CRAIG'S THEOREM IN SUPERINTUITIONISTIC LOGICS AND AMALGAMABLE
VARIETIES OF PSEUDO-BOOLEAN ALGEBRAS

L. L. Maksimova UDC 517.11:512.57

In recent years there have appeared many studies of an interesting and important prop-
erty of logical theories, the so-called Craig interpolation theorem. Craig proved the inter-
polation theorem for classical predicate logic in 1957 [9]. Schiitte [23] proved the inter-
polation theorem for intuitionistic predicate logic, and Gabbay [12] for certain extensions
of this logic. 1In [10, 13] the interpolation theorem was proved for a number of modal logicg,

and in [21] for many-valued predicate calculi.

We will study the Craig property in connection with extensions of intuitionistic proposi-
tional logic, the so-called superintuitionistic logics. The results of [9, 12, 23] imply
the validity of the interpolation theorem for three superintuitionistic logics. It turns
out that in the whole continuum of consistent superintuitionistic logics the Craig inter-
polation theorem is true for only seven (Theorem 3). Consequently, the following problem is
solvable: given a finite system of axioms of a superintuitionistic logic, determine whether

the Craig interpolation theorem (CIT) is true in this logic.

We obtaina completedescription of the superintuitionistic logicswith CIT from adescription
of allamalgamable varieties of pseudo-Boolean algebras (of which there areeight,Aincludingthe tri
val one). It isknown [1]that thereis aone-to-one correspondencebetween the family of all super=-
intuitionistic logics and the family of varieties of pseudo~Boolean algebras. Itturns outthat the
CIT in superintuitionistic logics iséquivalent to the so-called interpolation principle for
equalities (IPE) in the corresponding varieties of pseudo-Boolean algebras. Jdnsson [17]
showed that, under certain conditions, the IPE in varieties of algebras follows from the
amalgamation property. It was noted in [8] that the reverse implication for varieties is,
in general, false. For varieties of pseudo-Boolean algebras, the amalgamation property and
the IPE turn out to be equivalent to each other and equivalent to the strong amalgamation

property and to the superamalgamation property (Theorem 1).

In [8] there is given a classification of the different versions of the interpolation
theorem. In particular, it is noted that in any variety K , the IPE is equivalent to the
property Jnt (£T, 47 0%):

If o is a positive F-formula, A a positive Y-formula, and I=ch = 6 , then there

exists an unquantified positive formula }} such that F=Koc =))’ and |=K /=p .
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It was also shown there that the amalgamation property of a universally axiomatizable
class K is equivalent to the property Jnt (£, #, 0) , the formulation of which can be ob-
tained from the definition of Jnt (f+,Z/+,0*) by omitting the word "positive.'" Therefore,
in view of Theorem 1, we obtain for varieties of pseudo-Boolean algebras the equivalence of

the amalgamation property, strong amalgamation property, IPE, Jnf (£,%,0), and Ind (£%U7, o).

We should mention that the amalgamation property is being intensively studied at the.
present time. In particular, all amalgamable varieties of modular lattices [16] and pseudo-

complemented lattices [15] have been described.

In [19] there was observed the equivalence of Craig's theorem in the systems of class-
ical predicate logic and the amalgamation property of classes of cylindric algebras, and the

amalgamation property for various classes of cylindric algebras was studied.

We mention also that from the results of this present paper it can be shown that there
are exactly four amalgamable varieties of implicative lattice (relatively pseudocomplemented
lattices) and three consistent extensions of the positive fragment of intuitionistic logic,
namely the positive fragments of intuitionistic logic, classical logic, and Dummett's logic
4L . By our methods we can also obtain Craig's theorem in certain enrichments of intuition-
istic logic (by additional connectives). For example, the CIf is true in the propositional

logic A~ 2B [22], and the variety of corresponding algebras is strongly amalgamable.

I. Craig's Theorem and the Amalgamation Property

The formulas of propositional logic will be constructed in the usual way from proposition-
al variables and the propositional constant 1 ("true") by means of the connectives &,V, D, 7 ;
we also use the notation X={§ = (a::)y)&(ya:c) . By a superintuitionistic logic we mean any set
of formulas containing the axioms of intuitionistic logic and closed under the rules of sub-

stitution and modus ponens.

By the Craig interpolation theorem (CIT) in a logic / we mean the following proposi-

tion:

For any formulas A and B , if (A2B)e/ , then there exists a formula ¢ such that
(A>C)e/ and ((28)el and [ contains only those variables which occur simultaneously in
both A and 8 .

By a pseudo-Boolean algebra (PBA), or a Heyting algebra, we mean [6] a system @"‘(f,g‘,
V,2,1,1>, satisfying the following conditions:

1) <Jf,&,V, /> 1is a lattice with largest element { and smallest element ¢ , and &

(respectively, V ) denotes the greatest lower (least upper) bound (as usual, we write T<Y

instead of z&y:x )
2) Zs:t:/d <==>Z&.Z‘<y;
3) rs 1 &= z&x=0 .

It follows directly from the definition that in any PBA:
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L) Tsye> TY=/,

5) T=y &= =y =,

6) Z =y/ AocA ‘Z/z = %z<=> (ﬂ;&.%)&"'& (‘TIIE,%I)“ /

In the sequel we will denote the carrier /lt of the algebra & by the same letter O} .

A PBA (¢ is called nondegenerate if it contains at least two elements. A PBA o is

called completely connected if for all .’Z‘,;EOZ
,Z’vdg-_—/ = x=41 or %:/.
The properties of a PBA used in this paper can be found in [6].

The Class /‘4

tic logic / there corresponds in a one-to-one fashion [1] the variety 7?22 of pseudo-Boolean

algebras defined within //, by the set of identities {/4=/,/4€A} . If WZ is a variety of

of all pseudo-Boolean algebras forms a variety. To each superintuitionis-

PBA, then the logic corresponding to it is

L) = (4] = g h=1}.

Suppose # is the equality of terms &=¢ . We denote by # the term (¢42>0)& (U 2U)).

LEMMA 1. Suppose W is any variety of pseudo-Boolean algebras. Then the quasiidentity
(ﬁA...Apﬂ)'—')g is true on 7% if and only if the identity (10—7&,,, &5, )> ; =/ is true on 2.

Proof., Suppose the identity (ﬁ&...&ﬁﬂ): 7=/; does not hold on 7 ; let Z,.., L, be all
of the variables occurring in this identity. Take an algebra & in 7% with generators
2,,..,.a, such that ((,c_;&...&/b;)ai)(d,,...,dm)aé /. Let % be the filter in Of generated by the
element (/5,&,..&/7,)(0,,...,0,”) . Then (see [6]) in the algebra %’;0%75 we have

/-D;: (ar/qb'”_’aﬂ'/qb)z/ for (/.=/,...,/Z,
Z (W[ b,...,0m ) # 1.

Since 0'/,6??2 , we obtain, using properties 4-6 of pseudo-Boolean algebras,%m (/D,A...Ap”)-—-bg .
The converse is obvious, since '=?7l (a:=//\ oy = 1) = é(=/.

Suppose K is an arbitrary class of algebras. By the interpolation principle for

equalities (IPE) in the class K we mean the following proposition:
For any pairwise disjoint sets of variables x,(y,z and equalities 7 (I,y),...,/Dﬂ (.’l’,#) s

gl(z,z), if

4

= plzy)=g(22),
then there exist m and equalities ’Z;(.’l‘),...,Zm (.Z‘) such that
7 ' m m
f'—‘KZ/_LPé; %4 =§//\/ v (2) and }=/</£‘, v (2) = g(z,2).

If all algebras in K are partially ordered, then we also define the interpolation principle

for inequalities (IPI):
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For any terms z‘(x,y) and d(/::l‘, z) , if ¥=Kz'(x,y) < U4 (ZL,7) , then there exists a term J(x) ,
such that %Kf(m,él)sﬁ'(x)s U (zz) .

We say that a class of algebras K 1is amalgamable [17] if for any 52;7 ,ﬁ;,&fze/\/. the

following condition is satisfied:

(A) For any monomorphisms Z/:%*ﬁ;, ig&?;——»&?’z there exist an algebra & € A and mono-
morphisms ¢, a0, E,: OZZ —>(/ , such that 511'{ = ¢, Zz .

The triple (r ¢ &) will be called a common extension of ct, and Glz over Cf . A class
K is called strongly amalgamable [14] if for any OZOI(Z” OZ.zEK condition (A) is satisfied
and 8,(%)0@(&'1):5’21(02;) . A class A of partially ordered algebras is called superamalgamable
if condition (A) is satisfied for aoaZ,eX , and if 6/(-’8)5ék(y)%(Jze%)(z’éf'i/(z)A L= 4 y),
where {/,k}:{gz} S/ 1is the order in %-,zel)‘;ye% . A class K 1is called weakly amalgamable if
condition (A) is satisfied for finite, subdirectly irreducible 0?0,%,0‘[26./(.

Condition (A) is obviously equivalent to the foliowing:

(A') If 0’7; is a subalgebra of 02’, and ﬂz , then there exist {€AX and monomorphisms
f, :02;—*67, éziaz—*ﬁl such that 8”‘5[;‘511‘%0 .

THEOREM 1. For any superintuitionistic logic 4 the following conditions are equivalent:
1) Craig's theorem is true in 4 ;

2) the variety 72; satisfies the interpolation principle for inequalities;

3) 7?22 satisfies the interpolation principle for equalities; |

4) 7774 is superamalgamable;

5) ?714 is strongly amalgamable;

6) Q?ZL is amalgamable;

7) condition (A) is satisfied for any completely connected %,6?;,0[26?74 .

Proof. The equivalence #42Z is obvious, since (/4 35)6& is equivalent to l=m/465.
5 Z
From Lemma 1 it is easy to obtain <<=3 . Obviously, §=6 =7

It is easy to see that 4=§ for any class A . Indeed, if &, &, & €K, 0O is a sub-
algebra of &/ and &, , and c‘,‘,(x)=£z(y) in the common extension (&,¢,,¢€;), then z s 2, Z, <y,
;sz , &, €z for certain Z,,7,€ (Zo . Therefore, in & we have .Z‘sz,syszzsd:, i.e., ¢-5J=
Z,ed; . Proof that /=>4 and 7=2 is contained in Lemmas 2 and 4 below.

LEMMA 2. Suppose Craig's theorem is true in Y/ . Then ”ZA is superamalgamable.

Proof. Suppose&?’a,O'/,,&'ze??Zé , 0', :é?'o—*&); and 11'2:510—'0{2 are monomorphisms. We may
assume that &,Cd nd, We associate to any element aEdZ (¢=0,12) a variable Z/ , where
2:-.2‘;= x; for aeﬂa and the remaining variables are distinct. Let .{ denote the set of
propositional formulas in the variables .Z;‘z" , and f the set of formulas in the consolidated

set of variables. We fix an interpretation of the variables, assigning to .Z’a/ the value 2 ,
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and we write CZZ}=/4=5 , 1f the equality A=8 1is true in 0’0 under the given interpretation.
For (=/2 let

To={AlAeF nck =4 =13,

Note that the 70 are closed under modus ponens and /;:2,?: Nt . Let
T ={AlheFrrur = A3,
where fl—éA denotes deducibility of A from /UL by means of modus ponens. We will
show that if {l;,/'}= {12}, AGJ(C; , 5&5‘ , then
T, (A28)=(30e 5@ hs Crdi - 0<B). @

Indeed, if % FASC’.Q}FU‘B for 0&.% , then a;.l= (A=0) = 1, Cl/ k= (£>B8)=1, hence (43C) ,
((2B8)e 7, and therefore fl—é (/435). On the other hand, suppose 7"2 (A2 B). Then there exist
finite subsets QC 72 ./} c 7; such that f;-,/;-l"él‘bﬁ . If we denote by /;’ the conjunction

of all formulas of /; and apply the deduction theorem, we obtain
/ ’
. .2 (428)
}—L/’a o ( . (428)),
which is equivalent to
] /]
4 > D A).
=, 78k (/; 8)

By Craig's theorem, / contains a formula ﬁéf'; such that ,_L/Z’&'ADE and FLE?(/}IDﬁ) .
Therefore, /?"‘/430 and /;-,}—45'35 . Since /;Ie/:;. we have (ADC)EG and 0Z£l=(/136‘)=/ .
i.e., d‘-l=/4$€ . Similarly, %F“ (<8 .

Putting A=/ , in (1), we obtain for /'=/,8 and 56%:
Th,8 & (H0eh) 0 mie0rl; = 0< B}l 1 B=1. (2)
We define on the whole set. .9([ the relation

An B &= T+, (A=8).
In view of the replacement theorem in intuitionistic logic, the relation = 1is a congruence
on 7 .
Suppose /q,ﬁ Gf" (¢(=42). Then, in view of (2),
TH (A=B)=dy= (A=8)= 1 &= 4=8,
hence

Let
W= ¥,
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We define mappings ¢&; =6§5—~0! , (1/'=/,2), by putting for ae%» :
¢/
&la) = Jo/n,
/ 2 7
By virtue of (3), 85 is one-to-one and a homomorphism. If ae[%’g , then &L = 2,=x, , hence
£ @)=¢ (a). Thus, \0(,6,,£) is a common extension of ( and 072 over LZ; .

We will show that the superamalgamation property holds. Suppose {/‘,A’}={f,2}, aezjgl, {E C[/( ,

and & (@)<& (4). Then & (2) 38,(67)=/, hence{:tébx;)z/, ie., /- (2= z25)=/)and
/ £ ¢ < 5 ll}- £

‘ T - | |
,TPL\;Z'JDJIZ). In view of (1), (Jﬁé%)(ﬂ/’,i: z, s’(’/\% ={g ﬂg‘). Then the value C of

formula é) under the given interpretation occurs in C[o and as/.c CE, ¢.

The lemma is proved.

LEMMA 3. Suppose a PBA Zylg is a subalgebra of PBA C[, and 0[2 . Suppose also that
(265[, ,Keﬁlz » and there exists no 060?; such that d<,C and Cszé . Then there exist
prime filters ¢2 on H, and C/; on JZZ such that aé‘?é, 5;9‘3 and C/?ﬂ&zé}c;gnﬁlz .

Proof. Consider the following two sets:

|

V= {Ze% iaS,o},
C z
A={Z=8Z’0;Z§zu}-
By hypothesis, YNA = &. Now consider

2,={~7 ." ./]isanidealof sz ) {ﬁi‘Uﬁc:-;"v, jﬂ'\?=;? 1

The family Z, is nonempty, since it contains J=£,z’€02'2 mszg} . Obviously, 2, is induc-
tive, i.e., the union of any chain of ideals in S, again belongs to 2, . By Zorn's lemma,
2, contains a maximal element .72 . A standard argument shows that .72 is a prime ideal,

i.e., satisfies the condition
(.’CZL Y )E .72 - l_.T‘EJZ or éze./ZJ

Put qbz=ﬂz\7z', 950= ‘#;ﬂ%,.ijzn%. We have V.C.%,A —C-Z).

Now consider

22 = {96 |qb is a filter on ﬁ;, {0}U¢0§?7, ¢ﬂ‘%'¢_},

We will show that Zz contains

P={zett,| (Freh Nakzs, ).
We will first show that 4;/)0 .7o=d. Assume that z‘e¢n.7a . Then a&Zs, Z for some Ze(f’% ,
Q=,£D0 Z and .1‘601; . Therefore, (zox)e VQ?% , hence xef/‘? , since ,'Zec/g". We have obtained

.z‘ece n :70 , which contradicts ¢oﬂ.7;=/d. Obviously, <© is a filter on d; and {a}U
UPsP. Thus, Pe3, .

Obviously, 23 is inductive. By Zorn's lemma, Zz contains a maximal element Cé .

A standard argument shows that Q,b is a prime filter on ﬁ; » l.e., TVYE 9‘?=(1‘€‘7’5 or ye‘?éj) .
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Finally, {nl=F nct, . Indeed,

Teb/ N, =szed rag J, — xed, = Lna,
reL Ny, = zef s Hn,,

LEMMA 4. Suppose 777 is an arbitrary variety of PBA and condition (A) is satisfied for
any completely connected l%a,ﬂ,,flz € 777. Then the interpolation principle for inequalities
holds in 777 .

Proof. Suppose Z,4,% are pairwise disjoint sets of variables, .7(2‘,51) and «(x,7) are
terms, and there exists no term J (&) such that = MZL(J‘,%)<J(\Z‘)< 4{xr,z). Let % be a free
algebra in J# with free generators & , and Z a free algebra with free generators :z-,g,z.
Then, by Lemma 3, there exist prime filters qbz and qé on & such that 'é(a‘,é/)e‘?f,’ , u(x,z)¢¢z
and 9570.(/;=9b2 0\70 . Put (see [6]) M7=Z/QZ;,%= .7//<;b2 . The algebras ﬂ,,ﬁ'z are completely
connected, since Gb,v, 93 are prime filters. Moreover, Zf&,y)/q’b=/, U(-Z',Z)/qg #7/, Note that if
J,WE 5'70 , then

tf/qz; = Uf/d? = (g’s—.(/}')eql? &=
S (r=w)ed, & /f/qbz = M/d; .

Therefore, there exists a natural isomorphism ("z (r/¢,)=% of the algebra ﬁl’-f{”-/c/? l 3 .%}
co

7

into the algebra U/Z . It follows from the hypothesis of the lemma that there exist
. . Y D - ,
e and monomorphisms ¢ -0’,‘*0[, , 5{; O such that &, Fﬂo Epty -

Now put
@)=, (T/e, ),' [(y)t-é, (5//95,)
k) =e (5/®b,).
This mapping can be uniquely extended to a homomorphism 4:F—(f . We have in (f: £ (f(z,4)=
& (Y30 Jb, )=1, bl iz )¢, (“ (?;Z)/qbz) s {. Therefore, ﬁemf(z:y)sa(ﬂz) :
The lemma is proved.

IT. Amalgamable Varieties of PBA

In this section we will establish the amalgamation property for the following eight
varieties of pseudo-Boolean algebras. We denote by /7; the variety of all PBA and define

/‘é"/?fg within /‘); by the following identities:

Hye 1V =1,

rxv(zo (yv’ly))=/;

QNS

: xv(wjkyv Ty )=, (:c:y)V(y:.r)v(rE y)=1;
Hotaev(co yvrygl=/, Tzvanz=1;

Hy + (@oy)v(y=a)=1;

Hy i viz=1;

/‘/‘g : =1,
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Obviously, the variety /é containing only the trivial PBA is amalgamable. The amalgama-
tion property for //,’, , which is precisely the variety of all Boolean algebras, was proved
earlier (see [14]). This alsc follows immediately from Theorem 1, since /'/7 contains only
two completely connected PBA: the 2-element Boolean algebra and the trivial PBA. The fol-
lowing method of proof of the amalgamation property of varieties of PBA can be used to obtain
an explicit construction of the free product over an amalgamated subalgebra [5] in varieties

of Boolean algebras and distributive lattices (see the remark after Proposition 1).

To prove the amalgamation property for //,— ﬁg we use the representation of a pseudo-

Boolean algebra as an algebra of subsets of a partially ordered (p.o.) set [3].

Suppose S is an arbitrary p.o. set. A subset XS§ 1is called an (upper) cone if the

following condition is satisfied:

reXrzey = yekX.
Let 5(8) be the family of all cones of § . It is known that the following is a PBA:
B(S)=<B(H:8&,v,2,7,1>,
where & and V are the set-theoretic intersection and union,
X2V = {zl(W=2z)(yeX = gV},
IX=X= o, /1=4.

By the representing set of a PBA (% we mean the set 5(}{ of all prime filters on o ’

ordered by inclusion. The following theorem is well known.

Representation Theorem for PBA. The mapping de*ﬁwﬂ) defined by

Py @)= {P|Pbef, aeP])
is an isomorphism of the PBA (! into -/3( ) . 1f (¥ is finite, then (Pa is a monomorphism
of & onto /’3(6‘

Now suppose we are given PBA %,07,,072 such that 0/, is a subalgebra of (I, and (7/2 . L
§ a0, v‘1={<"<;7,é?5>i¢e& A S, AP nt =]
2 AT r;
Also, put <<;D cb><<<;b ob> cbcgo ,\,;7{7

LEMMA 6. Suppose SCS o,a’,,%, possesses the following properties:

la) (V??eSO’,)(SqéeS i<, 85ed),
(Y5 e, )queS )\<oo 94>>eS>
20) <cb, ¢>€3qu>cc,be5 = 7% et Edes

/

AL ED |
2) <cb, qb>eSAC~7Ct;9eS =>Jq5 L<d7 co>e C/;qu;'[.

!
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Then the following mappings 5&/{ (K-/,Z) are isomorphisms of OZ'K into ﬁ(f) :

Y@= <% &>l g>efracd ],
where ¥ ()= % (x) for xe%a

~
The lemma follows from the representation theorem, since for <‘7é,‘?f)€8, 7,2 , and

xell

K

<q/37 >e g (@)= B ey, (@)

We will show, for example, that 5&, (1‘3%)= Y (z)> gé(y). Suppose <‘?79,<‘/Z7>e.9.

<‘?59b>65‘//7(5035//)==> ¢egﬂd/ (224) = %,{:c): 500, (4)=
—>(v¢eqe)(¢esoc, >=>9"emfw)=>
S (VB2 e) Y 24) [<<;bqb>e5A<¢ #>ed (@)=

==><<;b,¢ Sey (w]@<¢ ¢>e¢(z)3¢(y).
>§/¢{1‘zg)—>¢¢/¢m (x2y) = dzx’D%, y)=>
= (72 &) (¢ € Py )~ Fy W) T2, (seeza)
=>(3¢:,gb)gcb :gb) <¢ >e5A<¢ ¢>e¢(x)\¢(y]
= <, H>¢ ¢ 029 (y)

A

Permutability of “ with the remaining operations is easily proved. Uniqueness of <//l( fol-

lows from conditions la and 1b; % and Uﬁ agree on ﬁlg since fg S (%,%,072).

In view of Lemma 6, we can prove the amalgamation property or, equivalently, property
(A') for a given variety 797 as follows: for any PBA (W,,Cl € 777 with common subalgebra 070
it suffices to choose SC LUZ J’ 07 ) so that the conditions of Lemma 6 are satlsfled and
ﬁ(S)em . If one of the algebras &,. 4, ,C[z is degenerate, then so are the others. There-
fore, we need only consider nondegenerate 02;, 0’,- 0/2 . By Theorem 1, we need only consider

completely connected 0&0,0[,,(7/2

LEMMA 7. For any nondegenerate PBA U/, and 02; with common subalgebra % , the set

¢9 5 ( z) satisfies the conditions of Lemma 6.

Proof. Properties la and 1b follow from the fact that ?nd{, and ‘?fﬂ(}fa are prime filters
on % and any prime filter §bo on a sublattice ‘éo of a distributive lattice Z can be ex-
tended to a prime filter ¢ on Z such that qbnéo=¢0 (4, Lemma 5].

4
Let us prove property 2a. Suppose <Qb,¢3 >e§ (%,Q;,%) and gégq?e S(‘I, . Consider the
family

7’

‘2={Qg’!6'/‘78,isafi1teron &, ¢<.:_ ‘é’(‘%“ na}.

B

Note that =2 is nonempty, i.e., it contains the filter % on dz' generated by the set
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d’U (‘?5 002') . Indeed, suppose Z€ n&’ Then }/&Z<$ for certain ye¢ Z€¢’ nO}’
Therefore, ¢<£>Z and (ZD$)€¢HOZ ¢n@' € qb It follows that €% ‘N, . on the
other hand, by construction, C/’, m?logcbn OZo

Obviously, the family 2 is inductive and therefore, by Zorn's lemma, contains a maximal

4 . ’
element ‘?Z . A standard argument shows that C?g is a prime filter on 02'2
Property 2b is proved analogously.
From lLemma 7 we immediately obtain

Proposition 1. The variety //, of ‘all PBA is amalgamable.

Remark. Suppose 0[0,07,, 02’2 are Boolean algebras (distributive lattices with § and 17 )
and 010 is a subalgebra of 0'/, and ﬂz . Then the subalgebra X of ﬁ (S (02'0,0/,,&'2)) generated

by the set ¢, {a)u ¢2 (d/z) is the free product of its subalgebras %U;} and 902[(‘)[;) over the
amalgamated subalgebra ¢ (%,

To prove the amalgamation property of the remaining varieties HZ'HG it suffices, in
view of Theorem 1, to show that condition (A) is satisfied for nondegenerate, completely

connected PBA.
We obviously have

LEMMA 8., A nondegenerate PBA (fY is completely connected if and only if 50!, has a
smallest element, namely ®@={1}.

Well known (see [6]) is

LEMMA 9. If (¢ is a PBA, then 5 satisfies the following condition: for any 9!765
/
there exist a maximal (with respect to inclusion) filter Qb € 5 such that @ C &.

LEMMA 10. Suppose 07,,0[2 are PBA with common subalgebra ()

a) If G/éo and 92’0 are the smallest elements of Sd and S[/l , respectively, then
! 2

< ¢>65(€l,01,07).

07
b) For any maximal §b eS there exists a maximal qﬁ € ,.% such that <9€, C/g > €

§er, a0 ‘

c) For any maximal 93 GS” there exists a maximal ‘??ESO, such that < 415,,@3>€
. 7
5(0?27704’072)

Proof. a) By Lemma 7, <9‘,50,q;>€ S=J(0, ,,6’?’) and <9(77, 0>€S for certain QGSMI s
qgeé’% . Then

b nd, sk = nbecdnld = nd,,

7 20 7 2 a 0 g

~/
b
hence < ,m,d;0>e5

b) Suppose Cé is maximal in (&, . By Lemma 7, <9é, ES for some 5558 By

7

7
Lemma 9, there exists a maximal gzD e%, such that agngb . It follows from property 2b that
£
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~ / ’ ’
<<;b,”qzb>es for some 9?65% ) ‘95, Qqe . Since ‘75] is maximal, we obtain ¢, ='~7,5 , 1.e.,
~
<€’b,‘i?>€s . Assertion c) is proved analogously.
We will now show that //2 has the amalgamation property.

LEMMA 11. a) Suppose a nondegenerate PBA 0 is completely connected and satisfies the

identity T&vIM L=/ . Then Sd has a largest element.
b) Suppose S is a p.o. set having a largest element. Then .E(S) eH
Proof. a) We will show that ‘f’={x]x#o} GSOV

We need only show that ¥ is closed under & . Suppose L *0 s 4#0. Then TZ#/, 1Y A1
hence, by the hypothesis of the lemma, 77L=/ and 1Y =1 . Therefore 7 (1‘&!) = 1(‘11:{,’&11’)-
O0#71, and T&y#0.

/ ’
Obviously, P'cd for any filter ¥ on ¥ .

b) Suppose 96 is the largest element of S and X is any cone in S . 1f PeX , then
TIX=§ ; if 965{)( , then X=& and 1X=§

The lemma is proved.

Proposition 2. The variety ﬁ/z of pseudo-Boolean algebras satisfying the identity

AZviIte=1{ is amalgamable.

Proof. Suppose %,a; are completely connected algebras in /A and 0210 is a subalgebra

Y4
of Oyl and CI; . Then, by Lemma lla, (P” and (9” have largest element ¢; and ¢; .
7 <
By Lemma 10b, <‘7b >€S sa.a i.e., § has a largest element. By Lemma lla,

0’ ’l
/9(3)({ 3 , and it follows from Lemmas 6 and 7 that (l, and % can be isomorphically embedded

in ﬁ(ﬁ) » where the embeddings agree on ('l” . By Theorem 1, ﬁé is amalgamable.

LEMMA 12. a) Suppose a nondegenerate PBA L is completely connected and satisfies the
identity ZvV(Z> (;'v 74)=/. Then Sw has a smallest element and all other elements are

maximal.

b) Suppose 5 is a p.o. set in which all < -chains have length at most 2. Then

B(S)eH.
The lemma follows from [3, Proposition 1}.

Proposition 3. The variety //3 of pseudo-Boolean algebras satisfying the identity
zv(z> (}/V‘ly))-‘-/ is amalgamable. ’

Proof. Suppose % ’ ﬂ are nondegenerate, completely connected PBA in q/;; Let
‘7,50 and ‘7?0 be ‘the smallest elements of Sd/ and 50,2 . Let S {( - >}U T
5(0/0,0?;,%)/7’5 is maximal in J’Q, , ¢2 is maximal in S } By Lemmas 10 and 12a, 5‘ satisfies
all conditions of Lemma 6, hence /’X and 0'/ can be embedded in ﬂ(f) » where the embeddings
agree on 0[0 . By Lemma 12b, .@(‘S’)Efé , and, by Theorem 1, //{3 is amalgamable.
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LEMMA 13. a) Suppose a nondegenerate PBA (! 1is completely connected and belongs to
/4; . Then ‘);DZ contains at most three elements, one of which is the smallest and the rest

maximal.

b) Suppose §  contains at most three elements, one of which is the smallest and the
rest maximal. Then ./45(..5')6/9/

Proof, a) By Lemma 12a, 5“ contains a smallest element, the rest being maximal.

Obviously, if o is linearly ordered, then J’w contains only one maximal filter.
Suppose (! contains incomparable elements I and y . Then (T= 75/)=/and(;z’lx)=/ i.e.,
1'-’-‘!; and 1.Z‘=y , hence (¢ cannot contain another pair of incomparable elements. But
then (! has only one pair of incomparable (with respect to inclusion) filters, hence ‘9[/[

contains at most two maximal elements.

b) Suppose S contains a smallest element ‘73 and at most two maximal ones. Let X, )/
be cones in S , and assume that X & Y and Y& X . Then 9? €X‘X‘?§€Y\X for certain
Qéﬁ?es . Obviously, qfaé#; , since G§€X==>X=5; similarly ‘?374%5 and also ‘#37“?2 .

Thus, X={9?},Y={qé,} » hence X=1Yy and'Jg(J’)Gﬂé .

Proposition 4. The variety /é is amalgamable.

Proof. Suppose 07 w ﬁ are nondegenerate, completely connected PBA in /72 and

4
a subalgebra of &’ and Q’ Let ¢ and ‘Jb be the smallest elements of SCI and ch s
!

and let S and S be the sets of max:Lmal elements of 30[ and S . By Lemma 13a, 3r <
2.8y = (P, JUS; (42) -

Assume that S,={9‘?,,¢;z} where 9'?/ and ‘75;2 are not necessarily distinct. By

Lemma 10, there exist C/’z{,¢ 65 such that

§- (<& b5 < >}g8(cl,07,0/).

" 2

1 {B, 8,15, , then ve take §= ={<& ¢>}u3 1t P, B,) = {F,], then <P, £>e
S o,a;,a') for some #€S . Put §E {<d’ ¢> <¢' qb >} where {qb} S "R A S- <& >}US”

Since in thils case Qb qb‘, we again obtain S CS(OY a, 02' ).

0 20

o~

In either case, «9 satisfies the conditions of Lemma 6, and, by Lemma 13, ./9 (S) € //4 R

as required.

Proposition 5. The variety "/5 is amalgamable.

Proof. Suppose 0!0,07,,&’ are nondegenerate, completely connected PBA in H. and w is

&
a subalgebra of 0?' and Q’ Using Lemmas 11 and 12, we obtain that SM { " ,d?} » where
‘77 qb and 5 { o } , where ‘#’ C¢ Take S= {<§€a,¢ > (9?”‘-/’2/ } By Lemma 10,

3; S((ZO,CI,,@'Z) . Obviously, §  satisfies the conditions of Lemma 6, and, by Lemmas 11
and 12, ./9(.57)6/7;_ , as required.

The amalgamation property can be established for the variety ’L/G by the same method.

However, we will establish it without using the representation theorem.
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Proposition 6. The variety /72 is amalgamable.

Proof. Note first that the completely connected PBA in /L/g are precisely the chained

PBA, i.e., linearly ordered sets with smallest and largest elements. The operations o and
7 in a chained PBA are defined as follows: T3¢ =/ ifZsy » & DY =Yif T>4i12=0 if

>0 ,10=1/ . Suppose %’02;,% are chained PBA and (I, is a subalgebra of 0[, and 0f, . We
may assume that Ul,ﬂ%= UZD (otherwise we can replace ('/52 by a suitable isomorphic PBA). Let

05=C(,U0‘lz . For .2’,{{/601 we put
Ty (a‘,ge[?/, AT Y)Y (x,yell, AT <,y )V
V (el Ayeli,aTzed )(zs,hTs,4)Y
Vv (zell, A yellt A (ize%)(‘g%zz\ T <, 7))

It is easy to see that £ 1is a partial order on L , and for (=1,2 and ‘T’}/QCZA we have

xsy = L=, y . Extending < to a linear order on (! , we obtain the desired PBA in ﬁ;

III. Characterization of the Varieties /;f—//"

Suppose Of and & are two pseudo-Boolean algebras. By the ordered sum C{+ % of a
7
and 0 we mean the algebra £ = <( &,V,2,7,1> defined as follows: O=ctuy’ , where X is
isomorphic to & and o‘{r'n(%:{/m}={0$r} , and the order S.C is defined by the condition:

T<, y & (zeCbryes’)v (zyelrzsy,y)v (a‘,ye.&’r,/\ T <y y)
Consequently,0£= 06{ ’ /4.“ /.Yr' s |

r / , if .Z'G'C.y,
T34 if ',:t,ye&f,,.z’ ’é,c%

5“5'5” if T,ye€d,
L g i zedN{Oy) yedd.
[ 0, i zed~ {_01’;},
. o= 3 T, i zed™{G,]),
1 i 2=0,=0,.

The operation + is obviously associative. We will denote the 2-element Boolean algebra

+
by 50 , and will sometimes denote a+ 50 by av .

Recall [18] that a nondegenerate PBA . is subdirectly irreducible if and only if (¥
has a penultimate element, i.e., an element @W#/ such that Z€d& for any T€U,2#/ . Thus,
o is subdirectly irreducible if and only if Cl=0¥,+ for some PBA (7/, .

For a given finite PBA b/ , we define the family K(ﬁ’) of finite, subdirectly irreducible

PBA as the smallest class satisfying the following conditions:
D ($+8,) e k(%)
2) (G+,),..., (F+A, ) el ()= (G+ (X x...xA,)+8 ) ek (¥).



LEMMA 14. Any finite PBA of the form I+ +£50 is isomorphic to a subalgebra of a
suitable algebra in K(&) .

We will first prove the lemma in the case where of- is the l-element PBA £ , 1.e.,
a%’+02'+13-0=03+50 . The proof is by induction on the number of elements in ¥ . If Jl=F |,
then & +5a = BOEK(f) by definition. Suppose A is a nondegenerate PBA. Then (! is a
subdirect product of subdirectly irreducible PBA 01;,,,,(%; . Since each of ﬂ;,,,,,ﬂl has
cardinality less than that of o , it follows from the induction assumption that the algebra
0/;=d2- +50 can be isomorphically embedded in a suitable PBA Oll;/e/((f) . Since ¢ is iso-
morphic to a subalgebra of the PBA M;X...XOZ; , we have that 0Z+50 can be isomorphically

embedded in ((&;,X...XOZ/;)+4)G /([f).

In the case where & is a nondegenerate PBA, we use the obvious equality /((5')=
{-Yr'fdllaék(f)} . Clearly, if (! is a subalgebra of a’ , then 4+ 1is a subalgebra of
s+’ .

The lemma is proved.

Proposition 7. 1) The variety /9; is generated by the family A/(f) , where £ 1is the

l-element PBA;

2) /‘é is generated by the family A(4) ;

3) /'/é is generated by the family {éjzlflz 0} , where 0, = 5:4’5 H

4) #, is generated by the algebra 6}= 15;3‘!' 8, ;

5) //5 is generated by the algebra [;.= 8,+ 5,;

6) /‘é is generated by the family {Lﬂ/llz 2} » where An is a linearly ordered PBA of

cardinality 2 ;

7 /‘/7 is generated by the algebra 50 H

8) /‘/} contains only the l-element PBA.

Proof. 1) It is known [6] that the variety /‘4 is generated by all finite PBA. There-
fore, it follows from Lemma 14 that the family /((E) generates /‘/;

2) It is shown in (7] that /4,
of the form 504‘02' . It remains to apply Lemma 14.

is generated by the finite, subdirectly irreducible PBA

3) This follows from [3, Lemma 10].

4) This follows from Lemma 13 and the representation theorem.
5) This follows from Lemmas 11 and 12.

6) This follows from [11].

7) //7 is the variety of Boolean algebras.

LEMMA 15. A PBA Uéiz/fz if and only if 02= 5024- 5” can be isomorphically embedded in .

o=
=~
(o]



If C{g{/‘é , then 12v1Ma@</ for some 2elll . Then A-{0,10,11a,1avna,1} is a subalgebra
of 6; isomorphic to ¢ . On the other hand, it is obvious that 5’2¢//2

LEMMA 16. A PBA (f¢ /, if and only if L,{ can be isomorphically embedded in &

If @V (£3(yv1y) </ for certain ZLyell , then the set {o,vay,xv(:c:(ywy)),/} is a

4-element chained subalgebra of a .

LEMMA 17. A completely connected PBA dﬁﬂf if and only if 54 or 6;=503+5p can be
isomorphically embedded in a . )

1f CZ¢//J , then, by Lemma 16, £4 can be embedded in & . 1If ﬂ'eﬁé\ﬁ;, then 0[ contains
a finitely generated subalgebra 0/,6//5 \/7; . By Lemmas 12a and 13b, S% has a smallest
element and the others, of which there are at least three, are maximal. The algebra 0'/, is
finite, since /é
6’] is a subalgebra of (‘/l, and hence of ¥

is locally finite [2]. It follows from the proof of Lemma 8 of [3] that

2
LEMMA 18. A PBA Ul¢//5 if and only if é4 or 6;'= 50 +5ﬂ can be isomorphically embedded
in & .

This follows from Lemmas 15 and 16.

2
LEMMA 19. A completely connected ('/l¢/76 if and only if 6;'=5; + 48, or 53." 50 +5a + 50

can be isomorphically embedded in ¥

If d¢//2 252 , then, by Lemma 15, & contains a subalgebra isomorphic to é; . Suppose

aéﬁé \/L./S' . Then (:t:y)v(y:.z'k / for certain z.y €CZ;.’L‘¢y ' Y ¢ &£. Therefore, x;‘ﬂn.yfﬂ,
hence ¢sZ#0 and I2y#(0 . Since 7(¢:>x)v-n (;: £)=1, we obtain ‘11{5(3.1‘)=/ ; similarly,
1 (:n:y)=/, i.e., (%Dx) =17 (.2‘3;/)- 0. Consequently, the set

A= 10, (@ay) & (y= ), (z3y), (y= 7). (22¢) v(y>2), 1}
is a subalgebra of & , all elements are distinct, and (a::/) and (y:x) constitute the only
pair of incomparable elements. Therefore, this subalgebra is isomorphic to 5)

LEMMA 20. A PBA ol’g{//, if and only if C, can be isomorphically embedded in & .

If ﬂd/‘/, , then Tv1Z+#/ for some Z' , hence the set {0,:2:\/'1:1:,/} is a subalgebra

isomorphic to 5;
LEMMA 21. A PBA Cléf/g if and only if B, is a subalgebra of (£ .
Any nondegenerate PBA contains 50 as a subalgebra (see [6]).

IV. Necessary Conditions for Varieties of PBA To Be Amalgamable

LEMMA 22. Suppose M is (weakly) amalgamable, ”[0,0/ ,Ul'z are (finite) subdirectly
irreducible PBA in 77 , CZJ is é subalgebra of a’, and 0/3 , and ¢ is a penultimate element
of all three algebras. Then there exist a subdirectly irreducible (Y€ 72 with penultimate
element () and monomorphisms 2 502’/*0/, 52':%“‘”, which are the identity mappings on 0!0 .

Proof. Since 7 is (weakly) amalgamable, there exist an 7Z in %  and monomorphisms

é; :&’,*07,_ d; &;—"07 such that d; !\CZO = ée"\ 0/0 . Let 65=d:(u)) . Consider the set
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v={zv(z> d)| reld].

Since (ZV(Z2@D)>W =10 and (%&z):@-#:(z:u_/) , we see that for all K»f and 4,...4 €V we
have (51,&,,.&#‘,)342=&)-</, i.e., y,&...&y‘# W . Therefore, there exists a prime filter
P27 ,Jg¥ . Let
& - %,

~ / .
f’i(x)‘ (Z(f?/qb for ¢=12, xzel, .

Suppose z,yell; _(l;‘=/,2),.1‘745j. We have Z=¢<« in 6‘{ , hence 652(1‘5%) < d ¢ P, hence
g{: (xsy)s a)/‘?b <7/ in & , 1l.e., gé (a:)%gb(y) . Therefore, the homomorphisms 50 are mono-

morphisms.

We have 1'695 or (1307)645 for any .2‘607 . Therefore, z'/gb=/ or f/qb:)w/¢=/ for any
zeld , ie., zs E/L;b for any zell .7#1. Thus, g, (W)= U—)l/qb is a penultimate element of
Cf , and 07 is subdirectly irreducible. Finally, replacing in Clgthe subalgebra g, (dﬂ‘
'5: (C[a) by the isomorphic subalgebra 0[” , we obtain an algebra (¥ and monomorphisms 5,,52
which are the identity mappings on (7!”

The lemma is proved.

LEMMA 23, Suppose 7% is (weakly) amalgamable and £4€J?Z . Then for anyfinite) PBA 4 ,

($+8,)emt = ($+8+8)em.

Proof. Take 0!0=ZJ= {0,0,/},0!,=44={0,a,z{/}, where Q<@ .0{2-,(";4-50, and let « be a

penultimate element of

() - For :26050:

{lr)=2,
L@D=x it o#a, i,@)=W.

Then (:,:070-*&', ’ 0‘2.50{;"‘*0[2 are monomorphisms. Therefore, #/ contains a common extension
(0!,8,,'62) of O and &; over 0’0 . We have in (’/lzft(a))=€, (@)< g (f)<€,(/)=/. Therefore,
the set [‘—‘52(55)U {87 (6)} is in one-to-one correspondence with C{;‘Fﬁa s, where this correspon-
dence preserves order. We will show that /4_ is a subalgebra of O . since 87(5) is com-
parable with all elements of 82(012) it follows that A_ is closed under & and V . Also, if
TEE, (d'z) and 1’2‘/ , then <&, (w)<§, (f), Zz3 ¢, (8)=1; xsg,{ﬁ:z's & (W) = 2, hence &, ({93
=2 . Thus, A is closed under all operations, hence the subalgebra of ¢ with carrier

+
A is isomorphic to M: . Therefore, Ulze 77 , as required.

LEMMA 24. Suppose 7% is (weakly) amalgamable, 4 is an arbitrary (finite) PBA, and
(yl“'ﬁ:'f' 50) € 7 for some /~23 . Then (a%*‘ﬁom +50) € 777 for all ma>7 .

Proof. 1In the algebras M’,"aﬁ"“ﬂf‘f’ ﬂo and %ﬁff“‘ﬂ:ﬂ% we denote by 7 the largest
element of & , and by « the pneumatic element of (! and o s let a,.,4,
2
of 50 , 1.e., all elements directly following 7 in [% ; let 2, f be elements directly

following T inaa;&fa, . For z'eéﬁ;) put

be all atoms
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z . if ré{ab},
i(x)= 1 a . it z-a,
e,N..va, . i z=6,

z if x¢{0,g_} "
b, (x) = a,v...va,,6 . if 2=
all ' if =

It is easy to verify that (;,ic!”—*d; and £2 0[0——&; are monomorphisms.

Suppose (&, &, 82) is a common extension of &, and L’lz over (¥, and AEM. 1lLet
£, (7)=¢, (@)= . ¢ (‘d)=5z (“))'(Z y &, (@g)=C ,5z (%')’Qﬂ- (C={..,n). Consider
A =& (H)vBuiil,
where g-—- { \/ C; IQ'#IS {3,-...,2/!-/}}.
Note that D= &4, (K)ve 4 (@=E,¢ (g)vaziz(a)-%‘ Ve VGV Cpiy v ch,,_,eﬁ'
We will show that the set A is a subalgebra of o

First of all,
2l jen = GAG = ¢, (2,80)=€,()-F,
n<éjeen-{= G&c =&, (a&-&a/.) =¢,(2)=7,
2sisn<js2n-i = T<gac st (8)&¢&,i, (@)=
=&, (0)&¢ ¢ @)= ¢, (§8a)=T.

Thus, 0&9 =7 for all &/ (2<b/<2/z -f) . Therefore, the set { }U B is closed under & and
V , hence all of A is closed under these operations, since §& (ﬂ)U{/} is a subalgebra of

¢ and
ret, (%), yeg=sxs;.

~

Note that { EE (.5—)_ . It remains to show that A is closed under D . 1If x,yeé‘, (J)UU},
then x:;ee,(,};)u{f} 1f xe¢, ($) and ye Bu{s}, then zoy=1. 1f xeﬁ'u{f} and ye &, (4>
{f} , then Z3Y={§ . We now consider the case where xeB Y€ {'F} v 5

2<isn=>02%=¢| a:z')—g( )=.
/'#
2n-1
=5,L,a)v\/c g6, @) v \/ -V c
2 , /=2
/*" j-#l« /s‘&
2n-1
Similarly, nt/<is2n-{ = ;27 = \/ C; . Now if @+Jcfs.,2r-1}, then
' /H

c¢: > Ve= CDVC&C _ )7 i{, ieJ
¢ 7 G k) 65T w idJ.
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Finally, gl/[ C‘-)Déz=£<€g<:7 (¢;= 5/) . Thus, A 1is closed ender e J

1f I,J{2..2n-1} s 1,7 # #; (€7 \T , then

i.e., a'\e/zc" 4/2{7 C/ . Therefore, all elements of Bv are distinct and different from T ,
2n-2
hence {t‘}UB and 5 are isomorphic as partially ordered sets. Consequently, the pseudo-

Boolean algebra A is isomorphic to $,=$+5:m2+ Ba , and .%76722 . Note that Zz=2>72 .
Repeating the construction, we obtain that the algebras I+ 5:“' Ba belong to 7 for
arbitrarily large m . If O<ksm , then 5: can be isomorphically embedded in Bam ,
hence .‘&4-5;'!-5 is isomorphic to a subalgebra of $+ﬂ:+/30. Therefore, the algebras
b+ 15:2 +Ba belong to 777 for any m>0 , as required.

LEMMA 25. Suppose /0 is (weakly) amalgamable, & and L are arbitrary (finite) PBA,
(o‘{r+[++50)€ 977 and (a5’+5:+50)€ 777 for some nz{ . Then (& + (87 {X L* )+5 )e 772.

Proof. The algebras 0?;=°2’%+/~"++ B, and 02'; .i’r*ﬁa + 8, contain the common subalgebra
&y= &+ 8,+ 5 |

Diagrams of 0[0 .0?', .% are illustrated below.

)

&4, &: pu Uy of
{ Gad o

9 I\ Y
(£/ {8,

T N/ \ Y
X //°'\'\l' Sl T

( \ [\
\ b ) (%! | %)
AN S \ / \\ /
°b \03 \oé

By Lemma 22, there exists a common extension (X, &,,€,) of O and a over a, where
fed?, W is a penultimate element of Cf , and £, MNot,= g, I‘d[ ={d . Note that a)-ez(u)) Va R
=y
where d 5 (a) and the [1 are atoms of 5 , i.e., elements covering 7 in é‘?; . Since
& (oC) <§, (u))-w-‘ , (a/ ) , there exists ¢ (7<¢ s/z) such that &, (@ )#5 (). We may
assume that (=72 , Any element of the set ¢, 5 ) can be uniquely represented in the form

V q; , where Icr= ={4.. /Z} (we regard Vﬁd =7 ).

We will show that the algebra CI b+ (5 x[’+)+3 can be isomorphically embedded in
o . Any element of the set 5’1_/ can be uniquely represented in the form 'yg g s where
J< -1, -/, and f f are all of the atoms in 5 ; an element of the set 5 KVANET
a pair <z,4>, where xeﬂ .iG.[. For ZSOZS we put /A(Z)=Z if Ze.ﬁ'U{l}, if

Z=f/\e/7€/,é(), where JS7Z—7 , then

k(@)= (& yaa,) v/z/sz;.
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Note that
($u{i)n (8,7 £7)={g} = I \;,é; +>),
hie)= (¢, (0..)aa, )ve=(tag,) ve

i.e., L is correctly defined.

Moreover,

(</€V_Ig ) = (g w)aa, )\;e\,{?’a} /V 2;~ .

jerr
We will show that A is a homomorphism. Clearly, Zs? =A(2)=A (Z)
0'74/ ,6,j € we have '
5&5 & laéa ) =1,
/ ( ¢ /)
It follows easily that

h(z&%) = h(z)& 4 (D).

Obviously, Az VZ‘)=/zl(Z)V/4(f) and 4£(0)=0 .
It is easy to verify the equality

4 (z2t) = A(z) 2 Ad)

Also, for

in the cases where Z<f or Z,Z‘Eﬂu{/} . If Zﬁ./a% Ze$ , then AZ)2A(T)=T ?Z‘ A(z)>

hityeTol=1t=h(22¢)= h(D)shi)> LD

Assume now that Z,féﬁ:—/X[+ and fo . Suppose 7= <\/ { y>,z‘=<\/ ‘g,(f>5J,KS,

—_ J4’
n-1 . Then i

zot =< V__ 4

See ek <%
himshid= fie, «y)&a,,)vjz{] z]>[(e 088V a) -

+[f>,

-lgnd = sy alaly g s ety ale

a a a 2.2 & a |.
sle paz,=a,vY Kaxj&[:/e\é 423,vV 3a,]
Using known identities for PBA, we obtain

£ (988,26 (0)vV T -¢ (g, a8l w)vkl/K&K) -

= £(y)&a,> (5,1&8,(J))VZ'=8,(;)&5,,L: §W)=T,0 & (yo0)

Case a) J¢/( .

By definition of &, and (¥ :

(*)

(%%)

(***)
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VasavV a =V . < Va 28 v vVa
i€ 4 2, xe K % oe(a-J)uK‘ y & Z

Therefore
T EYIVERGEEYS y:(/‘)) &ce?i/-J)ui =
-l-(d S, (y:zf))&e(‘a__]) ‘ 4] (6,8 (@5 (yo0)] =
=[£e(>/7J)uK ai] v [a”&’e’ (#21}-)] !
since
@ %30')20, 27 /ey 7 / /e\{v-/-J)UK /’

as& a:€)=a&,5.

+ 0, and from (*) we obtain /i(z)D/f(f)‘ﬁ(Z:f). If yclf , then

1f yw‘ , then yor=y=,

yoo=1 ;y3:+l' [f,e{# ,0’)-(1), hence, in view of (*),

h(z=ot)= (W& Z, v \ -ﬁ(z): h(t).

kelA=7-J)uK
Case b) JE€K , and therefore y#ﬂ' Then

Zo1=<VY_ é’ Y0 = <\{I___{;,%:1f>,
= (e

xken-1

g:wv 3 )aw)=

€7/ @

h(gat)= (g (yov)&a, )v \/_ a, =
a

-1 -—
- (yo0)va, weeng= V@, .

It follows from (**) and (**%*) that
k(z)> hd)= 3, ¢, (y> v).

Since 5’&&',; Tsg, (y: (f) ,» we have € (y:tf) V(_Z,:‘é,f’&, (y:ﬂ') We will prove the reverse
Since yor €< and (Z-ﬂ#é:, (<) , we have

a,0¢(y>0)=d 0¢ (L)sd,

inequality.

2,5&,ly>r)< &, V&a':) E(yo>r)va, = wa ¢ (y20)va,,

hence

a,o ¢ (y N LI AEY] (y,Da')V(—l,’, )s€, (yDJ)VE/L'.

Thus, in case b) also we have

k(z2F) = k(z)DA(L).

In addition,

k(12)=Hh(220) = h(5)DA(0) = k(g)>0="4k(z),
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Thus, 4 is a homomo rphism.

If z4 ¢ , then £37 < </,e\/ﬂ___, é /[,, >,
h(z)ohth=h(zot) s (W&E,)vE, = W<,
ie., A(z) ¢ £ (D)

The lemma is proved.

LEMMA 26. Suppose 7 is (weakly) amalgamable, 72/ ,.Zr,‘,,...,f;,l are arbitrary (finite)
PBA, ($+ 8+ B Je dat, ($+L)),...(5+4) )e 0, and Ledl . Then

($+ (L x..x&})+8 ) e 7.
Proof. By Lemma 23, the algebras $+,C:r+5‘,,-.-v7ﬁ+£; +50 belong to 7% . By Lemma
25, 977 contains the algebras a(;'—' -%"’(5;-,’( ,C;X 5;1') +50 for ¢=1,...,7 . The algebra
02/0=,$+5: + 5;7 is a common subalgebra of %,..,,ﬂlz ;3 a penultimate element in OZD,U/,,...,UZ,I
is W=</..1>=<7"> . The elements of 50/( can be represented by processions <.2;,..‘Z‘ﬂ> » Where
z e{a,}; & ‘v-f“j = {7}, where =< a"> . Applying Lemma 22 (7-{) times, we obtain a sub-
directly irreducible PBA 0 with penultimate element ¢ and monomorphisms 8,;2 0!,;*-*(7[

(é=4,...,n) such that &(z)=z for zel,

Let COf=%+ ([jx X /5;) + B8, . We will show that the following mapping 9 (A~ is a

monomorphism:
g = z . i zebu{dl,
g(<a‘,...x,(>)=§c’ £ (</£—/1‘£/4_5>) .‘if
x=<x,,..xﬂ>ei;r{r X L

Note that (7(0 is a subalgebra of d; and ‘g(z’)=.l‘ for any Iiaa . Therefore, the mapping

'1’7, on 020 commutes with the operations &,V,D,7 , and to verify the equality

g(r&y)=glx)&gy
it suffices to consider cases where {J‘,y} ¢aya .
1f .re!r,yeﬁfx...x £y, then
¢(@agly)= (9(x)&7)8 9 (y) = 2(x)&T=g(x)= z=g(T&y).
If x=/,%e L’jx...x [; ,» then also;(x)&g(g%gh&,p-
If m,ye,{,":X...X [/:- , then

n

s o n~i P )
g(xiag(y=g g (<t 'z >)a g e (<17 170) -

i1

ke [<‘/5—/$ /.ﬂ-5>&</5—/ //z—£>:’= (ok
& & ; ¥ glzdy).
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Thus,

hence

We wi

Note

There

11 show that

first that for b#/'

n &~/
=<1 >-£5(</ 12./

>e, (<770

+
fore, for .Z‘,y€[, X "'C;

g(xa y)=g(x)egly)

Tsy = g(xlsglyl.

$levyl=g(z)valy).

r=i =1y
. '>,)v5/: (</y/./ >)>
‘01""s) Vg, (c<?/701"75) =<t = 0.

9(¢)V?(9)=f" [ (</6-Ia:. /H>) v & 5. </j-t?‘ /5=

-wabe (<7
[

“ (xvy)/

>) g(zxvy)

In the remaining cases the equality follows from (6) and from gMF = 5(2’ .
(4
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Finally, we will prove that

F(zoy) = glx) o gly).

a) Suppose ze[:x,,,x ;,;e.ﬁ' ~ {t} . Then

Y=g (y)sg(x)29(y)s 2(t)> gly)= T3y =y = g(z3y).

Then

b) Suppose x,ye[; X, X C:;_

and :r%y .

giz) = gly) -Jé__lo, [_é, £ (</H:z;. TN )38/- (</j-’yj /Pj>)] .

Using (+) , we obtain for any / (/s(/'sa)

/"_£>)D 8,(<//_Iy. /”7>)] =
/et >)}:5(</;/ 5)-

-5 (<//'/5§. /") vE (</”Hg/~. /”7>>]38/(</-Z' 177> )=

<//-/51/. AN )

ity ad 2y
X 1 >D <A 0>
s g Moo sy 1)

(&)

(€)

(v)

(+)

()



Therefore, Z=/ if ‘ﬂ, and 2; 5/ (< // (z, Dg)/ >><a) if a:;éy ; in either case,

z&.u) 8(<// {:L;‘DZ)/ />)

Since .1:{% , we have & z/ s W , hence
/

yx):g(;}=&z-&(z&w)—jcs (</’ y)/’)

On the other hand,

=24 = <(1’,3§/,)... (.2‘,1 Dy/z)>
and g(x):g(y) =;(x:y).

In the remaining cases, equality (D) follows from (<), since % is a subalgebra of

¢{ . Thus, (D) is proved. Moreover, 5(0)= 0 , hence g (" z) = 19(2).
Finally,

T4y = zoysd = gla)>gly)= g(z>y)sgld)<l=gDg1

Therefore, g is a monomorphism and Lemma 26 is proved.

2
LEMMA 27. Suppose 7/ is weakly amalgamable and 53= (504‘ .5'”'*’30 )€ 3. Then 54=
E)
\5o+50+50)€77l .

Proof. Take in 1 algebras (Io ,02', , and 072 with the following diagrams:

1 1
o o,
W6 )
a e

ao

d
0e Vi

It is easy to verify that d is a subalgebra of 0?' and a' By Lemma 22, there exists a

PBA O with penultlmate element ¢ and monomorphlsms 6 d —- (b-/ 2) , which are the
identity on Ma . Let 5-8 (l), C= =, (¢}, €= 6 (e), d'é‘ (a/) Consider the set

F={0a0, 18t de ¢ad #ac).

We will show that it is a subalgebra of & . From the definition we at once obtain the

following relations among the elements of A( —» gtands for < , and == for < )
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(D)

Since &, and é‘z are monomorphisms, we have in a

~

¢af)sa - Fa(faa)-isa~-d,
(Fav)ha~=d, (Fad)a(far)-Faa=d,
@a.0)ac -2sa-d, (éat)aé=d, fac-a,

—

hence A is closed under &
Also
(fab)va= (Eva)a(fva)= wa b= £,

(Zal)va=C (£8d)v(Fat)=Fauw=F;
ZvZ’;é'va -« ,i.e., &vi=w , and similarly ??Jvfzcd; ivalw,
Eve)& (6vE)=w,

hence A is closed under V

Finally, if 7€ A , 240 , then 1Z<1d=d>0=0 . 1f 7,4 € ;((%) (i=f,2) or T<Y , then
uc:y)e/f . Also, 8<f>Z<ad =0 , i.e., 626=0 , and similarly £oZ=Z". We have

@28)3,0<(6>4)&(6~8)= >(f8E)= 8 oa = a,

hence o f < Ioa =4 and 7o [=,f—, and similarly £>C=C . Thus, x:yeA for z,y¢
{0, 1.0,0,8 ,¢,&}. Using the identities (£&y)2DZ= (x:(y: )= Y2(@32), 2o(28&Y)=(227)kir>y)  and
the equality c'i-a&? » we obtain the following table for 3¢ :

| 0| Bwdloaci e |4 |C | & |w |
0 1 1 1 1 1 1 1 1 1 1
J 0 1 1 1 1 1 1 1 1 1
@J&Z 0 ¢ 1 z z 1 Z 1 1 1
78z 0 f {7 1 f g 1 1 1 1
el Ol ] V] 1] 11
FlO%c|elaac|c | Y| | & 1|1
le| O élomgl e | £ £ Y& | V]!
F{%la|é|lcla | &l Y]]
w | N7 psgloscle 1612 2] 11
1] 01 [ggflesc]la [ & |2 W |1
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It can be seen from this table that in diagram (D) we can replace every = by — and
that those elements between which there are no arrows are incomparable. Thus, A is a sub-
algebra of & and has the same diagram as the PBA 54 , hence 54 and O are isomorphic.

Therefore, 546771 , as required.
2
LEMMA 28. Suppose ##/ is weakly amalgamable, L,ent , and €2=50 + 5” € 7277. Then
3
=6+ B em .
2
Proof. By Lemma 26, 7/ contains the PBA 02'7=((50+50)x50 )+ 50. Let (I, be isomorphic
Z
to 8% B,+8, ., isomorphic to O, . The diagrams of CZD,(L,Qs are illustrated below.

(7]
c
a 6
0
0-<000>
It is easy to verify that with this notation &), is a subalgebra of [, and a, . By

Lemma 22, there exist a PBA & with penultimate element ¢/ and monomorphisms & 70!2—"

0¥ ((=1,2) which are the identity mappings on (7/0 . Now let

x=¢(<i05)&e, (<F05),
y = ¢ (<00,15),
7 =¢(<00,7)

and consider the set

A={0.4w, T, 4.2, xvy,aﬁvz,gvz}.

We observe at once that in (f :

T=y&1g . hence x&y=0and2&z=0;
yszsb8a =0 , et Y &R0,

~

Therefore, A is closed under & .

Also
Tvy=¢&(<405v<00,1>)& (& (<TT5)vE (<00,1>)= w e, [<TD)

since (<00,/>)< g< g, (</_,F>), hence
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Zvy=¢,(<T03) = ¢, (<0973) = 1z,

Similarly,

,

avz= (g (</05) Ve, (<T0,7)aw = &,(< Lo>)="14.
We will show that 4VZ=1Z. We have
Tz =g (<405)> ¢, (<105)=¢ (<40>) 2z«
sanz=¢ (<707>) = zfvz
12 = & (<T05) 2 1€, (<105)= &, (<703 oy <
457:%= & (<onis)=avy.

Therefore,

1z<(fvz)a| &lavy)=( (f8a)v(z&a)v (€ay)v(zay)-
=2v;¢v(z&,;¢)= zv%_-l-rzvvvy:s"n('ry&’lz)—vz.

~
Thus, 1Z=Yv7 . It follows from the identity ‘I(UVU')="IU&7//' that A is closed under T

.

Finally, .@V}/VZ 7ZVZ= W, hence A is closed under V . Moreover,"ldVUB.Z‘VyVZ=u)
for all ae] . Therefore, for (/,O'EA it follows from «#'¢ that

U> = w&(a:zf)s(-lava)&(d:/f) = (V¢&(ua0))v
V(ug (ua0))< 1UNT S UST, e UD T = TUVDL

~
Consequently, A is closed under o .

It follows from 1x=yvz<u) <4 that £>0 , hence Z¢ é/VZ and y\/'l <. Similarly,
y# Z‘VZ.Z# xvy . Therefore, the diagram of /4 has the form:

/

W=ZTvyvz
1‘vy% ZvZ
AN

0

~
J
Therefore, the algebra A is isomorphic to the PBA €3= [30 + 50 , hence Qe%, as

required.

Proposition 8. Any weakly amalgamable variety of PBA coincides with one of the varie-

ties /7/,"/'/‘ .

Proof. We use Proposition 7. Suppose 7 is weakly amalgamable. If M is trivial,
then 77Z=/4 . If 7% contains a nondegenerate PBA, then 506 7727 by Lemma 21 and ??ZQ//;,. If
7719//,,77@?"/'/7’, then, by Lemma 20, ﬁ,em , hence M 2/;. 1If ﬂz_:.'/‘/,,ﬂhé// , then, by Lemma 18,
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4467” or Qém.

. 3
Case a) Z4ﬁm . Then 7722/4. If m#/é , then, by Lemma 17, L:;=50+506%and, by
Lemma 24, all of the algebras 6;,,*15;1*'50 (m>1) belong to 7 . Therefore, since 5’0=5a€72z,
WZQ/% . By Lemma 16, since 41, Q/m ., we obtain WZ=/‘(;

Case b) Z4€73Z . By Lemma 23, Z/ﬂé #i for any 2>2 , since ['a+/=[’ﬂ+
77ZQ/7; . If 79Z7‘//6_, then, by Lemma 19,@&732 or 5j€m . If Qem , then, by Lemma 28,
we also have 6:,6 777 ; by Lemma 24, all of the algebras €m=5am+ 50 , belong to 7% . Using
Lemma 26 with &= £ , we obtain A(£)S 7% , hence m=/‘l/f. Suppose C;#??Z . Then 536772 and,

. -/
by Lemma 27, 5l=50+5;+5;6732: by Lemma 24, all of the algebras 5ﬂ=z30+5: +506??Z(/z;/). Putting

, and therefore

o%’=50 in Lemma 26, weobtain K&aa)gm and 777 2 /./a In view of Lemma 15, 97Z=/é , since Qﬁﬂ .
The proposition is proved.
From Proposition 1-6 and 8 we obtain

THEOREM 2. For any variety 7% of pseudo-Boolean algebras the following conditions are

equivalent:
a) M is amalgamable;
b) M is weakly amalgamable;
¢) 9 coincides with one of the varieties /, /.

From this we obtain a corollary which contrasts with the result [20] on the unsolvability

of the amalgamation problem for varieties of groups.

COROLLARY 1. The amalgamation problem for varieties of PBA is solvable, this problem
being: for a given finite basis of the identities of a variety, to determine whether the

variety is amalgamable.

Proof. 1In view of Lemmas 15-21, it is easy to verify the relations mg/-é for all ¢=f....J

and for any finitely based variety M (it suffices to verify the identities defining 7277
in the algebras 5‘2,[;,44,@, 5;,[30 ). By Proposition 7, the problems m;‘bﬁ- are solvable for
(/'=/,<..,! and for any finitely based variety 7/ of pseudo-Boolean algebras. The decision
procedure consists, on the one hand, of checking in succession whether the algebras generat-
ing /‘7[- belong to M and, on the other, of trying to deduce the defining identities of 7

from the identities of /fl

Remark 1. Note also that Lemmas 23-28 enable us to find, for any nonamalgamable variety

M , finite, subdirectly irreducible ﬁla,@,,ﬂz for which there is no common extension.
From Corollary 1 and Theorem 1 we at once obtain

COROLLARY 2. The following problem is solvable: for a given formula 4 , to determine

whether Craig's theorem is true in the superintuitionistic logic generated by A

From Theorems 1 and 2 we obtain
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THEOREM 3. There exist precisely seven consistent superintuitionistic logics in which

Craig's theorem is true. These logics can be axiomatized by the formulas:

1) (z> ),

2) (Nzviix);

3) (xv(:nj(gV‘lf//)));

4) (zv(x> (yw#))),((x:y)v(%:x)V(;cs 1%));
5) (xv(x:(yvﬂy))); (rzv1iz);

8) (z2¢)v(g22);

7) (zvx),

Note that the validity of Craig's theorem in the logics 1), 2), and 7) follows from
[23, 12, 9].

Remark 2. The proof of Lemma 2 and Remark 1 enable us to comnstruct, for any superin-
tuitionistic logic Z in which Craig's theorem is false, an effective counterexample to this
theorem. Namely, we can effectively find formulas A and B such that (A2B)e/ and show

that there exists no intermediate formula [

V. Positive Logics

The methods developed in this paper enable us to prove Craig's theorem for certain
fragments and extensions (by the addition of new connectives) of superintuitionistic logics
and to prove the amalgamation property of the corresponding classes of algebras. Consider
the positive logics intermediate between L7+ and /(+ , the positive fragments of intuitionis-
tic logic J and classical logic £, respectively. Formulas are constructed by means of the
connectives &,Vv,2, { . To these logics there correspond varieties of implicative lattices
H=<4 ;&«,\{ ,2, />, the definition of which can be obtained from that of a PBA by eliminat-

ing any mention of the zero ¢ and negation 7

It can be shown that there exist precisely four amalgamable varieties of implicative
and, correspondingly, three consistent positive logics with CIT containing Tt , namely .7*,/( ’

and the positive fragment LC" of Dummett's logic LO=[_(x:y)v(y:’x)_\ [11].

Consequently, for positive formulas, from (A2B8)€/, where £ is JKC= [‘I Vvl .’IJ] , L0,
or K , there follows the existence of a positive interpolated formula A (recall that
/([’+-=.7+ [7]1). 1In the other three superintuitionistic logics in which Craig's theorem is

true, the formula p need not be positive. Consider, for example, the formula

D (x4,2) = (A @xz2)> B(zy)),
whereA(x,Z)= (ZD.’L')& ((QJDZ)DZ),
B(x,y) = (z2y)& ((yoz)22))2 Y.

Let L be any of the logies 3), 4), or 5) of Theorem 3. It can be shown that 27(1‘,5(,2)6

[fv(xD(yV 1.9)):] € /. Assume there exists a positive formula 0ir) such that (/4(-7‘.2)30(1‘))'5//
and (f(x)Dﬂ{d;ﬂu))eA . Then 43""" (A (1',2)30(1‘))=/ and Z3l= (é’(xpﬂ{:z;y))# , where Zf{a,a, /_} .

454



Putting 7=0, £=a in 43 , we obtain 4 (a,0)20(@)=1>Cw)=1 and (@)=1 .

Putting =0 rymd,

we obtain 0((])35(0,0)=€(0)D(2-/ and ((0)sa . Since ((x) does not contain 71 , we have
+ +
C)=1 and (W0)<Q in er , where [,3 is obtained from /y; by eliminating the operation 71 .

+
However, the sets {0,4} and [0, l} are isomorphic subalgebras of 4, under the isomorphism

a ,

given A

j .

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

21.

22.

23.

where % @)=(, o(f)=/ . Therefore f=u((2)= Cxc(@)=C(0) <@ . Contradiction. Thus, for
and A an interpolated formula [ , which exists by Craig's theorem, must contain
Here we can take ((z)=11Z .
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