
Neural Comput & Applic (1997)6:42-56
�9 1997 Springer-Verlag London Limited Neural

Computing
& Applications

Short Term Electric Load Forecasting Using a Neural
Network with Fuzzy Hidden Neurons

S. Kuusisto 1, M. Lehtokangas 1, J. Saarinen 1 and K. Kaski 2

~Tampere University of Technology, Signal Processing Laboratory, Tampere, Finland; 2Helsinki University of Technology,
Laboratory of Computational Engineering, Finland

Short term electric load forecasting with a neural
network based on fuzzy rules is presented. In this
network, fuzzy membership functions are represented
using combinations of two sigmoid functions. A new
scheme for augmenting the rule base is proposed.
The network employs outdoor temperature forecast
as one of the input quantities. The influence of
imprecision in this quantity is investigated. The
model is shown to be capable of also making
reasonable forecasts in exceptional weekdays. Fore-
casting simulations were made with three different
time series of electric load. In addition, the neuro-
fuzzy method was tested at two electricity works,
where it was used to produce forecasts with 1-
24 hour lead times. The results of these one month
real world tests are represented. Comparative fore-
casts were also made with the conventional Holt-
Winters exponential smoothing method. The main
result of the study is that the neuro-fuzzy method
requires stationarity fi~om the time series with
respect to training data in order to give clearly
better forecasts than the Holt-Winters method.

Keywords: Forecasting; Membership
Neuro-fuzzy system; Neural network;
fine-tuning, Rule-based system

function;
Rule-base

1. Introduct ion

A well known fact is that electric energy cannot be
stored efficiently using current technology. There-

Correspondence and offprint requests to: Mr S. Kuusisto, Tam-
pere University of Technology, Signal Processing Laboratory,
P.O. Box 553, FIN-33101 Tampere, Finland. Email: seppoq
@cs.tut.fi.

fore, knowledge of how the electric load will behave
in the future is precious information for electricity
works and power plants. In power supply manage-
ment in particular, load forecasts are used to ensure
economical and reliable operation. These forecasts
are made for time-spans of different lengths, which
vary from a few minutes to over 20 years. Very
short term forecasts for a few minutes ahead are
used in the minute-to-minute allocation of loads for
the benefit of the generating units. Short term fore-
casts from one hour to a day or so are used in
managing the unit commitment, which means plan-
ning and controlling the start-up and shut-down
scheduling of the generating units. Unit committing
is carried out to ensure that there is a sufficient
amount of generating capacity to meet the varying
load. These forecasts are also used in planning
the buying and selling of energy in interconnected
systems. Medium and long term forecasts are made
from several days to several years ahead. These
forecasts are used in system planning, which con-
cerns building new generators and transmission lines.
In this paper, we concentrate on hourly Short Term
Load Forecasting (STLF) within the window from
1 to 24 hours.

Short term load forecasting is a subject that has
been studied extensively, and several different
methods have been developed during the last few
decades. These different approaches have been dis-
cussed and compared with each other [1,2]. Conven-
tional statistical forecasting methods can be divided
into time series and regression methods. An excel-
lent discussion of conventional STLF models is [3].
In the time series models, the prediction is based
on the past values and prediction errors of a variable
[4-7]. In methods based on simple or multiple
regression, the relationships between some inde-

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 43

pendent variables and the dependent variable are
modelled [8,9]. These relationships are estimated
from the past values of these variables, and they
are used to forecast the dependent variable by using
the future evaluations of the independent ones. How-
ever, load demand has multiple determining factors
which have complex inter-relations. This is a sig-
nificant drawback for regression models, since they
assume linear relationships between the explanatory
variables and the dependent variable, but in practise
these relationships are more or less nonlinear. As
an alternative solution to conventional forecasting
methods, expert systems have also been successfully
applied [10-13]. The advantage of expert systems
is that one does not have to make any assumptions
about the linearity or nonlinearity of relationships
prevailing in the system of interest. Instead, the
rules in expert systems are collected from human
experts who themselves are capable of making intel-
ligent forecasts. This requires that the expert is able
to represent his or her knowledge so that it can be
programmed into a computer. However, program-
ming and rule production of an expert system can
take a great deal of time and co-ordination.

Another interesting information processing para-
digm is offered by artificial neural networks. These
self-learning algorithms were applied to electric load
forecasting for the first time by Dillon et al. [14].
Recently, numerous applications in load forecasting
that apply neural networks have been proposed [15-
36]. Neural networks can be used in modelling the
complex nonlinear relationships between the electric
load and its determining factors like the load history
and weather variables. Prior knowledge or assump-
tions about the characteristics of the relationships
are not needed when neural networks are applied.
This is because they can learn and capture relation-
ships between input data and observed outputs by
themselves from a set of examples. This set is called
'training data', which consists of input-output pairs
that are typical for the system of interest. During
training, the input-output pairs are represented to the
network and its parameters are adjusted iteratively so
that the total sum of errors (i.e. the differences
between the network output and the desired output)
for the training data will be minimised. When the
error is small enough, the parameters are fixed and
the training is finished. Generalising the depen-
dencies in the set of examples, the network can also
produce correct outputs for input patterns that are
not included in the examples. As the concepts of
fuzzy sets and inference are incorporated into arti-
ficial neural networks, the result is a fuzzy neural
network or neuro-fuzzy system. These systems form
an input-output mapping that is based on fuzzy

rules which can be expressed with linguistic and
imprecise statements. The system produces its output
according to an inference mechanism, which is based
on the roles extracted from the set of examples. In
the last few years, neuro-fuzzy systems have been
applied, for example, to nonlinear time-series predic-
tion and electric load forecasting [37M4].

In Sect. 2 we give a detailed description of a
conventional time-series forecasting method, Holt-
Winters exponential smoothing. In Sect. 3 we
describe a modem neuro-fuzzy method. The neuro-
fuzzy model is a learning system that generates
the roles automatically using example data as the
initialisation data. Moreover, the approximation of
triangular membership functions with sigmoid-
triangular membership functions is described. In
Sect. 4, we propose an algorithm which determines
whether or not the rule base should be augmented.
The results of the forecasting simulations and real
world test-runs are represented in Sect. 5, and they
are discussed in Sect. 6. Finally, in Sect. 7 we give
concluding remarks and suggestions for further
research. The OLS-algorithm and formulas for
optimising the parameters of the rule-base are
presented in Appendices A and B.

2. Holt-Winters Method

The Holt-Winters method belongs to a class of
autoprojective forecasting techniques. This means
that in forecasting the future values of the time
series, previous values of only the same time series
are used. The Holt-Winters method is a modification
of the exponential smoothing technique, in which a
forecast is computed as a weighted sum of previous
time series values. Exponential smoothing can be
applied merely to stationary time series. However,
the Holt-Winters method is developed to cope with
nonstationarity, seasonality and trend by estimating
these properties and employing these estimates in the
forecast. In addition, all the estimates are updated as
the time evolves and as new time series values
become available.

The estimates of mean, trend and seasonal compo-
nent are scalars. The seasonal component is the
deviation from the mean which is typical for each
moment of the season. In the following, we use the
notation x(t) for the time series value, m(t) for the
estimate of the mean, r(t) for the estimate of the
trend and s(t) for the estimate of the seasonal devi-
ation at time t. First we have to find the starting
values for these quantities, i.e. the values for m(0),
r(0) and s(-d + 1), s (-d + 2), ..., s(0), where d is the
length of the season. If the first forecast is to be

4 4 S. K u u s i s t o e t al.

made for time t = 1, the time series values from k
preceding seasons are needed to initialise the esti-
mates. Thus, the time series values which are used
in initialising the mean, seasonal components and
trend are denoted Xinit = { x (- k d + 1), x (- k d + 2) ,
..., x(0)}. The estimate of the mean is initialised
simply as the mean of Xinit.

1 0
re(O) : ~ ~ x(i) (1)

i=-kd+ 1

An initial estimate for the trend can be calculated,
for example, as the difference between the mean
values of the last two seasons divided by the length
of the season, which can be written

r(O) = [l x(i) - ~ x(i) (2)
.=_ i=-d+l ~ 2 d + 1

The initial values for the seasonal component
s (- d +j) can be calculated as the average deviation
from the mean m(0) at corresponding instants
t = - k d +j , - (k - 1)d +j , - (k - 2)d +j , ..., - d +j ,
which is

1
s (- d + j) = ~ ~ (x (- l d + j) - m(0)) (3)

/=1

where j = 1, ..., d.
When all the necessary variables and parameters

are initialised, a forecast 2(t+ h) can be made h
steps ahead, according to the formula

2(t + h) = m(t) + hr(t) + s(t - d + h) (4)

As can be seen from the above equation, the forecast
is the sum of the estimates of the mean, trend and
seasonal components. For some time series it would
be more convenient to assume that seasonal effects
are multiplicative instead of additive, but in the case
of electric load data, the assumption of additivity
is preferable.

As more measurements x(1),x(2), ... become
available, the estimates for m(t), r(t) and s(t) are
updated according to the formulas

m(t) = oz(x(t) - s(t - d))

+ (1 - c0 (m (t - 1) + r (t - 1)) (5)

s(t) =/3(x(t) - m(t))

+ (1 - /3)s(t - d) and (6)

r(t) = y(m(t) - m(t - 1))

+ (1 - v) r (t - 1) (7)

where d is the length of the season.
Before the Holt-Winters method can be used,

the three parameters in Eqs (5)-(7) that control the
adaptation speed have to be determined. These para-
meters are denoted as c~, /3 and 3/(0 < c~, /3, y < 1),
and they correspond to the adaptation speed of the
estimates of mean, seasonal components and trend,
respectively. Because there is no analytical technique
to solve the optimal values of c~, /3 and y for a
given time series, they must be determined by trying
different combinations. Nevertheless, a systematic
search is quite fast due to the simple nature of the
Holt-Winters method. In addition, the accuracy of
the forecast is not very sensitive to small fluctuations
in parameter values c~, /3 and y. The nearly optimal
values for these parameters can be found by
discretising their continuous range of variation and
searching through the whole discrete parameter
space. A suitable discretisation step was found to
be 0.1 for all three parameters. If we use 10 values
0.05, 0.15, 0.25, ..., 0.95, we end up with 103
different combinations of parameter values. For each
combination, one step forecasts are made for a time
series segment t = 1, . . . , N, which follows immedi-
ately after the initialisation segment. The average
forecasting error E is the average of the squared
errors of one step forecasts

E(O(i)) = ~ (2(t;O(i)) - x(t)) 2 (8)
t = l

where O(i) denotes the parameter combination
{%/3i, Yi}. In this method, the parameter combi-
nation that yields the smallest E is chosen.

3. Neural Network with Fuzzy
Hidden Neurons

In this method we construct a network of fuzzy
rules which is capable of learning the relationships
between explanatory variables and target variables
from the measured data. Because this method
belongs to a class of connectionist methods, we call
the vectors of explanatory variables the input pat-
terns and the target variable the output. The network
has a predetermined feed-forward structure with a
large number of free parameters. The input patterns
are fed into the network, a series of computational
operations occurs in the network, and it produces
the output. This output depends only on the input
pattern and on the parameters of the network. The
network is trained with a set of input-output pairs,
which constitutes the training data.

The training is an iterative procedure in which
the parameters of the network are adjusted to make
it produce the desired output for each input pattern.

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 45

The training must be done iteratively, because the
functions in the network are highly nonlinear, which
is why there is no method to solve the optimal
parameters directly. At each iteration, adjustments
made to the parameters are relatively small. Because
of this, the training data has to be presented to the
network several times. One presentation of the whole
training data is called an epoch. Once the network
has learned to produce the desired output with a
satisfactory accuracy for all the input patterns, or
when the learning has stopped, the parameters of
the network are fixed. With these parameters the
network should be capable of producing reasonable
outputs not only for those input patterns that were
in the training data, but also for such unseen patterns
that were not included in that data set.

The parameters of the network determine the rules
by which the network produces its output. A rule
consists of a partial condition for each input variable
and a consequence. The fulfilments of the partial
conditions are combined to measure the fulfilment
of the whole condition. The structure of the network
of fuzzy rules is presented in Fig. 1. The objects
depicted as circles are called neurons. The inputs
are connected directly to the fuzzy neurons, and the
output neuron produces the output of the network.
The output of a fuzzy neuron corresponds to the
fulfilment of the condition being unity if the whole
condition is 100% true, and zero if it is not true at
all. Depending on the degree of fulfilment of the
condition, the output of a fuzzy neuron can get
values in the continuous range [0, 1].

The function of a fuzzy neuron is depicted in
Fig. 2. It contains a triangular membership function
for every input variable shown. The membership
function can have values between 0 and 1. The
condition implemented by a fuzzy neuron in Fig. 2
can also be expressed in the following linguistic
form,

If x~ is about 2 and x2 is about 3

and x3 is about 1, then ...

c o n d i t i o n 1 ~. - c o n s e q u e n c e s

input 1 x 1). ~ ~ ~ ~ [[t

i n p u t p x p

--~- 0.5 x 1 ~ ~ ~ \ w = activation level ,%
-2 ~ _ _ ~ X ~ ~ 3__~_~, ' w = 0 5 x 0 3 6 x 10 = 01~

K l.O
/ I,I ~ ..' membership function

x 3 ~ ~ for each input variable
0 1 2 3 4~3 (par t ia l c o n d i t i o n s)

~ W

Fig. 2. Structure and principle of the function of a fuzzy neuron
with three inputs.

The condition of each rule consists of several partial
conditions which are specifed using membership
functions. The fulfilment of the whole condition is
the product of the fulfilments of the partial con-
ditions. Instead of multiplication, different rule com-
bination methods can also be used. Some of those
are described in [45,46]. The network contains sev-
eral rules, and every rule has one consequence. The
output Of the whole network is the weighted mean
of the consequences hi,

= wib i w i (9)
i = l - - i = 1

A triangular membership function is specified by
three parameters Pl, P2 and P3, as depicted in Fig. 3.
This membership function is approximated With a
combination of two sigmoidal functions of the form

1
f(x) = 1 + exp ((x - r)/cr) (10)

where r is a value at which f ir)= 0.5, and o- is a
parameter which determines the steepness of the
function. Parameters r and o- are solved to approxi-
mate the slopes of the triangular membership func-
t ion/)ix). The sigmoid-triangular membership func-
tion is denoted by /~ix), and it is determined with
sigmoid functions f (left) and fr (right) of the form
in Eq. (10). We use parameters Pl and P2 to find
such parameters 71 and o-~ that satisfy equations
f (P l) = 0.1 and f~(P2) = 0.9. Similarly, we find the

^

R(x) l~__!eft slope right slope
l

'I
Pl P2 P3

Fig. 1. Structure of the network of fuzzy rules. Fig. 3. Representation of a triangular membership function.

46 s. Kuusisto et al.

parameters rr and o-,. for a function that satisfies
fr(P2) =0.9 and fr(P3) = 0.1. Consequently, the fol-
lowing relations can be written:

Pl + P2 P2 + P3
r l - 2 , r r - 2 '

Pl - P2 and or,. P3 --/)2 (11)
o-l- 2 1 n 9 - 2 1 n 9

Finally, we scale the sigmoid functions by multiply-
ing them by 1/0.9 so that /~(P2) = 1. Now we can
write the sigmoid-triangular membership function in
the form

1
�9 0(x) = 0 ~ min ~ (x) f f (x) } (12)

The resulting approximation of a triangular member-
ship function is illustrated in Fig. 4. The activation
of the jth fuzzy neuron with an input pattern x is

P

Rj(x) -- I]/~i(xi) (13)
i=1

which is the product of the approximated member-
ship functions.

The reason why purely triangular membership
functions are not used is that they are not as tolerant
as sigmoid-triangular membership functions. Intoler-
ance means that if the input variable x < P l or
x > P3, the purely triangular membership function
evaluates to zero. If even one membership function
(i.e. partial condition) in a fuzzy neuron evaluates
to zero, the condition is not true at all, which means
that the output of that neuron is identically zero.
This can easily lead to a situation in which there
are input patterns for which the outputs of all the
neurons are zero. This is an undefined situation,
because the denominator in Eq. (9) becomes zero.
On the other hand, this kind of situation cannot
emerge with sigmoid-triangular membership func-
tions, because those functions always evaluate to
greater than zero with finite arguments.

Each of the fuzzy neurons is locally active, which
means that it evaluates to unity for only one specific
input pattern, called the centre of the condition,
denoted by c. For all other input patterns than c,
the activation of the neuron is less than unity. The

[~(x)~ z land01 'r randG r

Pl P2 P3

Fig. 4. Approximation of a triangular membership function.

width of the membership function determines the
size of the region in which the neuron gives signifi-
cant activation. The distribution of the centres is
very significant with respect to the performance of
the network. When an input pattern hits close to
one condition centre, this particular neuron becomes
activated distinctly more than the other neurons.
Therefore, the consequence of that certain rule
becomes weighted more than others. As a result,
the output of the network is close to the consequence
of this rule. So, the centres of the conditions are
fixed points which produce the outputs that are close
to the corresponding consequences. To be exact,
when sigmoid-triangular membership functions are
used, every rule always has at least a small contri-
bution to the output, even if the input pattern is far
from the centre of that rule. However, when the
pattern hits close to one centre, the output is dictated
practically by that single rule. With sigmoid-triangu-
lar membership functions, all input patterns cause
an interpolation of the consequences to take place.
Because of this, it is very important that the centres
of the conditions are distributed effectively to the
input space.

There is no analytic method to find the optimal
centres for given training data. Yet satisfactory
results can be obtained by first creating a representa-
tive set of centres and then selecting only the best
of those. Once the set of conditions is formed, the
widths and centres can be further optimised, for
example with some gradient-based optimising
method. One exhaustive way to form the set of
candidates for the centres is to make a candidate
centre for each input pattern. The main disadvantage
of this approach is that, in many cases, there is too
much data for this. However, all the data is not
needed to create a representative set of condition
centres. It is essential that the centres cover those
parts of the input space where the input data exists.
One method to create the candidate centres is to
use K-means clustering. It has been found to be a
fast and efficient clustering algorithm. By clustering
it is possible to determine just a few clusters, which
are distributed into those parts of the input space
where the data is. After clustering, we are not
interested in what cluster each of the input patterns
belongs to, but just where the centres of the clusters
are. The vectors referring to the cluster centres are
good representatives of the whole data. These
centres can then be regarded as the centres of the
candidate conditions. In the following, the K-means
algorithm is presented [47].

The data to be clustered is xi, i = 1, ..., N, and
x i = [x~,, xa , . . . , X~p] T. The number of clusters is k.

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 47

Step 1. Select k datavectors to be the initial
cluster centres r s = 1, ..., k. The selection method
could be, for example: Cs = x~, s = 1, g + 1, 2g + 1,
3g + 1, ...,(k - 1)g + 1, where g = LN/kJ.

Step 2. For every datavector x~, compute the
euclidean distance dsi = [~ci- c,[I for s = 1, ..., k.
Assign datavector xi to the cluster

~(i) = argmin {d,~[s = 1, ..., k} (14) s
If all datavectors became assigned to the same clus-
ters as in the previous iteration, stop the algorithm.
Otherwise, go to step 3.

Step 3. Compute the new cluster centres cs for
each cluster s = 1, ..., k. The new cluster centre is
equal to the mean of those datavectors which are
assigned to that particular cluster. Go back to step 2.

The parameters P2 which represent the centres of
the membership functions in candidate conditions
have now been determined, but the widths are not.
The membership functions should cover the input
space, and they are allowed to overlap with each
other. These properties are preferable but not neces-
sary. Because the input variables are not normalised,
they may have different ranges of variation. This
means that the widths of the membership functions
for each input variable has to be scaled by the range
of variation of that input quantity. Another point
that affects the width of the membership function
is the number of rules in the network we are aiming
to design. If we are designing a network with a lot
of rules, the membership functions should be nar-
rower than if the network is going to have only a
few rules. The third point that should be considered
in choosing the widths is the dimensionality of the
input space. If there are q rules in a p-dimensional
hypercube and the rules are assumed to be uniformly
distributed, there are about P~]q membership func-
tions projected into one input variable axis. Even
though the membership function does not have to
be equally wide for both directions (left and right
from the centre), which means that the one slope
can be steeper than the other, at this stage both
slopes are set equally steep. Thus, the conditions in
the rules are identical in widths, but the centres are
in different locations. The width of the membership
function for the jth input variable is denoted by dj
and calculated as

(maxj mini)
dj - p~/q (15)

where ma N = max {xij]i = 1, ..., N} and mini= rain
{x•li= 1, . . . , N} , p is the number of inputs and q
is the number of rules. The parameters Pa and P3

for each membership function are now computed
according to Pl =P2 - dj and P3 = P2 + dj.

At this stage, parameters have been defined for k
candidate conditions. However, our goal is to design
a network of q rules (q <<k). Next we use the
Orthogonal Least Squares (OLS) algorithm to select
the best conditions denoted by Cj, j = 1, ..., q. In
the field of neural computation, the OLS-algorithm
was originally developed for training Radial Basis
Function networks, but it can also be applied to
fuzzy neural networks [48,49]. This algorithm is
described in Appendix A. The candidate conditions
are actually candidate fuzzy neurons which all
respond to the input patterns differently. We apply
the input patterns to the candidate neurons and
record their normalised outputs for each input pat-
tern. The normalised outputs of the jth candidate
neuron are denoted by vector rj = [rjl, rj2, . . . , rjN] T,
where

rji = Rj(xi Rl(xi (16)

The consequences for the conditions Cj can now be
solved in the least squares sense. As mentioned
earlier, the output of the network is given in Eq. (9).
If we make use of matrix notation, the same equ-
ation yields

7.1.1 iii .W..1;1[~1.1 ~--
WN1 ... WNqjkbqA

01 ~ Wll
l~1

q
ON E WNI /=1

or W b = 6 diag (W1) (17)

where N is the number of training pairs {(xi,
03) = 1 , . . . , N } , q is the number of rules and w o is
the output of the jth fuzzy neuron when xi is applied
to the input. The notations diag(a) and 1 are

[~ ~176
a 1 0 11

diag(a) and 1 =

0 a N

(18)

Now, the vector of consequences is to be solved
when the vector of desired outputs is known. Let
us rearrange the terms in Eq. (17), replace the output
of the network 6 with the desired output of the
network o and solve with respect to b:

b = (WrW) -1 Wro diag(W1) (19)

The parameters of the rule base are now determined,

48 S. Kuusisto et aL

but they can still be fine-tuned. In the optimisation,
a gradient-based method is used to minimise the
sum of squared errors between the output of the
model and the desired output [50-52]. The deri-
vation of the formulas used in training is described
in Appendix B.

4. Adding New Rules to the Network

When the network of fuzzy rules has been built and
optimised for a given set of training data, it can be
fed with unseen input patterns that resemble the
input patterns in the training data. We call these
input patterns insiders, because they lie more or
less in the input space over which the condition
centres are scattered. However, if the unseen input
pattern is dissimilar to all the training data, the
network cannot produce any reasonable output. This
is because the network has not learned any input-
output relationships for that input pattern. These
input patterns we call outsiders.

There are real world systems whose properties
gradually change, and the training data thus becomes
out-dated. To model such systems the network needs
to be trained again when its performance has deterio-
rated too much with respect to the most recent data.
There are two ways to keep the network of fuzzy
rules up-to-date: optimising the network continu-
ously wi th the newest data available; or building up
the whole rule base for the set of newest data. The
optimisation process can be used when there are
only small fluctuations in the properties of the sys-
tem. In the optimisation, mainly the widths of the
membership functions and the consequences are
adapted, but the centres of the conditions remain
practically almost fixed. This is why the whole rule
base has to be rebuilt when the properties of the
system have developed considerably.

Optimisation of the network with the latest data
is computationally less expensive than rebuilding
the whole model. Because of this, it is not worth
rebuilding the whole model every time there is a
new measurement to teach to the network. Instead,
the newest measurement can be included into the
training data for which the network is optimised. If
the real world system that is being modelled is
continuously changing in the long run, and mainly
to the same direction, the network will eventually
have to be rebuilt. The exact moment when the
optimisation is not enough and the rebuilding is
needed depends on many things, like the size and
complexity of the network, computational power and
time available, precision needed from the network,
rate of change in the modelled system, and so on.

We have developed a method which increases the
lifetime of the rule base in changing conditions.
This method is based on augmenting the rule base
with a new rule when an outsider is detected.
Adding rules to the rule base does not compensate
fully for rebuilding of the network, but it allows
the old rule base to be used for longer. The rule
base augmenting algorithm is much more heuristic
than the OLS-algorithm which is used in selecting
the condition centres in the network building stage.
Therefore, the roles that are added on-line to the
network are not optimal, whereas the original roles are.

The locations of the condition centres Ci, i = 1,
..., q, with respect to the new input pattern x, are
used to determine whether or not an input pattern
is an outsider. The procedure of classification of an
input pattern into an insider or outsider is divided
into two steps, which are described below and illus-
trated in Fig. 5:

Step 1:
Calculate the distances d , i = l ~ - c i l l for i = 1,
�9 - . , q ,

Denote the nearest condition centre Cnea,.
Calculate the difference vector v = x - C �9
Generate a test pattern Xtest = Cn ea r -I- 1.01 �9 v.

Step 2:
Calculate the distances d2i =]~[Ttest- c,II for i : 1,
. ' ' , q ,

If 3i, for which d2i<dli , the pattern x is an
insider. => No need for a new rule, stop.
Otherwise the pattern is an outsider and a new
rule has to be generated.

Generation of the new rule

New condition centre is Cq+~ = Cn~ + 2. v.
Membership function width wi for the ith variable
is the mean of the widths of all other rules for that
variable. The meaning of the condition centre cl and
the width wi is illustrated in Fig. 6.

Step 1 : Step 2:

L "-%
0 Condition center �9 New input pattern
�9 Closest condition center o Test pattern

Fig. 5. An example of de te rmining whe ther the new input pattern
is an insider or an outsider. The pattern turns out to be an insider
because d21 < dll (also d22 < dj2).

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 49

ki(x)~

cl ! ith~nput
~ ', variable

Fig. 6. Shape and parameters of the membership function for ith
variable in a new rule.

The consequence of the new rule is the observed
output for that input pattern.
The number of rules is incremented by 1: Set
q = q + l .

5. The Results of the Forecasts

The forecasting simulations were made for three
different time series of hourly electric load. The
simulations were made with both the Holt-Winters
(HW) method and the neuro-fuzzy (NF) method. In
the Holt-Winters method, only the previous values
of the electric load time series were used in fore-
casting. In the neuro-fuzzy model, the input vari-
ables shown in Table 1 were used.

The two-dimensional coding of the time-of-day
and day-of-week information can be interpreted as
the x-y-coordinates of the circumference of a unit
circle. The hourly forecasts were made for data
which are illustrated in Fig. 7 with dotted line. We
have chosen three time series periods, 76 days
(series 1), 38 days (series 2) and 11 days (series 3)
in length.

The models were initialised with data that was
from four weeks preceding the forecasting period.
This initialisation part of the time series is plotted
with a solid line in Fig. 7. During the forecasting
simulations, models were updated hour by hour with
the newest data available. The HW model was
updated according to Eqs (5)-(7). The NF model
was trained hourly with the data from the latest 24

Table 1. The input variables used in the neuro-fuzzy
model

Number Name of the input variable

Electric load of the previous hour
Average outdoor temperature of the
previous 6 hours
Time-of-day (x-coordinate)
Time-of-day (y-coordinate)
Day-of-week (x-coordinate)
Day-of-week (y-coordinate)

Series 1:

Series 2:

Series 3:

0 336 672 IOOB 1344 16BO 2016 2352
Time Ihl

Initialization data Fore~sted data

2~ a~e 672 loeb 1 3 ~
Time [h]

Initialization data Forec~ted data
.

335 672
l ime [h I

Fig. 7. The electric load time series used in forecasting simula-
tions.

hours for a fixed number of epochs. Also, new rules
were added to the rulebase when it was found to
be necessary according to the algorithm. The fore-
casts were made hourly for 1-12 hours ahead recur-
sively with I-hour forecasts, so that the forecasted
load was regarded as an actual load in forecasting
the load of the following hour.

Three different measures were used to examine
the accuracy of the forecasting methods: Mean
Squared Error (MSE), Mean Absolute Error (MAE)
and Mean Absolute Peak Error (MAPE). MSE and
MAE are self-evident, and the MAPE is the mean
of the absolute forecasting errors in daily peaks of
electric load. MAPE is included because it shows
the accuracy of the forecasts for those hours for
which it is most important to know the electric load.
The results for all the series are depicted in Fig. 8.

The simulations were made with the assumption
that accurate temperature forecasts were available.
In real application, however, more or less inaccurate

5 0 S. Kuusisto et al.

~rics 1 : 50 MSE MAE

. 4.S

4O 4 ~ : ; :

- Neuro-Fuzzy zo : : r [i . / ~) T 7

�9 Z

20-: / I 2 , ~ :

, i < ; ' : i s . 1.5

, / : :
t0 1

3 S s a 8 9
lag l~]

ScEies 2: MSE

9 0 ~ ~
Sa~

Holt-Winters 7o~, ! ; :

Neuro-Fuzzy ~0~: /

"~ so t ~ - -

are obtained with 4o ; [
erroneous 30~ e /
t e m p e r a t u r e s . . , Y / : " :

20~[: : ; ,

ioE ,

o 3 6 9
lag {hi

MSE
Series 3:

- - Holt -Winters
- - - NetJro-Fuzzy

N 6 9
lag[hi

3 S 9
~ae [hi ~ g [~i

MAE MAPE
I0

; }

~ o 3 6 9
lag {hl rag (hi

MAE MAFE

3 a 9 3 6 9
rag[hi lag[hi

Fig. 8. The forecasting errors in s imulat ions for series 1-3.

temperature forecasts would have to be used. The
effect of error in temperature forecast was briefly
tested with an additional simulation with series 2.
The error was added to the measured temperature
time series, Because the actual temperature forecasts
were not available for this particular period, the
typical error in temperature forecasts was obtained
from another period as a difference between the
forecasted and measured temperature. So the error
in temperature resembles the actual forecasting error
for 24hours ahead. In Fig. 8 those errors that
increase faster as a function of the time lag are
made with erroneous temperatures. The MSE of the
temperature error was 3.2 (~ 2 and the MAE of it
was 1.5~

The neuro-fuzzy method gives the user the possi-
bility to select which kind of daytype is used in
forecasting the electric load for a given day. This
can be utilised to cope with so-called 'special' days.
In most special days, the electric load profile

resembles the profile during weekends. Therefore,
the special day can be regarded as either a Saturday
or Sunday. This information can be given to the
neuro-fuzzy model by replacing the day-of-week
code of the weekday by the code of the weekend
day. A simulation of a period of one week was
done with Monday being the Independence Day in
Finland, a national holiday. The simulation was
made with both normal weekday coding (1, 2, ...,
7) and with Monday's code replaced by Saturday's
code (6, 2, 3, ..., 7). The results of this simulation
are shown in Fig. 9. Those forecasts were made
with a 12 hour forecasting horizon.

Both forecasting methods were also tested for one
month's period in two electricity works, denoted by
EW1 and EW2. The test period for EW1 was
January 25th-February 28th, and for EW2 it was
February 10th-March 13th in 1995. The results from
the test-runs are represented in Fig. 10. In EW1 there
was a reasonable temperature forecast available, but
in EW2 the temperature forecast was extremely
poor. The errors of the temperature forecasts are
illustrated in Fig. 10 in the lowest two plots. Both
the MSE and MAE of the temperature forecasts are
plotted as a function of the forecasting lag. The
effect of the poor temperature forecast in EW2 can
be seen in Fig. 10 by comparing the electric load
forecasting errors in EW1 and in EW2.

6. D i s c u s s i o n

For simulations with precise temperature forecasts
the results from series 1 and 2 are quite similar. The
MSE of forecasting with the Holt-Winters method
increases almost linearly as a function of the fore-
casting lag. In one hour forecasts the error is almost
the same with the HW and neuro-fuzzy methods.
In forecasts from 2 to 7 hours, the error of the NF
method is greater than with the HW method, but
with over 7 hour forecasts the error is less. However,
with series 3, the neuro-fuzzy method clearly gives

normal d a y - c o d e s

,ool 1
r ' 1 i i i

SO i !

1 2 3 4 5 6 71
4o a;o 4-~

Monday's code replaced

8 0 , i i
, i

4 0 3 5 0 4 0 0 4 5 O

Fig. 9. The results o f forecasting the electric load on Monday
which is a special day (Independence Day in Finland 6.12.1993)
with the code o f Monday (left plots) and with the code o f
Saturday (right plots). The forecast is plotted for a who le week
and the Independence Day is the first day in plots. Solid
line = actual load, dashed line = forecasted load.

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 51

Electricity
works 1 (EWl) :

- - Holt-Winters
- - - Neuro-Fuzzy

Electricity
works 2 (EW2):

- - Holt-Winters
- - Neuro-Fuzzy

Comparison of 6~
errors in tempera- I
ture forecasts that / i E~v2
were employed in 50[..... ;.~
forecasting the ~ /"
electric load using 4o~ i :
the neuro-fuzzy / "
method: ~ | ,'

~ 3 0 �9 . : / :

201S ~ / EW~

MSE MAE MAPE
50 10, 10,

3 S , �9

, :

l o / f / _ ~ . ~ : 2 t : 4

~a~l [hi lag [h] lag [h]

MSE MAE MAPE
- - s s i :

4.5 45 '

4 4

&5 3.5 : :~ -"

3 i 3 t
I

~2.5] ~ 2 . s ; /

1.5 1.5 i t ! .

1 ~ ~ . . .

0 5 0 .5
i "

0 ~ - 2 ' O ' ' ~ ~ 1 6 ~ 2 1 8 2 4 - - e 1 2 1 8 2 4 ~ 6 1 2 1 8 2 4
la9 [hi lag [hl lag [h]

MSE of tempe~ture fo~s t MAE of tempe~ture formal

6 12 18 24
lag [h] lag [hi

F i g . 10 . T h e f o r e c a s t i n g e r r o r s in t w o t e s t r u n s in r ea l e l e c -
t r i c i t y w o r k s .

better forecasts than the Holt-Winters method for
all forecasting lags from 1 to 12 hours. The reason
why the neuro-fuzzy model performed better with
series 3 than with series 1 and 2 is hidden in the
relationship between the initialisation data and the
forecasted data. If we look at Fig. 7, we can see
that the only series where the electric load stays
relatively stationary is in series 3. Because the rule
base of the neuro-fuzzy model is optimised for the
initialisation data, and the test data resembles the
initialisation data, the performance is quite good.
But as the test data drifts away from the initializ-
ation data, the network cannot adapt efficiently to
the changing conditions. This adaptation would be
needed in series 1 and 2, but not in series 3. In
addition, it must be noted that in the training of the
neuro-fuzzy model, the negative errors were
weighted more than the positive errors. This is
because the forecasts were preferred to be too large
instead of being too low. This weighting weakens
the performance measured with MSE and MAE, but

improves it when the measure is MAPE. This effect
can be seen most clearly in Fig. 8, series 2 and in
Fig. 10, electricity works 2. In these figures the
MAPE measure indicates better performance than
the other measures.

The forecasting with erroneous temperatures for
series 2 shows the sensitivity of the forecasting
accuracy to the outdoor temperature with the neuro-
fuzzy model. The results show that with relatively
small errors in temperature forecasts, the perform-
ance is not drastically deteriorated. The MSE error
increased about 10% in 12hour forecasts. The
simulation concerning the forecasting for special
days shows that the normal weekday rhythm can
easily be altered to also cope with special days
which otherwise would be difficult to forecast and
would deteriorate forecasts for other days. In Fig. 9
two effects can be seen when Monday's code has
been replaced with Saturday's code. First, the fore-
cast for Monday is clearly improved due to the
replacement of the day-of-week code. Second, the
forecast for Tuesday is also improved. The expla-
nation for this effect is that the neuro-fuzzy model
assumes Monday and Tuesday to be quite similar,
and therefore the special Monday profile is regarded
as a new model for the weekday load. However,
the replacement prevents the model from wrongly
learning that Mondays are gradually starting to
resemble Saturdays. Virtually, the coding of the day-
of-week was done with xy-coordinates, and not with
integer numbers as depicted in Fig. 9 for simplicity.

The results from the real world tests illustrated
in Fig. 10 are similar to those that were obtained
with simulations. One remarkable difference between
the simulations and the real world test-run is, how-
ever, that the simulation forecasts were made for 1-
12hours ahead, but in the real world tests the
forecasts were made for 1-24 hours ahead. There-
fore, the real world tests give additional information
on how the methods behave when the forecasting
horizon is pushed further away. The forecasts that
are obtained with the Holt-Winters method start
deteriorating fast for near 24 hour forecasts, whereas
the neuro-fuzzy method gives quite reliable forecasts
even for 24 hours ahead, at least for EWl. In the
case of EW2, as mentioned earlier, all the forecasts
get poorer very quickly as a function of the fore-
casting lag. This is probably because the temperature
forecasting error also increases very quickly. The
temperature forecasting errors for over 6 hour fore-
casts are greater than the error added in simulation
of forecasting series 2. This implies that if the
temperature forecasts had been more accurate, the
forecasting accuracy might also have been better for
both EWl and EW2.

52 S. Kuusisto et al.

7. Conclusion

In this study a modern short term electric load
forecasting method was developed and its perform-
ance quantitatively compared with a more conven-
tional forecasting method. The modem method was
a feedforward neural network that uses fuzzy mem-
bership functions in the hidden layer. The member-
ship functions were approximations of triangular
membership functions. The approximation was done
as a combination of two sigmoidal functions. Non-
stationarity in the electric load time series raises the
need for augmenting the rule base. For this purpose
a new scheme was proposed. The variables used as
inputs to the model were the electric load of the
previous hour, the outdoor temperature averaged
over the last 6 hours, the time-of-day and the day-
of-week. Time and day information were coded as
points in the xy-coordinates on the circumference of
a unit circle. The forecasting performance was tested
with simulations and with one month test-runs in
two real world electricity works. A traditional fore-
casting method used for comparison was the Hol t -
Winters exponential smoothing method.

The superiority of the modem method was not
so evident in simulations, but in real world test-
runs it outperformed the conventional Holt-Winters
method. In particular, it was found that nonstationary
time series are difficult to forecast with the proposed
network of fuzzy rules. Also, the importance of the
accuracy of the temperature forecast was discovered.
However, even though the temperature forecasts
available were extremely poor, the electric load
forecasting error with the modem method did not
exceed the error of the Holt-Winters method. In
addition, the modern method was also shown to be
capable of forecasting the electric load on special
days with relatively good accuracy.

The proposed method was shown to be a promis-
ing forecasting method and a subject for further
research. The performance of the network of fuzzy
rules in forecasting nonstationary time series could
probably be improved by developing a more efficient
rule adding algorithm.

Acknowledgements. This work has been financi-
ally supported by Enermet Oy and Foundation for
the Advancement of Technology in Finland.

References

1. Bunn DW, Farmer ED. Comparative Models for Elec-
trical Load Forecasting. Wiley, Chichester, 1985

2. Moghram I, Rahman S. Analysis and evaluation of
five short-term load forecasting techniques. IEEE
Trans Power Syst 1989; 4(4): 1484-1491

3. Gross G, Galiana F. Short term load forecasting. Proc
IEEE 1987; 75(12): 1558-1573

4. Box GEP, Jenkins GM. Time Series Analysis, Fore-
casting and Control. Holden Day, San Francisco, 1970

5. Chatfield C. The Analysis of Time Series: An Intro-
duction (third edition). Chapman & Hall, London,
1984

6. Hagan MT, Behr SM. The time series approach for
short term load forecasting. IEEE Trans Power Syst
1987; 2(3): 785-791

7. Montgomery DC, Johnson LA. Forecasting and Time
Series Analysis. McGraw Hill, USA, 1976

8. Papalexopoulos AD, Hesterberg TC. A regression-
based approach to short-term system load forecasting.
IEEE Trans Power Syst 1990; 5(4): 1535-1544

9. Satoh R, Tanaka E, Hasegawa J. Daily load fore-
casting using a neural network combined with
regression analysis. In: Proc Int Conf Intelligent Sys-
tem Application to Power Systems, vol. 2, Montpellier,
France, 5-9 September 1994; 345-352

10. Ho KL, Hsu Y-Y, Chert C-F, Lee T-E, Liang CC,
Lai T-S, Chen KK. Short term load forecasting of
Taiwan power system using a knowledge based expert
system. IEEE Trans Power Syst 1990; 5(4): 1214-
1221

11. Hsu Y-Y, Ho KL. Fuzzy expert systems: an appli-
cation to short term load forecasting. IEE Proc C
1992; 139(6): 471477

12. Jabbour K, Riveros JFV, Landsbergen D, Meyer W.
ALFA: automated load forecasting assistant. IEEE
Trans Power Syst 1988; 3(3): 908-914

13. Ranman S, Bhatnagar R. An expert system based
algorithm for short term load forecast. IEEE Trans
Power Syst 1988; 3(2): 392-399

14. Dillon TS, Morsztyn K, Phua K. Short term load
forecasting using adaptive pattern recognition and self
organising techniques. In: Fifth Power Systems Com-
putation Conference, PSCC Proceedings, Cambridge,
September 1-5 1975

15. Bacha H, Meyer W. Automated load forecasting using
neural networks. In: Proc American Power Confer-
ence. 54(2), Illinois Institute of Technology, Chicago,
IL, 1992; 1144-1149

16. Chaudhary SD, Kalra PK, Srivastava SC, Vinod
Kumar DM. Short term electric load forecasting using
artificial neural network. In: Proc Expert System
Application to Power Systems IV, La Trobe, Mel-
bourne, Australia, 4-8 January 1993; 159-163

17. Chen S-T, Yu DC, Moghaddamjo AR. Weather sensi-
tive short-term load forecasting using nonfully connec-
ted artificial neural network. IEEE Trans Power Syst
1992; 7(3): 1098-1105

18. Connor JT, Atlas LE, Martin D. Recurrent neural
networks and load forecasting. In: Proc 1st Int Forum
on Applications of Neural Networks to Power Sys-
tems, Seattle, WA, 23-26 July 1991; 22-25

19. Dash PK, Dash S, Rahman S, Chandrasekharaigh
HS. Short term load forecasting using artificial neural
network with a fast learning algorithm. In: Proc Expert
System Application to Power Systems IV, La Trobe,
Melbourne, Australia, 4-8 January 1993; 169-174

20. Dillon TS, Sestito S, Leung S. Short term load fore-

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 53

casting using an adaptive neural network. Electrical
Power & Energy Syst 1991; 13(4): 186-192

21. Djukanovic M, Babic B, Sobajic DJ, Pat Y-H.
Unsupervised/supervised learning concept for 24-hour
load forecasting. IEE Proc C 1993; 140(4): 311-318

22. E1-Sharkawi MA, Oh S, Marks RJ, Damborg MJ.
Short-term electric load forecasting using an adaptively
trained layered perceptron. Proc 1st Int Forum on
Applications of Neural Networks to Power Systems,
Seattle, WA, 23-26 July 1991; 41-45

23. Ho K-L, Hsu Y-Y~ Yang C-C. Short term load fore-
casting using a multilayer neural network with an
adaptive learning algorithm. IEEE Trans Power Sys-
tems 1992; 7(1): 141-149

24. Hsu Y-Y, Yang C-C. Design of artificial neural net-
works for short-term load forecasting. Part I: Self-
organising feature maps for day type identification.
IEE Proc C 1992; 138(5): 407-413

25. Hsu Y-Y, Yang C-C. Design of artificial neural net-
works for short-term load forecasting. Part II: Multi-
layer feedforward networks for peak load and valley
load forecasting. IEE Proc C 1992; 138(5): 414-418

26. Hwang J-N, Moon S. Temporal difference method
for multi-step prediction application to power load
forecasting. In: Proc 1st Int Forum on Applications
of Neural Networks to Power Systems, Seattle, WA,
23-26 July 1991; 41-45

27. Lee KY, Cha YT, Park JH. Short-term load forecast
using an artificial neural network. IEEE Trans Power
Systems 1992; 7(1): 124-132

28. Lu CN, Wu HT, Vemuri S. Neural network based
short term load forecasting. IEEE Trans Power Syst
1993; 8(1): 336-342

29. Park DC, E1-Sharkawi MA, Marks II RJ. An adapt-
ively trained neural network. IEEE Trans Neural Net-
works 1991; 2(3): 334-345

30. Park DC, El-Sharkawi MA, Marks II RJ, Atlas LE,
Damborg MJ. Electric load forecasting using an arti-
ficial neural network. IEEE Trans Power Syst 1991;
6(2): 442-449

31. Park DC, Mohammed O, El-Sharkawi MA, Marks II
RJ. An adaptively trainable neural network and its
application to electric load forecasting. In: Proc 1st
Int Forum on Applications of Neural Networks to
Power Systems, Seattle, WA, 23-26 July 1991; 7-11

32. Peng TM, Hubele NF, Karady GG. Conceptual
approach to the application of neural network for short
term load forecasting. In: IEEE Int Symposium on
Circuits and Systems, New Orleans, LA, May 1990;
2342-2345

33. Peng TM, Hubele NF, Karady GG. Advancement in
the application of neural networks for short-term load
forecasting. IEEE Trans Power Syst 1992; 7(1):
250-257

34. Peng TM, Hubele NF, Karady GG. An adaptive neural
network approach to one-week ahead load forecasting.
IEEE Trans Power Syst 1993; 8(3): 1195-1202

35. Srinivasan D, Liew AC, Chen JSP. Short term fore-
casting using neural network approach. In: Proc 1st
Int Forum on Applications of Neural Networks to
Power Systems, Seattle, WA, 23-26 July 1991; 12-16

36. Wu H-T, Lu C-N. Using artificial neural network for
providing hourly load update and next day load profile.
In: Proc Int Conf Advances in Power System Control,
Operation and Management, Hong-Kong, November
1991; 895-901

37. Dash PK, Dash S, Rahman S. A hybrid artificial
neural network-fuzzy expert system for short term
load forecasting. In: Proc Expert System Application
to Power Systems IV, La Trobe, Melbourne, Australia,
4-8 January 1993; 175-180

38. Dash PK, Liew AC. A comparative study of load
forecasting models using fuzzy neural networks. Proc
Irit Conf Intelligent System Application to Power Sys-
tems, vol. 2, Montpellier, France, 5-9 September 1994;
865-872

39. Jang J-SR, Sun C-T. Predicting chaotic time series
with fuzzy if-then rules. In: Proc 2nd IEEE Int Conf
Fuzzy Systems, vol. 2, San Francisco, CA, 1993;
1079-1084

40. Jang J-SR. ANFIS: Adaptive-network-based fuzzy
inference system. IEEE Trans Neural Networks 1993;
23(3): 665-685

41. Katayama R, Kajitani Y, Kuwata K, Nishida Y. Self-
generating radial basis function as neuro-fuzzy model
and its application to nonlinear prediction of chaotic
time series. Proc 2nd IEEE Int Conf Fuzzy Systems,
vol 1, San Francisco, CA, 28 March-1 April 1993;
407-414

42. Kim KH, Park D-Y, Park J-K. A hybrid model of
artificial neural network and fuzzy expert system for
short term load forecast. Proc Expert System Appli-
cation to Power Systems IV, La Trobe, Melbourne,
Australia, 4-8 January 1993; 164-168

43. Makino K, Shimada T, Ichikawa R, Ono M, Endo T.
Short-term load forecasting using an artificial neural
network of locally active units. In: Proc Int Conf
Intelligent System Application to Power Systems, vol
2, Montpellier, France, 5-9 September 1994; 849-856

44. Mori H, Kobayshi H. A fuzzy neural net for short
term load forecasting. Proc Int Conf Intelligent System
Application to Power Systems, vol 1, Montpellier,
France, 5-9 September 1994; 775-782

45. Nakanishi H, Turksen IB, Sugeno M. A review and
comparison of six reasoning methods. Fuzzy Sets and
Systems 1993; 57(1): 257-294

46. Turksen IB, Tian Y. Combination of rules or their
consequences in fuzzy expert systems. Fuzzy Sets and
Systems 1993; 58(1): 3-40

47. Jain AK, Dubes RC. Algorithms for Clustering Data.
Prentice Hall, New Jersey, 1988

48. Jang J-SR, Sun C-T. Functional equivalence between
radial basis function networks and fuzzy inference
systems. IEEE Trans Neural Networks 1993; 4(1):
153-159

49. Wang L-X, Mendel JM. Fuzzy basis functions, univer-
sal approximation and orthogonal least squares learn-
ing. IEEE Trans Neural Networks 1992; 3(5): 807-814

50. Gurly F, Siarry P. Gradient descent method for
optimising various fuzzy rule bases. Proc 2nd IEEE
Int Conf Fuzzy Systems, vol 2, San Francisco, CA,
1993; 1241-1246

51. Horikawa S, Furuhashi T, Uchikawa Y. On identifi-
cation of structures in premises of a fuzzy model
using a fuzzy neural network. In: Proc 2nd IEEE Int
Conf Fuzzy Systems, vol 1, San Francisco, CA, 28
March-1 April 1993; 661-666

52. Rumelhart DE, McClelland JL, and the PDP Research
Group. Parallel Distributed Processing, vol 1, MIT
Press, Cambridge, MA, 1988

54 S. Kuusisto et al.

Appendix A: OLS-algorithm

The OLS-algorithm starts by selecting the neuron that has
the biggest contribution to the vector of the desired outputs
of the network. This is done in step 1:

{ + Step 1. For i = 1 to k do & = r~r~. erri = g~ oToj

Set h~ =re, ~ satisfying ~:= argmax {err~li = 1, ..., k}.
i

Set C~ =ce to be the best centre.
Drop column vector r e out of {rili = 1, ..., k}.

In step 2 the rest of the condition centres are selected
one-by-one. The measure according to which the column
vectors are selected is the error reduction ratio, err. The
bigger the additional contribution of the condition centre
j is to the variance of the output vector o, the bigger the
err:. Step 2 of the OLS-algorithm is as follows:

Step 2. For j = 2 to q do {
Compute for all remaining column vectors {ix}:
{

hTr~
ai: = ~.~i2-., for i = 1, ... j - 1.

h i hi
j - I

~Jx : rx - 2 O L l j h l

l=l

g~ = tpxTtp ~ err~ = g a oTo
}
Set hj = Oe, ~ satisfying
~:= argmax {erril i = 1, ...,k, except the selected indexes}

i
Set C: = c e to be the jth best centre.
Drop column vector r e out of {r~}.
}

Appendix B: Derivation of Formulas
used in Network Training

The error to be minimised can be written as

N

E = ~ (Oi- oi) 2 (20)
i=1

where O is the output of the model and o is the desired
output. In the following, we consider only one single
output value 6 and corresponding desired output value o
instead of the whole set of N values in deriving the
formulas for updating. Parameters p , P3 and the conse-
quence vector b were updated directly with the gradient
method. The network is trained with the so-called batch-
training method. In batch training, all training data is
presented to the network while the parameters of the
network remain constant. Each training pair reveals an
adjustment for every parameter. These adjustments are
accumulated separately for each of the parameters. When
all training patterns are represented, the accumulated
adjustments are applied to the parameters. Next the process
is repeated with the same data, but with these newly
adjusted parameters. Parameters p~ and P3 were updated
with the amount of Ap~ and Ap3, respectively. Api is a
resulting cumulative sum of change to parameter Pi, when

the whole training data is presented to the network. Para-
meter P2 was updated by (Ap~ + Ap3)/2 if both Ap~ and
Ap3 were of the same sign. In the following derivation,
we denote p~ as 1 (left parameter), P3 as r (fight parameter)
and pz as m (parameter of the tip of the triangle). To
know how to update the parameters, we need to calculate
the derivative of E with respect to each parameter. They
are calculated by using the chain rule. In the following,
the equations for computing the updates for b, 6: and ri:
are derived:

OE OEO0

Obi OoObi
(21)

oE oeooow, [+

Old: - OoOw,Of~: [O~jO6j OruOloJ (22)

oE oeooo~i[of.oo-,: oM~-.l
or,: ooowiafg [ao-90r, i or,jor~/] (23)

In Eqs (21)-(23), wl is the output of the ith hidden fuzzy
neuron, f : is a sigmoid function of the jth input variable
in the ith rule, ~: is the steepness coefficient of the
sigmoid function f j and % is the offset of the sigmoid
function f> Every f j has two values for o T and ~: (one
for the left slope and another for the right), and the left
one is selected when the jth input variable x: < P2 and
the right one is selected when x: > P2. In Eqs (22) and
(23), there are two terms in brackets because parameters
l:j and ri: affect both the steepness of the sigmoid and the
offset of the sigmoid. The terms in Eqs. (21)-(23) can be
written as

Ow,

OE OO wi
0~ = 2 (6 - ~ Obi q '

~w~
k=l

OO b i - 6 Owi w i

q ' o f . f .
~w~
k--1

(24)

Oo T - ~ l + e x p \ ~ /J

= ~ - ~ ~:(x))~ (25)

0% oi: \ oi: / J

1
= - - ~ : (x)) ~

oT
(26)

Oo T 1 Oo':j 1
(27) Olij 2 1 n 9 ' Oq: 21n9

Or,;, 1 Or,j 1
O1 o - 2 ' Or~/ 2 (28)

The parameters bi are updated after epoch number e
according to the equation

Electric Load Forecasting Using a Neural Network with Fuzzy Hidden Neurons 55

e+lb i = ~b i - Aebi, where

Aebi=e~l~s=llO~bi i
pattern = { Xs]O s }

(29)

The expression pat tern = {x~]o,} means that the derivaUve
is evaluated when xs is applied to the input and o~ is the
desired output. The coefficient ~'y is called a step-length,
and by changing its value the amount of the update in
each epoch can be adjusted. The number of updates to be
made to parameters r~j and lsg is calculated similarly as in
Eq. (29), but the actual adjustments are put into effect
only under the following conditions:

e+lli j :

{ %j - A~lo, if A%j > (- 0 . 5 (e m i j - %j))

el~i , otherwise

e+lri j ~-.

(~r o - Aerij , if A~ro < (0.5Ur~ - ~m~j))
er~j , otherwise

(30)

(31)

These restricting conditions arise from the fact that the
parameters must satisfy the inequality elij < emij < er~j. The
updating of parameter m~j is done according to

e+lmi j =

A%j + A~r~j

{ ~mij 2 ' if A~l~jA~ro > 0

~m~j, otherwise

(32)

However, the same restriction applies, so if

e+lmij ~ e+llij or e+Imij ~ e+lri) (33)

the update cannot be made, which means that e+lrn~ = em~j.
In the optimisation of the parameters, an adaptive step-

length was used. Adaptiveness was put into effect by
lengthening the step slightly by a factor of 1.05 when the
total error had become smaller, and by drastically shorten-
ing the step by a factor of 0.5 when the total error
had increased.

Symbols

x(t)
m(t), r(t), s(t)

Xinit

2(t + h)
~ , [3 , y

E(O(i))

time series value at time t
estimate of the mean, trend and sea-
sonal deviation at time t
set of time series values used in
initialization
prediction for h steps ahead at time t
adaptation speed for mean, trend and
seasonal deviation
average prediction error with para-
meter set

0(0
Xi
6
bj
wj
% 7r, o'1, o'r

/~(x)
Pl, P2, P3

•(x)

f (X), fr(X)

Rj(x)

X
s
d~

~(i)

p,/q
4

c,

rj

W

b
6
diag(a)

Cnear

Xtest

set of parameters { ai,/3~,yi}
value of ith input quantity
output of the network
consequence of the jth rule
activation of the jth hidden neuron
parameters of a sigmoid-triangular
membership function
triangular membership function
parameters of a triangular member-
ship function
sigmoid-triangular membership func-
tion
sigmoid function for left and right
slopes, respectively
activation of the jth hidden neuron
when input vector is x
input vector
sth cluster center
Euclidean distance between sth clus-
ter centre and ith input vector
index of the cluster centre to which
ith input vector has been assigned
pth root of q
width of the membership function
for jth input quantity
jth best cluster centre which has been
selected amongst the candidates
vector of normalized hidden unit
activations when input vector is xj
matrix of activations of all hidden
neurons for all input vectors
vector of consequences
vector of outputs of the network
diagonal matrix with a~:s in the diag-
onal
column vector whose elements are
ai, i = 1, . . . ,N
column vector whose each element
is unity
condition centre nearest to the input
vector
difference vector between Xtest and
Cnear
input vector used in testing whether
a new rule has to be generated

Special Symbols used in Appendix A

gi scalar valued coefficient
r• transpose of a vector ri
h~ column vector
% scalar coefficient
qJi column vector

Special Symbols used in Appendix B

i

r/j

update of parameter Pi
left parameter of a triangular mem-
bership function
right parameter of a triangular mem-
bership function

56

mij

rij, rlj, crij,~rij

f~j

parameter of the tip of the triangular
membership function
parameters of a sigmoid-triangnlar
membership function
sigmoid function

A ~b~

~7

S. Kuusisto et aL

parameter b value at epoch e
(parameter can be also l, r or m)
parameter b update at epoch e
(parameter can be also l or r)
step-length at epoch e

