SUBRINGS OF FINITELY PRESENTED ASSOCIATIVE RINGS

V. Ya. Belyaev UDC 519.7

In the Dnestr Notebook [5] L. A. Bokut' raised the following question: "Is an arbitrary recursively presented associative (Lie) algebra over a prime field embeddable in a finitely presented associative (Lie) algebra?" We will show that for associative rings and algebras this question has an affirmative answer.

Suppose that K is either a commutative associative finitely generated ring with unity or a finitely generated extension of a prime field. We will show that any associative K algebra with a recursively enumerable set of defining relations can be embedded in a finitely presented associative $\boldsymbol{\mathcal{K}}$ -algebra.

In this paper the expression " K -algebra" means "associative K -operator ring." The unity of an algebra, if there is one, is not fixed in the signature. We denote the set of all positive integers by N. For a K -algebra A and elements a ,...., $a \in A$, we denote by $A[Q_1,...,Q_n]$ the subalgebra of A generated by $Q_1,...,Q_n$. For K -algebra A and B , the direct sum of these K -algebras is denoted by $A \times B$, and $A \subseteq B$ signifies that A is a subalgebra of β . For a set of symbols X , we denote by \angle [X] the set of all nonempty associative words in the alphabet X , and by $K[X]$ the free K -algebra with set X of free generators. The elements of $K[X]$ are linear combinations of the form $\sum_{\text{wrel } M} \ll_{\psi} \psi$, where the $\alpha_{\mu} \in K$ and almost all are equal to zero.

LEMMA 1. Suppose A is an arbitrary K -algebra $a_1, \ldots, a_n, b_1, \ldots, b_n \in K$, and $\varphi: A \longrightarrow b_1$ is a mapping such that $\varphi (Q_1)=b, \qquad (\ell=1,\ldots ,n),$ and the following conditions are satisfied:

1) φ is an endomorphism of \varLambda as a K -module;

2) the restriction of φ to the subalgebra $A[\varrho, ..., \varrho_n]$ is a homomorphism into A .

Then in some \overline{K} -algebra containing \overline{A} as a subalgebra the following system of equations in the unknowns $x, y, z, \beta_1,..., \beta_n$ is solvable:

$$
xa_i z y - b_i,
$$

\n
$$
a_i z - z \beta_i,
$$

\n
$$
xz \beta_i \beta_j - b_i x z \beta_j \qquad (i,j-1,...,n).
$$

<u>Proof</u>. Suppose $A - K[X]/I$, where I is an ideal of the free algebra $K[X]$. It is convenient to assume that preimages of the elements a_{i} , $b_{i}^{'}$ ($i=1,...,n$) under the canonical homomorphism $K[X] \longrightarrow A$ are chosen to be distinct letters of X , which we also denote by $a_{\bm{i}}^{},b_{\bm{i}}^\'{}$ (\bm{i} =1,.., $a)$. Furthermore, we assume that for each word $\bm{\omega}$ E $\bm{\mathit{\Delta}}$ [X] there is chosen in $[X]$ a word ω' such that the equality $\varphi(\omega+j)=\omega'+I$ holds in ${\cal K}[\chi]/I$. We again denote

Translated from Algebra i Logika, Vol. 17, No. 6, pp. 627-638, November-December, 1978. Original article submitted April 19, 1978.

this $\mathbf{w'}$ by $\varphi(\mathbf{w})$. Finally, in view of condition 2) of the lemma we may assume that we always have

$$
\varphi(a_{i_1}a_{i_2}\ldots a_{i_k})=\begin{array}{c}\vdots\\ \vdots\\ \vdots\\ \vdots\end{array} \ldots \begin{array}{c}\vdots\\ \vdots\\ \vdots\\ \vdots\\ \vdots\end{array}.
$$

Suppose $X_i = X \cup \{x, y, z, z, A, \ldots, A_n\}$ and I_i is the ideal of the free- K-algebra $K[X_i]$, generated by the set

$$
I \cup \{xwz\beta y - \varphi[w\beta(\overline{a})]/w \in L[X] \text{ or } w = \varphi,
$$

\n
$$
\beta \in L[\beta_1, ..., \beta_n] \text{ or } \beta = \varphi, w\beta \neq \varphi \} \cup
$$

\n
$$
\cup \{a_i z - z\beta_i / i = 1, ..., n\} \cup
$$

\n
$$
\cup \{xz\beta_i \beta_j - \beta_i xz\beta_j / i, j = 1, ..., n\}.
$$

Here and below, $\rho(\bar{a})$ denotes the result of replacing each other ρ in the word ρ_i by a_i (i=1,..., a). To prove the lemma it suffices to show that $I, nK[X]=I$.

Suppose $W \in I$, $n \times [X]$. We will prove that $W \in I$. The element W can be written as a linear combination, with coefficients in $~\mathcal K$, of elements of the form

$$
\begin{array}{lll}\n\varphi, & \omega, & \omega, & \varphi \left[\omega \beta \left(\bar{a} \right) \right] \big) \omega_{2} & , \\
\varphi, & \omega, & \omega, & \varphi \left[\omega \beta \left(\bar{a} \right) \right] \big) \omega_{2} & , \\
\varphi, & \omega, & \omega, & \omega, & \varphi \left[\omega z \beta_{i} \beta_{j} - \beta_{i} z z \beta_{j} \right] \big) \omega_{2} & ,\n\end{array} \tag{1}
$$

where $\mathcal{U}\in\mathcal{I}$. $\mathcal{U}_1, \mathcal{U}_2, \mathcal{W}_1, \mathcal{W}_2$ are certain words in $\mathcal{L}[\mathcal{X}_1]$ or are empty words. We may assume that $\mathscr{I}_{\mathscr{I}}$ does not end, and that $\mathscr{I}_{\mathscr{I}}$ does not begin, with a letter of X .

Let us imagine x and y to be left and right parentheses. In a word $\omega \in L[X_r]$ with properly arranged parentheses, these are naturally divided into pairs $\langle x, y \rangle$, a left parenthesis x and its corresponding right parenthesis y . By the depth of occurrence of some such pair $\langle x, y \rangle$ in \mathcal{U} we mean the difference between the number of parentheses γ and the number of the parentheses $\mathcal X$ to the left of the $\mathcal X$ in the considered pair $\langle \mathcal X, \mathcal Y \rangle$ in $\mathcal Y$. If \mathbf{w} has a pair of parentheses with depth of occurrence S but no pair with depth of occurrence $s+/$, then the number $s+/$ is called the rank of ω . If ω has no parentheses, its rank is zero.

It is easy to see that if in an expression for W we group together the monomials with properly arranged parentheses, then we again obtain a linear combination of the elements (i). Since W itself is an element of $K[X]$, the monomials with improperly arranged parentheses cancel. We may therefore assume that W is a linear combination of the elements (1), where parentheses are properly arranged in all monomials.

Let s be the largest number such that an expression for W contains words of rank s . If $s = 0$, then $W \in I$. Suppose $s > 0$. We will show that W has a representation of the same form in which all words have rank less than s . The proof of the lemma then follows by induction.

A word $\omega \in L[X,]$ with properly arranged parentheses is called proper if its rank is. either less than S, or is equal to S and for any pair $\langle x, y \rangle$ of a depth $S-f$ the part of the word ω from x to y for these x, y has the form

 $x \mu z \beta y$, where $u \in L[X]$, or $u = \emptyset$, $\beta \in L[\beta_1,...,\beta_n]$, or $\beta = \emptyset$, $u\beta \neq \emptyset$.

It is easy to see that for each element of the form (1), all words of which it is a linear combination are proper or improper simultaneously. If in the representation for W we collect the improper words and cancel them, we again obtain a representation for W (since $W \in K$ \overline{X}). In view of what was said, this representation is a linear combination of elements of the form (i).

In each word of rank ~ in this representation of \$, for each pair <~,~> of depth **S-/** we replace the subwords $xuz\beta y$ for these x,y by $\varphi[\mu\beta(a)]$. We again obtain a representation of W.

We will show that the new representation is, as before, a linear combination of elements of the form (1). Since the ranks of words in the new representation are less than S , this will prove the lemma.

Consider a summand $~\ell$, $4~\ell$, where $~\ell\ell\in\ell'$. Suppose $~\ell\ell\neq\sum\propto_{\ell'}~\ell\ell'$, where $~\propto_{\ell}~\epsilon~K$. Clearly, the ranks of all of the words $~\mathscr{V}, \mathscr{W},~ \mathscr{F},~$ are the same. If their common rank is equal to $~S$, then under the replacement described above the words ~ ~/" [X3 are affected only when $\mathscr{U}, \boldsymbol{\pi} \mathscr{L}', \mathscr{I}, \mathscr{I}, \boldsymbol{\pi} \mathscr{L}$ \mathscr{L} and the remaining cases, we obviously obtain a sum of the same form. Then after the replacement we have

 $\sum_i \propto_i \sigma''_i \varphi \left[\omega_i \; \beta(\bar{a}) \right] \sigma''_2 = \sigma''_i \left(\sum_i \propto_i \varphi \left[\omega_i \; \beta(\bar{a}) \right] \right) \sigma''_2.$

But $\sum_{i} \alpha_i \omega_i \beta(\bar{\alpha}) \in I$, and since φ is an endomorphism of A as a K -module, it follows that $\sum \alpha_i \varphi \left[\omega_i \beta \left(\overline{\alpha} \right) \right] \in I$.

Consider a summand ω_r $(x\omega z \beta y - \varphi[w\beta(\bar{a})])\omega_z$. If in the word $\omega_r \varphi[w\beta(\bar{a})] \omega_z$ the subword $\varphi[\psi\beta(\bar{\alpha})]$ occurred within a pair of depth $S-f$, then clearly in the word ψ , $x\omega z\beta y\omega'_{2}$ the pair $\langle x, y \rangle$ would have depth δ , which is impossible. Therefore, obviously, after the replacement the expression under consideration either vanishes or keeps the same form.

Consider a summand ω , $(a_i \times \overline{x_j}) \omega$. It suffices to look at the case where ω , ω ω , ω , ω τ $\rho\llap/_\omega\llap/_\omega'$ and this pair $\langle x,y\rangle$ has depth $S-f$. Then after the replacement we obtain

$$
\omega''_r \varphi \left[\omega a_{\vec{i}} \; \beta \left(\bar{a} \right) \right] \omega_{\vec{i}}'' - \omega_r'' \varphi \left[\omega' \left(\beta_{\vec{i}} \; \beta \right) \left(\bar{a} \right) \right] \omega_{\vec{i}}''.
$$

This expression vanishes, since $(\beta_i,\beta)(\bar{d})=\alpha_i\beta(\bar{a}).$

Finally, consider a summand ω_j $(xz\beta_i \beta_j - \delta_i xz\beta_j) \omega_j$. Again, it suffices to look at the case where $\omega_z = \beta y \omega_z'$ and the considered pair $\langle x, y \rangle$ has depth $S-/-$. After the replacement we obtain

$$
\omega'_i \varphi \left[(\rho_i \; \beta_j) (\bar{a}) \right] \omega''_2 - \omega'_i \; \delta_i \; \varphi \left[(\rho_j \; \beta) (\bar{a}) \right] \omega''_2.
$$

This expression also vanishes, since by choice of $\varphi(w)$ we have

$$
\varphi [(\beta_i \beta_j)(\bar{a})] = \delta_i \, \delta_j \, \delta_{i_1} \, \cdots \, \delta_{i_k} = \delta_i \, \varphi [(\beta_j \beta)(\bar{a})],
$$

if $\beta = \beta_i \cdots \beta_{i}$.

The lemma is proved.

<u>Remark 1</u> (in some sense a converse to Lemma 1). Let Hom_{n} ($\overline{a}, \overline{b}, \overline{\theta}$), where \overline{a} = ($a_1, ..., a_n$), $\vec{\delta}$ = ($\vec{\delta}_1,\ldots,\vec{\delta}_n$), $\vec{\theta}$ = ($\beta_1,\ldots,\beta_n,x,y,z$), denote the system of equalities in the statement of Lemma 1. We will show that if $Hom_{\mathcal{A}}(\overline{\mathcal{L}}, \overline{\mathcal{L}}, \overline{\mathcal{G}})$ is satisfied in some K -algebra A for certain elements \bar{a} , \bar{b} , $\bar{\theta}$, then the mapping $\varphi:\mathbb{R}[a_1,\ldots,a_n] \to A$, defined by the rule $\varphi(a)$ = $xaxy$ for $a \in A[a_{1}, \ldots, a_{n}]$, is a K -algebra homomorphism for which $\varphi a_{i}) = b_{i}^{K} (b = 1, ..., n)$. It suffices to observe that

$$
\varphi(a_{i_1}a_{i_2}...a_{i_k})=xa_{i_1}a_{i_2}...a_{i_{\ell}}, \ zy=xz\beta_{i_1}\beta_{i_2}...\beta_{i_{\ell}}y=\beta_{i_1}\beta_{i_2}...\beta_{i_{\ell-1}}\beta_{i_{\ell-1}}... \beta_{i_{\ell-1}}\beta_{i_{\ell-1}}... \beta_{i_{\ell-1}}.
$$

Remark 2. In the sequel, we will apply Lemma i in the following situation. Suppose Λ, β are Λ -algebras, Λ is the subalgebra of β , generated by elements $a_1, ..., a_n \in \beta$, φ : $A\rightarrow B$ is a K -algebra homomorphism for which $\varphi(q_i)=\frac{\beta}{\alpha}$ ($i=1,\ldots,n$), and A as a K -module is a direct summand of $~\beta$, i.e., the $~\cal K$ -module $~\beta~$ contains a $~\cal K$ -submodule $~\cal C~$ such that $A+C=0$. Then there exists a K -algebra containing B as a subalgebra in which the system \lim_{n} $(\bar{a}, \bar{b}, \bar{\theta})$ is solvable.

The assertion that for associative rings $A \subseteq B$, where A is a direct summand of the additive group of β , an additive homomorphism φ : $A \rightarrow B$ is defined in an extension of B by a rule $\varphi(a)=xay$, is due to Taitslin [1].

LEMMA 2. Suppose $f(k,j)$ is a recursive function defined for all $i,j = 1,2,...$ ($i+j$) such that $f(i,j)=f(j,i)$. Suppose that \sqrt{a} is some recursively enumerable set and \vec{A} is a K -algebra with generators x, y, z and defining relations

$$
\{xy^{i}z + xy^{j}z = xy^{f(i,j)}z/i+j ; i,j=1,2,...\} \cup \{xy^{i}z - xy^{j}z/z, j> \in Y\}.
$$

Then there exists a \mathcal{K} -algebra β with the following properties:

a) β is a subalgebra of ρ and, as a π / π and α are β . And are in the π module β :

b) β has a finite number of generators and a recursively enumerable set of defining relations, one of which has the form $\alpha + \beta = \gamma$ and the others are word equalities in the generator symbols.

<u>Proof.</u> For each $i=1,2,...$ we define a function $n_i : N \longrightarrow N$, and for $i \neq j$: $i,j=1,2,...$, we define $\mathcal{S}(i,j)\in\mathcal{N}$ as follows:

if
$$
i \leq i < j
$$
, then n_j $(i) = \frac{1}{2}(j - 1)(j - 2) + i$;\nif $i \leq j \leq i$, then n_j $(i) = n_{j+j}(j)$;\nif $i \leq i < j$, then $S(i, j) = S(j, i) = n_j(i)$.

The definition of these functions is illustrated by the following diagram.

Here from the natural numbers $\langle 1, 2, 3, \ldots \rangle$ there emanate lines, each of which intersects each other line in exactly one point. The points of intersection are enumerated by the natural numbers. These numbers define the functions n_i and S . That is to say, the numbers on the line emanating from l are $\pi_{i}(t)$, $\pi_{i}(2)$, For example, 2.3.6.9 are the values $r_{s}(1),r_{s}(2),r_{s}(3),r_{s}(4)$ respectively. The number appearing at the intersection of the line emanating from \vec{b} and the line emanating from \vec{j} is $\vec{s}~(i,j)$, . Thus, for any $n \in \mathcal{N}$ there exists a unique pair $f \leq b < j$ such that $n = S(i, j) = S(j, i)$. Furthermore, $n = n_i(i) = n_i(j - i)$ and the functions n_i are one-to-one.

As generators of the desired K -algebra β we take the symbols $x, y, z, u, \sim, \beta, \gamma$. As the set of defining relations we take the set of equalities

$$
\{xy^{i}z = xy^{j}z / i, j > \in Y\} \cup \{xy^{i}z = xu^{n_{i}^{'}j'}\varepsilon_{ij}z / i, j = 1, 2, ..., \} \cup
$$

$$
\cup \{xy^{f^{(i,j)}}z = xu^{s(i,j)}jz / i \neq j ; i, j = 1, 2, ...\} \cup \{\infty + \beta = y\}.
$$

Here \mathcal{E}_{ii} is equal to \propto if $i+j$ is even, and is equal to β if $i+j$ is odd.

Note first that the defining relations of $\bm{\beta}$ imply those of $\bm{\beta}$. Indeed, if $\bm{i} \leq \bm{j}$, then it follows from the relations of ρ -that $x\psi^*z + x\psi^*z = x\mu$, $z^*z + x\mu$. $= \mathcal{IU}^{S(\mathcal{L},j)}(\mathcal{E}_{ij}+\mathcal{E}_{ij-j})z = \mathcal{IU}^{S(\mathcal{L},j)}jz = xy \begin{bmatrix} x_{ij} \\ z \end{bmatrix}.$

Now consider the ideal I _, of the free K -algebra $K[\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{x}, \beta, \mathbf{y}]$ generated by the relations of $~\beta~$. Any element of this ideal can be written as a linear combination of elements of the form

$$
\omega_{1}(xy^{i}z + xy^{j}z - xy^{f(i,j)}z) \omega_{2}, \omega_{1}(xy^{i}z - xy^{j}z) \omega_{2}/\langle i,j \rangle \in Y,
$$

$$
\omega_{1}(xy^{i}z - xu^{n_{i}}y^{j}z_{ij}z) \omega_{2}, \omega_{1}(xy^{f(i,j)}z - xu^{s(i,j)}yz) \omega_{2} \quad (i \neq j),
$$

$$
\omega_{1}(x + \beta - j) \omega_{2},
$$

where $\mathbf{w}_1, \mathbf{w}_2$ are words in $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{z}, \mathbf{z}, \mathbf{y}$, possibly empty.

By a reduction of a word $\omega \in L\left[x, y, z, u, \infty, \beta, \gamma \right]$ we mean the simultaneous replacement in it:

of all subwords of the form $x u'' \ll z$ by $x y' z$, where ℓ is such that $n = n_i (f)$ and $i \ddot{\uparrow} \dot{f}$ is given.

(i)

of all subwords of the form xu^2 βz by xy^2z , where ℓ is such that $x=a_i(j)$ and $i+j$ is odd;

of all subwords of the form $x\mu''y\$ by $xy^{f(i,y)}z$, where $i\neq j$ are such that $n=s(l,j)$.

A word \mathbf{w} without subwords of the indicated form is called reduced. Let us now assume that some element $W \in K$ $[x, y, z, u, \infty, \beta, y]$ is a linear combination of reduced words (in particular, belongs to $K [x, y, z]$) and at the same time belongs to Z , Then W can be represented as a linear combination of elements of the forms (1). Reducing all words in such a representation, we obviously again obtain an expression for W in which there occur terms (1) of only the first, second, and perhaps the last forms. If $W \in K[x, y, z]$, then, cancelling the words in this representation in which the letters $\mathcal{U}, \infty, \beta, \gamma$ occur, we obtain that $\forall \epsilon \in I$, the ideal generated in $K [x, y, z]$ by the defining relations of A . This proves that A is a subalgebra of $~\beta~$. Now let $~\mathcal R~$ be the submodule of the $~\mathcal K$ -module $~\mathcal S~$ generated in $~\mathcal S~$ by the images under the canonical homomorphism of all reduced words in $x, y, z, \omega, \infty, \beta, \gamma$, in which there must necessarily be occurrences of $\mathcal{U}, \preceq, \beta, \jmath'$. Since any element of $K[\mathcal{X}, \mathcal{Y}, \mathcal{Z}]$ $(u, \alpha, \beta, \gamma)$ modulo I is equal to a linear combination of reduced words, the K -module β is the sum of A and R . This sum is direct. Indeed, suppose $W_t + W_2 \in I$, where $W_i \in K$ $[x, y, z]$, and W_2 is a linear combination of reduced words in $x, y, z, u, \alpha, \beta, \gamma$ in which u, α, β, γ occur. Then, by what has been proved, $W_1 + W_2$ can be represented as a linear combination of expressions of the first, second, and last forms in (1). Collecting the words in x, y, z and all the others separately, we obtain $W_i \in I$, $W_j \in I$, .

The lemma is proved.

A small modification of an assertion proved by Mal'tsev [2] is the following

LEMMA 3. Suppose Λ is an arbitrary, at most countable Λ -algebra and $\Lambda = \{a_1, a_2, \dots\}$ is an arbitrary enumeration of its elements. Then there exist a K -algebra $~\beta$ containing A as a subalgebra and elements $a, b, c \in \mathcal{B}$, such that $a_i = a b^i c$ ($i = 1, 2, ...$).

<u>Proof.</u> Consider $A_1 = A \times K [\mathcal{X}]$. There exists an endomorphism $\varphi : A_1 \longrightarrow A_1$ of A_1 as a K -module under which $\varphi(x^n)=a_n$ ($n=$ $\ell,$ 2,...) . By Lemma 1, there exist a K -algebra $\beta \supseteq \beta$, and elements $u, \sigma \in \beta$ such that $\varphi(a) = u a \sigma$ for all $\alpha \in \Lambda$, Clearly, β is the desired algebra.

THEOREM. Suppose K is a commutative associative ring with unity or a field that is finitely generated over its prime subfield. Suppose Λ is an arbitrary associative Λ algebra with a recursively enumerable set of defining relations. Then there exists a finitely generated associative $~\kappa$ -algebra with a finite set of defining relations in which $~A~$ is contained as a subalgebra.

<u>Proof.</u> Suppose $A = \{a_1, a_2, \ldots\}$ is an enumeration of the elements of A in which each element of Λ is repeated at least twice. By Lemma 3, there exists a Λ -algebra $\mathcal B$ with three generators a, b, c such that $A \subseteq B$ and $a_i - a b^i c$ ($i = 1, 2, ...$). Since in the ring or field K the set of all true equalities in the generators of K is recursively enumerable, we may assume that $~\beta~$ is also recursively presented, i.e., the set of all equalities in the elements a, b, c that are true in β is recursively enumerable. Moreover, we may assume that the original algebra \overline{A} , has a finite set of generators, say q_{i}^{n} .

Let $V = {< i,j > |a b c = a b^j c}$. Then $y \in N^2$ is a recursively enumerable set. Let $f(i,j)$ be a recursive function, defined for all $i,j \in N$ with $i \neq j'$, such that $f(i,j)=f(j,i)$ and

$$
a b^i c + a b^i c = a b^{f(i,j)} c \text{ in } S.
$$

Consider the K -algebra S with generators x, y, z and defining relations

$$
\{xy^{i}z + xy^{i}z - xy^{f(i,j)}z \mid i \neq j; i,j = 1,2,...\} \cup \{xy^{i}z - xy^{j}z \mid < i,j > \in Y\}
$$

By Lemma 2, there exists a K -algebra $S \supseteq S$ in which the K -module S is a direct summand and which has an enumerable set of defining relations

$$
\sum (x, y, z, u, \alpha, \beta, y') \cup \{\alpha + \beta = y'\},\tag{1}
$$

where Σ contains only word equalities in $x, y, z, u, \alpha, \beta, \gamma'$.

There exists $\varphi:\beta\times\mathcal{S}\longrightarrow \beta\times\mathcal{S}$, such that $\varphi(x)=$ ϱ , $\varphi(y)=$ β , $\varphi(z)=$ ϱ , morphism of β × δ , as a $\,$ K-module, and the restriction of morphism. By Lemma 1, there is $\beta \sim A$ -algebra $\delta = \beta \times \delta$, in which we can solve the system of equations is an endoto $\boldsymbol{\upsilon}$ is a $\boldsymbol{\mathsf{\Lambda}}$ -algebra homo-

$$
\text{Hom}_{\mathfrak{z}}(x, y, z, a, b, c, \overline{\theta}, \text{)}.
$$
\n⁽²⁾

Now consider the semigroup G with generators $x', y', z', \; \mu, \mathcal{L'}, \beta, \; \jmath'$ and set of defining relations $\Sigma \, (x',\;y',z',\omega',\ns',\beta',\j',')$. By a theorem of Murskii [3], there exists a semigroup $G, \supseteq G$ with a finite set of generators and a finite set of defining relations

$$
\Sigma_{1}(x', y', z', u', \alpha', \beta', y', \overline{\theta}_{2}). \tag{3}
$$

Let $K[G]$ denote the semigroup K -algebra of the semigroup G . Clearly, $K[G] \subseteq K[G]$ and $K[f]$, as a K -module, is a direct summand of $K[f]$. By Lemma 1, there is a K algebra $S_3 \supseteq S_2$ * $K[G_1]$ in which we can solve the system

$$
\text{Hom}_{\mathbf{g}}\left(x', y', z', u', \alpha', \beta', y', x, y, z, u, \alpha, \beta, y, \overline{\theta}_3\right). \tag{4}
$$

Suppose $g : N^2 \longrightarrow N$ is a recursive function such that $\alpha \beta'c - \alpha \beta'^2c - \alpha \beta^2$ in the K -algebra $\stackrel{\bullet}{\mathcal{B}}$. If H is the semigroup with generators ρ . γ , ζ and defining relations $\rho g^i z \quad \rho g^j z = \rho g^{g(i,j)} z \quad (i,j \in N)$, then, by the theorem of Murskii [3], there exists a semigroup H'_f = H with a finite set of defining relations

$$
\Sigma_{\mathbf{z}}\left(\rho,\mathbf{\hat{y}},\mathbf{z},\overline{\mathbf{\hat{g}}}_{\mathbf{z}}\right). \tag{5}
$$

Again, by Lemma 1, there exists a K -algebra $S_a \supset S_a \times K[f\!]$ in which we can solve the system

$$
Homj (p, q, z, a, \delta, c, \overline{\theta}_{j}).
$$
\n(6)

Finally, suppose $\prec, \ldots, \prec \infty$ are generators of the ring or field κ . Recall that $a_{i_1},...,a_{i_{\ell}}$ generate A . There exist $f_{i_1} \in \mathcal{N}$ such that

$$
\propto_{t} a b^{i_{s}}c - a b^{i_{ts}}c \qquad (t = 1, ..., l; s = 1, ..., k).
$$
 (7)

413

Now consider the K -algebra defined by the set of relations Σ^{π} , the union of all of the system (1)-(7). It is easy to see that this $\mathcal{K}-$ algebra on the elements $a_i = a b^i$ $(\nu=1,2,\dots)$ satisfies all equalities of the K -algebra A and only these. This proves the theorem.

COROLLARY. If K is a commutative associative finitely generated ring with unity or a field that is finitely generated over its prime subfield, then there exists a 2-generator finitely presented associative \overline{K} -algebra in which any associative \overline{K} -algebra with a recursively enumerable set of defining relations can be isomorphically embedded. In particular, when $K = Z$, there exists a 2-generator finitely presented associative ring A in which any associative ring with a recursively enumerable set of defining relations can be isomorphically embedded. Among the defining relations of A only one has the form $\mathscr{W}_f + \mathscr{W}_g = \mathscr{W}_g$, and the others are word equalities in the generators.

The proof is analogous to that of Higman [4] for groups, owing to the fact that any countable $\mathcal{K}-$ algebra can be embedded in a 2-generator algebra (see [2]) and in the case $K = Z$ the equalities (7) are superfluous.

The author would like to thank G, P. Kukin for a number of useful comments on both the structure and content of this paper.

LITERATURE CITED

- 1. V. Ya. Belyaev and M. A. Taitslin, "Elementary properties of existentially closed systems," Fourth All-Union Conference on Mathematical Logic, Abstracts of Reports and Communications, Kishinev (1976), p. Ii.
- 2. A. I. Mal'tsev, "A representation of nonassociative rings," Usp. Mat. Nauk, 7, No. 1, 181-185 (1955).
- 3. V.L. Murskii, "Isomorphic embeddability of a semigroup with an enumerable set of defining relations into a finitely presented semigroup," Mat. Zametki, i, No. 2, 217-224 (1967).
- 4. G. Higman, "Subgroups of finitely presented groups," Proc. R. Soc. London, A 262, 455-475 (1961).
- 5. Dnestr Notebook (Unsolved Problems of the Theory of Rings and Modules) [in Russian], 2nd edition, Novosibirsk (1976).