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Short term electric load forecasting with a neural 
network based on fuzzy rules is presented. In this 
network, fuzzy membership functions are represented 
using combinations of two sigmoid functions. A new 
scheme for augmenting the rule base is proposed. 
The network employs outdoor temperature forecast 
as one of the input quantities. The influence of 
imprecision in this quantity is investigated. The 
model is shown to be capable of also making 
reasonable forecasts in exceptional weekdays. Fore- 
casting simulations were made with three different 
time series of electric load. In addition, the neuro- 
fuzzy method was tested at two electricity works, 
where it was used to produce forecasts with 1- 
24 hour lead times. The results of these one month 
real world tests are represented. Comparative fore- 
casts were also made with the conventional Holt- 
Winters exponential smoothing method. The main 
result of the study is that the neuro-fuzzy method 
requires stationarity fi~om the time series with 
respect to training data in order to give clearly 
better forecasts than the Holt-Winters method. 

Keywords: Forecasting; Membership 
Neuro-fuzzy system; Neural network; 
fine-tuning, Rule-based system 

function; 
Rule-base 

1. Introduct ion 

A well known fact is that electric energy cannot be 
stored efficiently using current technology. There- 
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fore, knowledge of how the electric load will behave 
in the future is precious information for electricity 
works and power plants. In power supply manage- 
ment in particular, load forecasts are used to ensure 
economical and reliable operation. These forecasts 
are made for time-spans of different lengths, which 
vary from a few minutes to over 20 years. Very 
short term forecasts for a few minutes ahead are 
used in the minute-to-minute allocation of loads for 
the benefit of the generating units. Short term fore- 
casts from one hour to a day or so are used in 
managing the unit commitment, which means plan- 
ning and controlling the start-up and shut-down 
scheduling of the generating units. Unit committing 
is carried out to ensure that there is a sufficient 
amount of generating capacity to meet the varying 
load. These forecasts are also used in planning 
the buying and selling of energy in interconnected 
systems. Medium and long term forecasts are made 
from several days to several years ahead. These 
forecasts are used in system planning, which con- 
cerns building new generators and transmission lines. 
In this paper, we concentrate on hourly Short Term 
Load Forecasting (STLF) within the window from 
1 to 24 hours. 

Short term load forecasting is a subject that has 
been studied extensively, and several different 
methods have been developed during the last few 
decades. These different approaches have been dis- 
cussed and compared with each other [1,2]. Conven- 
tional statistical forecasting methods can be divided 
into time series and regression methods. An excel- 
lent discussion of conventional STLF models is [3]. 
In the time series models, the prediction is based 
on the past values and prediction errors of a variable 
[4-7]. In methods based on simple or multiple 
regression, the relationships between some inde- 
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pendent variables and the dependent variable are 
modelled [8,9]. These relationships are estimated 
from the past values of these variables, and they 
are used to forecast the dependent variable by using 
the future evaluations of the independent ones. How- 
ever, load demand has multiple determining factors 
which have complex inter-relations. This is a sig- 
nificant drawback for regression models, since they 
assume linear relationships between the explanatory 
variables and the dependent variable, but in practise 
these relationships are more or less nonlinear. As 
an alternative solution to conventional forecasting 
methods, expert systems have also been successfully 
applied [10-13]. The advantage of expert systems 
is that one does not have to make any assumptions 
about the linearity or nonlinearity of relationships 
prevailing in the system of interest. Instead, the 
rules in expert systems are collected from human 
experts who themselves are capable of making intel- 
ligent forecasts. This requires that the expert is able 
to represent his or her knowledge so that it can be 
programmed into a computer. However, program- 
ming and rule production of an expert system can 
take a great deal of time and co-ordination. 

Another interesting information processing para- 
digm is offered by artificial neural networks. These 
self-learning algorithms were applied to electric load 
forecasting for the first time by Dillon et al. [14]. 
Recently, numerous applications in load forecasting 
that apply neural networks have been proposed [15- 
36]. Neural networks can be used in modelling the 
complex nonlinear relationships between the electric 
load and its determining factors like the load history 
and weather variables. Prior knowledge or assump- 
tions about the characteristics of the relationships 
are not needed when neural networks are applied. 
This is because they can learn and capture relation- 
ships between input data and observed outputs by 
themselves from a set of examples. This set is called 
'training data', which consists of input-output pairs 
that are typical for the system of interest. During 
training, the input-output pairs are represented to the 
network and its parameters are adjusted iteratively so 
that the total sum of errors (i.e. the differences 
between the network output and the desired output) 
for the training data will be minimised. When the 
error is small enough, the parameters are fixed and 
the training is finished. Generalising the depen- 
dencies in the set of examples, the network can also 
produce correct outputs for input patterns that are 
not included in the examples. As the concepts of 
fuzzy sets and inference are incorporated into arti- 
ficial neural networks, the result is a fuzzy neural 
network or neuro-fuzzy system. These systems form 
an input-output mapping that is based on fuzzy 

rules which can be expressed with linguistic and 
imprecise statements. The system produces its output 
according to an inference mechanism, which is based 
on the roles extracted from the set of examples. In 
the last few years, neuro-fuzzy systems have been 
applied, for example, to nonlinear time-series predic- 
tion and electric load forecasting [37M4]. 

In Sect. 2 we give a detailed description of a 
conventional time-series forecasting method, Holt-  
Winters exponential smoothing. In Sect. 3 we 
describe a modem neuro-fuzzy method. The neuro- 
fuzzy model is a learning system that generates 
the roles automatically using example data as the 
initialisation data. Moreover, the approximation of 
triangular membership functions with sigmoid- 
triangular membership functions is described. In 
Sect. 4, we propose an algorithm which determines 
whether or not the rule base should be augmented. 
The results of the forecasting simulations and real 
world test-runs are represented in Sect. 5, and they 
are discussed in Sect. 6. Finally, in Sect. 7 we give 
concluding remarks and suggestions for further 
research. The OLS-algorithm and formulas for 
optimising the parameters of the rule-base are 
presented in Appendices A and B. 

2. Holt-Winters  Method 

The Holt-Winters method belongs to a class of 
autoprojective forecasting techniques. This means 
that in forecasting the future values of the time 
series, previous values of only the same time series 
are used. The Holt-Winters method is a modification 
of the exponential smoothing technique, in which a 
forecast is computed as a weighted sum of previous 
time series values. Exponential smoothing can be 
applied merely to stationary time series. However, 
the Holt-Winters method is developed to cope with 
nonstationarity, seasonality and trend by estimating 
these properties and employing these estimates in the 
forecast. In addition, all the estimates are updated as 
the time evolves and as new time series values 
become available. 

The estimates of mean, trend and seasonal compo- 
nent are scalars. The seasonal component is the 
deviation from the mean which is typical for each 
moment of the season. In the following, we use the 
notation x(t) for the time series value, m(t) for the 
estimate of the mean, r(t) for the estimate of the 
trend and s(t) for the estimate of the seasonal devi- 
ation at time t. First we have to find the starting 
values for these quantities, i.e. the values for m(0), 
r(0) and s(-d  + 1), s ( -d  + 2), ..., s(0), where d is the 
length of the season. If the first forecast is to be 
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made for time t = 1, the time series values from k 
preceding seasons are needed to initialise the esti- 
mates. Thus, the time series values which are used 
in initialising the mean, seasonal components and 
trend are denoted Xinit = { x ( - k d +  1), x ( - k d + 2 ) ,  
..., x(0)}. The estimate of the mean is initialised 
simply as the mean of Xinit. 

1 0 
re(O) : ~ ~ x(i) (1) 

i=-kd+ 1 

An initial estimate for the trend can be calculated, 
for example, as the difference between the mean 
values of the last two seasons divided by the length 
of the season, which can be written 

r(O) = [l x(i) - ~ x(i) (2) 
.=_ i=-d+l ~ 2 d +  1 

The initial values for the seasonal component 
s ( - d  +j )  can be calculated as the average deviation 
from the mean m(0) at corresponding instants 
t = - k d  +j ,  - ( k -  1)d +j ,  - ( k -  2)d +j ,  ..., - d  +j ,  
which is 

1 
s ( - d  + j )  = ~ ~ ( x ( - l d  + j )  - m(0)) (3) 

/=1 

where j = 1, ..., d. 
When all the necessary variables and parameters 

are initialised, a forecast 2( t+ h) can be made h 
steps ahead, according to the formula 

2(t + h) = m(t) + hr(t) + s(t - d + h) (4) 

As can be seen from the above equation, the forecast 
is the sum of the estimates of the mean, trend and 
seasonal components. For some time series it would 
be more convenient to assume that seasonal effects 
are multiplicative instead of additive, but in the case 
of electric load data, the assumption of additivity 
is preferable. 

As more measurements x(1),x(2), ... become 
available, the estimates for m(t), r(t) and s(t) are 
updated according to the formulas 

m(t) = oz(x(t) - s(t - d)) 

+ (1 - c0 ( m ( t -  1) + r ( t -  1)) (5) 

s(t) =/3(x(t) - m(t)) 

+ (1 - /3)s( t  - d) and (6) 

r(t) = y(m(t) - m(t  - 1)) 

+ (1 - v ) r ( t -  1) (7) 

where d is the length of the season. 
Before the Holt-Winters method can be used, 

the three parameters in Eqs (5)-(7) that control the 
adaptation speed have to be determined. These para- 
meters are denoted as c~, /3 and 3/(0 < c~, /3, y < 1), 
and they correspond to the adaptation speed of the 
estimates of mean, seasonal components and trend, 
respectively. Because there is no analytical technique 
to solve the optimal values of c~, /3 and y for a 
given time series, they must be determined by trying 
different combinations. Nevertheless, a systematic 
search is quite fast due to the simple nature of the 
Holt-Winters method. In addition, the accuracy of 
the forecast is not very sensitive to small fluctuations 
in parameter values c~, /3 and y. The nearly optimal 
values for these parameters can be found by 
discretising their continuous range of variation and 
searching through the whole discrete parameter 
space. A suitable discretisation step was found to 
be 0.1 for all three parameters. If we use 10 values 
0.05, 0.15, 0.25, ..., 0.95, we end up with 103 
different combinations of parameter values. For each 
combination, one step forecasts are made for a time 
series segment t = 1, . . . ,  N, which follows immedi- 
ately after the initialisation segment. The average 
forecasting error E is the average of the squared 
errors of one step forecasts 

E(O(i)) = ~ (2(t;O(i)) - x(t)) 2 (8) 
t = l  

where O(i) denotes the parameter combination 
{%/3i, Yi}. In this method, the parameter combi- 
nation that yields the smallest E is chosen. 

3. Neural Network with Fuzzy 
Hidden Neurons 

In this method we construct a network of fuzzy 
rules which is capable of learning the relationships 
between explanatory variables and target variables 
from the measured data. Because this method 
belongs to a class of connectionist methods, we call 
the vectors of explanatory variables the input pat- 
terns and the target variable the output. The network 
has a predetermined feed-forward structure with a 
large number of free parameters. The input patterns 
are fed into the network, a series of computational 
operations occurs in the network, and it produces 
the output. This output depends only on the input 
pattern and on the parameters of the network. The 
network is trained with a set of input-output pairs, 
which constitutes the training data. 

The training is an iterative procedure in which 
the parameters of the network are adjusted to make 
it produce the desired output for each input pattern. 
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The training must be done iteratively, because the 
functions in the network are highly nonlinear, which 
is why there is no method to solve the optimal 
parameters directly. At each iteration, adjustments 
made to the parameters are relatively small. Because 
of this, the training data has to be presented to the 
network several times. One presentation of the whole 
training data is called an epoch. Once the network 
has learned to produce the desired output with a 
satisfactory accuracy for all the input patterns, or 
when the learning has stopped, the parameters of 
the network are fixed. With these parameters the 
network should be capable of producing reasonable 
outputs not only for those input patterns that were 
in the training data, but also for such unseen patterns 
that were not included in that data set. 

The parameters of the network determine the rules 
by which the network produces its output. A rule 
consists of a partial condition for each input variable 
and a consequence. The fulfilments of the partial 
conditions are combined to measure the fulfilment 
of the whole condition. The structure of the network 
of fuzzy rules is presented in Fig. 1. The objects 
depicted as circles are called neurons. The inputs 
are connected directly to  the fuzzy neurons, and the 
output neuron produces the output of the network. 
The output of a fuzzy neuron corresponds to the 
fulfilment of the condition being unity if the whole 
condition is 100% true, and zero if it is not true at 
all. Depending on the degree of fulfilment of the 
condition, the output of a fuzzy neuron can get 
values in the continuous range [0, 1]. 

The function of a fuzzy neuron is depicted in 
Fig. 2. It contains a triangular membership function 
for every input variable shown. The membership 
function can have values between 0 and 1. The 
condition implemented by a fuzzy neuron in Fig. 2 
can also be expressed in the following linguistic 
form, 

If x~ is about 2 and x2 is about 3 

and x3 is about 1, then ... 

c o n d i t i o n  1 ~. - c o n s e q u e n c e s  

input 1 x 1 ). ~ ~  ~ ~ [ [ t  

i n p u t  p x p  

--~- 0.5 x 1 ~ ~ ~  \ w = activation level ,% 
-2 ~ _ _ ~ X ~ ~  3__~_~, ' w = 0 5 x  0 3 6 x  10 = 01~ 

K . . . . .  l.O 
/ I,I . . . . .  ~ ..' membership function 

x 3 ~ ~ for each input variable 
0 1 2 3 4~3  (par t ia l  c o n d i t i o n s )  

~ W  

Fig. 2. Structure and principle of the function of a fuzzy neuron 
with three inputs. 

The condition of each rule consists of several partial 
conditions which are specifed using membership 
functions. The fulfilment of the whole condition is 
the product of the fulfilments of the partial con- 
ditions. Instead of multiplication, different rule com- 
bination methods can also be used. Some of those 
are described in [45,46]. The network contains sev- 
eral rules, and every rule has one consequence. The 
output Of the whole network is the weighted mean 
of the consequences hi, 

= wib  i w i (9) 
i = l  - -  i = 1  

A triangular membership function is specified by 
three parameters Pl, P2 and P3, as depicted in Fig. 3. 
This membership function is approximated With a 
combination of two sigmoidal functions of the form 

1 
f(x) = 1 + exp ((x - r)/cr) (10) 

where r is a value at which f ir)= 0.5, and o- is a 
parameter which determines the steepness of the 
function. Parameters r and o- are solved to approxi- 
mate the slopes of the triangular membership func- 
t ion/)ix).  The sigmoid-triangular membership func- 
tion is denoted by /~ix), and it is determined with 
sigmoid functions f (left) and fr (right) of the form 
in Eq. (10). We use parameters Pl and P2 to find 
such parameters 71 and o-~ that satisfy equations 
f (P l )  = 0.1 and f~(P2) = 0.9. Similarly, we find the 

^ 

R(x) l~__!eft slope right slope 
l 

'I 
Pl  P2 P3 

Fig. 1. Structure of the network of fuzzy rules. Fig. 3. Representation of a triangular membership function. 
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parameters rr and o-,. for a function that satisfies 
fr(P2) =0.9  and fr(P3) = 0.1. Consequently, the fol- 
lowing relations can be written: 

Pl + P2 P2 + P3 
r l -  2 , r r -  2 ' 

Pl - P2 and or,. P3 --/)2 (11) 
o-l-  2 1 n 9  - 2 1 n 9  

Finally, we scale the sigmoid functions by multiply- 
ing them by 1/0.9 so that /~(P2) = 1. Now we can 
write the sigmoid-triangular membership function in 
the form 

1 
�9 0(x) = 0 ~  min ~ ( x ) f f ( x ) }  (12) 

The resulting approximation of a triangular member- 
ship function is illustrated in Fig. 4. The activation 
of the jth fuzzy neuron with an input pattern x is 

P 

Rj(x)  -- I]/~i(xi) (13) 
i=1 

which is the product of the approximated member- 
ship functions. 

The reason why purely triangular membership 
functions are not used is that they are not as tolerant 
as sigmoid-triangular membership functions. Intoler- 
ance means that if the input variable x < P l  or 
x > P3, the purely triangular membership function 
evaluates to zero. If even one membership function 
(i.e. partial condition) in a fuzzy neuron evaluates 
to zero, the condition is not true at all, which means 
that the output of that neuron is identically zero. 
This can easily lead to a situation in which there 
are input patterns for which the outputs of all the 
neurons are zero. This is an undefined situation, 
because the denominator in Eq. (9) becomes zero. 
On the other hand, this kind of situation cannot 
emerge with sigmoid-triangular membership func- 
tions, because those functions always evaluate to 
greater than zero with finite arguments. 

Each of the fuzzy neurons is locally active, which 
means that it evaluates to unity for only one specific 
input pattern, called the centre of the condition, 
denoted by c. For all other input patterns than c, 
the activation of the neuron is less than unity. The 

[~(x)~ z land01 'r randG r 

Pl P2 P3 

Fig. 4. Approximation of a triangular membership function. 

width of the membership function determines the 
size of the region in which the neuron gives signifi- 
cant activation. The distribution of the centres is 
very significant with respect to the performance of 
the network. When an input pattern hits close to 
one condition centre, this particular neuron becomes 
activated distinctly more than the other neurons. 
Therefore, the consequence of that certain rule 
becomes weighted more than others. As a result, 
the output of the network is close to the consequence 
of this rule. So, the centres of the conditions are 
fixed points which produce the outputs that are close 
to the corresponding consequences. To be exact, 
when sigmoid-triangular membership functions are 
used, every rule always has at least a small contri- 
bution to the output, even if the input pattern is far 
from the centre of that rule. However, when the 
pattern hits close to one centre, the output is dictated 
practically by that single rule. With sigmoid-triangu- 
lar membership functions, all input patterns cause 
an interpolation of the consequences to take place. 
Because of this, it is very important that the centres 
of the conditions are distributed effectively to the 
input space. 

There is no analytic method to find the optimal 
centres for given training data. Yet satisfactory 
results can be obtained by first creating a representa- 
tive set of centres and then selecting only the best 
of those. Once the set of conditions is formed, the 
widths and centres can be further optimised, for 
example with some gradient-based optimising 
method. One exhaustive way to form the set of 
candidates for the centres is to make a candidate 
centre for each input pattern. The main disadvantage 
of this approach is that, in many cases, there is too 
much data for this. However, all the data is not 
needed to create a representative set of condition 
centres. It is essential that the centres cover those 
parts of the input space where the input data exists. 
One method to create the candidate centres is to 
use K-means clustering. It has been found to be a 
fast and efficient clustering algorithm. By clustering 
it is possible to determine just a few clusters, which 
are distributed into those parts of the input space 
where the data is. After clustering, we are not 
interested in what cluster each of the input patterns 
belongs to, but just where the centres of the clusters 
are. The vectors referring to the cluster centres are 
good representatives of the whole data. These 
centres can then be regarded as the centres of the 
candidate conditions. In the following, the K-means 
algorithm is presented [47]. 

The data to be clustered is xi, i = 1, ..., N, and 
x i  = [x~,, xa ,  . . . ,  X~p] T. The number of clusters is k. 
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Step 1. Select k datavectors to be the initial 
cluster centres r s = 1, ..., k. The selection method 
could be, for example: Cs = x~, s = 1, g + 1, 2g + 1, 
3g + 1, ...,(k - 1)g + 1, where g = LN/kJ. 

Step 2. For every datavector x~, compute the 
euclidean distance dsi = [~ci- c,[I for s = 1, ..., k. 
Assign datavector xi to the cluster 

~(i) = argmin {d,~[s = 1, ..., k} (14) s 
If all datavectors became assigned to the same clus- 
ters as in the previous iteration, stop the algorithm. 
Otherwise, go to step 3. 

Step 3. Compute the new cluster centres cs for 
each cluster s = 1, ..., k. The new cluster centre is 
equal to the mean of those datavectors which are 
assigned to that particular cluster. Go back to step 2. 

The parameters P2 which represent the centres of 
the membership functions in candidate conditions 
have now been determined, but the widths are not. 
The membership functions should cover the input 
space, and they are allowed to overlap with each 
other. These properties are preferable but not neces- 
sary. Because the input variables are not normalised, 
they may have different ranges of variation. This 
means that the widths of the membership functions 
for each input variable has to be scaled by the range 
of variation of that input quantity. Another point 
that affects the width of the membership function 
is the number of rules in the network we are aiming 
to design. If we are designing a network with a lot 
of rules, the membership functions should be nar- 
rower than if the network is going to have only a 
few rules. The third point that should be considered 
in choosing the widths is the dimensionality of the 
input space. If there are q rules in a p-dimensional 
hypercube and the rules are assumed to be uniformly 
distributed, there are about P~]q membership func- 
tions projected into one input variable axis. Even 
though the membership function does not have to 
be equally wide for both directions (left and right 
from the centre), which means that the one slope 
can be steeper than the other, at this stage both 
slopes are set equally steep. Thus, the conditions in 
the rules are identical in widths, but the centres are 
in different locations. The width of the membership 
function for the jth input variable is denoted by dj 
and calculated as 

(maxj mini) 
dj - p~/q (15) 

where ma N = max {xij]i = 1, ..., N} and mini= rain 
{x•li= 1, . . . ,  N} ,  p is the number of  inputs and q 
is the number of rules. The parameters Pa and P3 

for each membership function are now computed 
according to Pl =P2 - dj and P3 = P2 + dj. 

At this stage, parameters have been defined for k 
candidate conditions. However, our goal is to design 
a network of q rules (q <<k). Next we use the 
Orthogonal Least Squares (OLS) algorithm to select 
the best conditions denoted by Cj, j = 1, ..., q. In 
the field of neural computation, the OLS-algorithm 
was originally developed for training Radial Basis 
Function networks, but it can also be applied to 
fuzzy neural networks [48,49]. This algorithm is 
described in Appendix A. The candidate conditions 
are actually candidate fuzzy neurons which all 
respond to the input patterns differently. We apply 
the input patterns to the candidate neurons and 
record their normalised outputs for each input pat- 
tern. The normalised outputs of the jth candidate 
neuron are denoted by vector rj = [rjl, rj2, . . . ,  rjN] T, 
where 

rji = Rj(xi  Rl(xi (16) 

The consequences for the conditions Cj can now be 
solved in the least squares sense. As mentioned 
earlier, the output of the network is given in Eq. (9). 
If we make use of matrix notation, the same equ- 
ation yields 

7.1.1 iii .W..1;1[~1.1 ~-- 
WN1 ... WNqjkbqA 

01 ~ Wll 
l~1 

q 
ON E WNI /=1 

or W b  = 6 diag (W1) (17) 

where N is the number of training pairs {(xi, 
03) = 1 , . . . ,  N } ,  q is the number of rules and w o is 
the output of the jth fuzzy neuron when xi is applied 
to the input. The notations diag(a) and 1 are 

[~ ~176 
a 1 0 11 

diag(a) . . . .  and 1 =  

0 a N 

(18) 

Now, the vector of consequences is to be solved 
when the vector of desired outputs is known. Let 
us rearrange the terms in Eq. (17), replace the output 
of the network 6 with the desired output of the 
network o and solve with respect to b: 

b = (WrW) -1 Wro diag(W1) (19) 

The parameters of the rule base are now determined, 
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but they can still be fine-tuned. In the optimisation, 
a gradient-based method is used to minimise the 
sum of squared errors between the output of the 
model and the desired output  [50-52]. The deri- 
vation of the formulas used in training is described 
in Appendix B. 

4. Adding New Rules to the Network 

When the network of fuzzy rules has been built and 
optimised for a given set of training data, it can be 
fed with unseen input patterns that resemble the 
input patterns in the training data. We call these 
input patterns insiders, because they lie more or 
less in the input space over which the condition 
centres are scattered. However, if the unseen input 
pattern is dissimilar to all the training data, the 
network cannot produce any reasonable output. This 
is because the network has not learned any input- 
output relationships for that input pattern. These 
input patterns we call outsiders. 

There are real world systems whose properties 
gradually change, and the training data thus becomes 
out-dated. To model such systems the network needs 
to be trained again when its performance has deterio- 
rated too much with respect to the most recent data. 
There are two ways to keep the network of fuzzy 
rules up-to-date: optimising the network continu- 
ously wi th the  newest data available; or building up 
the whole rule base for the set of newest data. The 
optimisation process can be used when there are 
only small fluctuations in the properties of the sys- 
tem. In the optimisation, mainly the widths of the 
membership functions and the consequences are 
adapted, but the centres of the conditions remain 
practically almost fixed. This is why the whole rule 
base has to be rebuilt when the properties of the 
system have developed considerably. 

Optimisation of the network with the latest data 
is computationally less expensive than rebuilding 
the whole model. Because of this, it is not worth 
rebuilding the whole model every time there is a 
new measurement to teach to the network. Instead, 
the newest measurement can be included into the 
training data for which the network is optimised. If 
the real world system that is being modelled is 
continuously changing in the long run, and mainly 
to the same direction, the network will eventually 
have to be rebuilt. The exact moment when the 
optimisation is not enough and the rebuilding is 
needed depends on many things, like the size and 
complexity of the network, computational power and 
time available, precision needed from the network, 
rate of change in the modelled system, and so on. 

We have developed a method which increases the 
lifetime of the rule base in changing conditions. 
This method is based on augmenting the rule base 
with a new rule when an outsider is detected. 
Adding rules to the rule base does not compensate 
fully for rebuilding of the network, but it allows 
the old rule base to be used for longer. The rule 
base augmenting algorithm is much more heuristic 
than the OLS-algorithm which is used in selecting 
the condition centres in the network building stage. 
Therefore, the roles that are added on-line to the 
network are not optimal, whereas the original roles are. 

The locations of the condition centres Ci, i = 1, 
..., q, with respect to the new input pattern x, are 
used to determine whether or not an input pattern 
is an outsider. The procedure of classification of an 
input pattern into an insider or outsider is divided 
into two steps, which are described below and illus- 
trated in Fig. 5: 

Step 1: 
Calculate the distances d , i = l ~ - c i l l  for i =  1, 
�9 - . ,  q ,  

Denote the nearest condition centre Cnea,. 
Calculate the difference vector v = x -  C .... �9 
Generate a test pattern Xtest = Cn ea r  -I- 1.01 �9 v. 

Step 2: 
Calculate the distances d2i = ]~[Ttest- c,II for i :  1, 
. ' ' ,  q ,  

If 3i, for which d2i<dli ,  the pattern x is an 
insider. =>  No need for a new rule, stop. 
Otherwise the pattern is an outsider and a new 
rule has to be generated. 

Generation of the new rule 

New condition centre is Cq+~ = Cn~ + 2. v. 
Membership function width wi for the ith variable 
is the mean of the widths of all other rules for that 
variable. The meaning of the condition centre cl and 
the width wi is illustrated in Fig. 6. 

Step 1 : Step 2: 

L "-% 
0 Condition center �9 New input pattern 
�9 Closest condition center o Test pattern 

Fig.  5. An  example  of  de te rmining  whe ther  the new input pattern 
is an insider or an outsider. The  pattern turns out to be an insider 
because  d21 < dll  (also d22 < dj2). 
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ki(x)~ 

cl ! ith~nput 
~ ', variable 

Fig. 6. Shape and parameters of the membership function for ith 
variable in a new rule. 

The consequence of the new rule is the observed 
output for that input pattern. 
The number of rules is incremented by 1: Set 
q = q + l .  

5. The Results of the Forecasts 

The forecasting simulations were made for three 
different time series of hourly electric load. The 
simulations were made with both the Holt-Winters 
(HW) method and the neuro-fuzzy (NF) method. In 
the Holt-Winters method, only the previous values 
of the electric load time series were used in fore- 
casting. In the neuro-fuzzy model, the input vari- 
ables shown in Table 1 were used. 

The two-dimensional coding of the time-of-day 
and day-of-week information can be interpreted as 
the x-y-coordinates of the circumference of a unit 
circle. The hourly forecasts were made for data 
which are illustrated in Fig. 7 with dotted line. We 
have chosen three time series periods, 76 days 
(series 1), 38 days (series 2) and 11 days (series 3) 
in length. 

The models were initialised with data that was 
from four weeks preceding the forecasting period. 
This initialisation part of the time series is plotted 
with a solid line in Fig. 7. During the forecasting 
simulations, models were updated hour by hour with 
the newest data available. The HW model was 
updated according to Eqs (5)-(7). The NF model 
was trained hourly with the data from the latest 24 

Table 1. The input variables used in the neuro-fuzzy 
model 

Number Name of  the input variable 

Electric load of the previous hour 
Average outdoor temperature of the 
previous 6 hours 
Time-of-day (x-coordinate) 
Time-of-day (y-coordinate) 
Day-of-week (x-coordinate) 
Day-of-week (y-coordinate) 

Series 1: 

Series 2: 

Series 3: 

0 336 672 IOOB 1344 16BO 2016 2352 
Time Ihl  

Initialization data Fore~sted data 

2~ a~e 672 loeb 1 3 ~  
Time [h] 

Initialization data Forec~ted data 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

335 672 
l ime  [h I 

Fig. 7. The electric load time series used in forecasting simula- 
tions. 

hours for a fixed number of epochs. Also, new rules 
were added to the rulebase when it was found to 
be necessary according to the algorithm. The fore- 
casts were made hourly for 1-12 hours ahead recur- 
sively with I-hour forecasts, so that the forecasted 
load was regarded as an actual load in forecasting 
the load of the following hour. 

Three different measures were used to examine 
the accuracy of the forecasting methods: Mean 
Squared Error (MSE), Mean Absolute Error (MAE) 
and Mean Absolute Peak Error (MAPE). MSE and 
MAE are self-evident, and the MAPE is the mean 
of the absolute forecasting errors in daily peaks of 
electric load. MAPE is included because it shows 
the accuracy of the forecasts for those hours for 
which it is most important to know the electric load. 
The results for all the series are depicted in Fig. 8. 

The simulations were made with the assumption 
that accurate temperature forecasts were available. 
In real application, however, more or less inaccurate 
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Fig. 8. The forecasting errors in s imulat ions for series 1-3.  

temperature forecasts would have to be used. The 
effect  of error in temperature forecast was briefly 
tested with an additional simulation with series 2. 
The error was added to the measured temperature 
time series, Because the actual temperature forecasts 
were not available for this particular period, the 
typical error in temperature forecasts was obtained 
from another period as a difference between the 
forecasted and measured temperature. So the error 
in temperature resembles the actual forecasting error 
for 24hours ahead. In Fig. 8 those errors that 
increase faster as a function of the time lag are 
made with erroneous temperatures. The MSE of the 
temperature error was 3.2 (~ 2 and the MAE of it 
was 1.5~ 

The neuro-fuzzy method gives the user the possi- 
bility to select which kind of daytype is used in 
forecasting the electric load for a given day. This 
can be utilised to cope with so-called 'special' days. 
In most special days, the electric load profile 

resembles the profile during weekends. Therefore, 
the special day can be regarded as either a Saturday 
or Sunday. This information can be given to the 
neuro-fuzzy model by replacing the day-of-week 
code of the weekday by the code of the weekend 
day. A simulation of a period of one week was 
done with Monday being the Independence Day in 
Finland, a national holiday. The simulation was 
made with both normal weekday coding (1, 2, ..., 
7) and with Monday's code replaced by Saturday's 
code (6, 2, 3, ..., 7). The results of  this simulation 
are shown in Fig. 9. Those forecasts were made 
with a 12 hour forecasting horizon. 

Both forecasting methods were also tested for one 
month's period in two electricity works, denoted by 
EW1 and EW2. The test period for EW1 was 
January 25th-February 28th, and for EW2 it was 
February 10th-March 13th in 1995. The results from 
the test-runs are represented in Fig. 10. In EW1 there 
was a reasonable temperature forecast available, but 
in EW2 the temperature forecast was extremely 
poor. The errors of the temperature forecasts are 
illustrated in Fig. 10 in the lowest two plots. Both 
the MSE and MAE of the temperature forecasts are 
plotted as a function of the forecasting lag. The 
effect of  the poor temperature forecast in EW2 can 
be seen in Fig. 10 by comparing the electric load 
forecasting errors in EW1 and in EW2. 

6.  D i s c u s s i o n  

For simulations with precise temperature forecasts 
the results from series 1 and 2 are quite similar. The 
MSE of forecasting with the Holt-Winters method 
increases almost linearly as a function of the fore- 
casting lag. In one hour forecasts the error is almost 
the same with the HW and neuro-fuzzy methods. 
In forecasts from 2 to 7 hours, the error of the NF 
method is greater than with the HW method, but 
with over 7 hour forecasts the error is less. However, 
with series 3, the neuro-fuzzy method clearly gives 

normal d a y - c o d e s  

,ool . . . .  1 
r  ' 1  i i i 

SO i ! 

1 2 3 4 5 6 71 
4o a;o 4-~ 

Monday's code replaced 

8 0  , i  i 
, i 

4 0  3 5 0  4 0 0  4 5 O  

Fig. 9. The results o f  forecasting the electric load on Monday  
which  is a special day (Independence Day in Finland 6.12.1993) 
with the code o f  Monday  (left plots) and with the code o f  
Saturday (right plots). The forecast is plotted for a who le  week  
and the Independence Day is the first day in plots. Solid 
line = actual load, dashed line = forecasted load. 
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better forecasts than the Holt-Winters method for 
all forecasting lags from 1 to 12 hours. The reason 
why the neuro-fuzzy model performed better with 
series 3 than with series 1 and 2 is hidden in the 
relationship between the initialisation data and the 
forecasted data. If we look at Fig. 7, we can see 
that the only series where the electric load stays 
relatively stationary is in series 3. Because the rule 
base of the neuro-fuzzy model is optimised for the 
initialisation data, and the test data resembles the 
initialisation data, the performance is quite good. 
But as the test data drifts away from the initializ- 
ation data, the network cannot adapt efficiently to 
the changing conditions. This adaptation would be 
needed in series 1 and 2, but not in series 3. In 
addition, it must be noted that in the training of the 
neuro-fuzzy model, the negative errors were 
weighted more than the positive errors. This is 
because the forecasts were preferred to be too large 
instead of being too low. This weighting weakens 
the performance measured with MSE and MAE, but 

improves it when the measure is MAPE. This effect 
can be seen most clearly in Fig. 8, series 2 and in 
Fig. 10, electricity works 2. In these figures the 
MAPE measure indicates better performance than 
the other measures. 

The forecasting with erroneous temperatures for 
series 2 shows the sensitivity of the forecasting 
accuracy to the outdoor temperature with the neuro- 
fuzzy model. The results show that with relatively 
small errors in temperature forecasts, the perform- 
ance is not drastically deteriorated. The MSE error 
increased about 10% in 12hour forecasts. The 
simulation concerning the forecasting for special 
days shows that the normal weekday rhythm can 
easily be altered to also cope with special days 
which otherwise would be difficult to forecast and 
would deteriorate forecasts for other days. In Fig. 9 
two effects can be seen when Monday's code has 
been replaced with Saturday's code. First, the fore- 
cast for Monday is clearly improved due to the 
replacement of the day-of-week code. Second, the 
forecast for Tuesday is also improved. The expla- 
nation for this effect is that the neuro-fuzzy model 
assumes Monday and Tuesday to be quite similar, 
and therefore the special Monday profile is regarded 
as a new model for the weekday load. However, 
the replacement prevents the model from wrongly 
learning that Mondays are gradually starting to 
resemble Saturdays. Virtually, the coding of the day- 
of-week was done with xy-coordinates, and not with 
integer numbers as depicted in Fig. 9 for simplicity. 

The results from the real world tests illustrated 
in Fig. 10 are similar to those that were obtained 
with simulations. One remarkable difference between 
the simulations and the real world test-run is, how- 
ever, that the simulation forecasts were made for 1- 
12hours ahead, but in the real world tests the 
forecasts were made for 1-24 hours ahead. There- 
fore, the real world tests give additional information 
on how the methods behave when the forecasting 
horizon is pushed further away. The forecasts that 
are obtained with the Holt-Winters method start 
deteriorating fast for near 24 hour forecasts, whereas 
the neuro-fuzzy method gives quite reliable forecasts 
even for 24 hours ahead, at least for EWl.  In the 
case of EW2, as mentioned earlier, all the forecasts 
get poorer very quickly as a function of the fore- 
casting lag. This is probably because the temperature 
forecasting error also increases very quickly. The 
temperature forecasting errors for over 6 hour fore- 
casts are greater than the error added in simulation 
of forecasting series 2. This implies that if the 
temperature forecasts had been more accurate, the 
forecasting accuracy might also have been better for 
both EWl and EW2. 
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7. Conclusion 

In this study a modern short term electric load 
forecasting method was developed and its perform- 
ance quantitatively compared with a more conven- 
tional forecasting method. The modem method was 
a feedforward neural network that uses fuzzy mem- 
bership functions in the hidden layer. The member- 
ship functions were approximations of  triangular 
membership functions. The approximation was done 
as a combination of two sigmoidal functions. Non- 
stationarity in the electric load time series raises the 
need for augmenting the rule base. For this purpose 
a new scheme was proposed. The variables used as 
inputs to the model were the electric load of the 
previous hour, the outdoor temperature averaged 
over the last 6 hours, the time-of-day and the day- 
of-week. Time and day information were coded as 
points in the xy-coordinates on the circumference of 
a unit circle. The forecasting performance was tested 
with simulations and with one month test-runs in 
two real world electricity works. A traditional fore- 
casting method used for comparison was the Hol t -  
Winters exponential smoothing method. 

The superiority of the modem method was not 
so evident in simulations, but in real world test- 
runs it outperformed the conventional Holt-Winters 
method. In particular, it was found that nonstationary 
time series are difficult to forecast with the proposed 
network of fuzzy rules. Also, the importance of the 
accuracy of the temperature forecast was discovered. 
However, even though the temperature forecasts 
available were extremely poor, the electric load 
forecasting error with the modem method did not 
exceed the error of the Holt-Winters method. In 
addition, the modern method was also shown to be 
capable of forecasting the electric load on special 
days with relatively good accuracy. 

The proposed method was shown to be a promis- 
ing forecasting method and a subject for further 
research. The performance of the network of fuzzy 
rules in forecasting nonstationary time series could 
probably be improved by developing a more efficient 
rule adding algorithm. 
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Appendix A: OLS-algorithm 

The OLS-algorithm starts by selecting the neuron that has 
the biggest contribution to the vector of the desired outputs 
of the network. This is done in step 1: 

{ + Step 1. For i = 1 to k do & = r~r~. erri = g~ oToj 

Set h~ =re, ~ satisfying ~:= argmax {err~li = 1, ..., k}. 
i 

Set C~ =ce to be the best centre. 
Drop column vector r e out of {rili = 1, ..., k}. 

In step 2 the rest of the condition centres are selected 
one-by-one. The measure according to which the column 
vectors are selected is the error reduction ratio, err. The 
bigger the additional contribution of the condition centre 
j is to the variance of the output vector o, the bigger the 
err:. Step 2 of the OLS-algorithm is as follows: 

Step 2. For j = 2  to q do { 
Compute for all remaining column vectors {ix}: 
{ 

hTr~ 
ai: = ~.~i2-., for i = 1, ... j - 1. 

h i hi 
j - I  

~Jx : rx  - 2 O L l j h l  

l=l  

g~ = tpxTtp ~ err~ = g a oTo 
} 
Set hj = Oe, ~ satisfying 
~:= argmax {erril i = 1, ...,k, except the selected indexes} 

i 
Set C: = c e to be the jth best centre. 
Drop column vector r e out of {r~}. 
} 

Appendix B: Derivation of Formulas 
used in Network Training 

The error to be minimised can be written as 

N 

E = ~ (Oi-  oi) 2 (20) 
i=1 

where O is the output of the model and o is the desired 
output. In the following, we consider only one single 
output value 6 and corresponding desired output value o 
instead of the whole set of N values in deriving the 
formulas for updating. Parameters p ,  P3 and the conse- 
quence vector b were updated directly with the gradient 
method. The network is trained with the so-called batch- 
training method. In batch training, all training data is 
presented to the network while the parameters of the 
network remain constant. Each training pair reveals an 
adjustment for every parameter. These adjustments are 
accumulated separately for each of the parameters. When 
all training patterns are represented, the accumulated 
adjustments are applied to the parameters. Next the process 
is repeated with the same data, but with these newly 
adjusted parameters. Parameters p~ and P3 were updated 
with the amount of Ap~ and Ap3, respectively. Api is a 
resulting cumulative sum of change to parameter Pi, when 

the whole training data is presented to the network. Para- 
meter P2 was updated by (Ap~ + Ap3)/2 if both Ap~ and 
Ap3 were of the same sign. In the following derivation, 
we denote p~ as 1 (left parameter), P3 as r (fight parameter) 
and pz as m (parameter of the tip of the triangle). To 
know how to update the parameters, we need to calculate 
the derivative of E with respect to each parameter. They 
are calculated by using the chain rule. In the following, 
the equations for computing the updates for b, 6: and ri: 
are derived: 

OE OEO0 

Obi OoObi 
(21) 

oE oeooow, [ + 

Old: - OoOw,Of~: [ O~jO6j OruOloJ (22) 

oE oeooo~i[of.oo-,: oM~-.l 
or,: ooowiafg [ao-90r, i or,jor~/] (23) 

In Eqs (21)-(23), wl is the output of the ith hidden fuzzy 
neuron, f :  is a sigmoid function of the jth input variable 
in the ith rule, ~:  is the steepness coefficient of the 
sigmoid function f j  and % is the offset of the sigmoid 
function f> Every f j  has two values for o T and ~: (one 
for the left slope and another for the right), and the left 
one is selected when the jth input variable x: < P2 and 
the right one is selected when x: > P2. In Eqs (22) and 
(23), there are two terms in brackets because parameters 
l:j and ri: affect both the steepness of the sigmoid and the 
offset of the sigmoid. The terms in Eqs. (21)-(23) can be 
written as 

Ow, 

OE OO wi 
0~ = 2 ( 6 - ~  Obi q ' 

~w~ 
k=l 

OO b i - 6 Owi w i 

q ' o f . f .  
~w~ 
k--1 

(24) 

Oo T -  ~ l + e x p \  ~ /J 

= ~ - ~  ~:(x))~ (25) 

0% oi: \ oi: / J 

1 
= - -  ~ : ( x ) )  ~ 

oT 
(26) 

Oo T 1 Oo':j 1 
(27) Olij 2 1 n 9 '  Oq: 21n9  

Or,;, 1 Or,j 1 
O1 o - 2 ' Or~/ 2 (28) 

The parameters bi are updated after epoch number e 
according to the equation 
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e+lb i = ~b i - Aebi, where 

Aebi=e~l~s=llO~bi i 
pattern = { Xs]O s } 

(29) 

The expression pat tern  = {x~]o,} means that the derivaUve 
is evaluated when xs is applied to the input and o~ is the 
desired output. The coefficient ~'y is called a step-length,  
and by changing its value the amount of the update in 
each epoch can be adjusted. The number of updates to be 
made to parameters r~j and lsg is calculated similarly as in 
Eq. (29), but the actual adjustments are put into effect 
only under the following conditions: 

e+lli j : 

{ %j - A~lo, if A%j > ( - 0 . 5 ( e m i j  - %j)) 

el~i , otherwise 

e+lri j ~-. 

( ~r o - Aerij ,  if A~ro < (0.5Ur~ - ~m~j)) 
er~j ,  otherwise 

(30) 

(31) 

These restricting conditions arise from the fact that the 
parameters must satisfy the inequality elij < emij < er~j. The 
updating of parameter m~j is done according to 

e+lmi j = 

A%j  + A~r~j 

{ ~mij 2 ' if A~l~jA~ro > 0 

~m~j, otherwise 

(32) 

However, the same restriction applies, so if 

e+lmij ~ e+llij or e+Imij ~ e+lri) (33) 

the update cannot be made, which means that e+lrn~ = em~j. 
In the optimisation of the parameters, an adaptive step- 

length was used. Adaptiveness was put into effect by 
lengthening the step slightly by a factor of 1.05 when the 
total error had become smaller, and by drastically shorten- 
ing the step by a factor of 0.5 when the total error 
had increased. 

Symbols 

x(t) 
m(t), r(t), s(t) 

Xinit 

2(t + h) 
~ , [3 ,  y 

E( O( i) ) 

time series value at time t 
estimate of the mean, trend and sea- 
sonal deviation at time t 
set of time series values used in 
initialization 
prediction for h steps ahead at time t 
adaptation speed for mean, trend and 
seasonal deviation 
average prediction error with para- 
meter set 

0(0 
Xi 
6 
bj 
wj 
% 7r, o'1, o'r 

/~(x) 
Pl, P2, P3 

•(x) 

f (X),  fr(X) 

Rj(x) 

X 
s 
d~ 

~(i) 

p,/q 
4 

c, 

rj 

W 

b 
6 
diag(a) 

Cnear 

Xtest 

set of parameters { ai,/3~,yi} 
value of ith input quantity 
output of the network 
consequence of the jth rule 
activation of the jth hidden neuron 
parameters of a sigmoid-triangular 
membership function 
triangular membership function 
parameters of a triangular member- 
ship function 
sigmoid-triangular membership func- 
tion 
sigmoid function for left and right 
slopes, respectively 
activation of the jth hidden neuron 
when input vector is x 
input vector 
sth cluster center 
Euclidean distance between sth clus- 
ter centre and ith input vector 
index of the cluster centre to which 
ith input vector has been assigned 
pth root of q 
width of the membership function 
for jth input quantity 
jth best cluster centre which has been 
selected amongst the candidates 
vector of normalized hidden unit 
activations when input vector is xj 
matrix of activations of all hidden 
neurons for all input vectors 
vector of consequences 
vector of outputs of the network 
diagonal matrix with a~:s in the diag- 
onal 
column vector whose elements are 
ai, i =  1, . . . ,N  
column vector whose each element 
is unity 
condition centre nearest to the input 
vector 
difference vector between Xtest and 
Cnear 
input vector used in testing whether 
a new rule has to be generated 

Special Symbols used in Appendix A 

gi scalar valued coefficient 
r• transpose of a vector ri 
h~ column vector 
% scalar coefficient 
qJi column vector 

Special Symbols used in Appendix B 

i 

r/j 

update of parameter Pi 
left parameter of a triangular mem- 
bership function 
right parameter of a triangular mem- 
bership function 



56 

mij 

rij, rlj, crij,~rij 

f~j 

parameter of the tip of the triangular 
membership function 
parameters of a sigmoid-triangnlar 
membership function 
sigmoid function 

A ~b~ 

~7 

S. Kuusisto et aL 

parameter b value at epoch e 
(parameter can be also l, r or m) 
parameter b update at epoch e 
(parameter can be also l or r) 
step-length at epoch e 


