SUBRINGS OF FINITELY PRESENTED ASSOCIATIVE RINGS

V. Ya. Belyaev ‘ UDC 519.7

In the Dnestr Notebook [5] L. A. Bokut' raised the following question: "Is an arbitrary
recursively presented associative (Lie) algebra over a prime field embeddable in a finitely
presented associative (Lie) algebra?" We will show that for associative rings and algebras

this question has an affirmative answer.

Suppose that K 1is either a computative associative finitely generated ring with unity
or a finitely generated extension of a prime field. We will show that any associative A -
algebra with a recursively enumerable set of defining relations can be embedded in a finitely

presented associative K -algebra.

In this paper the expression "K-algebra" means "associative [K-operator ring." The
unity of an algebra, if there is one, is not fixed in the signature. We denote the set of
all positive integers by N. TFor a K-algebra A and elements 0,,,,,,61,,6/4. , we denote by
A[-a,,...,d,,] the subalgebra of ,4 generated by a,y0,a, . For K -algebra A and B , the
direct sum of these K--algebras is denoted by AxB , and Ach signifies that A is a sub-
algebra of B . For a set of symbols X , we denote by- A[X] the set of all nonempty as-
sociative words in the alphabet X , and by KD(] the free K -algebra with set X of free
generators. The elements of K[X] are linear combinations of the form 2 Y , where

o
1743
the QZ,EK and almost all are equal to zero. L1

LEMMA 1. Suppose A is an arbitrary K -algebra a,...,4, ,fw,,,f; ek, and sz —/
is a mapping such that ¢{q)={; ([=/,,,,,/Z), and the following conditions are satisfied:

1) 50 is an endomorphism of /4 as a K—module;
2) the restriction of ¢ to the subalgebra ,4 [a,,,,,,aﬂ] is a homomorphism into /1

Then in some K -algebra containing A as a subalgebra the following system of equations

in the unknowns £, ¢, %, Preeees By is solvable:

20,2y = ;)
a"z - 2/35, .
‘tzpiﬂj- 4.132,6/- (L",/"" /?...,/Z)a

M_. Suppose A'K[X]/f, where f is an ideal of the free algebra /([XJ . It is con-
venient to assume that preimages of the elements 0[, gi (b"/,,.-, ﬂ)under the canonical homo-
morphism K[XJ *—*—A are chosen to be distinct letters of X , which we also denote by
a‘:,é (L'=1f,,,,/2) . Furthermore, we assume that for each word wée/ [X] there is chosen in
L[X] a word &' such that the equality ¢p(w'+])=w"+] holds in K [X] /_T . We again denote
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this &' by z/)(llf) . Finally, in view of condition 2) of the lemma we may assume that we
always have

sy 71 ‘

¢laza ...qp )= o’ilf- f
Suppose X,==X U'{I«',%,Z,@,,---,ﬂ,’} and _Z; is the ideal of the free- K —algebrar/([x’] .
generated by the set

Tu {:éwzpy-t/?[m(ﬁﬂ/w'eé X o w=d.
PELBip) & p=g uphg)u
uigz-2p /i=1,....a}u

u{.czpb./sj—- é}xz/sj [if=tioya} .

Here and below, IB(E) denotes the result of replacing each other 4 in the word Pi by

a; (t=4...,a) . To prove the lemma it suffices to show that J nK Xl=_1.

Suppose W€[, nkK EX] . We will prove that ‘We/ . The element W can be written as

a linear combination, with coefficients in K , of elements of the form

sUs,  (ewzpy-plupal)y; , 0
u,(@z-24)0,, W (22p;p-t228) 0y,

where le] . [},',(J;_,w,',w; are certain words in Z D(,] or are empty words. We may assume that

J; does not end, and that [

[, does not begin, with a letter of X .

Let us imagine & and y to be left and right parentheses. Inaword w"eé[x;_'] with
properly arranged parentheses, these are naturally divided into pairs <1;#>- , a left paren-
thesis & and its corresponding right parenthesis él . By the depth of occurrence of some
such pair <:t;é(> in & we mean the difference between the number of parentheses ; and the
number of the parentheses & to the left of the &£ 1in the considered pair <.z',§(> in W .
If « has a pair of parentheses with depth of occurrence § but no pair with depth of oc-
currénce S+/ , then the number S§+/ is called the rank of & . If & has no parentheses,

its rank is zero.

It is easy to see that if in an expression for W we group together the monomials with
properly arranged parentheses, then we again obtain a linear combination of the elements (1).
Since W itself is an element of K [X_] » the monomials with improperly arranged parentheses
cancel. We may therefore assume that W is a linear combination of the elements (1), where

parentheses are properly arranged in all monomials.

Let 8 ©be the largest number such that an expression for W contains words of rank §
If g=0 , then WEJ . Suppose $>0. We will show that W has a representation of the
same form in which all words have rank less:than § . The proof of the lemma then follows

by induction.

A word wel [XJ with properly arranged parentheses is called proper if its rank is .

either less than § , or is equal to 8 and for any pair <.’Z‘,y> of a depth 8-/ the part of
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the word « from Z to y for these ,rc,y has the form
.‘8[17/35(,

where ueLIX], or U=¢-/5€L[/5,,...,/6ﬂ], or /G=¢,1467£¢.

It is easy to see that for each element of the form (1), all words of which it is a
linear combination are proper or improper simultaneously. If in the representation for W
we collect the improper words and cancel them, we again obtain a representation for W (since

WEK D(_\ ). In view of what was said, this representation is a linear combination of elements
of the form (1). ’

In each word of rank W in this representation of & , for each pair <:1_3,}I7 of depth
$-{ we replace the subwords TUZBY for these :C,} by w[u,lﬂ (C—l)] . We again obtain a

representation of W

We will show that the new representation is, as before, a linear combination of elements
of the form (1). Since the ranks of words in the new representation are less than § , this

will prove the lemma.

Consider a summand (]',U[/; , where (el . Suppose U:%’oi_af , where « € K. Clearly,

the ranks of all of the words J;((j;(}; are the same. If their common rank is equal to § ,

then under the replacement described above the words wz e/ [X] are affected only when
4
J= 1/','1’,151 Zﬂ}lz In the remaining cases, we obviously obtain a sum of the same form.

Then after the replacement we have
- v
S0 olu; p@ly)= o (‘_2«‘. g [u; p@n )z,
- ¢
But E&bu{ﬁ (ﬁ)EI »and since ¢ 1is an endomorphism of A as a /(—module, it follows that
J3
6206550[11}2/3((1)16[ .
Consider a summand 4 (ZwZpYy~PlWB@)E,. 1f in the word w¢[wp(@)] w, the subword
S”Qlfﬁ(m] occurred within a pair of depth $-/ , then clearly in the word af,xwz,agzw; the

pair <.1‘,5/> would have depth §, which is impossible. Therefore, obviously, after the re-

placement the expression under consideration either vanishes or keeps the same form.'

Consider a summand (] (aiZ—Zﬂ{;)w‘; . It suffices to look at the case where w;.zr a};lxw;,u)z't
ﬁ}/a}"e' and this pair <.1‘,9/> has depth 8~/ . 'Then after the replacement we obtain

! plwa, p@) "~ w'y W (5, 8) @)
This expression vanishes, since ('ALP)(E) Ia‘p (5}

Finally, consider a summand (] (xz/g‘;/%—{il'zjﬂ/.)@. Again, it suffices to look at the
case where w;zpywz' and the considered pair <$,y> has depth §~/ . After the replace-

ment we obtain
/
‘ - v ’ = ”
e [y g @) "~ w6 9 g )80 ).
This expression also vanishes, since by choice of 50(4;) we have

pligpal= 684 ... 4 = 4 olippel,
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if p=f; ...,5,;‘-
The lemma is proved.

Remark 1 (in some sense a comverse to Lemma 1). Let Ham,ﬂ (ﬁ:g,é') , where E-'(a,,,,,,a,,),
Z;(J;,,,,,J;l), g= (/e,,,,,,,@ﬂ,.z',y,z), denote the system of equalities in the statement of Lemma
1. We will show that if Ham,, @,Zﬂ—) is satisfied in some K -algebra A for certain ele-
ments 4 , Z + & . then the mapping ?M[:Q,,...,(ZJ-*A , defined by the rule ¢(a)=z2%Y
for el [CZ,, Y. ,,ad] ,is a K -algebra homomorphism for which 50((10):{; (l;=/.,,..,/l). It suffices

to observe that
P0; 052, )=20, 8 .0y, ZYmE2H, f- ,g.[ﬁ%faf; {{;t%lzy-%é

Remark 2. In the sequel, we will apply Lemma 1 in the following situation. Suppose
/f,ﬂ are K -algebras, A is the subalgebra of 8. geherated by elements al,.,,ﬂaéﬁ i
/4""5 is a /(-algebra homomorphism .for which ¢{0‘-)'={5 ([-;{....,ﬂ) ,and A as a K -module
is a direct summand of 8 , i.e., the K -module f contains a K -submodule A such that
ALO=5 . Then thfre exists a K-—algebra containing 8 as a subalgebra in which the
system Hum’n (&,Z,g) is solvable.

The assertion that for associative rings Agﬁ , Where A is a direct summand of the
additive group of B , an additive homomorphism 50.,4—*5 is defined in an extension of A

by a rule p(a)ga:ay, is due to Taitslin [1].

LEMMA 2. Suppose 7!(1,',/') is a recursive function defined for all (,',/'== L2,,.. (i!‘/)
such that /'(,,‘,/‘)éf(/‘,é), Suppose that YE/\/z is some recursively enumerable set and A

is a K -algebra with generators Z, 4.Z and defining relations
1 ; ij) /... .. , ; ..
{xy"z + xy’z = a:yf "z/mé/ ; L,/-/,z,,..}u_[a:;‘z - xy/z/<b,/>e Y}.
Then there exists a K—algebra 5 with the following properties:

.a) ,4 is a subalgebra of B and, as a ](—module, is a direct summand of the ,'(—-

module B 5

b) B has a finite number of generators and a recursively enumerable set of defining
relations, one of which has the form .c(+/5 -/ and the others are word equalities in the

generator symbols.
Proof. TFor each £=/,2,... we define a function n; N—N , and for é,‘/‘; 5,/':/,2,...,

we define $(i/) €N  as follows:

i f<i</ .‘then/[/.(5)-2/-(/'-/)(/'—2)+I;;

if fsjsi  theny (8) =y, (j);

f fsi<j Jthen §'(Gj)= §U )= (0.

The definition of these functions is illustrated by the following diagram.
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'd :
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Here from the natural numbers {2,3,... there emanate lines, each of which intersects
each other line in exactly one point. The points of intersection are enumerated by the
natural numbers. These numbers define the functions /; and § . That is to say, the numbers
on the line emanating from { are /Z(;(f), 125(2),... . For example, 2, 3,6,9 are the values
, (1), n, (2),”,(5),/13 (4’) respectively. The number appearing at the intersection of the line
emanating from ¢ and the line emanating from j is S(lf,j), . Thus, for any neN there
exists a unique pair /6b'<j such that 2=§(¢,/)= S(/’,z})o . Furthermore, /z,=r5.(5) =1, (/— 1)

and the functions /zé- are one-to-one.

As generators of the desired K -algebra B we take the symbols .Z‘,y,Z,U,el,/i, / As

the set of defining relations we take the set of equalities
{2’z = 2y/5/<ij>eV}ulay’s = 2 z/ij=12...}0
u{xg’(“"'z - wsm/)/z/éﬁ; b',/'= AZ,,,,}U{& +/g, =/}

Here 81;/- is equal to o if b+/ is even, and is equal to p if b+/ is odd.
Note first that the defining relations of B imply those of A ) Indeed, if 1,</' ’
. ; w(j-1 ax(e)
then it follows from the relations of A that .Z!}/‘Z-f- .z:y/z = xTl ¢/ 64/-_/2 + .z:a/ 89.2'

sty) sy)  fiéy?
=1u {59.,+q7 Je=zu =2y 7
Now consider the ideal Z; of the free A -algebra /([x,y,z, U,o(,/},)/_] generated by
the relations of B . Any element of this ideal can be written as a linear combination of

elements of the. form

u, (zy‘z + x/ z-zy Fely )u;, 4 (zy %—zgjz)@/d,pe)’/,

) (1)

w7, ( zy ‘g - zu &% )4, & (zyf Gy .czzs(é"';’/z)ag (i#7),

w;(“+/5 —J)w;r

where &,4, are words in z-,;,z,u,ec,/s,/ , possibly empty.
By a reduction of a word &€ Z_[:!’,él,z, U,ec,/s,)’:] we mean the simultaneous replacement in
it: ‘
of all subwords of the form LUL'<Z by xy‘z , where ¢ is such that n=n; {/‘) and L."'/'

is given.

411



of all subwords of the form .Cdd/éz by .cfz s Where ¢ is such that #=4; (/'] and
5-{7 is odd;
. % Fléd) ‘ . /s ‘ .
of all subwords of the form 13[1/2' by .tg/ Z , where b‘)‘/ are such that ﬂ/=$([,/) .

A word & without subwords of thevindicéted form is called reduced.. Let us now assume
that some element WeK [.z',y,z, (/,o(,/j,/] is a linear combination of redﬁced words (in parti-
cular, belongs to K [:.'l‘, y,z] ) and at the same time belongs to .Z,. . Then W can be rep-
resented as a linear combination of elements of the forms (1). Reducing all words in such
a representation, we obviously again obtain an expression for W in which there occur terms
(1) of only the first, second, and perhaps the last forms. If WGKEI',y,Z], then, cancelling
the words in this representation in which the letters, oL,p,)’ occur, we obtain that Wel R
the ideal generated in K[:t‘, y, 7] by the defining relafions of A . This proves that A
is a subalgebra of B . Now let R be the submodule of the K -modile 4 generated in' 8
by the images under the canonical homomorphism of all reduced words in .T,%z,a,ec,/e +) » iIn
which there must necessarily be occurrences of U,c(,p,/ . Since any element of K [__23,?,2,
U;d{,/&,yj modulo Z is equal to a linear combination of reduced words, the K -module B is
the sum of A and K . This sum is direct. Indeed, suppose W,+W2 E]; , where W,GK [_'a‘,y,z],
and Wz is a linear combination of reduced words in .T,y, Z,Uyo0, B, ) in which U, B, ) occur.
Then, by what has been proved, W, + WZ can be represented as a linear combination of expres-
sions of the first, second, and last forms in (1). kCollecting the words in 1’,#,2 and all the

others separately, we obtain w,eI 'WZEII .
The lemma is proved.
A small modification of an assertion proved by Mal'tsev [2] is the following

LEMMA 3. Suppose A is an arbitrary, at most countable K —algebra and ,4={0,,02,...}
is an arbitrary enumeration of its elements. Then there exist a K -algebra /A containing

i . ‘
/4 as a subalgebra and elements a,.:{ceﬂ, such that @; = aa’o (b'F 1,2, ).

-Proof. Consider A,= AXK [.‘IZ‘J . There exists an endomorphism ‘PZA, "—’A, of A, as a
K -module under which <p(:z:”)=a,, (n=12...) . By Lemma 1, there exist a A-algebra 5-214,
and elements &,&€JS8 such that pla)=uay for all aeA, . Clearly, B 1is the desired algebra.

THEOREM. Suppose K is a commutative associative ring with unity or a field that is
finitely generated over its prime subfield. Suppose A is an arbitrary associative K -
algebra with a recursively enumerable set of defining relations. Then there exists a finitely
generated associative K -algebra with a finite set of defining relations in which A is con-

tained as a subalgebra.

Proof. Suppose /4==_{a,,az.....}' is an enumeration of the elements of /4 in which each
element of A is repeated at least twice. By Lemma 3, there exists a /(-algebra 8 with
three generators 0,{,0_ such that A €4 and ai-a/"c (b'= /.3,.;.). Since in the ring or
field K the set of all true equalities in the generators of A is recursively enumerable,
we may assume that B is also recursively presented, i.e., the set of all equalities in the

elements g, K,c that are true in A 1is recursively enumerable. Moreover, we may assume that
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the original algebra A has a finite set of generators, say &

J
l / 2 v

Let Y={<(;.j> la{C = a/ C} . Then YEAN is a recursively enumerable set. Let 7('((;,/)
be a recursive function, defined for all i,/e N with b%/ , such that /(t',/')= fg’,i)and

; . y
2ot =od"% w 4

Consider the X -algebra § with generators .Z‘,y,Z and defining relations
{zy'z + 1g/z==xy’£‘ Ll ik iof =14 ...}u{zy‘z = zylz | <ij>eY}.

By Lemma 2, there exists a K—algebra S’ =2 S in which the /(—module S is a direct summand

and which has an enumerable set of defining relations

2 ('m,g,z,u,oc,/a,)/) U {octp = !}, (1)
where 2 (;ontains only word equalities in .7, é[ g, U, B, /

There exists ¢! Bx S —*—5)(5' such that @ (2)= @ <P(§/)—£ 50(2)-— 0, ¢ is an endo-
morphism of 5»"5, as a K—module, and the restriction of ¢ to S is a K- —-algebra homo-
morphism. By Lemma 1, there is K—algebra SZQ B x 5/ in which we can solve the system of

equations
Hom, (z.4,2,a,6,¢c, §,). (2)

. 1,0 10 . .
Now consider the semigroup G with generators Z, ¥, %, U,oL, B, J’ and set of defin-
ing relations 2 (Z g: Z: U’,e{,',@',]') . By a theorem of Murskii [3], there exists a semi-

group 6—;26 with a finite set of generators and a finite set of defining relations
r st -
2,(1:/;;’,2’,&,“,/6 l/l 92)0 (3)
Let /([G] denote the semigroup K-algebra of the semigroup G . Clearly, K[Glg-/( [G,]

and K[@] , as a /(—module, is a direct summand of K[@,] . By Lemma 1, there is a K -
algebra 8328'3 X KLG,] in which we can solve the system

r 7 o 4 [ / 7 .
Hom, (24, 2", &'’ ', j', 2,4, 2,u,,,, 8, ) - (4)
2 3 )
Suppose @ : N°—N is a recursive function such that &{0 a!’c {} ‘/C in the
K -algebra 8 . If A is the semigroup with generators £, ¢ , 2 and defining relations

/’9 2; pg’z /ag} /z (L/G/V) then, by the theorem of Murskii [3], there exists a semi-~

group HQI‘/ with a finite set of defining relations

2,(248,78,). 5)
Again, by Lemma 1, there exists a K -algebra S4DSJXK'EH1] in which we can solve the
system
Hom, (p,9,7,2, 6,¢,8,). )
Finally, suppose ’,.-.p(eEK are generators of the rlng or fleld K . Recall that
(lc;,,,,,di[ generate A . There exist / €N such that

acéazfsc - aflfsc ({=1....1; 8=4..., 7). (7)
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Now consider the K -algebra defined by the set of relations :2*{, the union of all
of the system (1)-(7). It is easy to see that this /(—algebra on the elements @; = a!’b
&%{2“") satisfies all equalities of the K ~algebra A and only these. This proves the

;heorem.

COROLLARY. If KA is a commutative associative finitely generated ring with unity or a
field that is finitely generated over its prime subfield, then there exists a 2-generator
finitely presented associative K -algebra in which any associative K -algebra with a re-
cursively enumerable set of defining relations can be isomorphically embedded. In particular,
when K=2 , there exists a 2-generator finitely presented associative ring A in which
any associative ring with a recursively enumerable set of defining relations can be isomorphic-
ally embedded. Among the defining relations of A only one has the form ac+ag ==a§ , and
the others are word equalities in the generators.

The proof is analogous to that of Higman [4] for groups, owing to the fact that any
countable K -algebra can be embedded in a 2-generator algebra (see [2]) and in the case

K=Z the equalities (7) are superfluous.

The author would like to thank G. P. Kukin for a number of useful comments on both the

structure and content of this paper.
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