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In recent years there have appeared many studies of an interesting and important prop- 

erty of logical theories, the so-called Craig interpolation theorem. Craig proved the inter- 

polation theorem for classical predicate logic in 1957 [9]. SchHtte [23] proved the inter- 

polation theorem for intuitionistic predicate logic, and Gabbay [12] for certain extensions 

of this logic. In [I0, 13] the interpolation theorem was proved for a number of modal logics, 

and in [21] for many-valued predicate calculi. 

We will study the Craig property in connection with extensions of intuitionistic proposi- 

tional logic, the so-called superintuitionistic logics. The results of [9, 12, 23] imply 

the validity of the interpolation theorem for three superintuitionistic logics. It turns 

out that in the whole continuum of consistent superintuitionistic logics the Craig inter- 

polation theorem is true for only seven (Theorem 3). Consequently, the following problem is 

solvable: given a finite system of axioms of a superintuitionistic logic, determine whether 

the Craig interpolation theorem (CIT) is true in this logic. 

We obtain a completedescription of the superintuitionistic logics with CIT from a description 

of all amalgamable varieties of pseudo-Boolean algebras (of which there are eight, including the trl 

val one). It is known [l]that thereis aone-to-one correspondencebetween the family of all super- 

intuitionistic logics and the family of varieties of pseudo-Boolean algebras. It turns out that the 

CIT in superintuitionistic logics is equivalent to the so-called interpolation principle for 

equalities (IPE) in the corresponding varieties of pseudo-Boolean algebras. J6nsson [17] 

showed that, under certain conditions, the IPE in varieties of algebras follows from the 

amalgamation property. It was noted in [8] that the reverse implication for varieties is, 

in general, false. For varieties of pseudo-Boolean algebras, the amalgamation property and 

the IPE turn out to be equivalent to each other and equivalent to the strong amalgamation 

property and to the superamalgamation property (Theorem i). 

In [8] there is given a classification of the different versions of the interpolation 

theorem. In particular, it is noted that in any variety ~ , the IPE is equivalent to the 

property ~CE~,Z/~ 0 +) : 

If ~ is a positive 3-formula, ~ a positive V-formula, and ~----->,~ , then there 

exists an unquantified positive formula f such that ~K~==~ and ~Kf=~ 
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It was also shown there that the amalgamation property of a universally axiomatizable 

class K is equivalent to the property $~ (E, ~, 0) , the formulation of which can be ob- 

tained from the definition of Jg~ ~E +, ~03 by omitting the word "positive." Therefore, 

in view of Theorem i, we obtain for varieties of pseudo-Boolean algebras the equivalence of 

the amalgamation property, strong amalgamation property, IPE, ~ {E, U, 0) , and ~ (E+,~+, ~+). 

We should mention that the amalgamation property is being intensively studied at the. 

present time. In particular, all amalgamable varieties of modular lattices [16] and pseudo- 

complemented lattices [15] have been described. 

In [19] there was observed the equivalence of Craig's theorem in the systems of class- 

ical predicate logic and the amalgamation property of classes of cylindric algebras, and the 

amalgamation property for various classes of cylindric algebras was studied. 

We mention also that from the results of this present paper it can be shown that there 

are exactly four amalgamable varieties of implicative lattice (relatively pseudocomplemented 

lattices) and three consistent extensions of the positive fragment of intuitionistic logic, 

namely the positive fragments of intuitionistic logic, classical logic, and Dummett's logic 

LC By our methods we can also obtain Craig's theorem in certain enrichments of intuition- 

istic logic (by additional connectives). For example, the CIT is true in the propositional 

logic H- ~ [22], and the variety of corresponding algebras is strongly amalgamable. 

I. Craig's Theorem and the Amalgamation Property 

The formulas of propositional logic will be constructed in the usual way from proposition- 

al variables and the propositional constant i ("true") by means of the connectives ~. v, D, 7 ; 

we also use the notation ~ ~ (~)~). By a superintuitionistic logic we mean any set 

of formulas containing the axioms of intuitionistic logic and closed under the rules of sub- 

stitution and modus ponens. 

By the Craig interpolation theorem (CIT) in a logic ~ we mean the following proposi- 

t ion : 

For any formulas ~ and ~ , if IAD~)6~ , then there exists a formula C such that 

~$)£~ and ~C5~)£L and £ contains only those variables which occur simultaneously in 

both ~ and 

By a pseudo-Boolean algebra (PBA), or a Heyting algebra, we mean [6] a system ~=~,~j 

~,qj~>, satisfying the following conditions: 

i) <~,&, ~ f~ is a lattice with largest element / and smallest element 0 , and 

(respectively, V ) denotes the greatest lower (least upper) bound (as usual, we write ~ 

instead of ~b~=~ ); 

3) Z~ 7m <---~. Z&m~ 0 . 

It follows directly from the definition that in any PBA: 
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5) z - y  . :  > = / ,  

In the sequel we will denote the carrier ~ of the algebra ~ by the same letter 

A PBA ~ is called nondegenerate if it contains at least two elements. A PBA ~ is 

called completely connected if for all ~,~6~ 

The properties of a PBA used in this paper can be found in [6]. 

The Class HI of all pseudo-Boolean algebras forms a variety. To each superintuitionis- 

tic logic ~ there corresponds in a one-to-one fashion [i] the variety 2~/z of pseudo-Boolean 

algebras defined within HI by the set of identities {A=/IA£ ~} If 2~ is a variety of 

PBA, then the logic corresponding to it is 

Suppose P is the equality of terms g/=tf . We denote by ~ the term ((dDtf)& (dr ~U)). 

LEMMA i. Suppose ~ is any variety of pseudo-Boolean algebras. Then the quasiidentity 

{/~/A...Ap~)-----)~ is true on ~7~ if and only if the identity (~&.°, ~p~)~ ~ =/ is true on 22~. 

Proof. Suppose the identity (~&...&p~)~=/; does not hold on ~ ; let ~,..,,~m be all 

of the variables occurring in this identity. Take an algebra ~ in ~2~ with generators 

a I ..... a~ such that ~...~/~)~)(G1,...,Cfm)yl /. Let qO be the filter in ~ generated by the 

element (/~&...&/~)(CI I .... ,~7) Then (see [6]) in the algebra ~=&f/@ we have 

Since 0~16~'J'~ , we obtain, using properties 4-6 of pseudo-Boolean algebras,~(~A...A/Tn)~ ~ . 

The converse is obvious, since ~Z~ (OT=/A ~-~ ---- /) => if=/. 

Suppose ~ is an arbitrary class of algebras. By the interpolation principle for 

equalities (IPE) in the class ~ we mean the following proposition: 

For any pairwise disjoint sets of variables X,~Z and equalities ~ (x,~),...,~ (~) , 

K 9: 

then there exist ~z and equalities Z~(~) ..... Z m (~) such that 

tZ ~ rf/ 

If all algebras in ~' are partially ordered, then we also define the interpolation principle 

for inequalities (IPI) : 
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~(~,~# , For any terms and U{~,~) , if ~K$11,~)< Zf(~,I) , then there exists a term gr/~) , 

such that ~ K ~ I~r~) .< ~f (JE).. < /I (~,Z) . 

We say that a class of algebras K is amalgamable [17] if for any $~,~7,~7 6 ~ the 

following condition is satisfied: 

(A) For any monomorphisms ~'~-+~, ~: ~0--+~ there exist an algebra ~6 A / and mono- 

morphisms #;: ~--~, ~z : Sfz ~$[, such that $~ = £;~ . 

The triple {Cf~.~) will be called a common extension of C/g~ and ~ over O~o A class 

is called strongly amalgamable [14] if for any &Zo,~m~ condition (A) is satisfied 

and ~)~(~z)=~(££=). A class ~ of partially ordered algebras is called superamalgamable 

if condition (A) is satisfied for ~$~,Df~,~6~ , and if ~(~)~£~z~C/~o)~(~)A~i<~), 

where Q,@}:~I2} ,~j is the order in ~,~&~6~ • A class ~ is called weakly amalgamable if 

condition (A) is satisfied for finite, subdirectly irreducible ~0,~,~z£/. 

Condition (A) is obviously equivalent to the following: 

(A') If C~ is a subalgebra of ~ and ~z ' then there exist ~6/( and monomorphisms 

~} :6~--~,~Z:0[;--~ such that £1~C//.o=~z~C/~o . 

THEOREM i. For any superintuitionistic logic ~ the following conditions are equivalent: 

i) Craig's theorem is true in L ; 

2) the variety 22~ satisfies the interpolation principle for inequalities; 
L 

3) ~ satisfies the interpolation principle for equalities; 

4) ~ is superamalgamable; 

5) ~ is strongly amalgamable; 

6) ~ is amalgamable; 

7) condition (A) is satisfied for any completely connected ~o,~,~2E22f~. 

Proof. The equivalence ~4=~2 is obvious, since (~D~ 6 ~ is equivalent to ~;2fA~. 

From Lemma I it is easy to obtain 2~->$ Obviously, f------>G ~ 7 
--'L 

It is easy to see that @~5" for any class K . Indeed, if ~o,~/,~26/<, ~ is a sub- 

algebra of ~ and ~z , and ~7~=~C//) in the common extension (~,6,,62), then~l,Z1~=~, 

F~Z~, Yz-~ for certain Z1,%2e40 . Therefore, in ~ we have ~.~Zf.~y~, i.e., ~-F = 

ZTE ~ . Proof that /----~4 and F~-~2 is contained in Lemmas 2 and 4 below. 

LEMMA 2. Suppose Craig's theorem is true in ~. Then 2~ L is superamalgamable. 

Proof. Suppose~o,~0~zE2~Z , 6' I :~--*~ and ~:~0--~2 are monomorphisms. We may 

assume that ~oc~O~z. We associate to any element aE~ I~=0,/,2~ a variable ~i~ , where 

~-~=X~° I 2 for ~ZE~ and the remaining variables are distinct. Let ~ denote the set of 

propositional formulas in the variables ~ , and ~ the set of formulas in the consolidated 

set of variables. We fix an interpretation of the variables, assigning to ~ the value ~ , 
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and we write ~ ~ A= Z~ 

For ~=/,2 let 

Note that the 

, if the equality A=~ is true in ~ 

C = { / I  Ae ~z~ ~" ~A --t}. 

are closed under modus ponens and ~ D~Z ~ ~ " 

under the given interpretation. 

Let 

where ~ A denotes deducibility of ~ from PL)Z, by means of modus ponens. 

show that if {~,)}= {1,2~, ~ , Z~E~, then 

Indeed, if~z~A~0,~y.~O-~ for 0e~, then~.~(~DC):4 C~/" I == {ODd)={, hence 
~CD~)ET, and therefore T~Z ~D~ On the other hand, suppose ~-D(~mJ). 

finite subsets ~C ~ ,~ c T/ such that ~,~7.~-D~D~ . If we denote by F # 

of all formulas of ~ and apply the deduction theorem, we obtain 

&' = 

which is equivalent to 

we have 

We wil~ 

(1) 

CA~C) , 

Then there exist 

the conjunction 

~ / ~ ' ~ J ~ C  and ~I.OD{/3/ D,~) . By Craig's theorem, /, contains a formula ~E~ such that 

Therefore, ~#~.~D~ and g1~b~'~ . Since C~, 

i.e., ~ A~ . Similarly, ~ ~ . 

D Putting .~/ , in (i), we obtain for ~--f,~ and 

(2) 

We define on the whole set ~ the relation 

A ~  ~=~ r ~ -  L (A=--~) • 

In view of the replacement theorem in intuitionistic logic, the relation 

on 

hence 

Suppose ~,~ E~Z (&=~2). Then, in view of (2), 

Let 

A ~ ~ .'--~- 0~ ~ A=~.  

is a congruence 

(3) 
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We define mappings £$ :~Z--~ (d=f, 2), by putting for ae~" : 

By virtue of (3), ~ 

. t~2 ; Thus, ' .  
i s  o n e - t o - o n e  and  a h o m o m o r p h i s m .  

n kl~,~,~z,; i s  a common e x t e n s i o n  o f  ~j  

If a g % ,  then = ~=2~ , hence 

and $'~ over t ;~ . 

We will show that the superamalgamation property h o l d s .  Suppose 17,~J={J.~J, ~6~/,, f~ C~, 

=d Then /I   ie., Z% li V  r) Z)and 

7 ~ /LP~ ~ .~ A . Then the value c of 

formula ~ under the given interpretation occurs in ~0 and a~<.C , C .~ d. 
7 

The lemma is proved. 

LEMMA 3. Suppose a PBA ~0 is a subalgebra of PBA ~ and ~z " Suppose also that 

a~'C~,  ' f £~- '~Z  ' and there exists no 08~2/0 such that a~<Ig  and 

prime filters ~ on ~ and ~ on ~ such that a6~, ~'~ 

Proof. Consider the following two sets: 

By hypothesis, 

The family ~7 

C~26: . Then there exist 

and ~q~?=~ ~ ~ . 

VN ~ = ~. Now consider 

~,~!--- ~ i ~ is an ideal of , L;'~ -~- ,..', ~. ;3 V = ~ 3" 

Obviously, is nonempty, since it contains ~=i.~65~' 2 ~ ~. 

rive, i.e., the union of any chain of ideals in ~, again belongs to 

~ contains a maximal element ~2 A standard argument shows that 

i.e., satisfies the condition 

Put ~=~\~ , ~= ~n~,6=~O ~. We have V~,~. 

Now consider 

~7 is induc- 

"~"! By Zorn's lemma, 

~2 is a prime ideal, 

We will show that ~2 contains 

We w i l l  f i r s t  show t h a t  ¢ n ¢ = t ~  ( .  Assume t h a t  :Te¢7~n~qg. Then a & Z ~ , ~  f o r  some Z e c ~  o , 

a ' l ~ " - ~  .~ and Z£~ . Therefore, ('~'-O,Z')£ V ~ : ~  0 , hence X~ , since Zeq~ '  o • We have obtained 

X6~ N ~ , which contradicts ~0 N~=¢" Obviously, ~ is a filter on 4 and [£~J U 

Thus, 

Obviously, ~'~ is inductive. By Zorn's lemma, ~z contains a maximal element q~z " 

A standard argument shows that ~ is a prime filter on ~/ , i.e., 2v~6 ~(XE~ or ~6~) 
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Finally, ~ n~=qS~ 0 ~--~a " Indeed, 

LEMMA 4. Suppose ~ is an arbitrary variety of PBA and condition (A) is satisfied for 

connected ~Q,~I,~ e ~. Then the interpolation principle for any completely inequalities 

holds in ~. 

Proof. Suppose ~,~,Z are pairwise disjoint sets of variables, 71~,~) and ~(~,~) are 

terms, and there exists no term SI~) such that ~ 77f~i~,~)~(~)~ ~f£,Z). Let ~ be a free 

algebra in Y77 with free generators ~ , and ~ a free algebra with free generators ~,~,~. 

Then, by Lemma 3, there exist prime filters ~ and ~ on ~ such that ~,~e~ , ~(~,~)¢~ 

and ~---~P f]~ Put (see [6]) ~'=~/~/2=~/~ . The algebras ~,~7 are completely 

are prime filters. Moreover, ~(~/~=/~ U[~,Z)/~ ~/. Note that if connected, since C.~:, 
f,~zre .~ , then 

! 

= 

Therefore, there exists a natural isomorphism 6~ (~/~z~)=Zr" 4 of the algebra 

into the algebra ~ . It follows from the hypothesis of the lemma that there exist 

and monomorphisms $! :~-~ £2 :~-~ ~ such that ~I ~0-- ~ " 

Now put 

This mapping can be uniquely extended to a homomorphism ~ :.~--~0~" . We have in ~ :  ,~ (~[Z,~))-- 

B I (~(~)/q/~)"/j /~Z))~Z(Lf(~Z!/~2# ~ 4. Therefore, ~(~,~)~U(~Z) • 

The lemma is proved. 

II. Amalgamable Varieties of PBA 

In this section we will establish the amalgamation property for the following eight 

varieties of pseudo-Boolean algebras. We denote by ~ the variety of all PBA and define 

~-~ within ~ by the following identities: 

/-/.z : 1.,~ Vnq ~ /; 

x,.' (z= 
: 

I-fs : x = / .  
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Obviously, the variety ~ containing only the trivial PBA is amalgamable. The amalgama- 

tion property for ~ , which is precisely the variety of all Boolean algebras, was proved 

earlier (see [14]). This also follows immediately from Theorem I, since ~ contains only 

two completely connected PBA: the 2-element Boolean algebra and the trivial PBA. The fol- 

lowing method of proof of the amalgamation property of varieties of PBA can be used to obtain 

an explicit construction of the free product over an amalgamated subalgebra [5] in varieties 

of Boolean algebras and distributive lattices (see the remark after Proposition i). 

To prove the amalgamation property for 4-~ we use the representation of a pseudo- 

Boolean algebra as an algebra of subsets of a partially ordered (p.o.) set [3]. 

Suppose ~ is an arbitrary p.o. set. A subset X~ is called an (upper) cone if the 

following condition is satisfied: 

Let ~ (~) be the family of all cones of ~ . It is known that the following is a PBA: 

~ (g) = < ' , 3 ( a ) ; & , v ,  ~ ,~, ,/>, 

where ~ and V are the set-theoretic intersection and union, 

x -~ v = {~1 C ~ ' ¢ ~ ) ( ~ , ~ x  ~~')}, 
~X= X-- ~ ,  / - S .  

By the representing set of a PBA ~ we mean the set S£~ of all prime filters 

ordered by inclusion. The following theorem is well known. 

Representation Theorem for PBA. The mapping ~:~--~J~(SO~)defined by 

is an isomorphism of the PBA ~ into ./ '~(~) . If ~ is finite, then 

of ~ onto ~ (S=) 

Now suppose we are given PBA ~0,$~i,$~ 2 such that C~ O is a subalgebra of 

( % , c ~ , , c ~ , ~ = '  ' , ' ., 

/ 

Also, put < ~ , , ~ > . < < q ' , , ~ >  -~ ~=-<'A%c_ ~ .  

LEMMA 6. Suppose gC:::~ (~O,~,O'/Z) possesses the following properties: 

one, 

~ is a monomorphism 

0~I and ~Z " Let 

2.) <q,~>~ s.~ ~ &~sI'  - ,~q,~s~!'-j, 
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Then the following mappings ~ IK-/,2# are isomorphisms of ~ into ~# : 

where ~ I~) = ~ ~) for xE~ 0 

The lemma follows from the representation theorem, since for , ~ $, 

We w ll show, for ex=ple, that Suppose 

K=~2 , and 

Permutability of ~ with the remaining operations is easily proved. Uniqueness of ~ fol- 

lows from conditions la and ib; ~ and ~ agree on ~0 since ~c_ ~ ~0 ~:,~z~ " 

In view of Lemma 6, we can prove the amalgamation property or, equivalently, property 

(A') for a given variety ~ as follows: for any PBA ~7,C~ze~ with common subalgebra d 0 

it suffices to choose ~i~o,~,Ofz# so that the conditions of eemma 6 are satisfied and 

~(S)e~ . If one of the algebras ~,~ ,~ is degenerate, then so are the others. There- 

fore, we need only consider nondegenerate ~,~I, ~ . By Theorem I, we need only consider 

completely connected ~/~0,~t,C~z . 

LEMMA 7. For any nondegenerate PBA C~ I and ~ with common subalgebra ~ , the set 

~= $ ~,~,~z# satisfies the conditions of Lemma 6. 

Proof. Properties la and ib follow from the fact that ~ and ~ 0  are prime filters 

on ~ and any prime filter ~ on a sublattice 4 of a distributive lattice ~ can be ex- 

tended to a prime filter ~ on ~ such that ~O~o= ~ [4, Lemma 5]. 

Let us prove property 2a. 

f ami ly 

Suppose <~/,~>ES (~,~,~Z) and~C-~E SoY7 

I I 

Note that ~ is nonempty, i.e., it contains the filter 

Consider the 

on ~z generated by the set 
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~z U((:~z'f}~) Indeed, suppose ~99~ Then ff~Z.<~ for certain ~e~ z ,.¢'e.q~;F/%. 
Therefore, ~-<fml and(ZmX)e~znOf0=~nOf~£~ ' . It follows that ,Z~¢7~'/']~'/O . On the 
other hand, by construction, ~/f7 ~o C_ ~ ~ ~o " 

Obviously, the family ~ is inductive and therefore, by Zorn's lemma, contains a maximal 

element ~' A standard argument shows that ~' is a prime filter on ~Z " 

Property 2b is proved analogously. 

From Lemma 7 we immediately obtain 

Proposition i. The variety ~ of all PBA is amalgamable. 

Remark. Supp°se ~o,~' ~Z are Boolean algebras (distributive lattices with 0 and # ) 

and ~0 is a subalgebra of ~! and ~ Then the subalgebra ~ of ~ ($ I~0,~,~2)) generated 

by the set ~ (~)U ~2 (%) is the free product of its subalgebras ~) and ~2[0~2) over the 
amalgamated subalgebra ~(~o) • 

To prove the amalgamation property of the remaining varieties ~z-~ it suffices, in 

view of Theorem i, to show that condition (A) is satisfied for nondegenerate, completely 

connected PBA. 

We obviously have 

LEMMA 8. A nondegenerate PBA SZ is completely connected if and only if $~ has a 

smallest element, namely ~={4}. 

Well known (see [6]) is 

LEMMA 9. If C~ is a PBA, then $~ 

there exist a maximal (with respect to inclusion) filter ~'6 S~ 

LEMMA i0. Suppose O~I, ~z are PBA with common subalgebra $[o 

a) If ~/0 and ~o are the smallest elements of S~I and $~z , respectively, then 

b) For any maximal ~ES£/, there exists a maximal ~ze S~ such that < ~, ~; > E 

c) For any maximal ~ES~z there exists a maximal ~ES¢£, such that < ~,Q6 z > e 

Proof. a) By Lemma 7, <C~/o,C~z>ES'"~=$~,a,~Z) and <'C~7,~20>¢S "~ for certain ~f~1~SO/, ' , 

hence < CZ~10, % , b  E S 
/ ! 

 uppose ma imal  emma s o m e  

Lemma 9, there exists a maximal c~; 6 SO,Z ' such that .~2 'C 

satisfies the following condition: for any ~ 

such that ~ ~ q~'. 

By 

It follows from property 2b that 
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<~,~z> ~ ~ for some ~ £ , ~ _~ ~, . Since ~ is maximal, we obtain 

< , >ES • Assertion c) is proved analogously. 

(:~/=c~ , i.e., 

We will now show that ~2 has the amalgamation property. 

LEMMA ii. a) Suppose a nondegenerate PBA ~ is completely connected and satisfies the 

identity 7~vT~&9= / Then ~ has a largest element. 

b) Suppose ~ is a p.o. set having a largest element. Then ~(S) E~ . 

Proof. a) We will show that ~={~IX~0} E$~ . 

We need only show that ~ is closed under ~ . Suppose ~0 ,~0 . Then 7~I, 7~4 

hence, by the hypothesis of the lemma, 77~-/ and lIF=4 . Therefore I(~U~) = 707~17F~ 

0~/, and ~ 0 .  

Obviously, ~Ic~ for any filter ~i on ~]~ . 

b) Suppose ~ is the largest element of ~ and ~ is any cone in $ . If ~e~ , then 

~X~ ; if ~ , then X = ~ and 7X= 

The lemma is proved. 

Proposition 2. The variety H2 of pseudo-Boolean algebras satisfying the identity 

~V77~= / is amalgamable. 

Proof. Suppose ~/ ,~  are completely connected algebras in ~ and ~0 is a subalgebra 

of ~/ and ~ Then, by Lemma lla, ~ and ~ have largest element ~ and ~ . 

By Lemma 10b,~I,~>ES= ~(~,~,~) i.e., S has a largest element. By Lemma lla, 

~S) E ~ , and it follows from eemmas 6 and 7 that ~ and ~ can be isomorphically embedded 

in ~ (~) , where the embeddings agree on ~o By Theorem i, ~ is amalgamable. 

LEMMA 12. a) Suppose a nondegenerate PBA ~ is completely connected and satisfies the 

identity ~V(,~ -~ {~/'V'TF~)~=~. Then ~ has a smallest element and all other elements are 

maximal. 

b) Suppose $ is a p.o. set in which all <-chains have length at most 2. Then 

The lemma follows from [3, Proposition I]. 

Proof. 

~/0 and ~o 

Proposition 3. The variety H 3 of pseudo-Boolean algebras satisfying the identity 

X v C~= IyV'1~)) = / is amalgamable. 

Suppose ~o,~,~ are nondegenerate, completely connected PBA in H.. Let 

be the smallest elements of S~: and 3~2 . Let S={<~0,~zo~U{~,~>£ 

S I~/~0~.~)/~ / is maximal in S~f , ~2 is maximal in $~z } . By Lemmas i0 and 12a, ~ satisfies 

all conditions of Lemma 6, hence ~7 and ~ can be embedded in ~(SJ , where the embeddings 

agree on ~0 By Lemma lab, ~($~~£~ , and, by Theorem i, ~ is amalgamable. 
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LEMMA 13. a) Suppose a nondegenerate PBA C~ is completely connected and belongs to 

,~ Then contains at most three elements, one of which is the smallest and the rest 

maximal. 

b) Suppose S contains at most three elements, one of which is the smallest and the 

rest maximal. Then ~(8J6/{~. 

Proof. a) By Lemma 12a, S~ contains a smallest element, the rest being maximal. 

Obviously, if ~ is linearly ordered, then ~ contains only one maximal filter. 

Suppose ~ contains incomparable elements ~ and ~ . Then ~--q~f and(~=IX)---# i.e., 

~=I~ and IX=~ , hence ~ cannot contain another pair of incomparable elements. But 

then ~ has only one pair of incomparable (with respect to inclusion) filters, hence $~ 

contains at most two maximal elements. 

b) Suppose $ contains a smallest element ~ and at most two maximal ones. Let X~ 

be cones in $ , and assume that X~Y and ~ ~ . Then ~X~,~E~X for certain 

~z£$ Obviously, ~ , since ~¢X~X=$ ; similarly ~;#c~o and also ~ 2  " 

Thus, X={~},Y={~} , hence X----l~ and ~(S)E~ 4 . 

Proposition 4. The variety ~# is amalgamable. 

Proof. Suppose ~0' OYI'~ are nondegenerate, completely connected PBA in ~# and ~O is 

a subalgebra of ~ and ~2 Let ~/o and ~zo be the smallest elements of 8CX ' and % , 

and let ~! and S z be the sets of maximal elements of $~i and $0[ z . By Latona 13a, $~-~ 

Assume that ~ = { ~ " ~ Z } '  where ~Z' and ~2 are not necessarily distinct. By 

eemma i0, there exist qb;{,~ 2 65~ such that 

S(c.~o,i:~l,c~2) fo r  some ~6~ ,  . Put S ~ { < ~ , ~ > , < ~ , ~  >}, where {~ ' }=~ ,  \ i~z~ ~'={<%'ci~;o>}U$"" 
Since in this case q~2'=~' '  we again obtain $ C_ S ' ' 

In e i t h e r  case, J s a t i s f i e s  the condit ions of L e n a  6, and, by  ,e=a 13, H, , 

as required.  

Proposition 5. The variety ,Vz 5 is amalgamable. 

Proof. Suppose ~0,~z,~2 are nondegenerate, completely connected PBA in ~ and ~0 is 

a subalgebra of ~ and ~2 . Using eemmas Ii and 12, we obtain that S~ = ~c~ ~] , where 

c~ ~c~ and ~ = {~0,~2i~ , where ~ o ~ _ ~  . Take S = { < ~ o , ~ 2 o > , < ' ~ , ~ 2 { )  ~ . By Lemma i 0 ,  

S~ $(C~o,C#,,~ z) Obviously, f satisfies the conditions of Lemma 6, and, by Lemmas ii 

and 12, J~ IS) 6,~ , as required. 

The amalgamation property can be established for the variety '~6 by the same method. 

However, we will establish it without using the representation theorem. 
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Proposition 6. The variety //F is amalgamable. 

Proof. Note first that the completely connected PBA in ~6 are precisely the chained 

PBA, i.e., linearly ordered sets with smallest and largest elements. The operations D and 

in a chained PBA are defined as follows: 2D~= / if £-<~ , ~ -~=~if ~>~;~=0 if 

>0 ,q0 = / . Suppose ~0,~$,Of z are chained PBA and ~ is a subalgebra of ~ and ~z " We 

may assume that U/~OUT~z= ~0 (otherwise we can replace $1P. z by a suitable isomorphic PBA). Let 

~:~s U C,~ z For £,~' E~ we put 

It is easy to see that ~ is a partial order on ~ , and for ~=t, 2 and I,~£~ we have 

£~<~ ~# X.<~ ~ . Extending ~ to a linear order on ~ , we obtain the desired PBA in //F 

III. Characterization of the Varieties .~,-~ 

Suppose ~ and ~ are two pseudo-Boolean algebras. By the ordered sum ~+ ~ of 

and ~r we mean the algebra ~= ~,~/,D n,4>, defined as follows: ~=~U~ I , where ~# is 

isomorphic to ~ and ~IO~={~)={05,J , and the order ~ is defined by the condition: 

Consequently,Oz.= OC~ , /L,.== ~ , , 

x y 

7 .~ = £ 

L y , 

L i . , ,  :---o==o;. 

The operation -P is obviously associative. We will denote the 2-element Boolean algebra 

by B 0 , and will sometimes denote ~+ ~0 by ~+ 

Recall [18] that a nondegenerate PBA ~" is subdirectly irreducible if and only if 

has a penultimate element, i.e., an element ~f such that ~J for any XE~,~/ . Thus, 

is subdirectly irreducible if and only if 4 = ~+ for some PBA ~! 

For a given finite PBA ~ , we define the family /((~) of finite, subdirectly irreducible 

PBA as the smallest class satisfying the following conditions: 

2) (,,~"+Oi{l),.,., (,,~"+6~)EKi=~')~ (.~ -I- ( ~YL! x , . , x O'f ~ ) + 4 ) E K (~_r) , 
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LEMMA 14. Any finite PBA of the form ~#~ +~o is isomorphic to a subalgebra of a 

suitable algebra in K(~) . 

We will first prove the lemma in the case where ~is the 1-element PBA E , i.e., 

~+~+~o=~+~o . The proof is by induction on the number of elements in ~ . If ~=~ , 

then ~+~0=~oEK~E) by definition. Suppose ~ is a nondegenerate PBA. Then ~ is a 
* + 

subdirect product of subdirectly irreducible PBA ~I,,O.,~ . Since each of ~p .... ~ has 

cardinality less than that of ~ , it follows from the induction assumption that the algebra 

~7=~.+Z~o can be isomorphically embedded in a suitable PBA CTI/6~(E) . Since ~ is iso- 

morphic to a subalgebra of the PBA ~;x.x~; , we have that C%+~ can be isomorphically 

embedded in ~O~/~...x~'d;+4~ ~lff). 
In the case where ~ is a nondegenerate PBA, we use the obvious equality K(~) = 

{-~+~I~E~(E)} • Clearly, if ~ is a subalgebra of ~i , then ~+~ is a subalgebra of 

~t~. 

The lemma is proved. 

Proposition 7. I) The variety ~ is generated by the family ~(~) , where ~ is the 

1-element PBA; 

2) 

3) 

4) 

5) 6 is generated by the algebra ~=4 + ~; 

6) ~/6 is generated by the family l~a]~ 2}, where ~ 

cardinality g ; 

is generated by the family A~{~) ; 

is generated by the family {~l~OJ , where ~=~7 +4 ; 

H 4 is generated by the algebra ~= ~;+ ~ ; 

is a linearly ordered PBA of 

7) ~ is generated by the algebra ~O ; 

8) ~/8 contains only the 1-element PBA. 

Proof. i) It is known [6] that the variety ~ is generated by all finite PBA. There- 

fore, it follows from eemma 14 that the family K IE) generates 

2) It is shown in [7] that b/z is generated by the finite, subdirectly irreducible PBA 

of the form ~d . It remains to apply Lemma 14. 

3) This follows from [3, Lemma i0]. 

4) This follows from Lemma 13 and the representation theorem. 

5) This follows from Lem~as ii and 12. 

6) This follows from [ii]. 

7) ~ is the variety of Boolean algebras. 

LEMMA 15. A PBA ~ ~H z if and only if ~= ~0; + Z~o can be isomorphically embedded in 
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If ~ ¢ ~  , then ",av-r~a<¢ for some a ~  Then ~"fO,'la,'l 'la,'laVl'la,t} is  a subalgebra 

of ~ isomorphic to ~ On the other hand, it is obvious that 6 ~ 

LEMMA 16. A PBA ~ ~3 if and only if ~4 can be isomorphically embedded in 

If ;~V I~(~V~))</ for certain ~,~ , then the set {O,~Y'~,~VI:~=(~V'I~)),~ } is a 
4-element chained subalgebra of ~ . 

LEMMA 17. A completely connected PBA ~¢~ if and only if ~ or ~--~$+~ can be 

isomorphically embedded in ~ . 

If ~ $  , then, by Lemma 16, ~4 can be embedded in ~ If ~'~, then ~ contains 

a finitely generated subalgebra ~/~ "#/#. By Lemmas 12a and 13b, $~ has a smallest 

element and the others, of which there are at least three, are maximal. The algebra ~ is 

finite, since ~/~ is locally finite [2]. It follows from the proof of Lemma 8 of [3] that 

C7 is a subalgebra of ~! and hence of 

2 
LEMMA 18. A PBA ~F if and only if ~4 or ~= ~ +~g can be isomorphically embedded 

in 

This follows from Lemmas 15 and 16. 

LEPTA 19. A completely connected ~ ~ if and only if ~z=~; + ~p or 6" ~o +~: + ~o 

can be isomorphically embedded in 

If ~¢~-~ , then, by Lemma 15, ~ contains a subalgebra isomorphic to ~ Suppose 

~E~-}#6 Then (~m~)V(~)< / for certain ~£,~E~;X~, ~ ~ ~. Therefore, ~0,~O, 

hence ~ O  and X=~O • Since ~(~=~)V~I (~)~4, we obtain "~)-=f ; similarly, 

11(~)~], i.e., ~(~=£) -- "IIX'~)~, O. Consequently, the set 

is a subalgebra of ~ , all elements are distinct, and [~=~) and (~DX) constitute the only 

pair of incomparable elements. Therefore, this subalgebra is isomorphic to 

LEMMA 20. A PBA ~¢~ if and only if C! can be isomorphically embedded in ~ . 

If ~H~ , then XvqZ~! for some X , hence the set {O, RVV~,~} is a subalgebra 

isomorphic to 

LEMMA 21. A PBA ~ if and only if 4 is a subalgebra of ~ . 

Any nondegenerate PBA contains ~O as a subalgebra (see [6]). 

IV. Necessary Conditions for Varieties of PBA To Be Amalgamable 

LEMMA 22. Suppose ~ is (weakly) amalgamable, ~g,~l,~z are (finite) subdirectly 

irreducible PEA in ~ , ~ is a subalgebra of ~I and ~Z ' and uJ is a penultimate element 

of all three algebras. Then there exist a subdirectly irreducible ~E ~ with penultimate 

element ~ and monomorphisms ~I' ~/--~, ~2 :~ -+ ~' which are the identity mappings on ~g 

Proof. Since ~ is (weakly) amalgamable, there exist an ~ in ~ and monomorphisms 

4:~-~t ~ :~--~ such that ~ ~0-- ~0" Let ~=~I~). Consider the set 
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v =[zv (z= ~)I x~}. 

Since C~V'I~D~I,)=~.~-~" and I~&~)m~-~mI~=$ } , we see that for all E~ and ~/,,... ,~ £ ? we 

have (~...~=~<#, i,e,, F~...~ ~ Therefore, there exists a prime filter 

~__mV ,~. Let 

for b=/,Z, ~6C~ . 

Suppose .T,~6C,~ !b'=f,2),,I~]. We have ~ = ~  in ~. , hence ~ (~T~-~) " ~ ¢ ~z~ , hence 

£~ I~---~)~ ~/~< / in ~, i.e., ~I2)~I~). Therefore, the homomorphisms ~ are mono- 

morphisms. 

We have 2£~ or (2m~)e~ for any 2~. Therefore, ~L~= / or ~/~D ~/~ = { for any 

2~ , i.e., Z~ ~/q~ for any Z~ ,'~{. Thus, ~ (~#)= ~/~ is a penultimate element of 

, and ~ is subdirectly irreducible. Finally, replacing in ~ the subalgebra 8~ 

(~0) by the isomorphic subalgebra ~o ' we obtain an algebra ~ and monomorphisms EI,6Z 

which are the identity mappings on ~o 

The lemma is proved. 

LEMMA 23. Suppose ~ is (weakly) amalgamable and ~4e~ . Then for any finite) PBA ,~ , 

Proof. Take ~I~o.~3,-{0,0, f~,~=~4=.{~,~,~,/~, where ~ ,~--~- ~0' and let &# be a 

penultimate element of ~ . For ~e~ 0 : 

i x Cz)-- x if ~ ~ a ,  i z Ca) = ~. 

Then hi: ~0 -+~I, &z: ~ --~ ~z are monomorphisms. Therefore, ~ contains a common extension 

(~,%.~2) of ~, and ~ over ~ We have in m: ~C~)=~, Ca)< 8, C4<~,(fI=I. Therefore, 

the set ~=@z(~)U [~i(~)~ is in one-to-one correspondence with ~ + ~o' where this correspon- 

dence preserves order. We will show that A is a subalgebra of ~ . Since ETI~) is com- 

parable with all elements of e2~) it follows that f is closed under ~ and ~/ Also, if 

~6E~ ~ )  and ~ / '  , then "~'~ ~2 [U))<$ (~), ~m ~, (~,)=/~ .~.~[~aT~ ~(U))D.~ ~ ~ ,  hence E 1 (~D 

.~= ~ . Thus, 7 is closed under all operations, hence the subalgebra of ~ with carrier 

f is isomorphic to ~: . Therefore, <E ~ , as required. 

LEMMA 24. Suppose ~ is (weakly) amalgamable, ~ is an arbitrary (finite) PBA, and 

~+~:+~O) e ~ for some /L~8 . Then (~+~f#~o) ~ ~Z for all m~/ . 

Proof. In the algebras ~-- ~+~;@- 4 and ~o--~+~;+ 4 we denote by Z" the largest 

element of ~ , and by u) the pneumatic element of ~ and ~ ; let ~i ..... ~e be all atoms 

of ~; , i.e., all elements directly following [ in ~ ; let LZ , ~ be elements directly 

following , For put 
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~ , if :~ = ~ , 

O ~ v , . .  v ~  , i~ 

a~. ~f ~-g. 

It is easy to verify that ~: ~--~ and ~2,~--~ are monomorphisms. 

Suppose I~,8#,~z) is a connnon extension of ~# and ~ over ~ and ~ .  Let 

~I (~)=~(~)" ~'~# (~)-- ~ ~)'~ ' ~'# ~)=~ '~Z (~)=~*~ (~'/"'"~)" Consider 

- ~,/ .~) u B u { d ,  

where Z ~ = { y S ¢  ~ I S~-Z'-= {~' , ' . . . ,~-~}}.  
Note that ~'-- ~.,4 fg.Jv ~., ~ f~J=~z/*z (~}VSz/xz(O')-C,~V"oVCzl vc#l~-, Vo" VC,?,,i_, e B, 

We will show that the set ~'~ is a subalgebra of 

First of all, 

~hus, ~. 
V , hence all of 

and 

• i --~ for all &'V 12~'d~2~-{) " Therefore, the set {~} U ~ is closed under ~ and 

is closed under these operations, since ~#(.t~J u 1~ is a subalgebra of 

Note that 0~ES](~)-~ f. 

then ~=~ E 4 {~)U I#}. 

[~ J , then ~ZD~ : 

• ~e, (~J, , . ,  ~' , ~ . ,~ .  

It remains to show that f is closed under ~ If X,~e~Z(~')l.#{tl~l, 
~f ~ ,  (S) and ~/~Z~u{~],  then X=~  = ~ t .  ~f X ~ f U f ~ }  and ~ , ( : ~ "  

We now consider the case where ~ Z ~ ,  k'~ { ~ ] U  Z i  

,'L ~ 2too# 

=~,4 (oJv~  = v V  = V 

2.n-# 
Similarly n ~ - t ~ d ~ n n - t  ~ c~m '~  = V c . .  Now if , 0 " ~ 7 ~ { 2 , . . . , 2 n - l ]  , then 

, ,j=2. d 
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Finally, [~I Ci )D ~ = i ~  ('~ ~ ] )  " Thus, ~ is closed under D 

If ~,~{2,...,2/z-/} ; r,j ~ ~; ~'o~ zxJ, then 

Vc.~ Vc.--c~o= V c.--c. = ~<4 

i.e., 5" " Therefore, all elements of Z~ are distinct and different from ~ , 
d 2 n - 2  

hence {~JU ~ and ~o are  isomorphic  as p a r t i a l l y  ordered s e t s .  Consequent ly ,  the pseudo- 
_2#-2 

Boolean aZgebra % i s  isomorphic to ,~=,~+,~o +,~o, a n d  ~ e ~  . N o t e  t h a t  Z ~ - Z > ~  • 

Repeat ing the  c o n s t r u c t i o n ,  we o b t a i n  t h a t  the a lgebras  ~ v ~ ; +  ~o belong to ~ fo r  

C a r b i t r a r i l y  l a r g e  rn . I f  ~-=/~rn  , then ~o can be i somorph i ca l l y  embedded in 

hence ~ + B ;  + ~ i s  isomorphic  to a suba lgebra  of  =~-x+~';+~ o . The re fo re ,  the  a lgebras  

~ +  ~ ;  + % belong to T~ fo r  any n7>0 , as r e q u i r e d .  

LEMMA 25. Suppose ~ ks (weakly) amalgamable, ~r and ~ a re  a r b i t r a r y  ( f i n i t e )  PBA, 

"-~  I+ +~o ~Z. C~*~'++~o)£m and (~+~:+~o)62~ for some n~{ . Then (~+ I~ o x ) )6 

Proof. The algebras ~=~+~ + 4 and $~2=~+~:+4 contain the common subalgebra 

C-Zo- 4 + 4 
Diagrams of ~0'~! '~2 are illustrated below. 

Z: 

\ / %, / X '1 
"o~" "o~ .. ' ,of 7 

By Lemma 22, there exists a common extension (0~, £! ,~2) of ~ and ~ over ~0 ' where 
zz 

~e~2~, ~ is a penultimate element of ~ , and £I~0[0 = £z#~0=~ • Note that u)-EzIu))=.V ~, 
&=! 

where ~L=6z(a~) and the ~ are atoms of ~; , i.e., elements covering ~ in ~z Since 
n 

~I(~) <~! I~)=w-.V 6 z (a/) , there exists ~ ~4.<~) such that ~z(~)¢~I(~). We may 
C=f 

assume that b=~ . Any element of the set ~ (~ 7) can be uniquely represented in the form 

V ~ , where 7~_~{/,...,]z~ (we regard i V~=Z - ). 

We will show that the algebra ~=~+ (Z~;-Q ~+)+~o can be isomorphically embedded in 

Any element of the set Z~;-I can be uniquely represented in the form 7~3~ , where 

]_c~_--~, and ~ ..... ~_! are all of the atoms in Z~;-f ; an element of the set $;'~ ~+ is 

a pair ~,~>, where ~E~; "I ,~e~ + For ZE~$ we put ~(Z)--Z if ZE~U{~; if 

Z=<V ~j,q>, where J~n-4 then j~., .i ¢ 
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Note that 

i . e .  ~ 

Moreover, 

is correctly defined. 

We will show that 

~' ,Z,j~ we have 

,~ (< v ~. ~,)) -(, ,  c,~,~ ),, v ~, - / ~ , -  ,~. 

/~ is  a homomorphism. C lea r ly ,  g ~ / ~ ( z ) ~ ( ~ )  

It follows easily that 

Obviously, ~ if, v~)-- ~ (~Iv~(~l and ~ (~)= ~ . 

It is easy to verify the equality 

in the cases where Z ' ~  or Z , ~ E ~  U {*~ . 

Assume now tha t  Z , ~  ~n-/ ~+ and Z¢~ . 
0 

~---~ Then 

= h.. (z) = A d) 

I f  

Also, for 

Z¢,~ ,Lt~.~ " , then ,//,{Z) P--~.('E)--.~'~'t /LC$)~ 

Suppose Z = ~ 5 ~ . , ~ > ,  ~-~VK#K.,/.f> 

K~ (~--Tx 3) UK 

~ , , ~ , ~ v V  ~] ~ [(~,c,,j~,Y.) ~,c~ 2 - 

Using known identities for PBA, we obtain 

= ~, (~)s. .~, , .=  C~.,,~,s,{~),., ~ -  e, cy)s.~, ,  ~ ,~, (o)  = a,,. --, e, ( y : ,  o--). 

Case a) J ¢/(" 

By definition of ~Z and ~ : 

; 3, /¢'_~,  

(*) 

(**) 

(***) 
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Therefore 

since 

V - - V q ~ V ~ . =  ~, l,)vV ~. 

- ~(~:9-.7)uK 

If U~- , then ~'--~-~+ ~, and from (*) we obtain,~(z)DhC~)=~iZ'~). 

~=E-/ ;~+~"/~÷,~+F)-~, hence, in view of (*), 

~(,~-~-.7) u ~' 

Case b) ~K , and therefore ~-. Then 

K E f l - t  

It follows from (**) and (*~*) that 

Since ~&~a'~I~=~f) have ~! , we I 

inequality. Since ~r~;o¢ and ~.~ E, (~) , we have 

hence 

Thus, in case 

In addition, 

If ~ , then 

We will prove the reverse 

b) also we have 
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Thus, 

I f  

is a homomorphism. 

f~ , then ~=~ ~ < V__ ~. 
de ~-~ / 

, i~+ > 

i.e., ~(Z) 4 ~ (;~) 

The lemma is proved. 

LEMMA 26. Suppose ~ is (weakly) amalgamable, fL~/ ,~,~,...,~ 

PBA, {.~+~,~+ 4 )£~ '~ , ( .~+~ ,+} , . . . , (~÷~  + )~ Z]~, and L # ~ , .  Then 

are arbitrary (finite) 

Proof. By Lemma 23, the algebras ~+~;i~O'"''~+~g +~o belong to ~'~. By Lem~a 
• ~_~ 

25, ~ contains the algebras ~= ~+(~;-~x ~;x ~O )+~ for 6=f,...,g • The algebra 

~=~@~; % ~ is a common subalgebra of ~I, .... ~ ; a penultimate element in ~o,~v~...,~ 

is ~=~/...~>=</~) . The elements of 2~; can be represented by processions <~,..~>, where 

~6{0,/~' ~ ~ - - ! ~  , where ~'=<ff~> Applying Lemma 22 (~-f) times, we obtain a sub- 

directly irreducible PBA ~ with penultimate element ~ and monomorphisms ~:~g--~ 

(6=f, .... ~) such that ~i(~) = £ for ~6~0 

Let ~--~+ I~+x ...x ~;)+ ~ We will show that the following mapping ~ :~--~ is a 

mo homo rp hi sm : 

. . .  : z - . /  > ~  

+ + 
if 

Note that ~0 is a subalgebra of ~ and ~(~! = .2 for any ~K~0 " Therefore, the mapping 

on ~o commutes with the operations ~ V, D, ~ , and to verify the equality 

it suffices to consider cases where 

If XE~,~£~I+x... x ~+, then 

+ 

If ~={, ~£1+x...x ~= , then also~(~)&~(~)=~/£$~). 

If ~,~E~;X...~ ~;, then 

e z(<1 - 

6 
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Thus, 

hence 

( , ;)  

We will show that 

Cv) 

Note first that for ~ 

Therefore, 

@: ,: ~,,>= ~ (< / ~-,.~ /,,-~ >)v ~7 (<r, ~. t - '  ,,-d > ) 
;, ~ (< # - '  ~ / "-~ > ) v ~ ( <~ t i - 'o  ~"-J > ). = < t " > =  <~ . 

for .~,~ ~ 4+ ,  ...,<,~,, + 

~ c<,j,,~,c~,>: ~ ~, (<P-~/'- '>) v .~ 4~ ¢<<,, D. ,,"-,'>)_ 

@~ .~ ~, C¢ ~-' - t C~ v ~ )  t"-~ > )  = ,~(~ v ~). 

In the remaining cases the equality follows from (g) and from ~'= D~. 

Finally, we will prove that 

a) Suppose XltD~+# l~...x ~ : ,  ~/~.~ "- {Z'}. Then 

b) Suppose ~,,/ ,~.~,< ... ,< = +  and ='.~ V Then 

s<:~ : ~'<~'J-<{ [~,~, C<J":, ~"-'>):$. (¢,;-'~,~ ~'-">)] • d--# 

Using (-P) , we obtain for any i (/~J+g) 

d -  i ~ - I  " 

i - t  . 

J-' "+ (< t;-'~. /"-i j - '~.  "+ >) 

(+) 
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j - !  
Therefore, ~=/ if ~ " ~ ,  and ~.=~.(<{ (~D~]'){~-]'>) ~<~9 

5 ~ ~= ~ (< ~-'I~-~ )/~-i>)" 
Since 3~¢~ , we have ~5.< ~9, hence 

if ~.~. ; in either case, 

(< d-'(~i ~6)/"v>), 
On the other hand, 

In the remaining cases, 
. Thus, (D) is  proved. 

Finally, 

equality (D) follows from (~<), since C~ 

Moreover, ~(Q)= 0 , hence ~ (I~) = 7~[~). 

is a subalgebra of 

Therefore, ~ is a monomorphism and Lemma 26 is proved. 

LEMMA 27. Suppose 2~Z is weakly amalgamable and ~3 = (Z~# # ~:+ ~o ) 6 2~Z. Then Z~# = 

Proof. Take in rn algebras g ,  a~,, and m~ with the following diagrams: 

g 

I 

a 

f 

0 a< 

d 

0 

l 

It is easy to verify that G 0 is a subalgebra of ~7 and ~2 " By Le~mma 22, there exists a 

PBA ~ with penultimate element ~ and monomorphisms ~ :~i ~0~ (L-~2) , which are the 

identity on ~0 Let f-~, C-el(C1, ~-~(e), ~'~-~{~). Consider the set 

We will show that it is a subalgebra of ~ . From the definition we at once obtain the 

following relations among the elements of A( , stands for < , and ~-~ for ~ ): 
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Since ~! and 

hence 

Also 

O-- , -d . ,a  e , 

N_ "-/.11/ 
e & F  , C 

are monomorphisms, we have in ~ : 

~ g~.~),.a - ,~, C g ,t D ~ Cg~) - ~'&a- a r, 

(g~,&a,~-ga, a-$ ,  (g~,a)g~-[, b&g-a, 

is closed under & 

, i.e., 

(g g)va- 4 

( g a Z ) v a -  ~, (g~Dv(g~,-~)-~'e~vo-g; 

~'vC=U) , and similarly g"v~'=m; O~V~=/.xd, 

(D) 

hence f is closed under V 

Finally, if ~6 f, ~ , then ]~q~=~D ~= ~ . 

LXD~/)EX. Also, ~fD~aDg=[ , i.e., ~-~e=~ 

If ~F,~ E~i/&~) (i=/,£) or 2-~/ , then 

, and similarly C~-~. We have 

henceVDf-<ff~a = [ and ~ f f = f f ,  and Similarly ~C-=C . Thus, Z ~ 7  

{0, f,a,~,f,C, ~}. Using the identities (~&~)DZ= (:r-~(ff=Z))=~/D(~r3Z),~"=(~&,ff)=(:zo.~)&,[z~) 
the equality ~-a& ~ , we obtain the following table for ~mff : 

0 I I ! I I 

~7 0 I 1 I 1 1 

o a F ~- a 

g g w 
1 1 1 1 

1 I 1 1 

1 1 I 1 

1 ~'~ 1 1 

F e ~ 1 1 

F i i 1 

F ~' 1 1 

F F ~ 

for ~ C 

and 
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It can be seen from this table that in diagram (D) we can replace every 

that those elements between which there are no arrows are incomparable. Thus, 

algebra of ~ and has the same diagram as the PBA ~ , hence ~ and 

Therefore , ~ E ~ , as required. 

LEMMA 28. Suppose ~ is weakly amalgamable, 4~ ~ , and ~ u~=~'~ + ~0 E 

~=~/+4~ 

Proof. 

to ~2+4+4 

by --) and 

X is a sub- 

are isomorphic. 

Then 

By Lemma 26, ~ contains the PBA O~=((B;+~0)x~ ~ )+ ,~. Let ~0 be isomorphic 

. ~ isomorphic to ~ The diagr=s of ~O,~,,~ are illustrated below. 

0 
=<04,0>~ 

0=<00,0~, 0=<00,0> 

It is easy to verify that with this notation ~ is a subalgebra of ~I and ~ 

Lemma 22, there exist a PBA ~ with penultimate element ~ and monomorphisms 8~ ;~ • 

(~--f, 2) which are the identity mappings on ~0 Now let 

By 

; =  e, (<<,o>)~ e~ (< i-?T>), 
= ~, t<oo,  i>),  

= ~ (< o o,~>> 

and consider the set 
t~ 

We observe at once that in ~ : 

~ ~ ~ = o 

Therefore, A is closed under 

, hence 
L~,. y <e z=O. 

Also 

since C<O0,{>l< DP< 8z, I <i-~->), hence 
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Similarly, 

We will show that V ~ =  ~. We have 

-~ x -~, (<,,,o>) = ~e,(<~,o>)=~, (<,;,o>) = ~ 
.~a= ~-= ~,, (<,,o,/>) = (,,~., 

Therefore, 

Thus, - I ~ = ~ V ~  . I t  follows from the identity - I I U V l f ) = ' l / l & 7 / 7  that f is closed under 7 

Finally, ~v~Vz=]ZVZ=09, hence ~ is closed under V Moreover,qUV~V~vf=~ 

for all ~Ef . Therefore, for ~,grE ~ it follows from d~ that 

Consequently, f is closed under ~ . 

It follows from l~=IVZ~&O <~ that ~>0 

~ 3:VY, Z~ XV~ Therefore, the diagram of 

, hence .,~I~ ~/VZ and ~ V~' ~'/2). 

has the form: 

uJ -= .%'v~ v % 

0 

Similarly, 

Therefore, the algebra f is isomorphic to the PBA ~S =- ~/ # ~O ' hence ~3 ~ ~' as 

required. 

Proposition 8. Any weakly amalgamable variety of PBA coincides with one of the varie- 

ties ~-~ 
Proof. We use Proposition 7. Suppose ~ is weakly amalgamable. If ~ is trivial, 

then ~=#/8 " If ~ contains a nondegenerate PBA, then 6 o c ~ by Lemma 21 and ~-~#/g. If 

~#/~,~H~, then, by Lemma 20, ~E~ , hence ~-~-. If ~ , ~ F ,  then, by Lemma 18, 
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Case a) 4 ~  Then 2~/'/4. 

eemma 24, all of the algebras ~- ~f+Z~ O (r~ ~ {) belong to 

~-~. By Lemma 16, since 4 ~ ~ ' we obtain ~=>/3 

Case b) ~e ~ By Lemma 23, %6 ~ for any ~2 

22~-m/{ 6 If 22~F, then, by Lemma 19,~ or %6~ 

If ~#~ , then, by Lemma 17, ~=~÷~0 E ~ and, by 

Therefore, since L~o=Z~o~/Z, 

, since ~n+l = ~+, and therefore 

If ~zE ~ , then, by Lemma 28, 

we also have 6£ ~f~ ; by Lemma 24, all of the algebras ~--~7+ ~ , belong to ~ . Using 

Lemma 26 with ~= ~ , we obtain /~E)c_ 9~, hence ~'~-~. Suppose ~ .  Then Z~jE ~ and, 

by eemma 27, 4=Z~o+~+Z~oe~ by eemma 24, all of the algebras == o+Z~0 +~ e~l~. Putting 

~=Z~ O in Lemma26, weobtain K~o) ~ and ~ ~ ~. 

The proposition is proved. 

From Proposition 1-6 and 8 we obtain 

THEOREM 2. For any variety 

equivalent ." 

a) 

b) 

c) 

In view of Lennna 15, ~=~z ' since ~z~ . 

of pseudo-Boolean algebras the following conditions are 

is amalgamable; 

is weakly amalgamable; 

coincides with one of the varieties ~I-~//. 

From this we obtain a corollary which contrasts with the result [20] on the unsolvability 

of the amalgamation problem for varieties of groups. 

COROLLARY i. The amalgamation problem for varieties of PBA is solvable, this problem 

being: for a given finite basis of the identities of a variety, to determine whether the 

variety is amalgamable. 

Proof. In view of Le~as 15-21, it is easy to verify the relations ~ for all ~--~,....8 

and for any finitely based variety ~ (it suffices to verify the identities defining 

in the algebras 6,6,4,4,<,4 ) By Proposition 7, the problems ~ are solvable for 

~=/,,o.,8 and for any finitely based variety ~ of pseudo-Boolean algebras. The decision 

procedure consists, on the one hand, of checking in succession whether the algebras generat- 

ing ~l 0 belong to ~ and, on the other, of trying to deduce the defining identities of 

from the identities of H i 

Remark i. Note also that Lemmas 23-28 enable us to find, for any nonamalgamable variety 

, finite, subdirectly irreducible ~o,~I, ~ for which there is no common extension. 

From Corollary i and Theorem i we at once obtain 

COROLLARY 2. The following problem is solvable: for a given formula ~ , to determine 

whether Craig's theorem is true in the superintuitionistic logic generated by 

From Theorems i and 2 we obtain 
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THEOREM 3. There exist precisely seven consistent superintuitionistic logics in which 

Craig's theorem is true. These logics can be axiomatized by the formulas: 

l) Lx~x); 
2) (. x v , , x ) ;  
a) (x v(z  ~ llzv.y~)); 
*) (:~v(x~ (f/v-,i/~)),((z=~/~v(]~x),,(x-= ,g~); 
a) (x v ~x'-,¢t v,,~;)); ( , x  v , ,~ ) ;  

7) txv ,x) . ,  

Note that the validity of Craig's theorem in the logics i), 2), and 7) follows from 

[23, 12, 9]. 

Remark 2. The proof of Lemma 2 and Remark I enable us to construct, for any superin- 

tuitionistic logic ~ in which Craig's theorem is false, an effective counterexample to this 

theorem. Namely, we can effectively find formulas A and ~ such that {~D~)6~ and show 

that there exists no intermediate formula 

V. Positive Logics 

The methods developed in this paper enable us to prove Craig's theorem for certain 

fragments and extensions (by the addition of new connectives) of superintuitionistic logics 

and to prove the amalgamation property of the corresponding classes of algebras. Consider 

the positive logics intermediate between ~+ and ~+ , the positive fragments of intuitionis- 

tic logic 3 and classical logic ~ , respectively. Formulas are constructed by means of the 

connectives ~V,D, / To these logics there correspond varieties of implicative lattices 

~=<~ ~,V .D, { > , the definition of which can be obtained from that of a PBA by eliminat- 

ing any mention of the zero O and negation l 

It can be shown that there exist precisely four amalgamable varieties of implicative 

and, correspondingly, three consistent positive logics with CIT containing Z f+ , namely J~/(+, 

and the positive fragment LC ~ of Dummett's logic LC=~=~)v(~m~)J [ii]. 

Consequently, for positive formulas, from (AD~)£Z, where ~ is ~K~ = [7~v772g] ,~ , 

or ~ there follows the existence of a positive interpolated formula C (recall that 

/(~+~+ [7]). In the other three superintuitionistic logics in which Craig's theorem is 

true, the formula ~ need not be positive. Consider, for example, the formula 

Let L be any of the logics 3), 4), or 5) of Theorem 3. It can be shown that Z~(~,$/,z)6 
[~V(~(~Vq~))] C_ ~ . Assume there exists a positive formula C{X) such that IA(~Z)DC(~))~ 

and (C(~)D~[~,~))~ . Then ~j~ (~(~,z)DC(x))=/ and ~3~ I~(:~)m~[~,~O=/ , where 4~{0,O,¢J . 
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Putting Z=0 , ~=~z in ~j , we obtain ~ (G,O)D~CQ)"I-~CQ) m / and ~(~) = t . Putting ~=0 ,~-~, 

we obtain C(O)-~(~a)=C(O)-~O"f and ~C01~CL Since ~C~) does not contain 7 , we have 
4- 

~)=f and ~0~ ~a in ~; , where ~J is obtained from ~j by eliminating the operation I 

However, the sets {O,~ and {0~ ~3 are isomorphic subalgebras of ~; under the isomorphism 

, where ~)~0, ~/)= i • Therefore ~=~C0) = ~(~)=C(O~..<a . Contradiction. Thus, for 

given ~ and ~ an interpolated formula ~ , which exists by Craig's theorem, must contain 

7 . Here we can take ~)=ll~ . 
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