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On S-duality in Abelian Gauge Theory 

E. WITTEN 

Abstract. U(1) gauge theory on t t  4 is known to possess an dectric-magnetic duality 
symmetry that inverts the coupling constant and extends to an action of SL(2, Z). In 
this paper, the duality is studied on a general four-manifold and it is shown that the 
partition function is not a modular-invariant function but transforms as a modular 
form. This result plays an essential role in determining a new low-energy interaction 
that arises when N = 2 supersymmetric Yang-Mills theory is formulated on a four- 
manifold; the determination of this interaction gives a new test of the solution of the 
model and would enter in computations of the Donaldson invariants of four-manifolds 
with b + < 1. Certain other aspects of abelian duality, relevant to matters such as 
the dependence of Donaldson invariants on the second Stieffel-Whitney class, are also 
analyzed. 

§1. Introduction 

S - d u a l i t y  asser ts  tha t  ce r ta in  four -d imens iona l  gauge theor ies  are invar ian t  under  
m o d u l a r  t r ans fo rma t ions  ac t ing  on 

0 4r~i 
r = ~ +  g ~ ,  (1.1) 

wi th  0 and  g be ing  a the ta  angle  and gauge coupl ing cons tant .  For  the by  now 
classical  case of N = 4 s u p e r s y m m e t r i c  Yang-Mil ls  theory,  this  asser t ion  was t e s t ed  
in [1] by  ac tua l ly  compu t ing  the pa r t i t i on  funct ion of the theory  (with gauge group  
SO(3)  or  SU(2)) on cer ta in  four-manifo lds  X ,  in some cases  wi th  a topologica l  
twist .  I t  was found tha t  m o d u l a r  invar iance  d id  hold, in an app rop r i a t e  sense: (i) 
m o d u l a r  t r ans fo rma t ions  in genera l  exchange the gauge group SU(2)  wi th  the  dual  
g roup  SO(3) ;  (ii) the  pa r t i t i on  f lmct ion is not  a modu la r - i nva r i an t  funct ion b u t  
t r ans fo rms  as  a m o d u l a r  form, wi th  a weight  p ropor t iona l  to  the Euler  charac te r i s t i c  
of  the four-manifold .  

The  first po in t  was an t i c ipa ted  by  Montonen  and Olive [2] bu t  the  second per-  
haps  requi res  comment .  T h a t  the pa r t i t i on  funct ion t r ans fo rms  as a m o d u l a r  form 
ra ther  than  a m o d u l a r  funct ion,  wi th  a modu la r  weight  as observed,  can be  inter-  
p r e t e d  to  mean  tha t  in coupl ing an  S - d u a l  theory  to gravity,  to ma in t a in  S-dua l i ty ,  
one requi res  ce r ta in  n o n - m i n i m a l  c -mtmber  coupl ings tha t  involve the b a c k g r o u n d  

grav i ta t iona l  field only, of  the  genera l  form fx ( B ( r ) t r  R A R + C ( r ) t r  R A R )  ; here 
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tr R A J~ and tr  R A R are the densities whose integrals are proportional to the Euler 
chaJ:acteristic and the signature. B and C are chosen so that e B and e C are mod- 
ular forms (of weights chosen to cancel the anomaly); for N = 4 supersymmetric  
Yang-Mills theory, one can take C = 0 (as the modular weight depends only on the 
Euler characteristic). 

This effect is perhaps not really surprising, but given our limited understand- 
ing of" S-duality it appears difficult to explain it a priori in, say, the N = 4 theory; 
similarly, one does not know how to predict the coefficients of the anomaly in puta- 
tively S-dual theories in which computations on four-manifolds have not yet been 
performed, such as the N = 2, N f  = 4 theory with gauge group SU(2) [8]. The 
first goal of the present paper  is to explore this phenomenon in a much simpler 
example, namely free U(1) gauge theory without charges, where everything can be 
understood rather explicitly. (The S-duality of this theory is an observation that 
goes back essentially to [3-5].) In this case, the modular anomaly is, as will become 
clear, quite analogous to the transformation law for the dilaton under R --+ 1 / R  
symmetry  in two dimensions, as described in [6-7]. 

One would suppose that in S-dual theories that contain dynamical gravity - -  
string theory is of course the only known candidate - -  the modular  anomaly is 
somehow canceled. Knowing how the anomaly works in field theory with gravity as 
a spectator may  ultimately be helpful for understanding tile case with dynamical 
gravity. 

The shift from the group to the dual group also has an analog for the free 
abelian theory. In fact, even self-dual lattices play a special rote rather as in the 
theory of chiral bosons in two dimensions. 

The computation that we will perform is also relevant to various more compli- 
cated problems in which this U(1) theory is approximately embedded. For instance, 
after computing the modular anomMy in section two, we will use it in section three 
as a necessary ingredient in order to compute a new effective interaction in N = 2 
supersymmetric gauge theory with gauge group SU(2) on a general four-manifold. 
The unique and consistent determination of this interaction is an interesting check 
on the framework of [9]. 

In section four, we discuss some further details of how duality works in the 
N = 2 theory on a general four-manifold. The results of section three are needed 
for integration over the u-plane to compute Donaldson invariants of four-manifolds 
with b + = 1, and the results of section four are needed for a precise derivation of the 
relation of the DonMdson invariants to the monopole invariants of four-manifolds 
described in [10]. Some of these themes will be further pursued elsewhere. 

§2. Analysis Of The Abelian Theory 

In what follows, X is a four-manifold and bi, i = 0 , . . . ,  4 will denote the i th Betti 
number, that is the dimension of the space of harmonic/ - forms on X.  As a harmonic 
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two-form in four dimensions can be decomposed as a sum of self-dual and anti-self- 
dual pieces, we can write b2 = b + + b~- with b + and b 2 the dimensions of the spaces 
of self-dual and anti-self-dual harmonic two-forms. The Euter characteristic of X is 
X = ~40( -1 )~b~  and the signature is (r = b + - b~-. 

We will say that a not necessarily holomorphic function F transforms as a 
modular form of weight (u, v) for a finite index subgroup P of EL(2, Z) if for 

(ac b )  E F  (2.1) 

one has 

(aT ÷ b~ = (or + d)U(cV ÷ d)VF(r). 
F \cr + d] (2.2) 

Our main result concerning the partition function Z(r) of the U(1) Maxwell 
theory on a four-manifold is that 

z(-ll ) = (2.3) 

where (u, v) = ((X + o-)/4, (X - (r)/4). Note that as (X + or)/2 = 1 - b I + b~ i8 
in general integral but not necessarily divisible by two, the weights in (2.3) are 
half-integral in general. Since also Z(r + 1) = Z(r) (or Z(T + 2) = Z(r) if X is 
not a spin manifold, as explained momentarily), (2.3) implies that Z is modular of 
weight (u, v). 

Now we proceed to the analysis. We consider a U(1) gauge field A,~ (a con- 
nection on a line bundle L), with field strength F , ~  = O,~A~ - O~Am; we also set 

= I ( F , ~  ± le ,~pqFPq).  On a four-manifold X of Euclidean signature, we 
take the classical action to be 

1 a4 v + F ) 
I =8-7 

- 

(2.4) 

with T defined in (1.1). 

Before proceeding, let us determine the periodicity in 0. We permit L to be an 
arbitrary line bundle, so the general constraint on periods of F is simply the Dirac 
quantization law; thus, if U is any closed two-surface in X, fv F is an arbitrary 
integer multiple of 27r. If X is a spin manifold, the smallest possible non-zero value 
of d = f d4xv~er~nPqFm~Fpq is obtained by taking X = U x V, with U and V 
being two-spheres, and picking the gauge field so that f~ F12 = fv F34 = 27c (with 
other components vanishing). Then one gets J = 8(2~r) z, so the {)-dependent part  
of the action is iO. This means that the theory is invariant under 0 -+ 0 + 2~r, that 
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is ~- -+ T + 1. On the other hand, if X is not a spin manifold, one can find a line 
bundle on X such that Y = 4(2~r) 2, leading to invariance only under 0 -9 0 + 4~r 
or ~- --+ T + 2. ~ We will discuss at the end of this section what modification of the 
theory would be needed to get full SL(2,  Z) invariance, including T -9 r + 1, when 
X is not spin. 

We will determine the modular weight of the partition function in two ways: 
first we simply calculate the partition flmction and see what modular weight it has; 
second we give an a priori explanation by manipulation of the path integral. Apart 
from being more conceptual, the second derivation could be extended to determine 
the modular transformation law of correlation functions. 

2.1 The Computation. Tile partition function of the U(1) theory is a product of 
several factors. There is a sum over the isomorphism class of the line bundle L. 
Because the gauge group is abelian, the L dependence comes entirely from the 
value of the classical action for a connection on L that minimizes it; the sum over 
L's will give a generalized theta function. For each L we must integrate over bl zero 
modes and evaluate a determinant for the non-zero modes. 

In computing the determinant, one can ignore the 0 term, which is a topological 
invariant. The rest of the kinetic energy is proportional to 1/g 2 ,-~ Im 7. The T 
dependence of the regularized determinant is then roughly a factor of Im T -1/2 for 
every non-zero eigenvatue of the kinetic operator of A. The zero modes do not give 
factors of Im T; they are tangent to the space of classical minima, which is a torus 
of dimension bi (X)  and has a volume independent of Imp-. 

Let Bk be the dimension of the space of k-forms on X; of course, the Bk are 
infinite, but we can mal;e them finite with a lattice regularization. The total number 
of modes of A is thus Bt.  ttowever, we only want to count modes modulo gauge 
transformations. As the gauge parameter is a zero-form, the number of modes of 
infinitesimal gauge transformations is B0, but one (the constant mode) acts trivially 
on A, so the number of A modes modulo gauge transformations is B1 - B0 + 1. 
Removing also the zero modes of A, the number of non-zero modes mod gauge 
transformations is B 1 - B 0 + l - b l  (since b0 = 1, this is the same as B 1 - B o + b o - b l ) .  
The ~- dependence of the determinant is thus 

1 B • 

ImT½ (bl-1) • Im~ -~(B°- ~) (2.5) 

In a lattice regularization, one would eliminate the last, cutoff-dependent factor 
by simply including in the definition of the path integral a factor of Im 71/2 for every 
integration variable (every one-simplex on the lattice), and a factor of Im r -1/2  for 
every generator of a gauge transformation (every vertex or zero-simplex). Since 

1) To state this in a less computational way, J/16~r 2 measures cl (L) 2, which for a spin manifold 
is an even integer (as the intersection form on the second cohomology group is even) while 
on a four-manifold that is not spin it is subject to no divisibility conditions. 
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the factors required are defined locally, this eliminates the cutoff-dependence of the 
theory while preserving locality. With this definition of the coupling to gravity, the 
~- dependence of the determinant is simply a factor 

I m 7  ½(b1-1). (2.6) 

Alternatively, the numbers Ba would be regularized in a Pauli-Vitlars regular- 
ization by replacing them with something like 

Tr e -~v~ (2.7) 

with c a small parameter  and Vk the Laplacian on k-forms. The small e behavior of 
(2.7) can be worked out using the short time behavior of the heat kernel; the various 
terms can be written as the integrals over X of local densities. As these terms are 
local, dropping them and dropping Bo and B1 in (2.5) simply amounts to a specific 
choice of how the theory is coupled to gravity. The choice that leads to (2.6) is the 
most minimal one in that it corresponds, for instance, to the usual prescription in 
which factors of g in the determinant come only from zero modes. (Notice that, as 
bl - 1 cannot be computed as a local integral, no choice of the coupling to gravity 
will remove the factor obtained in (2.6).) 

Now we come to the sum over line bundles L. The object F/2~ is a de Rham 
representative of the first Chern class m = Cl(L). We will think of m as a point 
in H2(X,  R) that lies in the lattice A consisting of points with integer periods. For 
a given L, the real part  of the action is minimized for a connection such that the 
two-form F is harmonic. For F harmonic, the dual two-form Fm= = ½(~pqF pq 
is also harmonic. In terms of m, the map F -+ /~ is a linear map m --+ *m with 
.2 __ 1; note that *m takes values in H2(X, R), but not necessarily in A. I f  (m, n) 
is the intersection pairing on H 2, which is integral for lattice points rn, n, then we 
have for F harmonic 

( . ~ , . ~ )  _ 1 6 ~  f d%v@.~pqEm Fp ~ 
1 f d4xv~Fm~F,,k ('~'*'J = s ~  

(2.8) 

For F harmonic, the action can therefore be ~r i t ten  

4~ 2 . i0 i~ {~ ((.~, ~ )  _ ( .~ , . .~ ) )  + ~ ((~r~,.~) + (~n, . ~ ) ) }  
± = 7 (~ '  *'~) + - 2  (~ '  "~) : T 

(2.9) 
The sum over line bundles therefore gives a lattice sum 

F(q) = E q¼(--(m,m)+(m,*m)) ~¼((.~,.~)+( .... m)) 
fn@A 

(2.10) 
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with q = e 2~ri~. 

The function F(q) is very similar to the generalized theta functions that ap- 
peared in the work of Narain [11] on toroidal compactification of two-dimensional 
conformal field theory. It transforms as a modular function of weight (b~-, b +) (for 
a subgroup of SL(2, Z), in general), b + and b~- enter as the number of positive and 
negative eigenvalues of the intersection form on H 2. For instance, if X is CP 2 with 
its usual complex orientation, so b + = 1, b~ = 0, then F reduces to the complex 
conjugate of a standard theta function: 

r : (2.11) 
nEZ 

In particular, this F is modular of weight (0, 1/2). Similarly, with opposite orienta- 
tion, c P  2 has (b +, b)-) = (0, 1) and gives for F a standard theta function of modular 
weight (1/2, 0). 

Including also the determinant of the non-zero modes, the Maxwell partition 
function up to a 7-independent multiplicative constant (which depends on the Rie- 
mannian metric of X) is 

Z(7) = (Ira 7)} (b~-i)F(7). (2.12) 

As  

Im (--l/T) = ~l_Im(7), (2.13) 
77 

Im (7) is modular of weight ( - 1 , - 1 ) .  So the Maxwell partition function is modular 
of weight 

1 1 
(u,v) = ; (1  - bl + b ; ,1  - bl + b~ +) = (2.14) 

In particular, as in [1], the modular weights are linear in X and or. 

2.2 A Priori Explanation. Now we proceed to a more a priori explanation of 
the above result, along lines similar to a familiar discussion of T-duality in two- 
dimensions [6, 12] (see also section 3.2 of [9] where a version of this argument is 
given, on fiat R 4, including supersymmetry). 

First we rewrite the Maxwell theory in terms of some additional degrees of 
freedom. We introduce a two-form field G. We want to consider a theory which, 
beyond the usual Maxwell gauge invariance A -+ A - dc, G --+ G, has invariance 
under 

A - + A + B  
a -+ G + dB (2.15) 
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where B is an arbi t rary  one-form or more generally a connection on an arbi t rary 
line bundle M.  Note that if A is a connection on a line bundle L, then A+B should 
be interpreted as a connection on L ® M. Thus, while the ordinary Maxwell theory 
is well-defined for any given L, its extension to include the G field can only have 
the invariance (2.15) if we sum over all L's. Invariance under (2.15) means that one 
can shift the periods of G - -  that is the integrals of G over closed two-dimensional 
cycles S c X - -  by- multiples of 27c: 

fsG--+ /sG + 27rn. (2.16) 

Note that tile usual Maxwell gauge invariance is a special case of (2.15) obtained 
by setting B = -de .  

There is an obvious way to achieve invariance under (2.15): we set 5 r = F -  G 
and replace F everywhere in the Maxwell Lagrangian by 5 c. The resulting theory 
however is trivial and in particular not equivalent to Maxwell theory. To ge t some-  
thing of interest, we introduce a dual connection V on a dual line bundle L, with 
field strength Wm~ = O,~V~ - O~V,~. Like the curvature on any line bundle, W 
obeys a Dirac quantization law 

This ensures that 

~ W C 2~rZ. (2.17) 

A87r IX d4xv~emnPqWmnGPq (2.18) 

is invariant under (2.15) modulo 21r. We then take the Lagrangian to be 

i d4x~/~ @mnpqWmnGp q 4:- "'rmnJ- I=~ (2.19) 

The terms involving 5 ~ are manifestly invariant under (2.15) (which acts trivially 
on V; V transforms nontrivially only under the dual gauge transformations V --+ 
V - da),  arid the same is true rood 27i of the first term by virtue of what has just 
been said. 

We now proceed as follows. After showing that (2.19) is equivalent to the 
original Maxwell theory (provided that one sums over all L 's  in each case), we will 
show how to obtain a dual version by a different manipulation. We first perform 
both computations in a somewhat cavalier manner and then more carefully study 
the quantum integration measure to compute the modular  weight. 

For the first manipulation, the part  of the path integral that involves V is 

/ 'DV exP (8-~ /x d4X.v/gemnPq~4ZmnGpq ) . (2.20) 
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The integral over V consists of a discrete sum over dual line bundles L and for 
each L a continuous integral over connections on L. The continuous part  of the 
integral gives a delta function setting dG -- 0. The sum over L then gives a further 
delta function setting the periods of G to be integral multiples of 2~-. But the exotic 
gauge invariance (2.15) permits one (in a fashion that is unique up to an ordinary 
gauge transformation) to set G = 0 precisely if dG = 0 and G/27c has integral 
periods. After integrating over V, we gauge G to zero, reducing the extended gauge 
invariance to ordinary gauge invariance, and reducing the Lagrangian (2.19) to the 
original Lagrangian (2.4) of the abelian gauge theory. 

The other way to analyze (2.19) begins by noting that the gauge invariance 
(2.15) precisely enables one to fix a gauge with A = 0. In that gauge, one can then 
integrate out G, giving a Lagrangian containing V only. This Lagrangian inherits 
the dual gauge invariance V -9 V - dc~ of (2.19), and is simply an abelian gauge 
theory of the general type we started with in (2.4), but with a different value of T. 
The computation is very quick if one notes that in terms of the the selfduat and 
anti-self-dual projections W :~ and G ± of W and G, the action is 

i 

47r  

Integrating out G + at the classical level, one gets simply 

This is the original Lagrangian (2.4), but with T -9 --lIT. 
So far, we have integrated out various fields classicMly, without taking account 

of certain determinants that will give the modular anomaly. To see the anomaly, 
we will now go over some of the above steps in a more precise way. Let L-(A) be 
the Maxwell action (2.4) with coupling parameter T. Then we define the partition 
function of the original theory to be 

Z(T) = (Imp-) ½(B~-B°) 1 f Vol(a) DA e -I'- (A). (2.23) 

Here Vol(G) is the volume of the group of gauge transformations, and Bk is as before 
the dimension of the space of k-forms. Thus, in (2.23) we are simply including a 
factor of Im7 t/2 for every integration variable and a factor of ImT--U2 for every 
gauge generator, to cancel what would otherwise be the cutoff-dependence of the 
path integral. (We have already seen that the recipe in (2.23) leads to a cutoff- 
independent power of Im ~- in the final result for the partition function.) Of course, 
the partition function can equally well be written in dual variables 

Z(~-) = (ImT) ½(B~-B°) 1 f Vol(G) Y DV e -z,(y), (2.24) 
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with G the dual gauge group. 

The above derivation began with the fact that Z(T) can alternatively be defined 
by 

z(~) = (Imp)½ (B~-'o) 1 f Vol(K) x Vol(G) DA DG D V  e -L(A'G'V) (2.25) 

where ,f~ is the extended Lagrangian in (2.19) with coupling parameter v, and K is 
the extended gauge group. Note that as the V-dependent part  of ] is independent of 
w, one gets no factors of r in integrating over V; the V integral gives a T-independent 
delta function by means of which the G integral can be done without generating any 
powers of Ira f .  That  is why the same power of Im r appears in (2.25) as in (2.23). 

On the other hand, suppose that we evaluate (2.25) by gauging A to zero and 
then integrating over G. One gets a factor of g-~/u or r -1/u from the integral over 
any mode of G + or G - ,  so altogether the r-dependent factor that one obtains from 

1 -- i + 

the G integral is f -SB2 "T -~B2 with now B~ the dimensions of the spaces of self- 
dual and anti-self-dual two-forms. Now eliminating V and G in (2.25) actually gives 
(apart from a possible r-independent factor) 

(ImT)~(B~_Bo)T_~B 2 .~_.~B 2 1 / Z(~) = ~ ' - ~ + - -  
Vol(G) D V  e-I-~/~(V). (2.26) 

Comparing this to (2.24), we get 

z(,-) : ~-~('°-B~+B;)~-~('°-~+B;)Z(-I/~). (2.27) 
With Bo - < + B~ : bo - ~,~ + ~,~ = (X ± ~)/2, this is equivalent to 

Z(T) = T- ¼ (X-~)g- ¼(X+~)Z(--I/T), (2.28) 
and thus as we found earlier, Z is modular (for SL(2, Z) or a subgroup) with weights 
((x - c0/4, (x + o-)/4). 

2.3 Full Modular Invariance? Finally, one might wonder how one must modify the 
construction if one wants to obtain SL(2, Z) covariance (and not just covariance 
under a subgroup) even when X is not a spin manifold. 

In fact, we will embed this question in a somewhat broader question of abelian 
gauge theory with gauge group U(1) ~ for arbitrary positive integer n. We introduce 
n U(1) gauge fields A z, I = 1 , . . . ,  n, with cur~-atures F ± = dA ~. Picking a positive 
quadratic form on the Lie algebra of U(1) '~ - -  which we represent by a symmetric 
positive definite matrix di j  - -  we take the Lagrangian to be 

__1 di j  Jx d4xv~ < g2 - ran-- -}- ~ -2(~mnpqF F Pq) 87~ 
(2.29) 

i /X  (~l'mnr ,:~1-- r',J--mn~ 
I,J 
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In the space of Fr's there is an integral structure given by the fact that, for S a 
closed two-surface in X, the quantities 

£ F--~I (2.30) 
21r 

are integers. Thus, d can be considered to define a quadratic form on a certain 
lattice F. 

To implement duality, we extend the gauge-invariance as before, adding two- 
form fields G r and replacing F I by ~I = FI_GI. Also, we add dual gauge fields Vr, 
with curvatures WI = dVl. We introduce an extended action which is the obvious 
generalization of (2.19): 

i fX d4xv~ s =8-7 

emnpqw'-rranG~pq + E did =a-*r+ "r'd t°mn - J--ran 
I,J 

Obvious generalizations of the previous manipulations show, on the one hand, that 
after integrating out V and G, the theory defined by (2.31) is equivalent to the 
theory defined by (2.29), and on the other hand, that after picking the gauge A = 0 
and integrating out G, (2.31) can be replaced by" the dual Lagrangian 

(2.32) 
I,J 

Here d Id is the inverse matr ix  to did. 

Now we can easily determine the conditions for modular covariance. The trans- 
formation r --+ - 1 / r  maps (2.29) to (2.32), so one has covariance under this trans- 
formation if and only if the lattice F with quadratic form d is equivalent to the dual 
lattice with quadratic form d -1,  that is if and only if the quadratic form defined by 
d is self-dual. If  this quadratic form is also integral, one also has invariance under 
m --> r + 2 ibr any X,  or r --+ ~- + 1 if X is spin, by an argument given earlier in our 
original discussion of U(1) gauge theory. If  one wants invariance under r -+ r + 1 
for any X, not necessarily spin, one must pick the quadratic form to be even, not 
just integral. This ensures that  

16ir 2 
1,J 

is divisible by two whether or not X is spin so that the Lagrangian (2.29) is invariant 
mod 2~ri under 0 --+ 0 + 27r, that is, under ~- -+ m + 1. It is curious that even 
integral lattices are thus related to modularity in four dimensions as they are in two 
dimensions. 
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§3. A New Effective Interaction On The u Plane 

In [9], the low energy dynamics of the pure N -- 2 supersymmetric gauge theory 
with gauge group SU(2) was determined. A familiarity with that discussion will be 
assumed here, but a few points will be repeated to fix notation. The basic order 
parameter in [9] was u = Tr ¢2 (¢ being the scalar field related by supersymmetry to 
the gauge field); the variables in the low energy theory were u and its superpartners. 
In the low energy theory, it is natural to count dimensions in such a way that u 
has dimension zero and its fermionic partners dimension one-halL With this way 
of counting, as long as one is on flat R 4, the supersymmetric interactions of lowest 
dimension have dimension two. All interactions of dimension two were determined 
in [9] in terms of functions associated with the family of elliptic curves 

y2 = ( x  _ 1 ) ( x  - (3.1) 

If one works on a curved four-manifold, local interactions of dimension zero - -  
invoh4ng couplings of u to polynomials in the Riemann tensor and its derivatives 
- -  become possible. In the physical theory on a four-manifold, a rather complicated 
structure might be possible in general, but in the twisted topo~gical theory the only 
possible such interactions are proportional to fx f(u) tr R A R or fx g(u) tr R A R 

where tr R A/~ and tr R A R are the densities whose integrals are proportional to X 
and ~, respectively, and the functions f and g are holomorphic. 2 Such interactions 
produce in the path integral measure a factor which if u is constant simply takes 
the form 

( b ( u ) x  + ( 3 . 2 )  

In the present section, we will determine the functions b and c. These interactions 
are closely related to similar interactions that appear in the untwisted physical 
theory on a four-manifold, but the precise relation will not be analyzed here. 

The reasons for performing this computation and presenting the result here 
are as follows: 

(1) The computation turns out to involve the result of the last section in an 
interesting way. 

(2) The ability to get a unique and consistent result for b and c provides an 
interesting new check on the formalism of [9]. 

(3) The result is needed for integrating over the u plane in Donaldson theory 
(in order to obtain formulas for Donaldson invariants of four-manifolds of 
b + _< 1), though this application will not be developed in the present paper. 

2) BRST-invariant configurations have u constant; for constant u a function f T(u)(gv/~d4x, 
with O a locally constructed function of the metric, is a topological invariant if and only if 
(9 is related to the Enler characteristic or the signature or is an irrelevant total derivative. 
Moreover, BRST invariance holds if and only if T is holomorphic. 
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a.1 Asymptotic Behavior. The obvious way to proceed (temporarily overlooking a 
subtlety that will presently appear) is as follows. Singularities and zeroes in the 
holomorphic function (3.2) at finite places on the u plane can only occur at u = 
±1, where extra massless particles (monopoles and dyons) appear, giving rise to 
singularities in various physical quantities, including those computed in [9]. (Note 
that either a zero or a pole in the function (3.2) is associated with a singularity in 
b or c and so is possible only at u = 1 , -1 ,  or co.) The behavior of the unknown 
function can be obtained for u -+ ce using asymptotic freedom and weak coupling, 
and for u -+ ±1 using a knowledge of which particles are becoming massless at 
those points. It would appear that knowledge of the behavior at infinity and at the 
singularities would determine the sought-for holomorphic function uniquely except 
for the possibility of adding constants to b or c. Let us see how this program works 
out. 

First we eor~sider the behavior for large u. Let us recall that the N = 2 theory 
has an anomalous U(1)R symmetry which in a field of instanton number k, on a 

four-manifold of given X and ~, has an anomaly 

3 
AR = 8 k -  E( x + ~). (:3.3) 

(That is, the operators with non-zero expectation value have R-charge equal to 
AR.) The term in this fbrmula of interest here is the part involving the coupling to 

gravity, namely 

- 2 ( X  + ~). (3.4) 

This has the following interpretation: the index theorem is such that for each gen- 
erator of the gauge group there is an anomaly - (X  + a)/2;  an extra factor of three 
arises because SU(2) is three-dimensionaL 

For large u, SU(2) is spontaneously broken to U(1). The zero modes of the 
fermion fields in the u multiplet carry the anomaly -(X+c~)/2 of the one-dimensional 
unbroken pa~:t of the group. Tile remaining anomaly - ( X  + a) must be manifested 
in an interaction proportional to X and cr obtained by integrating out the massive 
SU(2) partners of the light fields. This interaction must have no derivatives (or it 
would not lead to violation of tile symmetry when u is constant) so it is of the form 
(3.2). We can therefore determine the large u behavior of (3.2): as u has R-charge 
four, we need 

e b X + c ° "  ~ U (X÷a)/4 for u --+ oc. (3.5) 

The behavior near u = ~I can be determined similarly. The effective theory 
near u = I has an accidental low energy R symmetry. The anomaly in this symmetry 

is 

cl(Z)~ ~ (3.6) 
4 4 
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Here - ( X  ÷ a) /2  is the contribution from the u-multiplet and is carried by the zero 
modes related to u by supersymmetry, and cl ( L ) 2 / 4 -  a / 4  is the contribution of the 
monopo]es that become massless at u = 1. The gravitational part of the monopole 
contribution is - ~ / 4  and must show up in a singular behavior of the interaction 
e b~+c~ obtained by integrating out the light monopoles. (The c t ( L ) 2 / 4  appears in 
the behavior of the effective gauge couplings near u = 1.) As u - 1 has charge two 
under the R symmetry near u = 1, the singular behavior is 

e bx+c~ ,-~ (u - 1) ~/s for u -+ 1. (3.7) 

By a similar' argument, the singular behavior near u = -1 ,  obtained by integrating 
out light dyons that again violate the effective R-symmetry by -or/4,  must be 

e ~ + 1) for - 1 .  ( 3 .8 )  

We are left then looking for a holomorphic function with the singularities and 
zeroes given in (3.5), (3.7), and (3.8). For the terms involving cr there is an evident 
and unique formula: 

e = - 1) ( 3 .9 )  

(When this is multiplied by the partition function of the massless photon, allowing 
for the fact that as explained in section four the "dual line bundle" is really a Spin c 
structure, the branch cuts that are present if a is not divisible by eight disappear.) 
But for the terms involving X we face a quandary: no holomorphic function e bx can 
have the asymptotic behavior given by (3.5) and the lack of singularities or zeroes 
indicated in the subsequent formulas. 

3.2 Modular Anomaly. To unravel this puzzle, we have to recall in somewhat more 
depth the structure found in [9]. 

There is no completely canonical way to describe the low energy effective 
action of this theory. Over the u-plane punctured at u -- 1 , - 1 ,  there is a fiat 
SL(2 ,  Z) bundle E,  the fiber at a point u being the first cohomology group of the 
elliptic curve described in equation (3.1). Every local trivialization of E gives a way 
of writing an effective action; different trivializations give different formulas related 
by SL(2 ,  Z) transibrmations. 

Periods of a certain differential form (described precisely in [9], section 6) give 
a certain holomorphic section (aD,a) of U. Either aD or a (or any integer linear 
combination) can be taken as the basic variable in the low energy description; they 
are related by supersymmetry to gauge fields AD and A respectively. AD and A are 
dual gauge fields related by the duality transformation of the previous section. The 
transformation from a to aD as the basic variable is a special case of an SL(2 ,  Z) 
transformation, achieved by the matrix 

(011) (o) 
0 : - +  " ( 3 . 1 0 )  

- -  a - - a D  
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The gauge coupling constant is expressed in terms of aD and a by 

daD 
7-m 

da 

It therefore transforms under (3.10) by 

(3.11) 

"r -+ - - - .  (3.12) 
T 

As we have seen in the last section, this is how the coupling transforms when one 
changes from the description by A to the description by AD. 

Now let us discuss how the quantum low energy theory transforms under du- 
ality. In brief, we will find an anomaly that will precisely cancel the difficulty that 
we had above in determining the function e bx. Since the dimension two part of 
the classical action is duality-invariant (this being part of the construction in [9]) 
and since the operators (such as u) whose correlations one wishes to compute are 
also completely duality invariant, the question of invariance of the quantum theory 
under duality amounts to the question of how the quantum integration measure 
transforms under duality and how the function e bx transforms. We really only need 
to consider the special modular transformation ~ -+ -1/T,  since SL(2, Z) is gen- 
erated by this transformation together with 7 --+ 7 + 1, which acts trivially on the 
integration variables and thus produces no anomaly in the measure. To understand 
what happens under ~- -+ -1 /7 ,  one must examine three things: 

(1) The integration measure of a and g (or aD and gD). 

(2) The fermion integration measure. 

(3) The integration measure of the gauge fields. 

We will work out the behavior of the three measures under duality as follows. 

(1) Because the kinetic energy of a and ~ is proportional to Im r,  the integration 
measure for those fields has the form 

ImT dad,. (3.13) 

(This is true for every mode of a, g, and so most importantly, it is true for the zero 
modes.) Setting T D = --1/"F, o n e  h a s  

Imwdadg = ImTD dad daD (3.14) 

so the integration measure for these fields is completely duality invariant. 

(2) In contrast to the scalars, which have just been seen to have no modular 
anomaly, the fermions do have such an anomaly. The reason for this is that in [9], 
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duality acts on the fermions via a ehiral transtbrmation, which has an anomaly on 
a curved four-manifold. 

The details can be worked out as follows. Like that of the scalars, the fermion 
kinetic energy is proportional to Im % so the integration measure for any normalized 
fermi mode fl is 

: (3.15) 

The fermi modes can be divided into modes of R = 1 and R = - 1 ,  which we 
will generically call a and ~, respectively. 3 It  will be evident from the structure of 
what follows that only zero modes need to be considered, the other fermion modes 
canceling in pairs. The duality transformation in [9] was such that  under v -+ - l / v ,  
a transforms to aD = ~-a and ~ transforms to ~D ---- T a .  Hence 

da - ~ F  daD 
vGTm  

d~ _ ~ ~__ d~ D 

(3.16) 

Thus if d# F is the fermion measure for a , ~  and dpf~ is the measure for O~D,"~D, 
one has 

(~)-(x+a)/4d F (3.17) d# F = PD, 

using the fact that the number of a zero modes minus the number of ~ zero modes 
is - (x '+  

(3) The transformation law for the gauge measure d# c is the most subtle of 
the three and can be read from (2.28): 

d# C = T -  ¼ (x -~)~-  ¼ ( x ~ ) d p ~ .  (3.18) 

Actually, the formulation in (3.18) is imprecise as d# c and d#~) are defined in 
different spaces. This statement simply means that the integral of p c  that is the 
partition function, differs from the integral of p ~  by the stated factor. 

Multiplying the factors found in the above equations, the relation between the 
measure d# of the theory using a as the basic variable and the measure dpD of the 
theory using aD is 

d# = T--X/2d#D. (3.19) 

3) In the twisted theory, o~ is a one-form and ~ a linear combination of a zero-form and a 

self-dual two-form. 
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The fact that the ~ dependence cancels here is crucial in making it possible to cancel 
this anomaly by the holomorphic term considered below. 

3.3 Final Determination. It is now clear that e bx should not be a flmction of u but 
rather should transform under duality as a holomorphic modular form of weight 
- X / 2 .  The fact that the weight depends on X and not on ~ is the reason that above 
we found a straightforward determination of the function e ¢~ but not a straightfor- 
ward determination of e bx. With the modular anomaly understood, it is now easy 
to find the "function" ebx: 

ebX ((~2_ 1)dThX/4 
= ( 3 . 2 o )  

The first point of this fornmla is that if likewise 

/ dTD X/4 ebDX = - 1 )  ( 3 . 2 1 )  
\ 

with ~-D = --1/% then 
e bx = TX/2ebSX, (3.22) 

so including in the theory a factor of e bx cancels the modular anomaly. Also, for 
u -+ oo, dw/du ~ i/u according to [9], so (3.20) has tlle large u behavior required 

in (3.5). 

We still need to check (3.7), but first we must interpret it correctly. (3.7) 
was based on a computation near u = i, where the good description is in terms 

of aD. (For u away from the punctures at u = 4-1 and the singularity at oe, one 
can use either a or aD.) Therefore, (3.7) must be interpreted as a condition on the 
behavior of e bDx near u -- I, and this condition is obeyed since according to [9] 
one has dwD/dU ~ I/(u - i) near u -- I, ensuring that e bDx has no singularity at 

u = I. Likewise, after transforming to the appropriate local description, one finds 
the desired absence of singularity near u = -i. (The local description near u = -I 

is [9] a third one using a -i- aD as the basic variable.) 

The only point that remains is that the function dw/du has neither zeroes 

nor poles for finite u away from u -- 4-1. This is so because the family of curves 
(3.1) is the modular curve of the subgroup F(2) of SL(2, Z) (consisting of matrices 
congruent to one modulo two), and there are no orbifold points in the moduli space. 

Given that our candidate Ibr e bx has the correct behavior near u = i, -i, and 
c~ and has no unwanted zeroes or poles, it must be the correct answer (up to a 
multiplicative constant), since any other candidate would be obtained by multiplying 
by an ordinary meromorphie function which if not constant would have unwanted 

zeroes and poles somewhere. 
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In sum, in any computation that involves an integration on tile u-plane, the 
more obvious factors in the path integral must be supplemented by a new interaction 
that gives an additional factor 

ebx+c~: ((U2--1)-~U)X/4(U2--1)~/S. (3.23) 

This factor  will enter in computa t ions  of  Donaldson invariants for b + < 1. 

§4. Abelian Duality Embedded In SU(2) And SO(3)  

In  this section, we will explain a few subtleties about  the duali ty t ransformat ion 
which --- in N = 2 super Yang-Mills theory with gauge group SU(2)  or  SO(3)  - -  
relates the description in variables appropriate  at large u to  the description valid 
near u = 1. This will enable us to explain some assertions made in [10] and will 
serve as background for a further  discussion which will appear  elsewhere. 

First  we must  discuss how tile U(1) duali ty considered in section two is em- 
bedded  in SU(2)  or SO(3) .  To begin with, we assume that  the gauge group is SU(2)  
with rank  two gauge bundle  F .  At a generic point  of  the u plane, SU(2)  is broken 
down to U(1), and F splits as F = T ® T -1  with T a line bundle. The gauge field 
at low energies then reduces to a U(1) gauge field C, which one can think of as a 
connection on r .  

However, we want  to be free to consider the case that  the gauge group is 
actual ly  SO(3) ,  with a ra~k three gauge bundle E which ma y  have w2(E) ¢ O. 
With  the symmet ry  broken to  U(1), E decomposes  at low energies as O ® L G L -1,  
with (9 a trivial bundle and L a line bundle. The  connection reduces at low energies 
to a U(1) connection A on L. If  w2(E) = 0, the gauge group can be lifted to SU(2)  
and the rank two bundle F exists; in that  case L = T ®2 and A -- 2C. 

Near  u = 4-1, one has instead a description using a dual gauge field V and 
dual "line bundle" ~.4 

There  are two goals in this section: 

(1) To explain how the description near u = 1 (or - 1 )  depends on w2(E). 
(2) To explain by what  mechanism it turns  out  that  the "line bundle" in the duM 

description near u = 1 is really not  a line bundle bu t  a Spin c structure.  

Wi th  the first goal in mind, it is clearly suitable to choose variables adapted  
to the possibili ty tha t  w2 (E)  ¢ 0, so we will take the basic variable to be A rather  
than C. Setting F = dA, let us now describe the Dirac quant izat ion condition on F 

4) Note that/~ was simply called L in [10] - the tilde was deleted as the "original" tine bundle 
L never entered explicitly in that paper. 
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for general w2. For simplicity in exposition, we suppose that there is no torsion in 
the cohomology of X so that we can pick a basis of two-dimensional closed surfaces 
U~ giving a basis of H2(X, Z). Then w2(E) can be described by the conditions 

(w2(E), U~) = c~ (4.1) 

with each c~ = 0 or 1. 

The Dirac quantization condition asserts that 

fu  F =  2~(2ka + ca), (4.2) 

with ks C Z. The idea behind this formula is that if C = A/2, then Dirac quantiza- 
tion for C fails precisely for those U~ for which ca = 1. 

4.1 Dependence On w2. We will now determine how the dual description near u = 1 

(or - 1 )  depends on w2(E). As in [9], we take the starting Lagrangian for A to be 

±=YgTi £ _ . (4.3) 

(One can think of this as (2.29) adapted to the root lattice of SU(2), which is 
generated by a point of length squared two; that is, (2.29) turns into (4.3) if one 
sets d = 2 and renames the variable called A in (2.29) as C = A/2. That  rescaling 
also turns the standard Dirac condition assumed in discussing (2.29) to the special 
case ca = 0 of (4.2).) 

Now we introduce a dual U(1) gauge field V, which is a connection on a dual 

line bundle/~. We take the curvatttre W = dV to obey standard Dirac quantization, 
that is fu~ W is an arbi t rary integer multiple of 2rr without any refinement such as 

that in (4.2). We also introduce a two-fbrm G and the extended gauge invariance 

A -~A + 2B 
G -+G ÷ 2dB (4.4) 

with B a connection on an arbi t rary line bundle N.  The reason for the factor of 
two in (4.4) is to preserve the structure of (4.2); that is, with this factor of two in 
the gauge transformation law, fu~ F is gauge invariant modulo 4~r. Rather as in 
section two, we introduce the gauge invariant object 5 = F - G and the extended 
Lagrangian 

Ix  i f x  d4xv/g (~(5+)2 - r ( 5 - ) 2 )  (4.5) I' - i d4xv/~emnpqi/~rnnGpq "~" ~-~ 
16rc 
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This  has been chosen so that  the theory defined by I r is equivalent to the theory  
defined by  I .  To prove this, as in section two, one integrates  over V, obta ining a 
delta funct ion that  sets G to zero up to a gauge t ransformat ion;  one uses the fact 
tha t  the per iods  of G are gauge- invar iant  modulo  47r. 

To ob ta in  a dual  description,  the first s tep in section two was to use the 
extended gauge invar iance to set A = 0. Now we cannot  do tha t  (unless w2 (E)  = 0) 
because of the factor  of two in (4.4). The  bes t  that  we can do is to select a fixed 
set  of line bundles  Q~, with connections 0~ and curvatures  g~, such that  

J u g  z = 2~r5~, (4.6) 

and  use the extended gauge invariance to set  A = ~ c~O~. Then,  by  shift ing G by  
G --+ G + ~,~ c~g~, the extended Lagrang ian  turns  into 

I' = i j ;  d 4 x v / ~ e m n p q W m n ( G p q  _ Cagapq) 
167r (4.7) 

+ 1-g; i _ 

In tegra t ing  out G now gives 

I "  i 

(4.8) 
16~ Z c,~ d4xv/gcmnpqWmn~o~pq. 

C~ 

The  ca thus appea r  only in the last  term,  which is a topological  invariant ,  and 
moreover  is always an integral  multiple of ~ri so that  its exponent ia l  is +1.  In  fact,  
the exponent ia l  of the last t e rm  is 

( - 1 )  (c1(~)'~2(E)). (4.9) 

Tiffs factor  determines  the dependence of the dual Lagrang ian  on w2(E) .  I t  
must  be  compa red  to the factor  called ( - 1 )  x% in eqn. (2.17) of [10], which was 
claimed to determine the dependence of the Donaldson invariants  on w2 (E) .  In [10], 
z was defined as w2(E), and the definition of x' was such that  if w2(X)  = 0, then 

x' = - c l  (L). 5 So for spin manifolds,  ( - 1 )  x''~ coincides with (4.9). 

To generalize this discussion to manifolds that  are not spin, there are addi t ional  
subtleties to which we now turn.  

5) In fact, x was defined in [10] by m = -2c1(L), and xt by 2x' = x÷w2(X), so if w2(X) = 0, 
x / . . . .  cI(L) and (-1) ~''z coincides with the formula in (4.9). 
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4.2 Appearance Of Spin ~ Structures.  The low energy theory near u = 1 has light 
magnetic monopoles. In the topologically twisted version which leads to the con- 
siderations in [10], the "monopoles," if w2 (X) = 0, are sections of S+ ® L, where 

S+ is the positive chirality spin bundle and L is the dual line bundle, tf  w2(X) ¢ O, 
then S+ does not exist and it is clear, pragmatically, that the monopoles must be 

sections of a Spin c bundle that we can informally write as S+ ® L but is no longer 
really defined as a tensor product. (A precise description of this situation is that 

/~®2 is an ordinary line bundle such that x = -c~ (~®2) is congruent modulo two to 

w2(X); and S+ ® L is a Spin c bundle with an isomorphism A2(S+ ® L) -~ ~®2.) 

But how do Spin ¢ structures arise at u = 1 starting with the underlying 
SU(2) gauge theory on the u plane? Our next goal is to explain how the duality 
transformation that leads from the variables appropriate at large u to the variables 
appropriate near u = 1 can in fact generate a Spin ~ structure near u = 1. So far 
the dual object V has always been a connection on a line bundle L; we want to see 
how instead a Spin ¢ structure can arise under duality. 

Let us return to the starting point, and add to (4.3) an additional interaction 

i E ea ~ d4xv~cmnPqFmn9aPq (4.10) 
3~7r 

with integers e% The origin of this interaction will be explained at the end of this 
section. 

To carry out a duality transformation, we, as always, introduce the two-form 
G, and replace F by 5 = F - G. Then the extended Lagrangian becomes 

£ , (.(,+). _.(,_).) I' i d4xv/~emnpqWmnGp q -~ 
(4.11) 

+ ~ E e°~ d4xv~ernnPq"q:mngc~ Pq" 

First we consider the case that w2(E) = ca = 0. This will enable us to see the 
appearance of Spin c structures without extraneous complications. After gauging A 
to zero using the extended gauge invariance, the extended Lagrangian becomes 

I' -- 16~ri d4xv~emnpqWmnGpq @ ~ 
(4.12) 

327c d4 xv/ gemnpq Gmnga Pq" 

We can eliminate the last term if we replace V by 

1 E ea0~" 
Cg 

(4.13) 
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Proceeding with the rest  of the derivation, we will arrive at the same dual Lagrangian 
in terms of V that we have previously had in terms of V. This does not mean that 
the e ~ play no material  role. Because of the 1/2 in (4.13), V is not a connection on 
a line bundle in the usual sense (unless the e ~ are all even) so we have obtained the 
same Lagrangian, but for a different kind of object. 

In fact, as we will see at the end of this section, the peculiar interaction (4.10) 
is actually present in this theory with very special e% To be precise, ~a  e~g,~/2~ 
represents w~(X) modulo two: 

rood 2, (4.14) 

with [g/27~] the cohomology class of the differential form g/2v:. Although the 1/2 in 

(4.13) means that there is not really a "dual line bundle" L with connection V, the 

fact that the obstruction is w2(X) means that  there is a Spin ¢ structure S+ ® L  (the 

central part  of whose cui~ature is W = d~d). In addition, ~®2 exists as an ordinary 

line bundle, so x = -c1(/~ °2) makes sense as an integral cohomology class. Thus 
explaining the origin of (4.10) will also explain the appearance of Spin ¢ structures 
in the dual theory near u = 1. 

4.3 Combining The Two Effects. So far we have studied two effects: we introduced 
a non-zero w2(E) by shifting the underlying Dirac quantization law as in (4.2), and 
we allowed for the possibility that w2(X) ~ 0 by adding a new interaction (4.10). 
I t  is also possible - -  and natural  - -  to combine the two effects. We return to the 
extended Lagrangian (4.11) but use the general Dirac quantization law of (4.2). We 
pick the gauge A = ~-~.~ c~0~ and shift G by G -+ G + ~ c~g~. Instead of (4.12) 
we then get 

i~ i 

327: E ec~ d4xv~emnpqGmngaPq" 
o z  

And we remove the last term by replacing V with 

1 
= V - ~ E ea0~'  (4.16) 

c~ 

so that the dual description involves a Spin c structure rather than a line bundle. 
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The dependence on w2(E) can now be found as follows. If we let W = dV, 
then the terms in (4.15) that depend on the c~, that is on w2(E), are 

A L =  ~i d4xv~e~nPq W"~ + -2 EZ e~gz,~ • c~.q~pq. (4.17) 

The dependence of the Donaldson invariants on w2(E) will then be determined by 
a factor e -AL. We claim that this factor coincides with the one given in [10], or in 
other words that 

e - ~  = ( -1 )  ~''z (4.18) 

in the notation of [10], eqn. (2.17). To justify this claim, note that the differential 

tbrm (2}lT + ~ a  eagc~)/2rr represents the cohomotogy class c l (L ®2) - w2(X) (with 
a particular integral lift of w2(X), namely - ~  e~ga/2rc), so can be identified with 
- 2 x '  in the notation of [10]. With also ~ c~ga/2rc as an integral lift of z = w2(E), 
(4.18) follows from (4.17). 

Thus modulo the assumption that on the u-plane there is an interaction (4.10), 
we have accounted via duality for the dependence of the Donaldson invariants on 
w2(E) as well as explaining the origin of Spin e structures. It remains to explain the 
origin of (4.10). 

4.4 A Curious Minus Sign. What remains is to explain the presence in the effective 
action on the u-plane of the term that played a crucial role above, namely 

i J'x d4xv/gE'~'~PqFmnHpq' (4.19) 
W -  327c 

where H/2~r (written above as ~ e(~g~/27c) represents in de Rham cohomology an 
integral lift of w2(X). W only depends on the isomorphism class of the line bundle 
L. 

We want to study the theory with SO(3) bundles E of a fixed value of w2(E). 
This means that we consider only L such that cl (L) = w2(E) modulo two. So picking 
a fixed line bundle U with c~(U) = w2(E) modulo two, we write L = U®T ®2 where 
now T is arbitrary. 

The interaction (4.19) gives in the path integral a factor e -w, which is 

= P ,  (4.20) 

where the factor P is independent of T. Our goal will be to explain the T-dependent 
factor in (4.20), to which the above derivations were sensitive. The T-independent 
factors influence only the overall (instanton-number independent) sign convention 
for the Donaldson invariants. As regards the T-independent factors, (4.19) and P 
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are not the whole story (they hardly could be as P is not necessarily real); we will 
find below an additional T-independent interaction not affecting anything we have 
said hitherto. 

Since what is at issue in (4.20) is only a T-dependent minus sign, we have to 
be rather precise about the treatment of fermions. For complex fermions there are 
subtleties in defining the phase of the fermion measure (these subtleties are related, 
among other things, to the Adler-Bell-Jackiw anomaly and its generalizations); even 
for real t~rmions, which we meet in the present problem, there is a subtlety with 
the sign. The subtlety arises from the fact that given orthonormal fermi modes 
g) l , - . . ,  ~)~, the relation d~i d~pj = - d C j  d¢i implies that the sign of the measure 
d~Pl dr,2 •.. &;,~ depends on an ordering of the fermions up to an even permutation. 

In our problem, since the instanton number of the SU(2) gauge theory, which 
is k = - c t ( L ) 2 / 4 ,  depends on T, the question of determining the T-dependence 
of the effective action on the u-plane only makes sense once one has given for all 
values of the instanton number the sign of the fermion measure in the underlying 
SU(2) theory. For the physical, untwisted SU(2) theory on R 4, one usually uses 
cluster decomposition to constrain the k-dependence of the phase of the path integral 
measure. On a fbur-manifold, some additional issues arise and were analyzed by 
Donaldson (see [13], p. 281) with arguments some of which will be adapted below. 

I will here explain how to fix the sign of the measure in the microscopic theory 
and deduce the interaction (4.19) in the macroscopic theory for tile case that X 
admits an almost complex structure. (This is a fairly mild condition, whose import 
is analyzed in [13], p. 11, and is satisfied by all simply-connected four-manifolds 
with b2 + odd, a class that includes all those with non-trivial Donaldson invariants.) 
We start with the fact that the fermion fields in the untwisted N = 2 theory are a 
pair of gluinos a i, i = 1, 2 of positive chirality and U(1)R charge 1, and conjugate 
fields ~j ,  j = 1, 2 of negative chirality and charge -1 .  (a and K have values in the 
adjoint representation of the gauge group.) Tile kinetic energy has the general form 

/ x  d4Xv~  ~iDo~ i q- . . . (4.21) 

where D is a Dirac operator and the omitted terms involve Yukawa couplings of 
a scalar field to a 2 or ~2 (as opposed to ~ .  a in (4.21)). As the Dirac operator 
is elliptic and first order and the Yukawa terms are zeroth order, it will sutlice 
to define the sign of the fermion measure (or equivalently the sign of the fermion 
determinant) for the case that the scalar fields are zero and the c~2,~ 2 terms are 
absent; the dependence on the scalars then follows by continuity. Therefore, we can 
ignore the mixing between c~ and ~ that the Yukawa couplings would cause. 

Now, to construct the "twisted" topological field theory, one couples the i index 
to the positive spin bundle S+ of X,  so that c~, ~ are now interpreted as spinors with 
values in S+. (If X is not a spin manifold, the twist is needed to formulate any theory 
on X,  since on such an X,  ordinary spinors would not exist, but spinors with values 
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in S+, which can be reinterpreted as differential forms, still do exist. In particular, 
the interpretation as differential forms shows that the fermions have a natural real 
structure in the twisted theory.) An almost complex structure on a spin manifold 
is equivalent to a decomposition of S+ as S+ = K 1/2 ® K-U2 with K ±1/2 being 
line bundles, along with a choice of K (or K -1) as the "canonical line bundle." 
Alternatively, without assuming that X is spin, an almost complex structure is 
equivalent to a Spin c bundle (which one might informally write as S+ ® K ~/2 even 
though the factors do not exist separately) which has a decomposition as K ® (9, (.9 
being a trivial line bundle and K a line bundle known as the canonical line bundle 
of the almost complex structure. 

On an almost complex manifold, we write a = c~ + ® c~-, with c~ ± the compo- 
nents of c~ in S+ N K±1/2; and similarly ~ = ~+ ® ~ - .  If  X is Kahler, the kinetic 
energy (4.21) (with Yukawa couplings suppressed) has a decomposition 

~ d4 xv"-9 (-d- Da + + -~+ Da-  ) . (4.22) 

If X is not Kahler, the kinetic energy also contains ~ +a  + and ~ - a -  mixing terms. 
These are of zeroth order, so just as in our discussion of the Yukawa terms, they can 
be ignored in the sense that if one defines the sign of the fermion determinant for the 
Lagrangian (4.22), the effect of" the mixing terms can be determined by continuity. 

With the various kinds of mixing terms suppressed, the eigenmodes of D 2 
have definite chirality and charge. So if a} k, for example, are an orthonormal basis 
of eigenmodes of c~ +, we can make an expansion 

a+  = Z w+ 3I+ (4.23) 
I 

with anticommuting c-number coefficients w±. Complex conjugation produces eigen- 

modes a)- = a + of a - ,  for which we write a similar expansion: 

= ( 4 . 2 4 )  

I 

Now we can formally fix the sign of the quantum integration measure for a by 
writing simply 

I dw+ dwT" (4.25) 
I 

Similarly, one can expand ~±  in orthonormal eigenmodes of D 2 

J (4.26) 
~ -  = ~ w] ~], 

T 
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and take the measure for a -  to be formally 

H dE+ d-~)-. (4.27) 
I 

So far we have given a prescription for the fermion measure 

# = 1-I dw+ dw~ I t  dw+ d ~ j  (4.28) 
I J 

which would be quite well-defined in the case of a finite set of I~rmi variables, 
since we have given a definite ordering of the integration variables up to an even 
permutation. With infinitely many variables, one needs the further obser~ation that 
(with the exception of the zero modes) the action of D maps modes of a to modes of 
~, preserving the eigenvalue of D 2. Therefore, except for finitely many zero modes, 
the fermi modes come in groups of four, namely modes of a +, a-, ~+, and ~-, 
permuted by complex conjugation and multiplication by D. Every such group of 
four gives a positive factor in the path integral, because for any real A the integral 

dw dw- dE + d ~ -  e x p ( ~ - A w  + + @+Aw-)  (4.29) 

is positive. Thus the sign of the measure on the space of zero modes (after integrating 
out the non-zero modes) is simply given by the ordering (up to an even permutation) 
of the zero modes in (4.28). 

The point of this is that we have made sense of the sign of the quantum mea- 
sure for all values of the instanton number k, with only a k-independent auxiliary 
choice (of almost complex structure on X).  Moreover, this has been done in a way 
compatible with locality and cluster decomposition, at least formally, since tile or- 
dering of the different types of fields given in (4.28) can be carried out locally. Our 
choice agrees with the prescription introduced by Donaldson, and leads to a theory 
that behaves well under duality (since it will give the interaction (4.19), which has 
been seen to lead to a good behavior under duality). 

Now that we have defined the theory at a microscopic level, it makes sense 
to reduce to slowly varying configurations that can be described by the low energy 
effective action on the u plane, and to ask whether a factor (4.20) appears in the 
T~dependence of the effective low energy theory. 

In the low energy theory at a generic value of u, the SU(2) gauge group is 
spontaneously broken to U(1). Correspondingly, the gluinos split up as "neutral" 
components (valued in the Lie algebra of the unbroken U(1)) as well as components 
of charge :hl. The neutral components are massless and so are included in the low 
energy theory; the recipe (4.28), restricted to those components, gives a natural 
(and T-independent) sign of the integration measure for the light fermions. 
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Of more interest are the massive fermions. They can be integrated out to give 
an effective theory for the light degrees of freedom. The effective action is complex in 
general (since it includes the effective theta angle induced by the massive fermions), 
but the integral over the massive fermions is real if the Higgs field is such that 
the fermion mass is real. The claim we wish to make is that if the fermion mass 
is positive, the sign of the integral over the massive fermions is precisely given in 
(4.20). 

The massive fermions now carry two U(1) charges, associated respectively 
with the almost complex structure and the unbroken gauge U(1); we call these the 
internal and gauge charges. So we write the expansion coefficients of the massive 
fermions as w ± ±, where the first sign refers to the internal charge and the second to 
the gauge charge. The measure defined in (4.28) orders each pair of fermions with 
the field of positive internal charge first, so when written out in more detail with 
both charges included, it takes the form 

# : H dw++ dwT- 1-I dw+- dwj + 1-I d-w++ d-~.- H ~ -  dw-£+" (4.30) 
[ J K L 

We could have imagined an alternative measure with the field of positive gauge 
charge written first: 

I J K L 

(4.31) 

If N+_ and N+_  are the number of modes of positive and negative chirality, re- 
spectively, with charges + - ,  then the relation between the two measures is 

# = (--1)N+-~N+-fi = (--1)N+--N+-fi .  (4.32) 

m 

Now, N+_ and N+_  are infinite, of course, but the difference N+_ - N~_  
is naturally interpreted 6 as the index of the Dirac operator acting on a spinor of 
charges + - ,  that is, on sections of S+ ® K 1/2 ® L. Let us, as at the outset of this 
discussion, write L = U ® T 2 where U is a fixed line bundle in the allowed class 
and T is arbitrary. If we denote the Dirac index for spinors with values in K 1/2 ® L 
as ind(T), then from the index theorem 

ind(T) = c l ( K ) "  C l ( T )  ~- 2 c 1 ( T )  2 -4- c o n s t a n t .  (4.33) 

Hence 
# = constant- ( -  1) cl (~).~1 (r) ~, (4.34) 

6) Jus t  as above, if one t u rn s  off the Yukawa  couplings and  t e rms  coming  f rom non- integrabi l i ty  
of  the  a lmos t  complex  s t ruc ture ,  the  ac t ion  of D gives a na tura l  pa i r ing  of non-zero  modes ,  
whose  effects cancel,  so only  the  zero modes  really have to be counted.  
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with the "constant" being independent of T. 

Now in fact, as we will argue momentarily, the massive fermion integral with 
measure ~ is positive for u > 0. With measure # it therefore has the sign given in 
(4.34). The T-dependent part of this is a factor (-i) c~(T)'c1(K) in the effective path 
integral for the light degrees of freedom. Since, for any almost complex structure 
with canonical bundle K, the first Chern class ci (K) reduces modulo two to w2 (X), 
this factor has precisely the T-dependence claimed in (4.20). This is the sought-for 
result. 7 

The argument that shows that the fermion determinant is positive for u positive 
is actually closely related to a standard argument about vector-like gauge theories 
such as QED. Let us chmage notation slightly and refer to the fermions of gauge 
charge I and -I as ~ and ~,Z as in QED (/3 keeps track of labels other than gauge 

charge, such as chirality). The measure ~, with every mode of ~ paired with the con- 
jugate mode of ~ (this measure is often written formally ~ -- l-lx,~ d-~(x) d¢~(x) 
or just fi = I)-~D¢) is the conventional measure of a vector-like fermion. After 
integrating over the non-zero modes of the Dirac operator (which give a positive 
contribution because of pairing of modes of opposite chirality) the contribution of 
the zero modes becomes 

J D~ e ~M¢, (4.35) De 
with everything truncated to the space of zero modes. The integral (4.35) is positive 
if the mass matr ix  M is positive-definite; indeed, upon diagonalizing M,  the integral 
factors as a product of integrals 

/d~ exp(m~w) ,  (4.36) dw 

and each of these is positive if m > 0. 

Just  such a situation prevails in the twisted N = 2 model for u > 0. For 
instance, the positive chirality fermions are vectors ¢,~ in the twisted model, and 
the mass term is a~ ,~  9,~ with a the Higgs field; this is certainly positive if a is 
positive, which leads to u positive. The negative chirality fermions are likewise 
differential forms (a zero-form and a self-dual two-form) in the twisted model, with 
a mass term that is similarly positive for positive a. This then implies that with 
measure ~, the integral over the massive fermions is positive for u positive, and 
therefore that with the measure # that arises naturally from the microscopic theory, 
the integral has the sign needed in (4.20). 

I am grateful to N. Seiberg for discussions and comments concerning many 
of these matiers. I also thank R. Fintushel for some remarks on almost complex 
structures. 

7) For u > 0, the effective theta angle as computed in [9] vanishes, so the sign must be attributed 
to the interaction (4.19) that appears in going to a general four-manifold. 



410 

References 

E. WITTEN 

[1] C. Vafa and E. Witten. A Strong Coupling Test Of S-Duality. Nucl. Phys., 
B431 (1994) 3. 

[2] C. Montonen and D. Olive. Magnetic Monopotes As Gauge Particles? Phys. 
Leg., 72B (1977) 117. 

[31 J. Cardy and E. Rabinovici. Phase Structure Of Zp Models In The Presence 
Of A Theta Parameter. Nucl. Phys., B205 (1982) 1. 

[4] J. Cardy. Duality And The Theta Parameter In Abelian Lattice Models. Nucl. 
Phys., B205 (1982) 17. 

[5] A. Shapere and F. Wilczek. Self-Dual Models With Theta Terms. Nucl. Phys., 
B320 (1989) 669. 

[6] T.H. Buscher. Path Integrul Derivation Of Quantum Duality In Nonlinear 
Sigma Models. Phys. Lett., 201B (1988) 466. 

[7] A. Giveon, M. Porrati, and E. Rabinovici. Target-Space Duality In String 
Theory. Phys. Rapt., 244 (1994) 77. 

[8] N. Seiberg and E. Witten. Monopoles, Duality, And Chiral Symmetry Breaking 
In N = 2 Supersymmetric QCD. Nucl. Phys., B431 (1994) 484. 

[9] N. Seiberg and E. Witten. Electric-Magnetic Duality, Monopole Condensation, 
and Confinement In N = 2 Supersymmetric Yang-Mills Theory. Nucl. Phys., 
B426 (1994) 19. 

[10] E. Witten. Monopoles And Four-Manifolds. Math. Res. Lett., 1 (1994) 769. 

[11] K.S. Narain. New Heterotic String Theories In Uncompactified Dimension 
< 10. Phys. Lett., 169B (1986) 41; K.S. Naraln, M.H. Sarmadi, and E. Witten. 
A Note On Toroidal Compactifieation Of Hete~vtic String Theory. Nucl. Phys., 
B279 (1987) 369. 

[12] M. Rocek and E. Verhnde. Duality, Quotients, And Currents. Nucl. Phys., 
B373 (1992) 630. 

[13] S. Donaldson and P. Kronheimer. The Geometry Of Four-Manifolds. Oxford 
University Press, 1990. 

E. Witten 
School of Natural Sciences 
Institute for Advanced Study 
Olden Lane 
Princeton, NJ 08540, USA 


