A. T. Gainov

In this paper we establish a connection between the derivations of an arbitrary finitedimensional nondegenerate monocomposition algebra $\mathcal{O} = \mathcal{O} / \mathcal{O} A$ with unity / and the derivations of its associated KM-algebra $A = \langle A, x \times y, f(x, y) \rangle$. Namely, we prove

<u>THEOREM 1.</u> An endomorphism \mathcal{D} of the vector space \mathcal{O} is a derivation of the algebra \mathcal{O} if and only if $\mathcal{D} = \mathcal{O}$, $\mathcal{A}\mathcal{D} \subseteq \mathcal{A}$, and

$$(x \times y)\mathcal{D} = x\mathcal{D} \times y + x \times y\mathcal{D},$$

$$f(x\mathcal{D}, y) + f(x, y\mathcal{D}) = 0$$

for all $x, y \in A$.

This theorem is then used to obtain a description of the Lie derivation algebra \mathcal{DerCl} of the algebra \mathcal{Cl} when the finite-dimensional nondegenerate monocomposition algebra $\mathcal{Cl} = \varphi / \oplus A$ decomposes into an orthogonal sum of algebras $\mathcal{Cl} = \mathcal{Cl}_1 \perp \ldots \perp \mathcal{Cl}_n$ and, in addition, $A \times A = A$ (Theorem 3).

Suppose $\mathcal{U} = \langle \mathcal{U}, x \cdot y \rangle$ is an arbitrary algebra with unity ℓ over a field φ of characteristic $\neq 2$. Then it can be represented in the form

$$\mathcal{O}l = \mathcal{P}l \oplus A, \tag{1}$$

where A- is some subspace complementary to φ' . The decomposition (1) induces on the space* A the structure of a linear algebra $A = \langle A, x \times y, f(x, y) \rangle$ with bilinear form f(x, y):

$$x \cdot y = f(x, y) + x \cdot y, \quad x \cdot y \in A, \tag{2}$$

for all $x, y \in A$.

Now let \mathscr{D} be a derivation of the algebra \mathscr{O} . Then $\mathscr{I} = \mathscr{O}$ and, for all $x \in A$,

$$x\mathcal{D} = \ell(x) / + x\mathcal{P}, \tag{3}$$

where $\ell(x)$ is a linear form on the space A and $\mathcal P$ is an endomorphism of the space A .

Proposition 1. An endomorphism \mathcal{D} of the space \mathcal{U} is a derivation of the algebra \mathcal{U} if and only if $\mathcal{D}=0$ and the $\ell(x)$ and \mathcal{P} in (3) satisfy the relations

$$\ell(x \times y) = f(xP, y) + f(x, yP), \tag{4}$$

$$(x \times y)P = xP \times y + x \times yP + l(x)y + l(y)x$$
(5)

 $\overline{}^{
m *By}$ "space" we always mean a vector space over the field ϕ .

Translated from Algebra i Logika, Vol. 16, No. 6, pp. 629-636, November-December, 1977. Original article submitted April 20, 1977.

417

UDC 519.48

for all $x, y \in A$.

<u>Proof.</u> Suppose \mathscr{Q} is a derivation of the algebra \mathscr{U} and x, y are arbitrary elements of A. Then

$$(xy)\mathcal{D} = x\mathcal{D} \cdot y + x \cdot y\mathcal{D}. \tag{6}$$

In view of (2) and (3), we have

$$\begin{aligned} (xy)\mathcal{D} &= \left[f\left(x,y\right)i + x \times y \right] \mathcal{D} &= \ell(x \times y)i + (x \times y)\mathcal{P}; \\ x\mathcal{D} \cdot y + x \cdot y\mathcal{D} &= \left[\ell(x)i + x\mathcal{P} \right] \cdot y + x \cdot \left[\ell(x)i + y\mathcal{P} \right] = \\ &= \left[f\left(x\mathcal{P},y\right) + f\left(x,y\mathcal{P} \right) \right] i + \left[x\mathcal{P} \times y + x \times y\mathcal{P} + \ell(x)y + \ell(y)x \right]. \end{aligned}$$

From these two equalities and (6) we obtain the desired equalities (4) and (5).

The proof of the converse is left to the reader.

A derivation \mathcal{D} of the algebra \mathcal{U} assumes a particularly simple and convenient form when the linear form $\ell(x)$ is zero. Then $\mathcal{P}=\mathcal{D}$ on the space A, and the equalities (4) and (5) become

$$f(x\mathcal{D}, y) + f(x, y\mathcal{D}) = 0, \tag{7}$$

$$(x_x y)\mathcal{D} = x\mathcal{D}_x y + x^x y\mathcal{D}. \tag{8}$$

Therefore, the mapping $\mathcal{Q}: A \to A$ is a derivation of the algebra A and, in addition, is a skew-symmetric linear transformation of the space A relative to the bilinear form f(x,y). Such derivations of the algebra \mathcal{O} are called skew-symmetric. It follows immediately from (5) that if \mathcal{O} is a quadratic algebra with unity f and A is its associated anticommutative algebra, then all derivations \mathcal{O} of the algebra \mathcal{O} are skew-symmetric.

Problem. Are all derivations of a nondegenerate monocomposition algebra with unity skewsymmetric?

It is easy to see that if \mathscr{D} is a derivation of a monocomposition algebra \mathscr{C} with /, then \mathscr{D} is also a derivation of the associated algebra \mathscr{C} , which is again a monocomposition algebra. If \mathscr{D} is a skew-symmetric derivation of the algebra \mathscr{C} , then it is also a skew-symmetric derivation of the algebra \mathscr{C} . Therefore, an affirmative answer to the above question for all commutative nondegenerate monocomposition algebras with unity will imply an affirmative answer to the question in general.

<u>Proposition 2.</u> Suppose $\mathcal{C} = \phi/\theta A$ is a commutative monocomposition algebra with unity f and $A = \langle A, x \cdot y, f(x, y) \rangle$ is its associated KM-algebra. If \mathcal{D} is a derivation of the algebra \mathcal{C} , then the linear form $\ell(x)$ defined by means of (3) satisfies the following scalar identities:

$$\ell(x^3) - \mathcal{Z}\ell(x)f(x,x) = 0, \qquad (9)$$

$$\ell(x_{\cdot}^{2} \cdot xy) = 0 \tag{10}$$

for all $x, y \in A$.

<u>Proof.</u> By definition of commutative KM-algebra (see [1]), the algebra A satisfies the following scalar identities:

$$f(x^{2}, x) = f(xy, z) + f(yz, x) + f(zx, y) = 0,$$
(11)

$$f(x^{2}, x^{2}) = f(xy, zt) + f(yz, xt) + f(zx, yt) = 0.$$
(12)

Here and from now on, x, y, z, t stand for arbitrary elements of A. Using these scalar identities and equalities (4) and (5), we obtain

$$\ell(x^3) = f((xx)P, x) + f(xx, xP) = 2f(xP \cdot x, x) + 2\ell(x)f(x, x) + f(xx, xP) - 2\ell(x)f(x, x).$$

Equality (9) is proved. Also,

$$\ell(x^2 \cdot xy) = f((xx)P, xy) + f(xx, (xy)P) =$$

 $= 2f(xP \cdot x, xy) + 2\ell(x)f(x, xy) + f(xx, xP \cdot y) + f(xx, x \cdot yP) + \ell(x)f(xx, y) + \ell(y)f(xx, x) = 0.$ Thus, equality (10) and Proposition 2 are proved.

Let us turn to the proof of Theorem 1, which was stated in the introduction. In view of what has been said above, it is a consequence of the following theorem, which we will prove

THEOREM 2. Suppose $A = \langle A, x \cdot y, f(x, y) \rangle$ is a finite-dimensional commutative nondegenerate KM-algebra. If the linear form $\ell(x)$ on the algebra A satisfies the scalar identities (9) and (10), then it is zero.

<u>Proof.</u> Suppose the linear form $\ell(x)$ satisfies (9) and (10). Since the symmetric bilinear form f(x, y) is nondegenerate and $\dim A < \infty$, there exists an element $a \in A$ such that $\ell(x) = f(x, a)$ for all $x \in A$.

Using this equality, we rewrite the scalar identities (9) and (10) as follows:

$$\mathcal{T}(x,x,x) = f'(x,a) - \mathcal{L}f'(x,a)f'(x,x) = 0, \tag{13}$$

$$\mathcal{S}(x, x, x, y) = f(x^2 \cdot xy, a) = 0. \tag{14}$$

Linearization of these identities yields scalar identities (15) and (16), which are also satisfied in A:

$$T(x,y,z) = f(xyz + yzx + zxy,a) - 2f(x,a)f(y,z) - 2f(y,a)f(z,x) - 2f(z,a)f(x,y) = 0, \quad (15)$$

$$S(x,y,z,t) = f(xy \cdot zt + yz \cdot xt + zx \cdot yt,a) = 0.$$
⁽¹⁶⁾

LEMMA 1.

$$a^{3} = 0. \tag{17}$$

Proof. From (13) we obtain

$$\mathcal{T}(a,a,a) = f'(a^{3},a) - \mathcal{Z}\left[f(a,a)\right]^{2} = -\mathcal{Z}\left[f(a,a)\right]^{2} = 0,$$

hence

$$f(a,a) = 0. \tag{18}$$

Now f(a,a,x) = 0 implies $f(a^3,x) = 0$. Since f(x,y) is a nondegenerate form, we obtain the desired equality (17).

LEMMA 2.

$$a^2 = 0. \tag{19}$$

<u>Proof.</u> The equality $\mathcal{T}(x, y, a) = 0$ and identities (11) and (12) yield

$$f(xaa, y) + f(yaa, x) + f(xa, ya) = -4f(x,a)f(y,a).$$
(20)

The equality $\delta(x,y,a,a) = 0$ yields

$$f(xaa, ya) = f(yaa, xa) = 0.$$
⁽²¹⁾

If in (20) we replace x by xa, then, in view of (21), we obtain

$$f(xaaa, y) = \mathcal{L}f(x, a^2)f(y, a).$$

Since f(x,y) is a nondegenerate form, it follows that

$$xaaa = 2f(x,a^2)a. \tag{22}$$

By the product x_1, x_2, \ldots, x_n we will always mean the product with right-normed arrangement of parentheses, i.e.,

$$(\ldots(((x,x_2)x_3)x_4)\ldots)x_n$$

If in (22) we replace x by xa, we obtain

xaada - 0.

Multiplying (22) on the right by α , we have, in view of the last equality, $f(\alpha, \alpha^2) \alpha^2 = 0$, from which the desired equality (19) follows.

The lemma is proved.

LEMMA 3.

$$f(x,\alpha) = 0. \tag{23}$$

Proof. From (19) and (22) we obtain

$$raaa = 0, \qquad (24)$$

Equality (20) with $\mathcal{U} = \mathcal{X}$ yields

$$f(xaa, x) = -2[f(x,a)]^{2},$$

from which, after the substitution $\mathcal{X} \longrightarrow \mathcal{X} \mathcal{U} \mathcal{X}$, we obtain

$$f(xaxaa, xax) = - 8[f(x,a)]^4.$$
⁽²⁵⁾

The equality $\mathcal{T}(x\alpha, x\alpha, y) = 0$ yields $f((x\alpha \cdot x\alpha)\alpha, y) = 0$, hence

$$(xa \cdot xa)a = 0. \tag{26}$$

In view of (26), $\delta(xa, xa, xa, x) = 0$ implies

$$f(x\alpha x\alpha \cdot x\alpha, x\alpha) = 0, \qquad (27)$$

From $\mathcal{S}(x\alpha x\alpha, x, x, \alpha) = 0$ we obtain

$$f(xaxax, xaa) = 0.$$
⁽²⁸⁾

If in (12) we make the substitution $x \rightarrow xa \, xa$, $y \rightarrow xa$, $z \rightarrow x$, $t \rightarrow a$, we obtain

$$f(xaxa \cdot xa, xa) + f(xaxaa, xax) + f(xaxax, xaa) = 0.$$

In view of (25), (27), and (28), it follows that $-\beta \left[f(x,a)\right] = 0$, hence f(x,a) = 0.

The lemma is proved.

Since $\ell(x) = f(x, \alpha)$ for any $x \in A$, it follows that $\ell(x)$ is the zero form.

Theorem 2 is proved.

By analogy with the concept of orthogonal sum of quadratic algebras, which was introduced by Becker [2], we define the orthogonal sum $\mathcal{O}_1 \perp \mathcal{O}_2 \perp \ldots \perp \mathcal{O}_n$ of monocomposition algebras $\mathcal{O}_i = [A_i, f_i, e_i]$ with unities e_i $(i = 1, 2, \ldots, n)$, where $[A_i, f_i]$ is the KM-algebra associated with the monocomposition algebra \mathcal{O}_i . Suppose $A = A_i \oplus \ldots \oplus A_n$ is the direct sum of the algebra A_i, \ldots, A_n ; $f = f_1 \perp f_2 \perp \ldots \perp f_n$ is the orthogonal sum of the bilinear forms $f_i(x_i, y_i)$, i.e.,

$$f(x_{1}+...+x_{n}, y_{1}+...+y_{n}) = f_{1}(x_{1}, y_{1}) + ...+f_{n}(x_{n}, y_{n})$$

for any $\mathcal{X}_i, \mathcal{Y}_i \in A_i$ (i=1,...,n). Then [A, f] is also a KM-algebra, and we call its associated monocomposition algebra $\mathcal{U} = [A, f, e]$ with unity ℓ the orthogonal sum of the algebras $\mathcal{U}_1, \ldots, \mathcal{U}_n$ and denote it by $\mathcal{U} = \mathcal{U}_1, \ldots \perp \mathcal{U}_n$.

THEOREM 3. Suppose $\mathcal{O} t = [A, f, e]$ is a finite-dimensional nondegenerate monocomposition algebra with unity ℓ . $\mathcal{D} e t \mathcal{O} t$ is the Lie derivation algebra of $\mathcal{O} t$, and $A \times A = A$. If

$$\partial l = \partial l_1 \perp \ldots \perp \partial l_n , \qquad (29)$$

then

$$\mathcal{D}er\mathcal{C}\ell = \Delta, \oplus \ldots \oplus \Delta_n \tag{30}$$

is a direct sum of ideals Δ_i , where each ideal Δ_i is isomorphic to the Lie algebra π and \mathcal{DerOl}_i $(i=1,2,\ldots,n)$.

<u>Proof.</u> It follows from (29) that $A = A_i \oplus \ldots \oplus A_n$, $A_i \lhd A$ ($i=1,\ldots,n$). Since $A \times A = A$, we have $A_i \times A_i = A_i$ ($i=1,\ldots,n$). This, as is well known [3, Exercise 19], implies the algebra isomorphism

$$\mathcal{D}$$
er $A \cong \mathcal{D}$ er $A, \oplus \ldots \oplus \mathcal{D}$ er A_n .

From this relation and Theorem 1 it is easy to obtain the desired decomposition (30).

The theorem is proved.

LITERATURE CITED

- A. T. Gainov, "Subalgebras of nondegenerate commutative KM-algebras," Algebra Logika, <u>15</u>, No. 4, 371-383 (1976).
- E. Becker, "Halbeinfache quadratische Algebren und antikommutative Algebren mit assoziativen Bilinearformen," Abh. Math. Sem. Univ. Hamb., <u>36</u>, 229-256 (1971).
- 3. N. Jacobson, Lie Algebras, Interscience, New York-London (1962).

ENUMERATION OF THE CLASS \mathcal{C}_{a}^{*}

Yu. L. Ershov

UDC 517.01

The main problem of the theory of enumerations (see [1] for all concepts not defined here) is that of finding a "regular" enumeration for one or another class of objects. The class \mathcal{L}_{zo}^{*} of enumerated sets is very useful for defining the concept of a computable functional; the enumerated sets in \mathcal{L}_{zo}^{*} are also an effective version of the concept of a complete f_{g} -space [2]. However, the whole class (category) \mathcal{L}_{zo}^{*} is too large (it is not even a set) to be able to look for a suitable enumeration of it. Therefore, the correct approach is to look for some countable (concrete) subcategory equivalent to the whole category \mathcal{L}_{zo}^{*} and then an enumeration of this subcategory. In the present note this will be done. We will define a family \mathcal{K} of enumerated sets in \mathcal{L}_{zo}^{*} such that any enumerated set in \mathcal{L}_{zo}^{*} is equivalent (even effectively in some sense) to some enumerated set in \mathcal{K} . We will define an enumeration τ of this family such that the category operation \times and \mathcal{M}_{OP} will be morphisms of the enumerated set $\tilde{\mathcal{L}} \times \tilde{\mathcal{L}}$ into $\tilde{\mathcal{L}}$, where $\tilde{\mathcal{L}} \cong (\mathcal{K}, \tau)$; moreover, we will show that the enumerated set $\tilde{\mathcal{L}}$ itself belongs to the class \mathcal{L}_{zo}^{*} .

Any enumerated set l' in C_{zo}^{*} is uniquely determined [1] by its approximation l'_{0} and the order < induced on δ_{0} by the order $<_{\gamma}$. The pair $<_{l'_{0}}, <>$ in this case is a constructive sail. This means that: a) the partially ordered set $<\delta_{0}, <>$ is a sail, i.e., for any two compatible elements a, b (i.e., elements for which there exists C such that a < C and b < C) there exists their least upper bound $a \cup b'$; b) the order < is partial recursive on δ_{0} , i.e., the set $\{< x, y > | v_{0}x < v_{0}y \}$ is recursively enumerable; c) the predicate of compatibility $\mathcal{R} = \{< x, y > | v_{0}x < v_{0}y \}$ is recursive; d) there exists a 2-place partial recursive function G such that $\delta G = \mathcal{R}$ and, for $< x, y > \in \mathcal{R}$, $v_{0}x \cup v_{0}y = v_{0}G(x,y)$. A constructive sail will be denoted as follows: $\mathcal{P} = <_{l_{0}}, <, G, \mathcal{R} >$. Membership of l' in \mathcal{C}_{zo}^{*} also means that $<\delta_{0}, <>$ has a smallest element. We will assume without loss of generality that this element is $v_{0}O$.

Two constructive sails $\mathcal{P}_{o} = \langle y_{o}, \leq_{o}, \mathcal{G}_{o}, \mathcal{R}_{o} \rangle$ and $\mathcal{P}_{f} = \langle y_{f}, \leq_{f}, \mathcal{G}_{f}, \mathcal{R}_{f} \rangle$ are called equivalent if there exists a morphism $\mu: y_{o} \longrightarrow y_{f}$ such that μ is an isomorphism of the partially ordered sets $\langle \delta_{o}, \leq_{o} \rangle$ and $\langle \delta_{f}, \leq_{f} \rangle$. If $f \in \mathcal{O}$ is such that $\mu v_{o} = v_{f} f$, then for any $x, y \in \mathcal{N}$:

Translated from Algebra i Logika, Vol. 16, No. 6, pp. 637-642, November-December, 1977. Original article submitted October 27, 1977.