ershov, "Inseparable pairs," Algebra Logika, 9, No. 6, 661-666 (1970). A. H. Lachlan, "Initial segments of many-one degrees," Can. J. Math., 22, No. 1, 75-85 10. (1970).
- A. H. Lachlan, "Two theorems on many-one degrees of recursively enumerable sets,"
 Algebra Logika, <u>11</u>, No. 2, 216-229 (1972).
 A. H. Lachlan, "Recursively enumerable many-one degrees," Algebra Logika <u>11</u>, No. 3, 11.
- 12. 326-358 (1972).
- Yu. L. Ershov and I. A. Lavrov, "The upper semilattice $\mathscr{L}(p)$," Algebra Logika, 12, No. 13. 2, 167-189 (1973).
- 14. V. V. V'yugin, "Segments of recursively enumerable *m*-degrees," Algebra Logika, 13, No. 6, 635-654 (1974).
- Yu. L. Ershov, "The upper semilattice of enumerations of a finite set," Algebra Logika, 15. 14, No. 3, 258-284 (1975).
- E. A. Palyutin, "Addendum to Yu. L. Ershov's article 'The upper semilattice of enumera-16. tions of a finite set'," Algebra Logika, 14, No. 3, 284-287 (1975).