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In the Dnestr Notebook [5] L. A. Bokut' raised the following question: "Is an arbitrary 

recursively presented associative (Lie) algebra over a prime field embeddable in a finitely 

presented associative (Lie) algebra?" We will show that for associative rings and algebras 

this question has an affirmative answer. 

Suppose that K is either a commutative associative finitely generated ring with unity 

or a finitely generated extension of a prime field. We will show that any associative K- 

algebra with a recursively enumerable set of defining relations can be embedded in a finitely 

presented associative K-algebra. 

In this paper the expression "K-algebra" means "associative K-operator ring." The 

unity of an algebra, if there is one, is not fixed in the signature. We denote the set of 

all positive integers by N . For a K-algebra A and elements ~ ..... ~EA , we denote by 

A~/~°",~a] the subalgebra of A generated by ~/t,.,a~ . For K-algebra ~ and ~ , the 

direct sum of these K-algebras is denoted by ~x~ , and ~ signifies that A is a sub- 

algebra of ~ . For a set of symbols X , we denote by Z~J the set of all nonempty as- 

sociative words in the alphabet X , and by ~E~] the free ~-algebra with set X of free 

generators. The elements of ~ [~] are linear combinations of the form ~"[ ~L~-, where 

the ~E~ and almost all are equal to zero. 

LEMMA i. Suppose A is an arbitrary K-algebra Q! .... s~ '~,...i ~ E~, and ~:~ • 

is a mapping such that ~(~.)= ~ ~=/,...1~)pand the following conditions are satisfied: 

i) ~ is an endomorphism of A as a ~ -module; 

2) the restriction of ~ to the subalgebra ~EQ1,.oojan] is a homomorphism into 

Then in some ~ -algebra containing m as a subalgebra the following system of equations 

in the unknowns ~,fiZ~1,.°,1~ is solvable: 

• - 

a i z  

Proof. Suppose ~-g[X]/I, where I is an ideal of the free algebra ~[X]. It is con- 

venient to assume that preimages of the elements Qi' ~ ~U'~°o,,~)under the canonical homo- 

morphism ~[~] . J ~ are chosen to be distinct letters of ~ , which we also denote by 

a~,~ ~ooot~) Furthermore, we assume that for each word ~E~ [X] there is chosen in 

IX] a word ZLf / such that the equality ~Iur+f)=~'+f holds in ~[~]/_T. We again denote 
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this ~ft by ~I~f) Finally, in view of condition 2) of the lemma we may assume that we 

always have 

Suppose XI =-X u-i~,~,e,'~/,,..,~n} and ~ is the ideal of the free- K-algebra K[X,] , 

generated by the set 

u{a z-=i  #-l,....,,}u 
i / • ~°I " 

Here and below, ~(~) denotes the result of replacing each other ~ in the word ~g by 

Qi (b'~ .... ~) . To prove the lemma it suffices to show that ~ O~[X]~o 

Suppose ~Eft ~ ~ IX] . we will prove that ~£f The element ~ can be written as 

a linear combination, with coefficients in ~ , of elements of the form 

(1) 

where ~I, ~, ~,~, ~ are certain words in ~ EXI] or are empty words. We may assume that 

~/ does not end, and that LT 3 does not begin, with a letter of X 

Let us imagine ~ and y to be left and right parentheses. In a word UT-E ~ [X~ with 

properly arranged parentheses, these are naturally divided into pairs <~-, a left paren- 

thesis ~ and its corresponding right parenthesis ~ . By the depth of occurrence of some 

such pair <~> in UJ" we mean the difference between the number of parentheses ~ and the 

number of the parentheses ~ to the left of the ~ in the considered pair <.2~,~ in UT . 

If ~r has a pair of parentheses with depth of occurrence S but no pair with depth of oc- 

currence $+/ , then the number S+/ is called the rank of /./7" . If ~ has no parentheses, 

its rank is zero. 

It is easy to see that if in an expression for ~ we group together the monomials with 

properly arranged parentheses, then we again obtain a linear combination of the elements (i). 

Since ~ itself is an element of ~EX3 , the monomials with improperly arranged parentheses 

cancel. We may therefore assume that ~ is a linear combination of the elements (i), where 

parentheses are properly arranged in all monomials. 

Let $ be the largest number such that an expression for ~ contains words of rank S 

If g=0 , then ~ • Suppose 5>O. We will show that ~ has a representation of the 

same form in which all words have rank less~than $ The proof of the lemma then follows 

by induction. 

A word ~E~ [X,] with properly arranged parentheses is called proper if its rank is 

either less than $ , or is equal to S and for any pair <~> of a depth S-[ the part of 
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the word ~f from ~ to ~ for these I,~ has the form 

where //eL[X], or u-~,A~Z~l,...,p,], or p=~,~+~. 

It is easy to see that for each element of the form (i), all words of which it is a 

linear combinationare proper or improper simultaneously. If in the representation for 

we collect the improper words and cancel them, we again obtain a representation for W (since 

W e ~  [~J ~- In view of what was said, this representation is a linear combination of elements 

of the form (i). 

In each word of rank ~ in this representation of 

$-/ we replace the subwords ~I~ for these ~,~ by 

representation of W 

$ , for each pair <~,~> of depth 

~[~ ~)] We. again obtain a 

We will show that the new representation is, as before, a linear combination of elements 

of the form (i). Since the ranks of words in the new representation are less than S , this 

will prove the lemma. 

Consider a summand ~>'/- /~ ', where /.../~.Z ~" . Suppose ~=~/~g , where ~ F _ / ' ( ' .  Clearly, 

the ranks of all of the words ~. ~ are the same. If their common rank is equal to ~ , 

then under the replacement described above the words ~ ~/" [X3 are affected only when 
! • 

/~= /ft2,~ ~ Z~. In the remaining cases, we obviously obtain a sum of the same form. 

Then after the replacement we have 

But ~. ~ [~)6I , and since ~ is an endomorphism of ~ as a ~-module, it follows that 

Consider a summa~d ~ ( ~ Z / ~ - p [ a r ~ a ~ ] ) ~ .  ~f ~n the word ~ 9 [ ~ ; 0 { ~ . ~ ] ~  the subword 

~ [ ~ C a ~ 3  occnrred w i t h i n  a pair  of  depth ~ - !  , then c l e a r l y  in  the word ~ r ~ / 3 ~  the  

pair <~,~ would have depth ~, which is impossible. Therefore, obviously, after the re- 

placement the expression under consideration either vanishes or keeps the same form. 

Consider a summand ~(~f-Z~)~. It suffices to look at the case where ~f1=~/~f',~= 

~r21 and this pair <~,~> has depth S-/. Then after the replacement we obtain 

'< 

This expression vanishes, since C/dSip)t~ ) =~i~. 
Finally, consider a summand ~/C~.-~2~-)~. Again, it suffices to look at the 

case where ~ = ~ '  and the considered pair <~,~> has depth S-/ . After the replace- 

ment we obtain 
I 

~'~[c~;~j~] " " D / , j ; ~ ) ~ 2  " -~,  ~ ~ .  
This expression also vanishes, since by choice of ~(~r I we have 
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The le=~a is proved. 

Remark i (in some sense a converse to eemma i). Let H0m n {~,~ ~) , where ~-(~1 .... ,~), 

[-,(4,...,~) ~ ~= (~I,,,,,~,~,~), denote the system Of equalities in the statement of Lemma 

i. We will show that if HOrl~z~ is satisfied in some K-algebra A for certain ele- 

ments ~ , ~, ~, then the mapping ~°'~[QI,,..,~ ] • A , defined by the rule ~(~)=~f 

for ~E~ [~I, "" "'(~] ' is a K-algebra homomorphism for which ~ (b'/~ .... ~). It suffices 

to observe that 

. . .  • 

Remark 2. In the sequel, we will apply Lemma i in the following situation. Suppose 

~ are ~-algebras, ~ is the subalgebra of ~, generated by elements a! .... jQ~E~ ,~ 

~-'~ is a ~-algebra homomorphism.for which ~[Qi)" 4 (~-~...,R) , and A as a K-module 

is a direct summand of ~ , i.e., the ~-module ~ contains a ~-submodule ~ such that 

$~=~ . Then there exists a K-algebra containing ~ as a subalgebra in which the 

system H0fr~R (~ ~, ~ is solvable. 

The assertion that for associative rings ~ ~ , where k is a direct summand of the 

additive group of ~ , an additive homomorphism ~;~--~ is defined in an extension of 

by a rule ~la)--~, is due to Taitslin [i]. 

LEMMA 2. Suppose i~,j) is a recursive function defined for all ~,/= g2 .... (~/) 

such that i(~j)m/~/,~). Suppose that ~ i  is some recursively enumerable set and 

is a K-algebra with generators ~,~ and defining relations 

+ = i ; YJ .  

Then there exists a ~-algebra ~ with the following properties: 

a) A is a subalgebra of ~ and, as a 

module ~ ; 

-module, is a direct summand of the ~- 

b) ~ has a finite number of generators and a recursively enumerable set of defining 

relations, one of which has the form o(+~ --~ and the others are word equalities in the 

generator symbols. 

Proof. For each L=~2t... we define a function ~ : /%/ ~ N , and for b~i; b'i "~z' .... 

we define $(f~i)6~ as follows: 

if / . /, </ 

if 4~ ~ <d 
, then ~'~: {/~ ) ,= /b~+, {])j  

J ¥ # - -  ,then S (~ , j ) "  S (i,b)--~'(/~). 

The definition of these functions is illustrated by the following diagram. 
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C -  

g 3 . ~  . , . .  • " 7  "'" • 

Here from the natural numbers I,~,$ .... {:here emanate lines, each of which intersects 

each other line in exactly one point. The points of intersection are enumerated by the 

natural numbers. These numbers define the functions /Z i and $ That is to say, the numbers 

on the line emanating from i are ~i{¢~, ~i~2), .... For example, ~,6~9 are the values 

ft~(~ /Z~),//.,,(.~,)),//$ (:4) respectively. The number appearing at the intersection of the line 

emanating from ~ and the line emanating from 7 is $~,j)° . Thus, for any t~ there 

exists a unique pair ~b</ such that Ib,=3~,7}--~{~,~ }. Furthermore, rb-~t~(~)==tZ~(/--/~ 
and the functions /~i are one-to-one. 

As generators of the desired f -algebra ~ we take the symbols ~,~,g,U,'w ~, /. As 

the set of defining relations we take the set of equalities 

Here eq is equal to ~ if b q-/ is even, and is equal to ~p if ~+/ is odd. 

• ° • • 

Note first that the defining relations of ~ ~mply those of A . Indeed, ~f ~<j , 

then it follows from the relations of ~ that ~'~ + ~Y'~ = ~g(J-/)~. ~ "I- ~'~.~ 

Now consider the ideal  f~ of the free /(" -algebra #[W,F,~',  U , ~ , / ~ , [ . ]  generated by 
the relations of ~ Any element of this ideal can be written as a linear combination of 

elements of the form 

+ 

(i) 

where ~O~/,/,d~ are words in 9C,~/.,f, ~ ,  ~',/~, ~ , possibly empty. 

By a reduction of a word ~rE ~[~ ~,~ g/~,~,~] we mean the simultaneous replacement in 

it: 

of all subwords of the form ~ Z  by ~'Z, where ~ is such that /~-*tz~ ~j} and ~ 

is given. 
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of all subwords of the form ~>Z by ~:Z , where & is such that ~=~i~7) and 

~+Tis odd; 

of all subwords of the form ~/~ by ~/(i~, , where &+7 are such that ~=${~} . 

A word ~f without subwords of the indicated form is called reduced. Let us now assume 

that some element WE~ [~,~,Z,U,~,~,/] is a linear combination of reduced words (in parti- 

cular, belongs to ~ [~ ~,Z] ) and at the same time belongs to =~ Then W can be rep- 

resented as a linear combination of elements of the forms (i). Reducing all words in such 

a representation, we obviously again obtain an expression for ~ in which there occur terms 

(i) of only the first, second, and perhaps the last forms. If W£~,~,Z], then, cancelling 

the words in this representation in which the letters U,~,~, ~ occur, we obtain that WeI , 
the ideal generated in ~ [~, ~] by the defining relations of ~ This proves that 

is a Subalgebra of ~ . Now let ~ be the submodule of the K-module ~ generated in 

by the images under the canonical homomorphism of all reduced words in ~",y,Z, ~,~,~, / , in 

which there must necessarily be occurrences of ~,~,~,~ . Since any element of ~[2,~,~ 

a,~,~,2J modulo I is equal to a linear combination of reduced words, the ~-module ~ is 

the sum of A and ~ . This sum is direct. Indeed, suppose ~I+~2E ~ , where ~i~ [~I~,ZJ, 

and ~2 is a linear combination of reduced words in ~,Z,U,~,~,~ in which U,~I~,2 occur. 

Then, by what has been proved, ~I +~2 can be represented as a linear combination of expres- 

sions of the first, second, and last forms in (i). Collecting the words in ~Z and all the 

others separately, we obtain WIE I ,W2~f , . 

The lemma is proved. 

A small modification of an assertion proved by Mal'tsev [2] is the following 

LEMMA 3. Suppose A is an arbitrary, at most countable K -algebra and A={QT,Q2,.o. } 

is an arbitrary enumeration of its elements. Then there exist a K -algebra ~ containing 

A as a subalgebra and elements ~,~,CE~, such that Qi=a~% ~=],2, o.. ) • 

Proof. Consider AI= AxK [~J . There exists an endomorphism ~:A I ~AI of A I as a 

K -module under which ~IZni=~n ~= f,~ ) . By Lemma i, there exist a ~-algebra ~-~AI 

and elements ~,~fE~ such that ~O)=~r for all ~Z£~/ . Clearly, Z~ is the desired algebra. 

THEOREM. Suppose ~ is a commutative associative ring with unity or a field that is 
= 

finitely generated over its prime subfield. Suppose ~ is an arbitrary associative ~ - 

algebra with a recursively enumerable set of defining relations. Then there exists a finitely 

generated associative ~-algebra with a finite set of defining relations in which ~ is con- 

tained as a subalgebra. 

Proof. Suppose A ~ {~, ..... } is an enumeration of the elements of ~ in which each 

element of ~ is repeated at least twice. By Lemma 3, there exists a ~-algebra ~ with 

three generators ~,~C such that A ~---~ and ~--O[~'~ (&= #,~,. o~. Since in the ring or 

field ~ the set of all true equalities in the generators of ~ is recursively enumerable, 

we may assume that ~ is also recursively presented, i.e., the set of all equalities in the 

elements O, ~,C that are true in ~ is recursively enumerable. Moreover, we may assume that 
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the original algebra ~ has a finite set of generators, say ~p...,~. 

Let ~= {<{~,d~ [G,b~ ---- ~ / ~ ' ~ .  Then ~ ~A/'2 is a recursively enumerable set. Let f (~, i  ) 
be a recursive function, defined for all 6"~i~ ~ with 6"# , such that /(i,d)= f~'~)and 

Consider the K -algebra $ with generators ~?,~ and defining relations 

~y ~emma 2, ~here e~ists a /<'-algebra ~ ~ S in which the K-module 
and which has an enumerable set of defining relations 

E (~,~,~,~,~,I~,/) u { ~ + p  = / } ,  

where E contains only word equalities in ~l",#,Z,d,<,/~,/. 

There exists ~:~xS! ' ~xSl  such that ~ .~ )=  ~, ~[y)=~, ~ (Z ) :  O, 
morphism of ~X4 as a K-module, and the restriction of 

morphism. By Lemma I, there is 

equations 

Again, by Lemma i, 

system 

is a direct summand 

( l )  

is an endo- 

to ~ is a ~-algebra homo- 

-algebra ~2-- ~x ~f in which we can solve the system of 

HOITZ'3 ('~{"~i CL' fot C' ~'I )" (2) 

! l l 
Now consider the semigroup ~ with generators ~t ~i, ~i ~;~,~ / and set of defin- 

# " # ¢ / / 

ing relations ~,,(~ g [ $ , U , ~ , ~ , /  ) . By a theorem of Murskii [3], there exists a semi- 

group 4 -~ ~ with a finite set of generators and a finite set of defining relations 

E I (,~', ~#, Z',LL', ~ p ' ,  i f  ~ )o (3) 
Let ~[~] denote the semigroup K-algebra of the semigroup # Clearly, ~ [j~]~-K [~1] 

and K[#] , as a K-module, is a direct summand of K [#,] . By Lemma 1, there is a ~'- 

algebra $3~$a x K[~/] in which we can solve the system 

l f ~I l # l 
I-Io=~ (~,~/, , ~ ,  ~ ,/~ ,7', ~,~,z,u,~,#,/,~ ). (4) 

Suppose ~ : I/ i  # is a recursive function such that ~ ~Zb/C--- ~Z~'J'C in the 

-algebra ~ . If ~ is the semigroup with generators ~, ~ , ~ and defining relations 

~ "  ~" =/~f4J)~ ~ (6'~/eN), then, by the theorem of Murskii [3], there exists a semi- 

group ~/~ with a finite set of defining relations 

E~(?,~,~,~). (5) 

there exists a ~-algebra ~# ~ ~, X/<' [~] in which we can solve the 

Finally, suppose ={I,,..~eEK are generators of the ring or field 

~'"°f~L~ generate ~ There exist 4E~ such that 

~ = b %  - abJ~sc d=I,...,~'; sol, .... f) .  

(6) 

K . Recall that 

(7) 
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NOW consider the K,algebra defined by the set of relations ~, the union of all 

of the system (1)-(7). It is easy to see that this ~-algebra on the elements ~--~ 
e 
~f,2,,,o) satisfies all equalities of the K-algebra ~ and only these. This proves the 

theorem. 

COROLLARY. If K is a commutative associative finitely generated ring with unity or a 

field that is finitely generated over its prime subfield, then there exists a 2-generator 

finitely presented associative K-algebra in which any associative K-algebra with a re- 

cursively enumerable set of defining relations can be isomorphically embedded. In particular, 

when ~Z , there exists a 2-generator finitely presented associative ring A in which 

any associative ring with a recursively enumerable set of defining relations can be isomorphic- 

ally embedded. Among the defining relations of A only one has the form ~+~ =~ , and 

the others are word equalities in the generators. 

The proof is analogous to that of Higman [4] for groups, owing to the fact that any 

countable K-algebra can be embedded in a 2-generator algebra (see [2]) and in the case 

K-~ the equalities (7) are superfluous. 

The author would like to thank G, P. Kukin for a number of useful comments on both the 

structure and content of this paper. 
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