
Selecta Mathematica, New Series 
Vol. 1, No. 2 (1995) 

1022-1824/95/020347-3551.50 ÷ 0.20/0 
@ 1995 Birkh~user Verlag, Basel 

Superstrings and Manifolds of Exceptional Holonomy 

S. L. SHATASHVILI AND C. VAFA 

The condition of having an N -- 1 spacetime supersymmetry for a heterotic string 
leads to 4 distinct possibilities for compactifications, namely compactifications down 
to 6, 4, 3 and 2 dimensions. Compactifications to 6 and 4 dimensions have been 
studied extensively before (corresponding to t (3  and a Calabi-Yau three-fold re- 
spectively). Here we complete the study of the other two cases corresponding to 
compactification down to 3 on a 7-dimensional manifold of G2 holonomy and com- 
pactification down to 2 on an 8-dimensional manifold of Spin(7) holonomy. We 
study the extended chiral algebra and find the space of exactly marginal deforma- 
tions. It turns out that the role that U(1) current plays in the N = 2 superconformal 
theories is played by the tri-critical Ising model in the case of G2 and the Ising model 
in the case of Spin(7) manifolds. Certain generalizations of mirror symmetry are 
found for these two cases. We also discuss the topological twisting in each case. 

§1. Introduction 

Supersymmetric sigma models in two dimensions have been the source of many 
interesting ideas in the interplay between quantum field theories and geometry and 
the topology of manifolds. In the context of superstring theories, viewing strings 
moving on a manifold leads to the use of sigma models as the building blocks of 
string vacua. To be a string vacuum, the sigma model must lead to a conformal 
theory in two dimensions. Moreover to lead to spacetime supersymmetry, which is 
the only class of superstrings we know which are perturbatively stable, the manifold 
should admit covariantly constant spinors which can be used to define the super- 
symmetry transformation. It turns out that having a covariantly constant spinor 
already guarantees conformal invariance to one loop order in the sigma model per- 
turbation theory and perhaps to all orders (with appropriate adjustments of the 
metric), so the study of manifolds admitting covariantly constant spinors seems like 
an important question for string theory. In general if we have an n-dimensionM Rie- 
mannian manifold the holonomy group is in SO(n); however having a covariantly 
constant spinor, the holonomy group is smaller and it is (a subgroup of) the little 
group which leaves a spinor of SO(n) invariant. 
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Since superstrings live in 10 dimensions and we in 4, the most important 
physical case to study is the 6-dimensional manifolds with covariantly constant 
spinors. If we require only one spacetime supersymmetry, this means we need only 
one covariantly constant spinor (for a fixed chirality) and this leads to the manifolds 
of SU(3) holonomy, i.e. the Calabi-Yau manifolds [1]. These manifolds have been 
investigated a great deal with interesting physical results. Among these one could 
mention that many classically singular Calabi-Yau manifolds lead to non-singular 
sigma models. Also there is a mirror phenomenon which means that strings on 
two inequivalent manifolds can lead to the same sigma model. Moreover there is a 
topological ring in these theories known as the chiral ring [2] which captures the 
deformation structure of tile Catabi-Yau manifold. 

In fact the sigma models based on Calabi-Yau manifolds have been studied 
for all dimensions and not just 6, and many important aspects of the theory behave 
uniformly well in all dimensions. Also, one could consider odd dimensional manifolds 
with a minimal number of covariantly constant spinors by considering the product 
of Calabi-Yau with a circle. However, if one is interested in the minimum number of 
supersymmetries allowed, this class misses two special cases (for a review see [3]): 
First of all, in manifolds of 7 dimensions the minimum number of supersymmetries 
is given by a manifold of G2 holonomy which has only one covariantly constant 
spinor as opposed to a manifold of SU(3) holonomy times a circle which has 2. 
Furthermore in dimension 8 an SU(4) holonomy manifold leads to 2 covariantly 
constant spinors, whereas for an 8-dimensional manifold of Spin(7) holonomy there 
will be only 1 covariantly constant spinor. The possible existence of these two 
special cases had been known for a long time [4]. It is very amusing that these two 
special cases can be used in physical models simply because the dimensions where 
they occur are less than 10, which means that if we were to compactify superstrings 
down to 3 or 2-dimensional Minkowski space and ask which manifolds would lead 
to a minimal number of nonvanishing supersymmetries (1 for heterotic strings and 
2 for type II strings) we would have to study sigma models on 7d manifolds of G2 
holonomy and 8d manifolds of Spin(7) hotonomy. The study of these two classes of 
sigma models is the subject of the present paper. 

The organization of this paper is as follows: In Section 2 we will review ba- 
sic facts about superconformal theories in general and manifolds with covariantly 
constant spinors in particular. This includes a quick review of aspects of N=2 
superconfbrmal theories and their relation to the geometry of Calabi-Yau mani- 
folds. This review is a good exercise for setting the stage for the two special cases 
of manifolds of G2 and Spin(7) holonomy and the associated conformal theories. 
In this section we also review some geometrical facts about manifolds of G2 and 
Spin(7) holonomy that we will need in the rest of the paper. 

In Section 3 using the geometrical data at hand, we construct tile extended 
chiral Mgebra associated to C2 and Spin(7) manifolds. It turns out that tile role 
played by the U(1) piece of the N = 2 algebra in the context of" Calabi-Yau corn- 
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pactification is now played by the tri-critical Ising model for G2 manifolds and the 
Ising model for Spin(7) manifolds! The algebra and its construction is very similar 
in both cases and will be discussed in parallel. The existence of these two mini- 
mal models as an integral part of the theory is crucial. In particular it allows us 
to identify the space of marginal operators which preserve both the superconfor- 
mal symmetry as well as the G2 and Spin(7) structure of the algebra and prove 
their exact marginality to all orders in conformal perturbation theory. Moreover we 
find the identification of these deformations with the geometrical facts explained in 
Section 2. 

In Section 4 we discuss concrete orbifold examples of these manifolds con- 
structed very recently by Joyce. These examples are illuminating as far as the 
structure of the algebra we found in the previous section. Moreover we find a spe- 
cial kind of mirror phenomenon takes place, in that we find inequivalent orbifold 
resolutions (having different Betti numbers) found by Joyce correspond to the same 
underlying conformal theory up to deformation in moduli space. Moreover we find 
that whenever there are discrete torsions which lead to different conformal theories, 
there are also inequivalent geometrical resolutions. 

In Section 5 we construct a topological twisting for these cases. Again amazing 
facts about the tri-critical Ising model and Ising model are crucial for making this 
twist possible. In Appendix 1 and Appendix 2 we collect some relevant facts about 
the structure of the extended chiral algebras that we have encountered for these 
exceptional manifolds. 

§2. Superconformal Sigma Models and Special Holonomy Manifolds 

In this section we review some general aspects of 2d supersymmetric sigma models 
and their interplay with geometry of the target manifolds. The most basic observa- 
tion in this regard is that if we consider the Hilbert space on a circle with periodic 
boundary conditions (the Ramond sector) of a 2d supersymmetric sigma model with 
an n-dimensional target space M, or for that matter the ld  supersymmetric sigma 
model on M, there is an identity for Witten's index [5] 

n 

T r ( - 1 ) F e x p ( - Z H )  = = = n +  - 

i=0 

where x(M) is the Euler characteristic of M and bi are the Betti numbers of M 
and n+ and n_ denote the total number of even and odd dimensional cohomologies 
respectively. The basic idea is that only the ground states with H = 0 contribute to 
the index (as the H > 0 come in pairs with opposite ( - 1 )  F) and that in a suitable 
limit, the ground states are related to the harmonic forms on M, and ( -1 )  F, up 
to an overall sign ambiguity, can be identified with the parity of the degree of 
the harmonic forms. Actually there is more information [6]: It is possible to show 
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that the number of ground states in the theory are exactly equal to the mtmber 
of harmonic forms. In other words all tile non-cohomological perturbative ground 
states are lifted up by non-perturbative effects but the other ground states, which 
are in equal number to the cohomology elements are exact non-perturbative ground 
states and are not paired to become massive even if they have opposite ( - 1 )  F, i.e., 

n 

Tr exp(- /~H) = E bi = n+ + n_. 
¢~--+c~ i=0  

Note that even though tim number of ground states is equal to the number of co- 
homology elements of M,  there is no canonical correspondence. In particular it is 
not in general possible to determine the Betti numbers individuMly. From the two 
physical computations above, we can only deduce n+ and n_.  Actually even that 
we cannot deduce unambiguously because, as mentioned before, tim sign of ( - 1 )  F 
cannot be canonicMly fixed. Therefore from the physical Hilbert space we can only 
deduce n+ and n_ up to the exchange n+ ++ n_.  So much is true for general su- 
persymmetric  sigma models. If there are further restrictions on M, we can deduce 
more from the physical theory. For example if M is a K/ihler manifold, the fermions 
are complex and so there is a U(1) conserved charge corresponding to the fermion 
number F which, acting on the ground state, can be identified with the number of 
holomorphic forms p minus the number of antiholomorphic forms q of tile harmonic 
form 

F = p - q .  

So in this way, by decomposing the ground state to eigenstates of F ,  we can compute 
the number of cohomology elements with a given value of p - q. There is also the 
chiral (or axial) fermion number FA which is non-perturbatively conserved only 
when the first chern class Cl(M) = 01, i.e., when M is a Calabi-Yau manifold. FA 
can be identified when acting on ground states with 

FA = p + q - d ,  

where d = n/2 is the complex dimension of M.  So we can compute 

d 1 
- - = ~(FA + F) = FL, P 2 

d t F) YR. q - ~ = ~ ( F 4 -  = 

Just  as before there is a relative ambiguity in the identification of the sign of FL,R 
which means that we can determine the hodge numbers h p,q only up to the ambiguity 

h p,q ++ h d-p,q. 

1) For the  l d  s u p e r s y m m e t r i c  s i gma  models ,  s ince there  are no i n s t an tons  to ru in  the conser-  
vation, the  FA is a lways conserved.  
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This apparent deficiency in the supersymmetric sigma model in capturing the geom- 
etry of Calabi-Yau was conjectured [2], [7] to be related to the beautiful possibility 
that CY manifolds may come in pairs which lead to the same sigma model but for 
which the hodge numbers are mirror to each other. There is by now a large body 
of evidence supporting this conjecture [8]. 

There are more interesting relations with the geometry of CY if we consider 
operator products of some special operators in the theory. It turns out that there is 
a natural ring of operators in the theory known as the chiral tin 9 [2] which are in 
one-to-one correspondence with the cohomology elements and which are most easily 
defined by using the fact that there exists a metric on CY which gives rise to a 2d 
conformal field theory. One can also define this ring by purely topological means [9], 
and it turns out that (at least in one version) it is related to a quantum deformed 
eohomology ring of the manifold which has the information about the holomorphic 
maps from CP 1 to M encoded in it. 

Calabi-Yau 3-folds are interesting for string theory as mentioned in the in- 
troduction precisely because they have covariantly constant spinors and they have 
a minimal number of them leading to N = 1 spacetime supersymmetry when we 
compactify heterotic strings on them. However let us ask a question which would 
be a very natural question in the context of superstring or heterotic string com- 
pactifications: If we compactify the heterotic strings to any lower dimension, in 
which dimensions can we obtain the minimal non-vanishing number of spacetime 
supersymmetries? The answer to this question is rather interesting (for a simple 
derivation see [3]): To have one spacetime supersymmetry, we need the minimum 
allowed covariantly constant spinors (1 or 2 depending on the dimension). This is 
possible only if we compactify from 10 down to 6, 4, 3 or 2 on manifolds with 
holonomy Sp(1)(= SU(2)), SU(3), G2 and Spin(7), with dimensions 4, 6, 7, 8 re- 
spectively. Moreover in the case of 4 dimensions, there is a unique manitbld K3 
which has Sp(1) holonomy. The six-dimensional case is a three-fold Calabi-Yau and 
possibilities for this have also been studied extensively. Here we begin the comple- 
tion of this systematic classification by studying sigma models on manifolds with G2 
and Spin(7) holonomy. It is amusing to note that the K3 and CY three-folds have 
generalization to higher dimensions with manifolds of Sp(n) and SU(n) holonomy 
respectively, but the Ge and Spin(7) case are unique structures with no generaliza- 
tions to higher dimensions. 

Before we go on to describe some general properties of manifolds with G2 
and Spin(7) holonomy, motivated by tile success of the mirror conjecture for CY 
target spaces, let us make a conjecture which will prove helpful in clarifying the 
observations we shall make later: 

Genernlized Mirror Conjecture: The degree of ambiguity left by being unable 
to decipher all the topological aspects of the target manifold using the algebraic 
formulation of quantum field theories is precisely explained by having topologically 
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inequivalent manifolds allowed by the ambiguity to lead to the same quantum field 
theory up to deformation in the moduli of the quantum field theory. 

What  we mean by this conjecture is the following: Suppose we are given all 
the correlation functions of a quaJatum field theory corresponding to some unknown 
sigma model, i~r thermore  suppose we wish to reconstruct as much as possible the 
target manifold from this data. The statement of the conjecture is motivated by 
the belief that if we cannot fillly reconstruct the target manifold from this data 
there is a good reason. In other words the number of inequh-alent target  manifolds 
that cannot be distinguished using the quantum field theory data are precisely the 
number of inequivalent target manifolds which give rise to the same quantum field 
theory. 

We call such manifolds mirror of one another in the generalized sense of mirror 
symmetry. 

We shall see in later sections the first non-Calabi-Yau examples which support  
the above conjecture in the case of manifolds of G2 and Spin(7) holonomy. 

Let us begin discussing some facts about manifolds of G2 and Spin(7) holon- 
omy. Until very recently the only known examples of manifolds of G~ holonomy and 
Spin(7) holonomy were non-compact  manifolds [10]. The situation has dramatically 
changed recently due to the work of Joyce [11] who constructed the first compact 
examples of manifolds with G2 and Spin(7) holonom?, which we denote by M 7 and 
M s respectively. Just as in the Calabi-Yau case where the fact that tile manifold 
has SU(n) holonomy leads to the existence of a unique non-vanishing holomorphic 
covariantly constant n-form (and of course its conjugate), in these two exceptional 
cases a similar thing happens (see [12] Chapters 11 and 12): In the case of G2 man- 
ifolds, there is a canonical 3-form ¢ and its dual which is a 4-form , ¢  which are 
covariantly constant and in the case of Spin(7) there is a self-dual 4-form ft. They 
can be locally written as follows: we choose a local vielbein so that the metric is 

ei ® ei where ei are one-forms and for the G2 case, i runs from 1 to 7 and for the 
Spin(7) case i runs from 1 to 8. Then these forms can be written as 

¢ =  el Ae2 A c T +  el Ae3 Aes + e l  Ae4 Ae5 + e 2  Ae3 Ae5 

- -  e 2  A e 4 A e 6 + e 3 A e4 A e7 + e5 A e6 A eT, (2 .1 )  

*¢ -= el A e2 A e3 A e4 -I- el A e2 A e5 A e 6 

- - e l A e 3 A e a A e T + e l A e 4 A e 6 A e 7  

-1- 6 2 A c3 A e6 A e7 q- 62 A e4 A e5 A e7 q- e3 A e4 A e5 A e6, (2.2) 

f t  = es  A ¢ - *¢. ( 2 .3 )  

These can be understood as tbllows: In the case of G2 if we view ei as forming 
the fundamental representation of O(7), the fact that the hotonomy is in the G2 
subgroup of 0(7)  means that in the three-fold tensor product of this representation 
there is a totally anti-symmetric singlet of G2 which is identified with ¢. Similarly 



SUPERSTRINGS AND MANIFOLDS OF EXCEPTIONAL HOLONOMY 353 

• 0 is invariant under G2. In the case of 8-dimensional Spin(7) manifolds, ei form the 
fundamental representation of 0(8) .  If we view the embedding of Spin(7) in 0(8)  
such that the 8-dimensional spinor representation of 0(8)  transforms as the 7 ® 1 
of Spin(7), and thus the 8-dimensional vector representation of 0(8)  transforms 
as an 8-dimensional spinor representation of Spin(7), then in the four-fold totally 
antisymmetric product of this latter representation, there is a unique singlet of 
Sp/n(7) denoted by f~ above. Metric ~ e~ ® e~ can be uniquely reconstructed from 
¢ and fL 

Moreover it is true [13], [11] that the dimension of moduli space of deformation 
of manifolds of G2 holonomy is ba(M 7) and the dimension of the moduli space of 
deformation of manifolds of Spin(7) holonomy is b~-(M s) + 1, where b~ denote the 
self-dual/anti-self-dual dimensions of H 4 (MS). The simplest class of examples con- 
sidered by Joyce involve toroidal orbifolds. In the case of G2, the minimal example 
is obtained by modding out TT/(Z2) a where each Z2 has for eigenvalues of holon- 
omy ( -1 ,  - 1 ,  - 1 ,  - 1 ,  1, 1, 1), but they sit in SO(7) in such a way that they cannot 
be embedded in an SU(3) subgroup of it, but can be embedded into a G2 subgroup 
of it. Moreover it is clear from the above discussion that this group will preserve ¢ 
and ,0 .  Moreover for simplicity of analysis, Joyce considers some of these Z2's to be 
accompanied with translations of the T 7, and shows that the singular orbifold can 
be desingularized. For the case of Spin(7) hotonomy the simplest examples he con- 
structs involve again desingulaxizing a toroidal orbifold. In this case he considers 
TS/(Z2) 4, where each Z2 has eigenvalues of holonomy ( -1 ,  - 1 ,  - 1 ,  - 1 ,  1, 1, 1, 1), 
but again in such a way that the full group does not sit in SU(4) but does sit in a 
Spin(7) subgroup of O(8). In both the G2 case and the Spin(7) case he finds that 
there are in general many inequivalent ways of desingularizing the manifold, which 
we will be able to explain physically in Section 4 as a consequence of the general- 
ized mirror conjecture stated above. In fact it is crucial to note that the dimension 
of the moduli space of the conformal theory is actually bigger than that predicted 
geometrically. The reason for this is that the possibility of using the anti-symmetric 
two-form to add a phase to the action has no geometrical analog. Therefore we have 

dim. moduliphysicat = dim. moduligeom~t~ic~z + b2. 

In particular for the G2 case the dimension of sigma model moduli is b2 + b3 and not 
b3 and for the case of Spin(7) the dimension of sigma model moduli is b 4 + b2 + 1. 
Let us also briefly talk about the structure of the Betti numbers of these two cases: 
In both cases we are dealing with manifolds with bl = 0 in order to obtain the 
minimum number of covariantly constant spinors. In the case of G2 holonomy, 
therefore there are two independent Betti numbers to compute b2 and b4, since by 
duality b3 = b4 and b5 = b2. As discussed before, physically we can a priori only 
compute the dimension of even or odd cohomologies b2 + b4 = b5 + b3. So a priori 
physically we can expect to deduce only one geometrical index in this case, namely 
b2 + b4 which is also equal to b2 + b3 which is the dimension of moduli space. 
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In tile case of Spin(7) holonomy manifolds there are a priori four topological 
numbers one can hope to compute b2, ha, b4 ~ and the rest are obtained by duality. 
However the fact that there is a unique zero mode for the Dirac operator implies 
using the index theorem that [14] 

b3 + b~ ~ - b2 - 2b 4 - 1 = 24. (2.4) 

So geometrically there are only three independent numbers in this case. Physically 
to begin with we have the number of even and odd cohomologies from which we can 
deduce b2 + b4 + b6 = 2b2 ÷ b4 and b3 + b5 -- 2b3. We should also in addition expect 
to compute b 4 + b2 + 1 by finding the dimension of exactly marginal deformations. 
However the relation (2.4) implies that there is a linear relation between these 
numbers which would mean that there are only two independent physical numbers 
one could hope to compute, as opposed to three in the geometrical case. The validity 
of (2.4) for sigma model should follow from modular  invariance type arguments in 
relation to sigma models [15]. 

§3. Extended Symmetry Algebra, Consequences and Deformations 

In this section we will unravel the extended symmetry  algebras which underlie sigma 
models with N = 1 superconformal symmetry  on manifolds of G2 and Spin(7) 
holonomy. The idea for obtaining these symmetry  algebras is familiar from the 
study of Catabi-Yau manifolds, where one appends to the N = 1 superconformal 
algebra, a U(1) current to obtain the N = 2 algebra, and the spectral flow operator, 
to guarantee integrality of U(1) charges. For the case of Calabi-Yau three-folds 
this has been studied in [16]. We study the representation theory of this extended 
algebra. Consequences of this symmetry  Mlows us to gain insight into the structure 
of the theory and in particular construct the space of exactly marginal deformations 
(the moduli). 

Perhaps to make some aspects of the algebra that we obtain a little less myste- 
rious, it would be helpful to see a priori what we should expect to play the rote that 
U(1) plays for sigma models on manifolds of SU(n) holonomy 2. If  we start  with a 
sigma model on a Kghler manifold we have a priori a U(n) symmetry.  Having a 
holonomy in SU(n) means that part  of the symmetry  is broken but we are left with 
an unbroken g(1)  = g(n)/SU(n). Similarly in the case of 7-dimensional manifolds 
of G2 holonomy, a priori we have SO(7) symmetry  (more precisely S0(7) current 
algebra at level 1). The holonomy of the manifold being in G2 means that we are 
left with tile residual symmetry  S0(7)/G2, which in geometrical terms is no longer 
a group, however, from the viewpoint of eonformal theory it is a coset model. Com- 
puting its centrM charge we see that since SO(7) at level 1 has central charge 7/2 

2) This line of thought was developed following a suggestion of E. Martinec. 
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and G2 at level i has central charge 14/5, the central charge of the residual system 
is 

7 14 7 

2 5 I0' 

which is thus a tri-critical Ising model [17]! Similarly for the case of Spin(7) mani- 
folds one considers SO(8)/Spin(7) which gives a central charge 

4 - 7/2 = 1/2, 

which is just the Ising model. Below we shall recover these facts directly as well 
as find out that these symmetries mix in a very interesting way with the N = 1 
superconformal algebra to obtain the extended symmetry algebra of our models. 

3.1 G2. As far as the algebraic structure is concerned we start  from the fiat 7 
dimensional space, and construct the chiral operators which we expect to exist even 
after we perturb the metric to obtain a non-trivial G2 holonomy. We of course expect 
to have tile energy momentum tensor T and its superpartner  G. Moreover the fact 
that a three-form ¢ exists even after the perturbation suTggests that one can add to 
N ---- 1 superconformal generators T ---- Tb + Ty = ½~1 : j i j~  : - ½ ~ 1  : ¢~0¢ ~, 
G = ~17 : y i¢ i  : a new spin 3/2 operator 

(I) ~--- ¢ 1 ¢ 2 ¢ 5  _~_ ¢ 1 ¢ 3 ¢ 6  ~_ ¢ 1 ¢ 4 ¢ 7  -- ¢ 2 ¢ 3 ¢ 7  

~_ ¢ 2 ¢ 4 ¢ 6  __ ¢ 3 ¢ 4 ¢ 5  • ¢ 5 ¢ 6 ¢ 7  (3.1) 

= A~k¢%~¢ k, 

with tim coefficients f~jk defined by the G2 invariant three-form ¢ from the previ- 
ous section. We use the notation j i  __ Ox ~ with x i being a bosonic sigma model 
coordinate. N --- 1 generators are invariant under the rotation group SO(7) and 

is invariant only under the Ge subgroup of SO(7). If we compute the operator 
expansion of new generator ~ with itself we obtain 

7 6 
~ ( ~ ) ¢ ( ~ ) -  ( z -  ~ ) ~ +  z - ~ x ( ~ ) '  (3.2) 

where operator X has spin 2 

X : -- ¢ 1 ¢ 2 ¢ 3 ¢ 4  ~_ ¢ 1 ¢ 2 ¢ 6 ¢ 7  __ ¢ 1 ¢ 3 ¢ 5 ¢ 7  _~ ¢ 1 ¢ 4 ¢ 5 ¢ 6  
(3.3) 

¢ 2 ¢ 3 ¢ 5 ¢ ~  _ ¢ 2 ¢ % % 7  _ ¢ 3 ¢ 4 ¢ % 7  _ 1/2 : 0¢~¢  i :-- - • • + Tf, 

and is a linear combination of "dual" operator *~ (defined by dual form *¢) and a 
fermionic stress-tensor. Next step is to compute operator expansion of the operators 
X and ~. We obtain 

15 1 5 1 
- -  O ' ! ~ ( w ) ,  (3.4) ,~(~)x(~,~) 9 (~ - ~,)~ ~(~') 2 ~ - 

35 1 10 5 
X(z)X(w)  4 ( z -  W)4 ( z _  w)2X(w) - z -  wOX(w)  , (3.5) 
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This is not the end of story because now we need to deal with superpartners of 
new generators with respect to the original N -- 1 algebra. This introduces two 

5 into the game; we will denote them by K and M new operators of spins 2 and 

respectively: 

1 
G ( z ) ~ ( w )  - - - K ( w ) ,  (3.6) 

z - w  

1 1 1 
G ( z ) X ( w )  - 2 (z - w) 2 G(w)  + z -  w M ( W ) "  (3.7) 

New operators in the right-hand side have the following free field representation: 

K = j1~2~5 + j1~3~)6 + j1~4~7 _ j2~,1~5 _ j 2~3~7+  

jeg)4¢6 _ j 3 @ ¢ 6  + j a¢2¢7  _ j3¢4¢5 _ j4¢1¢7  _ j4¢2~)6+ 

j4¢3¢5 + j5¢1,~2 _ j5¢3¢4 + j5¢6¢7  + j 6 @ ¢ 3  + j 6 ¢ 2 ¢ 4 _  (3.8) 

j6¢5¢7  + j7¢1~4 _ j7¢2~3 + jT¢5g)6, 

M = - Jl1~2~)3~)4 + j1¢2¢6¢7  _ ji¢3¢5~)7 _~_ j1¢4¢5¢6  ~_ j2¢1¢3~)4_ 

j 2~ t~6~7  _ j2~/~3,~5~6 _ j2~4~5~7 _ j3~i~)2~,4 + j3~)i~5~7_i - 

j3¢2~5~6 _ j3~4~6g)7 + j4~ i~2~3  _ j4~1~506 + j4~2~5~7_~_ 
(3.9) j 4 ¢ 3 ¢ 6 ¢ 7  _ j ~ O l ~ 3 , j  + jsg,~g,4¢6 _ j5~2¢3~,6 _ j 5 ¢ 2 ¢ 4 ~ 7 +  

j6~)1¢2¢7 _ j6¢1~4¢5 + j 6 ¢ 2 ¢ 3 ~  _ j6¢3¢4¢7  _ j 7 ¢ 1 ¢ 2 ¢ 6 +  

j7¢ t¢3¢5  -l- j7¢2¢4¢5  + j7¢3  ,~4¢6 _}_ 1 / 2 j i o ¢ i  _ 1 / 2 0 j i ¢ i .  

A nontriviat fact deeply related to "G2 structure" is that operator expansion 
algebra formed by these six operators T, G, ~, X, K and M closes. (The results of 
further computation is presented in Appendix I together with commutation relations 
written in mode expansion.) Thus, we have demonstrated that there is an extended 
chiral algebra which contains quadratic combinations in the right-hand side and 
thus reminds (just reminds) one of W-algebra. 3 

After extended chiral algebra is derived we can forget about the free field 
picture recalling that the perturbation will destroy the fact that the theory is free, 
but assume the existence of the algebra beyond free realization and study the cor- 
responding conformal field theory. As a first step, we have to find the spectrum of 
low lying states and in particular the spectra of Ramond ground states which carry 
the geometrical information about the manifold. In this study it is extremely useful 
to note that our extended algebra contains two (non-commutative) N = 1 super- 
conformal subalgebras: 1. Original N = 1 generated by G and T, and 2. N = 1 

3) The existence of extended symmetry for N = 1 sigma model on G2 manifold in classical 
approximation was previously mentioned in [18]; we also have been informed by M. Rocek 
and J. de Boer that recently they also have found extended symmetry in above sigma model. 
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'~ ~ a n d T i  = 1 superconformal algebra generated by G1 = ,/25 - g X .  Moreover, the 

latter is a very interesting one - -  it has a Virasoro central charge ~ as predicted 
in the beginning of this section and is the tri-critical Ising model which is the only 
bosonic minimal model in the list of N = 1 superconformal minimal models [19]. 
In addition a simple observation that 

= O, = + ( 3 . 1 0 )  

allows us to classify the highest weight representations of our algebra using two 
numbers: Tri-critical Ising highest weight and eigenvalue of the zero mode of the 
remaining stress-tensor T~. 

Now, at the beginning we consider only chiral sector (left-movers say). The 
theory is supersymmetric and thus we have two sectors ---- Neveu-Schwarz and 
Ramond. We shall see below that the ( -1)  F for the full theory can be identified 
with the ( -1)  Fr which is the Z2 symmetry of the tri-critical Ising model viewed 
as an N = 1 superconformal system. From tile observation that total stress-tensor 
can be written as a sum of two commutative Virasoro generators where one is tri- 
critical Ising, we conclude that unitary highest weight representations should have 
following tri-critical Ising dimensions: 

' V i r  V i r  V i r  ' ' 

or in N = 1 terms 

and 

(3.11) 

R :  [~6]' [ 3 ] .  (3.13) 

Supersymmetry requires that Ramond vacuum for whole theory has dimension 
-- ! and this leads to the following unitary highest weight representations of 16 - -  16 ~ 

extended chiral algebra in the Ramond ground state (we use the notation [AI, A~] 
for operators that correspond to Virasoro highest weights IA~, A~} with first di- 
mension being the dimension of tri-critical Ising part and the second the dimension 
of tile remaining Virasoro algebra Tr): 

R :  7 , 0 } ,  3 ~}. (3.14) 

It is one of the most remarkable facts for this theory that there exists a ground 
state in the Ramond sector which is entirely constructed out of the tri-critical Ising 
sector, namely the 1 ~ ,  0} state. It is as if the tri-critical Ising model "knows" about 
the fact that the dimension of the manifold of interest is 7. As we will see this 
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is crucially related to having an N = 1 spacetime supersymmetry as well as the 
possibility of twisting the theory. In many ways the operator corresponding to this 
ground state plays the same role as the spectral flow operator in N = 2 theories 
which is also entirely built out of the U(1) piece of N ---- 2. To have one spacetime 
supersymmetry, we would be interested in the realization of this algebra which has 
exactly one Ramond ground state of the form ]~ ,  0} (we shall make this statement a 
little bit more precise when we talk about putting left- and right-movers together). 
In this regard it is crucial to note that in the tri-critical Ising model we have unique 
fusion rules for the operator [~] 

3 

[ 7 ] [ 3 ]  1 1 ]  

(3.15) 

(3.16) 

The existence of this operator in the Ramond sector allows us to predict the existence 
of certain states in the NS sector. This follows from the fact that it sits entirely in 
the tri-critical Ising part of the theory and its OPE with other fields depend only 
on the tri-critical Ising content of other state and thus by considering the OPE 
of the operator corresponding to ]7 ,  0} state with the other states in the Ramond 
sector we end up with certain special NS states. From (3.15) we conclude that Ising 
spin field [~] maps Ramond ground state I~ ,  0) to NS vacuum 10, 0} and vice 
versa. More importantly when we consider the 0 P E  of the 17,0) state with i ~ ,  ~} 
we end up with a primary state in the NS sector of the form I~0, ~}, which has 

1 total dimension ~ and is primary. This procedure can be repeated in the opposite 
direction: tri-critical Ising model spin field [~] maps primary field of NS sector 
[~ ,  ~] to an R ground state 13, ~}. This leads to the prediction of existence of the 
following special states in NS sector: 

1 2} (3.17) N S :  10, 0), i-d' g ' 

Note in particular that since the Tr part of the theory is un-modified as we go 
from the R sector to the NS sector, tt is again quite remarkable that the state in 
the NS sector corresponding to I~ ,  ~} is a primary field of dimension 1/2 and so 
G-1/2 acting on it is of dimension 1, preserving N=I  supersymmetry and thus a 
candidate for exactly marginal perturbation in the theory. We will use the extended 
chiral algebra below to show that indeed they lead to exactly marginal directions. 
Again the fact that this state has dimension 1/2 is a consequence of a miraculous 
relation between the dimension of tri-critical Ising model states. If one traces back 
one finds that it comes from the fact that 

7 3 1 1 
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In the above discussion we assumed that Z2 fermion number assignment on any 
state is equal to the Z2 grading for its tri-critical part alone which in particular 
implies that in the NS sector of the full theory only NS dimensions of tri-critical 
model show up and similarly in the R sector. Let us now discuss how this comes 
about. Our chiral algebra has three bosonic T, X, K and three fermionic G,/1~, M 
generators. We have the following tri-critical Z2 assignments: [0] +, [ ~ ] - ,  [6]+ , [713 - .  
To prove that ( -1)  F = ( -1)  F~ it suffices to derive tri-critical Ising dimensions of 
our generators and see if the two Z2 assignments agree. Here we have to use relations 
presented in Appendix 2; we have 

L-210,0> = 12,0> ÷ + 10,2) +, X-210,0> = I2,0> +, 

K-2[0,0} = 6 1 4 \ +  10/  ' (3.18) 

G-3/2]0,0}= 1 , 1 4  - 1 24 - b 1 +  ~ }  .(3.19) ~ }  ,M_5/2[0,0} = a i-0' i-0} + 1, 14 - 

We see that in the assignment in above expressions ( - 1 )  F = ( - 1 )  ~z and thus we 
can use tri-critical gradings for the whole theory. 

Now we are ready to discuss the non-chiral, left-right sector, This will also 
lead to a better understanding of the correspondence with geometry. We claim that 
only states in (R,R) ground state are 

5 R; +/ (3.20) 

where the significance of 4- will be explained momentarily. We had two other possx- 
bilities of left-right combinations: t ( 7  0) L ; ( 3 , 2  g)R; 4-) and the same with exchange 
of L with R. The reason we didn't  put these states in the list (3.20) is simple. If 
we use fusion rules (3.15) and (3.16) we see that primary field corresponding to 
first ground state in (3.20) acting on these additional states will lead (according to 
tri-critical Ising model fusion rules) to the highest weight state t(0, 0)L; 1 2 in 

the Neveu-Schwarz sector. But this operator has total dimension ½ and is chiral, so 
we get an additional chiral operator of half-integer spin in the theory which is not 
present in our original extended chiral algebra. This means that these additional 
states aren't present in the case of the generic theory (which is assumed to have 
only chiral operators described in the beginning of this section). The 4. signs next to 
the states are a reflection of the fact that since acting on the ground states we have 

~ ,  they form a 2-dimensional representation. The 4- sign 
therefore reflects states with 2 different ( -1)  F assignments. Thus, Ramond ground 
states are coming in pairs - -  7 7 7 7 ~ 0 1 ( ~ , 0 , ) L ; ( ~ , 0 ) R ; + )  = I(r~,0)L;(r~,0)~;--}, 

2 3 2 
 o1( 0, • g)R; +} = l (~ ,  g)L; (g6, g)R; --)}- Now we can better describe the 
relation of Ramond ground states with the cohomology of the manifold: The fact 
that states come in pairs is a consequence of the fact that in odd dimension the 
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dual of every cohomology state is another cohomology state with different degree 
rood 2. So the Ramond + states correspond to even cohomology elements and - 
to the odd ones. Concentrating on the even cohomology elements in principle we 
could have bo = I, b2, b4 as the elements (note that having no extra supersymmetry 
leads to having b6 = bl -= 0 which is correlated with the fact that we assume the 
I(~6,0)L; (~6,0)R,-I-} is unique). We see that we can only compute one extra num- 
ber, and not two, which is the nmnber of ground states involving the s~6 tri-critical 
piece for both left- and right-movers which we identify" with b2 + b4. 

Let us discuss the special NS states taking into account both the left- and 
right-moving degrees of freedom. Acting on all + P~amond ground states with the 
state I(~,  0)L; (~ ,  0)R, +) leads to (NS, NS) states 

(NS, NS) :  I(0,0)L;(0,0)n), ( 1  ~)L;(1-0 '5  R / 1  2 ) ; ,  
(3.21) 

where the number of I(~,  ~ ~)n) states are the same as the states 
. g)R} which is equal to b2 + b4. 4 Moreover as we will argue later in 

this section, each of all such NS operators are exactly marginal operators preserving 
the G2 structure. This agrees with the geometrical facts discussed in Section 2 in 
that the dimension of conformal moduli space is thus b2 + b4 = b2 + b3. 

Before we address the question of marginal deformations of our conformal 
field theory let us discuss the relation of the above construction to 10-dimensional 
Superstring Theory compactified down to 3 dimensions. It is easy to show that if 
corresponding compact ?-dimensional manifold is a G2-manifold we will have 37 = 2 
supersymmetry for type II strings and N = I supersymmetry for heterotic strings in 
3 dimensions. Let us construct the corresponding supersymmetry generators using 
all the information that we already obtained. We have 

&,R e R = ~3 ~ - (3.22) 
16 

Here ~bgh is a bosonized 10-dimensional ghost field, S~ are 3-dimensional spin fields 
and ~ is tri-critical Ising model spin field that we had already discussed many 
times. 5 First we notice that J has dimension i; dimension of 10-dimensional ghost 
part doesn't depends on compactification and always is equal to s 3-, dimension of 
3d spin field is 3. ~ -- 3 and dimension of sigma by definition is ~6, and all add 
up to i. If we remember that cr has a unique OPE with vacuum [0] in the right- 
hand side we can consider J as a chiral operator and this explains subscript; L, R 
in (3.22). Now we can define 3d supersymmetry generators: QL,n = fJL,r~ and 
standard computation leads to supersymmetry algebra. Also one finds that one of 

4) Also in principle we will get other  higher  d imens ion  states  such as ]3 ,0)L;  ( 3 , 0 ) R  } or 

5) This is a standard ansatz for target space supersymmetry current, see [20]. 
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the supersymmetry transforms of 3 2 (g-6, g, )L,R which is accompanied by spacetime 
spinor field and ghost degrees of freedom is simply the state (~, 2 S)L,R- 

Now we would like to consider marginal deformations of our theory. As men- 
tioned before we will show that marginal deformations are given by perturbation 
with dimension 1 operators of the form GL1/2G_R1/2 [(i/10, 2/5)L; (i/I0, 2/5)R]; the 

dimension of this moduli space is b 2 d- b 3. In addition to showing that they pre- 
serve N =- 1 superconformal symmetry we need to show that they do not have 
any tri-critical piece in them, which would otherwise destroy the existence of the 
extended algebra in question. This follows because the full algebra was generated 
by the N = 1 algebra together with the supersymmetry operator (I) of the tri-critical 
model. We will first show this fact by studying the content of above operator with 
respect to tri-critical Ising model. For this we have to apply the operator X0. We 
have (it is enough to consider only chiral sector): 

1 2 1 2 1 2 
XoG-1/2 ~ ,  g > z ~-l/2Xo -~, -~ > -~ [X0, ~-1/2] -~, g > 

~- (-- ~ --1/2 -- ~" 
(3.23) 

It turns out that the right-hand side of this equation is identically zero in our theory: 
P = O. One can check that this state has zero norm and P is a null vector: 

Is?={ o ,2 G - M  1 + 2 g (1/2 1/2)(~--1/2 M-t /2) [1 ,  g> 

- 10' 5 

(3.24) 

Here we used the fact that I~ ,  ~} is a highest weight representation of the whole 
extended chiral algebra, the property M + = ½G_n-M-, the commutation relations 
given in Appendix 1 and 2L011A6, 2) = - 2 X o ] ~ ,  ~} = [~ ,  ~}. So we conclude that 
our deformation is of the type [(0, 1)L; (0, 1)n]. All we are Ieft to show is that the 
deformation preserves conformal invariance. 

For simplicity we will denote our perturbation by GL1/2A(z, 2) (we will work 

with the chiral part below and thus will suppress 2 dependence and GR1/2). The 
following proof is based on two facts: 

1. Dixon [7] has shown using just N=I  superconformal algebra that perturba- 
tion with dimension 1 operator of the form G-1/2A is marginal if 

F = (G-1/2A(zl)G-1/2A(z2)G-1/2A(z3)G-1/2A(z4)... G-1/2A(zn)) (3.25) 

is a total derivative with respect to coordinates zi, i > 3. Perturbation is truly 
marginal if n-point correlation function (3.25) integrated over all points, except the 
first three, is zero (first three points are fixed by SL(2, C) invariance on sphere) 
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and Dixon has shown that in N = 1 super conformal theory the integrand can be 
regulated in such a fashion that if it is a total  derivative there are no contact term 
contributions. 6 

2. As we have seen above A(z)  has a null vector 

1 G - 1 .  + : o; (3.26) 

In addition we need several relations between the generators of the extended algebra 
acting on A(z)  (which is a highest weight vector and thus is killed by positive energy 
modes of all generators): 

M1/2G-1/2A(z)  = - 2 X o A ( z )  = A(z) ,  

M_3/2G_I /2A(z  ) = - L _ ~  X _ I  A(z) .  

(3.27) 

(3.28) 

(3,29) 

In fact, one can show that it is enough to prove that 

Io = (G-1 /2A(z l )A(z2 )A(z3 )G_I /2A(z4 ) . , .  G_I/2A(z~))  (3.30) 

is a total  derivative o b-57~, i > 3, of something. For this we need to write G_ 1/2A(zl) = 
f ~  G(z)dzA(z~) in (3.25) and deform the contour. If  we remember that the vacuum 

is annihilated by G+1/2 and G-~/2 (and also by Mk, k = 3/2, 1/2, - 1 / 2 ,  - 3 / 2 ;  this 
we will need later) we will have no contribution from infinity and: 

F = - (A ( z t )L_ IA( z2 )G_I /2A(z3 )G_I /2A(z4 ) . . .  G_I /2A(z~) } -  

(A ( z l )G_I /2A(z2 )L_IA(z3 )G_u2A(z4 )  . . .  G_l /2d(zn)}  - . . .  = 

0 
- Oz---~ (A(z~)A(z2)G_I /2A(z3)G_I /2A(z4) , . .  G_I /2A(z ,~)) -  

0 
Oz3 (A(z~ )G_I/2A(z2)A(z3)G_I/2A(z4)  . . . G_ i /2A(zn))  - . . . ,  

(3.31) 

where we dropped the terms that are total derivatives with respect to zi, > 3: 
G2_~/2 = L - t  = Oz. Thus, if we can show that Io is zero modulo o i oz~, > 3 of 
something, we will have the proof of marginatity: fF = 0. Below we will deal 
with the object I = fd2z4.., d2z~Io and ignore total derivatives inside the integral 
referring the reader to the regularization used by Dixon. 

6) If there is a total derivative in holomorphic variable by symmetry we get total derivative 
both in holomorphic and antiholomorphic coordinates Cgz i 0~j and this is crucial in showing 
that there are no contact term contributions. 
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Our main strategy is to use the null vector condition (3.26) and contour de- 
formation argument first for G-1/2A(z l )  in I and then the same argument but  now 
replacing G_I/2A(Zl)  by -2M_l /2A(z1) .  First we insert f~o(w - zl)G(w) with 
contour around infinity in the correlator (A(z l )A(z2 )A(za) ( fG_u2A(z ) )  n-a) and 
place the zero zl at za and z2. After the contour deformation we get 

(z2 - z3) A(Zl )G-u2A(zu)A(z3  ) G-1/2A(z)  = O, 
(3.32) 

(z3 - z2 A(zl)A(z2)G_I/2A(z3 C_ l /2A(z  = O. 

Here we used the mode expansion 

(3.33) 

zk 
(3.34) 

for any B. The total derivative term that was ignored has an insertion of 

/d2z4[(z4- Zl)L_ 1 + 2Loin(z4):/d2z4~(z4- zl)A(z4) (3.35) 

i. 2LoA = A. and this identity holds only if A has dimension 3" 

A similar formula can be written for M,  which has dimension 5/2, and thus we 
need to insert j ~ v ( z ) M ( z )  with v now having three zeros. Placing zeros at points 
Zl, z2, z3 we get 

= [ M 3 / 2 + ( z k - - z l + z k - - z 2 + z k  -- zs)M1/2 

-~ ((Zk --Zl)(Zk --Z2)-]-(Z k - - Z l ) ( Z  k - -Z3)-~(Zk  --Z2)(Zk -- z3) )M_I /2  

+ - - ) .  

(3.36) 

Now we consider correlation function: 

(w - z l)(w - z2)(w - z3)M(w)A(zl)A(z2)A(z3)  O_z/2A(z)  = O, 
oo 

(3.37) 
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with contour around infinity. Again, because all modes of M that enter in (3.36) 
kill the vacuum, the right-hand side of (3.37) is zero; we could detbrm the contour 
and obtain the identity: 

< (1 )n.> @1 - z2)(zl - z3) M_I/2A(zl)A(z2)A(z3) G-1/2A(z) 

+(z2 - zl)(z2 - z3) A(z l )M_t/eA(z2)A(z3)  G_a/2A(z) 

< (I )-'> +(z3 - zl)(z3 - z2) A(zl)A(z2)M_I/2A(z3) G-1/2A(z) 

+ ( n -  3)(A(zl)A(z2)A(z3)./ 'd2z4(z4 - zl + z 4 -  z2 + z 4 -  z3)I~1/2G-1/2A(z4) 

(1 >--,> 

.( J4-3/2G-1/2A(z4 -1/2 z = O. 

(3.38) 
Now we use relations (3.27), (3.28) and (3.29), and simply find that the last three 
terms combined lead to the integral of total derivative in z4. More concretely, we 
write L-1 = 0 and integrating by part in the last term of (3.38) using (3.29) 
we cancel contribution of X-1 from (3.28) in the previous term; similarly, after 
integration by parts, the second term from (3.28) kills the contribution of X0 from 
(3.27). 7 Thus, we drop these terms and replace M-1/2 by 1 - 7G-1/2. Combined 
with the identities (3.32) and (3.33) we see that - 3 I  = 0. This leads to the proof 
of the statement that our perturbation is truly marginal. It is very satisfying that 
we used many different aspects of the extended chiral algebra for this proof. 

3.2 Spin(7). We will follow the ideas described above for the case of G2 holonomy 
and first discuss extended symmetry for the sigma models on Spin(7) manifolds. 
This story is completely parallel to the previous case and so we will be brief. 

First we describe symmetry algebra in free field representation. As before, we 
take Spin(7)4-tbrm and replace e by target space fermions; thus we get a spin 2 
operator - -  X: 

2 = @s~ _ X + 1/20@s~ ,s. (3.39) 

7) The  t e rms  tha t  have been  ignored tmre are total  derivat ives only  if 2 L o A  = - 2 X o A  = A ,  

and this  condi t ion is exact ly  satisfied by our  choice of A. 
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Pleasantly we find that the operator T1 = ~-~ forms a Virasoro algebra with central 
1 and this means that the tri-critieal Ising model that we had in the previous charge 7 

case is replaced by the ordinary, bosonie Ising model as predicted at the beginning 
of this section. As before, we have to check the operator expansion with original 
N = 1 generators and we immediately find that .~ has a superpartner - -  M: 

= - + 1 / ( z  - (3.40) 

with 
3~/= j s #  _ ¢s K _ M + 1 / 2 0 j s ¢  s - 1 / 2 j s 0 ¢  s. (3.41) 

5 and will play the role of the operator M. It turns out This operator has dimension 
that these four operators, G, T, )~ and f4,  form a closed operator expansion algebra, 
which again is a quadratic W-type algebra. Corresponding formulas together with 
mode expansion are given in Appendix 1. From this extended symmetry algebra 
it follows that one can again decompose original stress-tensor as a sum of two 
commutative Virasoro generators 

T = T1 + Tr, (3.42) 

and we can classify our states again by two numbers: Ising model highest weight 
and the eigenvalue of the zero mode of T~: IAI, A~). 

In chiral (left-mover) sector above the observation immediately leads to the 
following content: 

10, At}, 2, A~.}, I 1 , A ~ } .  (3.43) 

This means that in the Ramond sector, where we have to have dimension of ground 
state equal to s _ 1 (this follows from the requirement of supersymmetry - -  16 2 '  
dimension of the Ramond ground state has to be equal to ~4) we should have the 
following highest weight states: 

1 
R :  5,0},  0 ,2}  , 1 7 } .  (3.44) 

Amazingly enough there is again a unique state in the gTound state built purely 
from the Ising piece, which is the [1 0) state. This will now play an identical role to 
that of spin operator of tri-criticat Ising model [~] that mapped Ramond ground 
state to NS sector and vice versa; the specific property this operator had was that it 
had unique fusion rules with itself and other operator from Ramond ground state. 
In the Spin(7) model this operator is replaced by the Ising model energy operator 
e = [½]; it has unique fusion rules and maps the Ramond ground state to a certain 
special NS highest weight states and vice versa: 
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Here we are using Ising model fusion rules: [c][e] = [0], [~] [cr] = [or], [a] [a] = [0] + [c], 
1 [cr] = [~].  The operator ( ~ ,  ~ )  has total dimension ~ and clearly is a candidate 

for marginal deformation after acting by G-l~2 on it. Again the fact that the di- 
1 is magical and related to the existence of spacetime mension of this operator is 

supersymmetry. 

In the Ising sector we have Z2 symmetry: cr --+ -or, 1, e -+ 1, e. We would like 
to show that corresponding ( -1 )  ~ is again identified with total ( - 1 )  F. As in the 
G2 case we have to compute Ising content of the generators of the chiral algebra. 
We have 

L_210, O} = }2,0) + + 10,2)+,X_210,0} = 12,0) +, (3.46) 

i-6> '~:~r-5/210'0} : a  1 + 1,~-~ + b  1 ,  39>- , (3 .47 ) 

and ,are had used the commutation relations from Appendix 1. Now we see that 
( -1 )  ~'r = ( -1 )  F. Thus we use the Ising model fermion number assignment. 

Let us now discuss non-chiral sector putting left and right sectors together. We 
claim that the content of R R  ground state is given by the following combinations: 

RR : ( 1 '  0)L; ( 2 '  0) R }' (0, 2 )L;  ( 0,12)R>' 

( 0 ' ~ ) L ; ( 1 - ~ ' 7 ) ~ 5 '  ( 1 ' 7 ) ; ( 0 ' 1 ) R 5 1 6 1 6  L ' ( l ~ ' 7 ) L ; ( l - ~ ' 7 ) R > "  
(3.4s) 

Other possible combinations can be ruled out by similar arguments as in the G2 case 
- -  using Ising model fusion rules they lead to existence of chiral half-integer spin 
operators that are not present in extended chiral algebra and thus such combinations 
can't appear in the ground state of a generic model. 

We now wish to connect the above states as much as possible with the coho- 
mology of the manitbld. As far as even degrees are concerned they come from the 
first, second and last state which all have ( -1 )  F = +1. Moreover we will connect 
all the NS versions of the last state with exactly margixtal deformations, and so 
as discussed in Section 2 there are 1 + b2 + b 4 of them. Moreover the condition 
of having exactly one supersymmetry means that the first state is unique. So the 
second states are as many as b6 + b +. The second and third state correspond to odd 
cohomology elements and each one are in number equal to b3 = bs. 

Using the unique analog of spectral flow the above content of (R,R) ground 
state after mapping to (NS,NS) sector due to Ising model energy operator leads to 
following special states 

(Ns,  x s )  : 
1 

(3.49) 
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As we already mentioned operator GL1/2GR1/2[(I~, ~6)L; (1~, ~6)R] is a candidate 
for marginal perturbation. Again we wish to show that the Ising structure is not 
affected by this perturbation. In other words we will show that this operator has 
zero dimension in Ising part. To demonstrate this fact we have to show that it is 
annihilated by )(o (again we will keep only chirat part in this computation): 

(3.50) 
1 G 1 

/5 is a null vector,/5 = 0, similar to the one in G2 case (3.26). We have for norm: 

= 1 7 1G _ - 1 

(3.51) 
: < 1  7 ( 2 L 0 - S X 0  + 12XoLo) 1 ,  7 >  : 0 .  

We used commutation relations given in Appendix 1 and relations: kT/+ = - ½ G _ ~ -  
M_n, 2Lo[~, r> = 22o11, r> = I% r>. So, we see that G-1/2[~, r ]  is of 
the type (0, 1) and if it is truly marginal it will preserve also extended Spin(7) 
symmetry. In addition we got a very important null vector that will allow us to 
prove exact marginality as in the case of G2. 

In fact, the only information from extended ehiral algebra we had used in 
the G2 case to prove exact marginality was null vector condition (relation between 
G_~/2A and M_I/2A) and commutation relation (3.27), (3.28), (3.29). Null vector 
condition t5 = 0 is practically the same (relative coefficient in /5  doesn't play a key 
role) and analog of (3.27), (3.28), (3.29) can be derived from the expressions in 
Appendix 1: 

f4~/2G-1/2A = -2XoA = - A ,  (3.52) 

2f/I_l/2G_l/2A ( 1L J~_l) A, (3.53) \ -  ~ --1 -- 

~(/I_a/2G_I/2A = -L-iX-1A; (3.54) 

GR [[ i we use the notation A = -1/2[vN, 7 ) L ; ( ~ ,  7)R] '  Now the argument presented 
in the case of G2 can be repeated identically with the same conclusion - -  our 
perturbation is truly marginal to all orders. 

§4,, Examples of Joyce 

Here we will study some of the examples constructed by Joyce [11]. We will review 
his description of some of his models. It will be clear from the construction that 
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the story is easily generalizable using the standard methods familiar from orbifold 
constructions [21]. Let us discuss a G2 example first (Example 4 of II in [11]): 
Consider T 7 modded out by Z23 where the generators of the Z2's we denote by c~, 
fl, q'. Let us represent each of them by a pair of row vectors: the hotonomy part  of 
these elements, which are simultaneously diagonal, by a row of 7 (&l) 's  and they 
are accompanied by shifts acting as translation on the torus which again is written 
by another row vector. We take each of the 7 coordinates xi of T 7 to have period 1. 
Then 

a = [ ( - 1 , - 1 , - 1 , - 1 ,  1, 1, 1); (0 ,0 ,0 ,0 ,0,0,0)] ,  

i 0,0,0,0,0)], /3 = [ ( -1 ,  - 1 ,  1, 1, - 1 , - 1 ,  1); (0, ~, 

~ = [(-i, i, -I, i, -i, i,-i); (i, 0, 0, 0, 0, 0, 0)] • 

Note that the above holonomies preserve ¢ defined in (2.1), and that they do not 
sit in an SU(3) group as there is no invariant direction. If we look at the untwisted 
Ramond sector, which can be identified with the cohomology elements of the torus, 
we see that of the cohomologies of the torus we project out all except for the H°,H 7 
which are one-dimensional and 7 in [I 3 and 7 in H 4. The 7 invariant elements 
precisely correspond to the 7 monomials in the definition of the forms ¢ (2.1) and 
• ¢ (2.2). It is straightforward to construct the 7 twisted sectors. However since we 
are interested in the topological aspects, let us concentrate on the sectors which give 
rise to new ground states in the Ramond sector. For this to happen there should 
be fixed points for the group action. It is easily seen that out of the 7 non-trivial 
elements only three have fixed points, namely ~, /3 and ~/. The fixed point set of 
a consists of 2 4 three tori, each of which has 8 cohomology elements (1,3, 3, 1). 
TO get the final answer we have to project to the invariant subsector under the 
action of the full group./3 and 7 act freely on this set and leave us with 4 invariant 
combinations of the 16 Ta's. So finally we have 4 copies of (1, 3, 3, 1) added to tile 
Ramond ground state from this sector. Similarly one can easily see that from the 
,3 sector after projection we get 4 copies of T a. As far as the structure discussed 
in the previous section is concerned, we can only say that we get a contribution to 
the b2 + b4 = 4 and to the ba + b5 = 4 from each of the total of 8 tori coming from 
the c~ and/3 sector. The 7 sector projected to its invariant fixed point set gives 8 
copies of Ta/Z2 ,  where the Z2 acts in the neighborhood of each of these Ta's by 

(y l ,y2 ,ya,  z l , z2)  -~ + y l , - y 2 , - - y 3 , z l , - z 2  , 

where yi denote the coordinates of the fixed T 3 and the zi denote in complex notation 
the orthogonal direction (which by the action of V goes to minus itself). Of the 
cohomologies of each of these Ta's from the above Z2 action only two elements 
survive, two in odd and two in even cohomology; so we get from the total of 8 tori 
the addition of 16 to b2 + b4 and addition of 16 to b3 + b5 from the V sector. If we 
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put the contributions of all the sectors together we find 

b0 = 1; b2 -t- b4 = 55; b3 + b5 = 55; b7 = 1. 

As noted in the previous section we must thus have a 55-dimensional moduli 
space: 7 of the moduli come from the untwisted sector and correspond to the 7 radii 
of T 7. The other 48 come from blow up modes in the twisted sectors. As proven 
in the previous section all these deformations are exactly marginal. Just  to give 
a better  feeling for how the algebra discussed in the previous section fit with the 
geometry, let us describe the untwisted moduli. The pr imary supereonformal field of 
dimension 1/2 which correspond to the untwisted moduli are nothing but the ~i for 
i = 1 , . . . ,  7. From equation (3.3) we see that ¢~ has under X0 the eigenvalue - 1 / 2  
which implies that for the tri-critical part  of the energy momentum tensor, it has 
eigenvalue - X o / 5  = 1/10 as predicted by the analysis in the previous section. Note 
that we see the eruciM role played by the normal ordered terms in the definition of 
X,  which is responsible for giving ~i a tri-critical dimension of 1/10 rather than 
zero. Also note that when we take G_~/2~ i = OX i = J i ,  it is easy to see that it 
thus commutes with 32o. This in particular means that the tri-critical dimension of 
it is 0, again a fact proven in full generality in the previous section. 

Note that as emphasized in the previous section, physically we cannot identify 
b2 and b4 separately. Amazingly enough this structure is reflected mathematically 
and gives a first non-trivial example of our generalized mirror conjecture: there are 
inequivalent ways the singularities can be resolved to give manifolds with different 
Betti numbers, but in all these cases b2 + b4 is the same. More precisely Joyce found 
that depending on how he desingularizes the manifold 

b2 = 8 + l; b4 = 47 - l, 

where 1 runs from 0 to 8. These different ways of resolving the singularity have to 
do with the fact that, when one desingularizes the fixed tori of ~/action, there are 
different ways the Z2 that  we have to mod out acts: more precisely, the desingu- 
larization can take place using the Eguchi-Hanson space which is T* (CP 1) (as the 
orthogonal direction is locally Ra/Z2). But the Z2 written above can act in two 
different ways on the resolved space. I f  we let z be the coordinate of CP 1, then 
the involution acting on T*(CP 1) can come from z ~ - z  or z ~ 3. In the first 
case we get a contribution to Ab2 = 1 and Ab3 = 1, and in the other case we get 
Ab2 = 0 and Ab3 = 2. In either case in the limit of shrinking down the sphere 
we get the Z2 action above after appropriate redefinition of coordinates. It turns 
out that even though there are 2 ways of doing the desingularization for each of 
the eight tori, there are only 9 inequivalent Betti numbers which are listed above. 
But we know physically (from the conformal theory perturbations discussed in the 
previous section) that tile moduli space is smooth near the orbifold point and so 
at most  the difference between these answers has to do with turning on different 
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marginal operators. Thus we see that topologically distinct manifolds, as allowed 
from the ambiguity of decoding b2 and b4, give rise to the same conformal theory 
(up to moduli deformation) as suggested by the generalized mirror conjecture s. 

Actually there is one subtlety which needs to be considered: we have assumed 
that there is a unique orbifold theory. However there is the possibility of turning on 
discrete torsion [25] and thus we could have inequivalent orbifold theories. In the 
above example we could for example turn on a discrete torsion between two of the 
Z2's. However in the case of Z2 torsions this does not lead to a new theory (and in the 
case of Calabi-Yau gives a simple example of mirror symmetry).  However if instead 
of Z2's we had Z~'s, the story would have been different. Indeed in that case we 
expect inequivalent theories at the orbifold points related to each other by turning 
on a discrete torsion. In such a case one would Mso expect that geometricMly there 
should exist inequivalent ways of resolving the singularity - -  but here one would 
not expect them to preserve b2 + b4 because the underlying conformal theories are 
different. This prediction has been confirmed by a local model for the Z~ x Zn 
singularity replacing the Z2 x Z2 above [24]. In that case one finds that there are 
n - 1 different choices of resolution which lead to ~b2 = 0, Ab4 = 2 and one choice 
where Ab2 = Ab4 = n - 1. It  is easy to check in the conformM theory computation 
that the turning on of the n - 1 different possibilities for discrete torsion lead to 
the first answer and no discrete torsion leads to the second answer, thus confirming 
the correspondence between eonformal theory and the geometry of G2 holonomy 
manifold. 

There are other classes of examples of G2 holonomy manitblds constructed by 
Joyce. One particularly generM construction he suggested is to start  from a CMabi- 
Yau three-fold M which has a real involution (an involution which locally looks like 
z -+ z*). This would be the case for example if one considers algebraic varieties 
with real coefficients in the defining equations. Then one may obtain a G2 holonomy 
orbifold by considering 

M × S  1 

Z2 ' 

where Z2 sends M -+ M* and is a reflection on the circle. It is clear that the 
holonomy of this Z2 (4 ( -1 ) ' s  and 2(+1) 's)  preserves supersymmetry  and thus leads 
to a G2 holonomy manifold. There are orbifold singularities which as we know 
physically are harmless. It  is tempting to speculate that, using this construction, 
one can interpolate between Calabi-Yau mirrors by going through points on the 
moduli space of the G2 holonomy manifold where b2 and b3 change but their sum 
does not change. 

S) One may be tempted to identify this with the flop phenomenon for which distinct manifolds 
(albeit with the same hodge numbers) are part of the same moduli space of conformal the- 
ory [22], [23]. However, even though there are analogs of flop phenomenon for G2 manifolds, 
this is not one of them [24]. 
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The examples of (7) holonomy manifolds proceeds very similar to the above, 
and so we just summarize the main features. Again one starts with an 8-dimensional 
torus and roods out by some isometries, the simplest of' which is Z 4 and resolves 
the singularities to obtain a smooth 8-dimensional manifold of Spin(7)  holonomy. 
Again one sees that there are inequivatent ways to desingularize manifolds but  all 
have the property that they lead to the same sum for the even cohomology elements 
and for the odd cohomology elements, as predicted from the conformal theory view 
point. These examples therefore provide further evidence for the generalized mirror 
conjecture. 

§5. Topological Twist 

In previous sections we have shown that G2 and Spin(7)  compactifications are 
very similar to N = 2 superconformal theories corresponding to S U ( n )  or N = 4 
corresponding to Sp(n)  holonomy. In particular they both lead to N -- 1 spacetime 
supersymmetry upon heterotic compactification. In N = 2 (and similarly in the 
N = 4 [26]) there is a topological side to the story, which is deeply connected to 
spacetirne supersymmetry in the compactified theory. Basically the spectral flow 
operator, which is the same operator used to construct spacetime supersymmetry 
operator is responsible for the twisting. Twisting is basically the same as insertions 
of 2g - 2 of these operators at genus g. The spectral flow operator is constructed 
entirely out of the U(1) piece of the N = 2 theory and since the spectral flow 
operator can be written as 

(7 = exp( ip /2 )  J = ap, 

the twisting becomes equivalent to modifying the stress-tensor by 

02 p 
T-+T+ - -  

2 ' 

where J is the U(1) current of N = 2. With this change in the energy momentum 
tensor the central charge of the theory becomes zero. Once one does this twisting 
the chiral fields which are related by spectral flow operator to the ground states of 
the Ramond sector become dimension 0 and form a nice closed ring known as the 
chiral ring [2]. Given the similarities to N = 2 we would like to explore analogous 
construction for G2 and Sp/n(7). In the N = 2 case the main modification in the 
theory was in the U(1) piece of the theory. Therefore also here we expect the main 
modifications to be in the tri-critical Ising piece for the G2 and in the Ising piece 
for the Spin(7)  case. 

Let us concentrate on the sphere. As noted above abstractly, on the sphere one 
can define twisted correlation functions by insertion of two spin fields (~r~ in G2 
case and or! in Spin(7)  case) in the NS sector: 

2 

<vl(z l ,  (zn, = 
(5.1) 
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Let us check this idea by bosonizing the Ising sector. First  we discuss G2. 
Bosonized tri-critical Ising supercurrent  and stress-tensor have the form 

3/ ~p 
= ~ , ( 5 .2 )  

1 2 
X = (0~)~ + ~--/~0 ~. (5.3) 

At the same time we can write down the chiral primaries in terms of boson ~: 

[o] = I ,  (5 .4)  

= ~ ~ , (5 .6)  

= e ~  , (5 .7)  

= e ~ - ~  ~ .  (5 .8 )  

Background charge is - 2 a o  - 1 and one can check that  central  charge is correct  

c --  1 - 2 4 . ~  = 5 .  I n s e r t i o n  of  sp in  fields accord ing  to  (5 .1)  and (5.7)  is equ iva lent  
to  a change in background charge - 2 a o  -+ - 2 0 o  - 3 and thus the new stress- 

tensor that  replaces X is Xt~, = (0~)  2 3 2 - ------ 1 - - 7 - ~ 0  ~ with central  charge ct~ 

24&02 _- 98 If  we compute  total  central  charge (we don ' t  touch the remaining sector - - ' f~ .  

T~ by our twist) since the central  charge of TT. is equal to 21/2 - 7/10 = 98/10 and 
we have not  changed it by  the twisting we get: ct~ist = - 9 8 / 1 0  + 98/10 -- 0. This is 
indeed remarkable! It  is the s trongest  hint  for the existence of a topological theory. 
Obviously, before twisting we have a minimal model  and correct  vertex operators 
are given by above formulas dressed by screening operators (see [27], [28], 29]); 

5 2 At the same time after twisting screening charges are: a +  -- 2v~' a _  - v~" 
we get a model  which is not  a minimal model  and if now correlation functions of  
above operators aren ' t  non-zero they can ' t  be screened. Thus,  after twisting when we 
calculate correlation functions we could forget about  dressing by screening operators 
and do just  naive computat ion.  This simplifies the story. Vertex operators are the 
same, but  their dimensions are now different. We ha~e 
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Note that in particular we learn that the special states we get in the NS sector have 
total dimension zero in the topological theory: 

- g , g } ,  

which is what one would expect of topological observaSles. Moreover they do seem 
to form a ring under multiplication. This can be checked explicitly for example 
for the untwisted moduti of the toroidal compactification discussed in the previous 
section. Concentrating on left-movers, the states of the first type are written as ~i for 
i = 1 , . . . ,  7. Now under naive product between the g?i there would be poles because 
of contractions, but one can see that they do not contribute to the topological 
amplitude because they fail to cancel the background charge in the topological 
theory. In fact the ring they form in this case is 

(¢icjck} = fijk, 

where f i j a  are defined by (I) = -  fijk~i~)J~ 'k (note that the 6/10 states above are 
nothing but the quadratic fermion terms). 

The expressions for the shift in the dimension of the tri-critical piece together 
with the fact that we have already discussed the tri-critical content of the generators 
of the chiral algebra means that we can deduce their twisted dimension. We find that 
they all have shifted to integer dimensions, another hallmark of topological theories: 
G - d i m . l ,  ,~ - d im.O,  M - d i m . 2 ,  plus we got dimension 1 bosonic operator K.  
Thus, after twisting, G is a candidate for BRST current of the topological theory 
and M "-- for antighost. To prove the last statement we need to show that OPE's  
of G with itself, as well as M with itself don't  have simple poles (or at least do not 
contribute to the amplitudes) and in addition, G with M have the modified stress- 
tensor as a residue of simple pole. This would need to be verified. It should also 
be verified that with this sense of topological BRST invariance the above special 
states in tile NS sector indeed are BRST invariant. 

It is not difficult to repeat above procedure for the case of S p i n ( 7 ) .  Bosonized 
Ising stress-tensor has the form: 

2 = 2 + (5.12) 

and chiral primaries are: 

[0] = ±, 

= e ~  , (5.14) 

N = " ( 5 . 1 5 )  
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Background charge is -2c~0 - 2~/gI and screening charges are a+ - 2~'3 ~_ _ 

2 Bosonized vertex operators are given by above expressions dressed with nl 

screening charges of type ~+ and n2 of the type (~_. Insertion of spin fields or! 
2 

according (5.1) in the picture with nL -- 6,n2 -- 2 is equivalent to a change in 
background charge -2(~o -+ -2&0 - 5 9 Thus, the new stress-tensor is given 2~/5" 
by_~tw = ((9~)2+~-~c92~ with central charge ~u~ = i_24(~02 _ -~-'23 If we remember 

i 23 and it has remained unchanged under that the central charge of T~ was 12 2 - 2 
our twist we will find another remarkable coincidence: total central charge after 
twist is 0! Now we can check other properties discovered above for the case of G2. 
Vertex operators remain the same (5.13), (5.14), (5.15), but now they have different 
dimensions: 

[- -7-]'16 (5.I7) 

So, special states we had in NS sector have total dimension zero in the topological 

theory: 

7 7 (5.19) 
16' 16/ 

Also, one can use relations (3.47) and show that the dimensions of fermionic oper- 
ators G and 1~/are shifted properly: dim.G = 1, dimSI = 2. This means that once 
again G is a candidate for the BRST current and f / - -  for antighost. 
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9) Note that in G2 case we had used nl : 0, n2 = 0 picture,  which was the minimal solution 
in that case. 
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Appendix 1 

Below we give the result of computations mentioned in the Section 3 and con'e- 
sponding mode expansion. 

For OPE we have: 

3 
a(z)Z<(w) - (z _ ~,)2 ~ (w)  + 

G(~)M(~)  - 

+(~)K(~) - 

9 +(~)M(~)-  2 

X ( z ) K ( ~ )  - 

X ( z ) M ( ~ )  - 

z 1 - W ( 4 : G ( w ) X ( w ) : - ~ O M ( w ) - 3 0 2 G ( w ) )  

21 6 
K(z)K(w)-- ( z -w)  4 + (z -w)  2(X-T)(w)+ 

3 
z ± O(X - T)(w) 

15 11 1 
K(z)M(w)- (z_w)~(w)  2 ( z -w)  20a2(w)+ 

3 
(: c ( ~ ) K ( ~ )  : + 2 :  T(u,)~(w):) 

Z - - W  

35 1 
l~(z)2¢I(w) - -  (z - -  w) 5 -f (z - -  w~ (20X - 9T)(w)+ 

1 (IOOX 9 1 

3 O2T(w)-4  : G(w)M(w) : + 8 :  T(w)X(w) : ) 

1 1 5 1 t rln [ \ )l ~ [ ~ [ m  / \ + M(w) _ ~ t z ~ j  - 2 (~ - ~)~ ~ t ~ J  2 ( ~ -  ~)~ + 

In the case of Spin7 algebra looks simpler: 

1 
a~, (1.1) 

Z - - W  

7 1 1 1 
2 ( z -  w)~-F ( z -  w) ~ ( T q - 4 X ) ( w ) +  z-wOX(w) (1.2) 

3 G(w)- 3"-~(M + ~OG)(w) (1.3) 

( z  _ ~ ) 2  ~ _ 

3 3 
(z _ ~)~ K(w) + z - w  (: a (w)e (w)  : - 0 K ( w ) )  (1.5) 

9 1  G(w) I (5M÷~OG)(w) - I -  
2 (~ - ~w)3 (z _-~)2 

( 1 . 6 )  

(1.7) 

(1.8) 

(1.9) 

OM(w). (1.10) 
Z - - W  

2 = ¢ %  - x + 1/20~/~8¢ 8 (1.11) 
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= js(p  _ c s  K _ M + 1 / 2 0 j s ¢  s - 1 / 2 J ° 0 ¢  ° (1.12) 

f ( ( z ) f ~ ( w )  = 16/(z - w) 4 + 16/(z - w ) 2 X ( w )  + 8 /@ - w ) O X ( w )  (1.13) 

T ( z ) X ( w ) 2 / ( Z  -- ~jj)4 ~_ 1 / (Z  -- W)2(.~(~J2) "~- X(z))  (1.14) 

G ( z ) f ( ( w )  = 1/2(z - w)2G (w)  + 1 / ( z  - w ) M ( w )  (1.15) 

G ( z ) M ( w )  -- 4 1 1 
(z - w) 4 (z - w)  2 ( T ( w )  - 4X(w)) + z - w  8X(w)  (1.16) 

X ( z ) M ( w )  = - 1 5 / 2 ( z  - w)SG (w)  - 1 / ( z  - w ) 2 ( 1 5 / 4 0 G ( w )  - 

82~(w)) + 1 / ( z  - w ) ( 1 1 / 2 0 , ( l ( w )  - 5 / 4 0 2 G ( w )  - (1.17) 

6: c(~)2(~):) 
M(z)Y(f(w) = - 6 4 / ( z  - w) 5 - 1/(z - w)3(15T(w) + 3 2 X ( w ) ) -  

1/ (z  - w ) ~ ( 1 5 / 2 0 T ( w )  + 1602(w))- 
1/ ( z  - w) (5 /2c92X(w)+ (1.18) 

5/202T(w) + 12: T(w)f((w) : - 6 :  G(w)~f(w) :) .  

Now, if we use mode expansion for our generators B ( z )  = B n z  - n - A ,  where 
A is a dimension of operator B, we have (we use the normal ordering prescription 
: A B  :~= Ep<-zxA-I  ApB~_p  + ( - 1 )  A" EB>_AA B~_vAv):  

1 
= - ~ - n ,  K + = - K _ ~ ,  M ~  = ~ G _ , ~  - M_~ 

{ O n , e r a }  = _ 1  5 

21 .n3 = ~ (  - n ) ~ + ~ , o  + (n - .~)n~<+~ 

_ ~ ( n 2  + 6Xn÷~ 

35 .n3 = ~ (  - ~)a~+.~,o - 5(~ - m)X~+~,~ 

= - ~ 4 ( ~  ~ - ~)a~+,~,o + (~ - ~n)X~+.~ 

: Kn+ m 

= (2n - m ) ~ + . . .  

= - ~  n + ~ G~+,,~ + M ~ + ~  

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 
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- 5 )  ~+.~,o+ 

1 
(?t -{- ~)Ln+m q- ( 3 n -  m)Xnq-m (1.30) 

1 G - 3 ( m  - n + 2 )  n+.~ 3Mn+.~ (1.31) 

{~n, M r r ~ } : ( 2 n - 5 m - 1 - - 1 4 ) K n + m - 3 : G ~ : n + m  (1.32) 

[x~, K.~] = 3(.~ + 1)K~+~ + 3: Om :n+~ (1.33) 

E~, M~ = E ~  + ~)(~ + ~)-~-( ° + ~  + ~)(~ +~  + ~-)] ~ + ~ -  

[5(n ÷ 1 ) -  ~(n  + m + Mn+m + 4: GX :n+m (1.34) 

[Kn, t(m] = - ~ ( T t  3 - ?7,)(~n+m, 0 q- 3 ( n  --  m ) ( X n +  m - nn+m) (1 .35)  

[K~,Mm] = ( n + l )  n + m + ~ - --~- 

- 6 : L ~  :~+.~ (1.36) 

{M,~,M,~}=_a5(n2 1 9 5 [3(n+m+2)(n+m+3)- 

3 X 9 3 ( m ÷ 3  

- ~ ( n + m  + 2)(n + m + 3) L~+m - 4: G M  :n+m + 8 :  L X  :n+.~. 

We have similar equations for the case of Spin(7). Operator kT/ again has 
nonstandard conjugation property 

i~7I + = --1G - ~7I n, (1.38) 2 --n 

and commutation relations are given by: 

16 (n a [Xn, X~] = T - n)5,~+,-<o + 8(n - m)2~+,~, (1.39) 

[Ln, fl~Tm] = 1 ( n 3  - n)an+m,O + (rt - m)~fn+m, (1.40) 

l ( n ÷ l ) G n + m ÷ M n + m ,  (1.41) 

2 _ I  (n 3 5  - ~) n~m,o ( n +  1 L 

+ (an - m)2n+m, (1.42) 
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5 G [)~n, ~/rn] = 1) + 7 )  - 4 

[8 (n+  1 ) + l @ ( n + r n + ~ ) ] M ~ + m - 6 : G f f : ~ + m ,  (1.43) 

7 (n+m + 2)(n + m  + 3) L~+m+ 

[16(n + ~)  (m + ~ ) -  (1.44) 

7(n + m + 2)(n + m + 3) 2~+~ +12 : L 2  :~+.~ - 

6 : G ~ / : ~ + ~  . 

Appendix 2 

First, let us note that from commutation relations, given in Appendix 1, and (1.19), 
(1.38) we could derive following identities: 

IM_1/2(0, 0)12 = (0, O)*M,t/2M_l/2(O, O) = O, 
(2.1) 

I~_~t~(o,  o)12 = (o, O)* ~2M_~t~(O,  O) = O, 

t~<i~(0, 0)1 2 = (0, 0)*~Si~2FS_lf2(0, 0) = 0, 
(z.2) 

1~_312(0, o)1 ~ -- (0, 0 ) * ~ 2 M - 3 1 2 ( 0 ,  0) = 0. 

These identities are necessary because as we had already seen operators M and 2b/ 
have nonstandard conjugation properties and in principle M_U2 , M 3/2, ~I-1/2, 
~/-3/2 might not annihilate the vacuum. But we see that they do. 

Finally, we will show the validity of (3.18), (3.19), (3.46) and (3.47). First two 
identities in (3.18) and (3.46) are obvious and to derive the last one in (3.18) and 
(3.19) ((3.47)) we have to apply zero mode 7'0 / 1 (2~0 r = ~ ~ = - g X o  gXo) to the left 
hand side: 

1 G _ XoG_ t lo, o) : -i-d o) 1M_ I Io, o) 

1 
= i~G_~t~lo,  o), 

g12oC_a/~ Io, o) = 1-61 G_al2 10,0) + ~-M at~i0, 0) = 

1 
= g~a_al~lO, o). 

(2.3) 

(2.4) 
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Here we used (2.1) and (2.2). Another useful relation is (1.29) (for Spin(7) - -  
(1.41)) which leads to: 

M-5/uIO, 0) = - X _ 1 ~ _ 3 / 2 1 0 ,  0) - ~L-aG_3/210, 0) = 

= ( _  1L 
(2.5) 

~/-~/210, 0) = -)(-1G_3/2}0, O) + ~L-~C_3/210, 0) = 

For K_2[0, 0} we simply use: 

(2.6) 

K_21o, 0) = e-1/ G-a/ Io, o). (2.7) 

From (2.3) and (2.4) it follows t h a t  G_3/210,0) is a linear combination of I 1 ,  14 
(I ~ ,  g})2s and 10, 3}, but latter can be excluded because there is no hMf-integer chiral 
spin ~ operator in the T r sector of our theory. Thus, G_3/210,0) = I~,  ~ )  and 
relations (3.18), (3.19), (3.46) and (3.47) are consequences of above computations. 
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