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In this paper we establish a connection between the derivations of an arbitrary finite- 

dimensional nondegenerate monocomposition algebra ~=q~f~A with unity / and the derivations 

of its associated KM-algebra ~=~A,~x~,~(x,~)>. Namely, we prove 

THEOREM i. An endomorphism ~P of the vector space ~ is a derivation of the algebra 

if and only if /~= 0 , ~ A , and 

for all ~ , ~ e A  . 

This theorem is then used to obtain a description of the Lie derivation algebra ~ 

of the algebra ~ when the finite-dimensional nondegenerate monocomposition algebra ~= 

~f @A decomposes into an orthogonal sum of algebras C/~=~11 ...~ and, in addition, 

~xA-A (Theorem 3). 

Suppose ~f f i~O[v,  ~ o~> is an arbitrary algebra with unity f over a field ~ of char- 

acteristic #~ . Then it can be represented in the form 

= ~Pl e A ,  (1) 

where ~- is some subspace complementary to qO/ . The decomposition (i) induces on the space* 

the structure of a linear algebra A = <~, ~x~,IC~,f)~ with bilinear form ;(~; : 

for all ~,~e~ . 

Now let 

• ,l?°~----;{,~,~t)f' + ,,~'x~, ,~x%CA, (2)  

be a derivation of the algebra ~ . Then /~-O and, for all pEA , 

where ~,~} is a linear form on the space A and P is an endomorphism of the space A 

Proposition i. An endomorphism ~ of the space ~ is a derivation of the algebra ~ 

if and only if ~-0 and the I(~ and P in (3) satisfy the relations 

(3) 

l<=,f  - f + 

=p,y + = , i p  + +f<f= 
*By "space" we always mean a vector space over the field ~ . 

(4) 

(5) 
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for all ~,~A 
Proof. Suppose ~ is a derivation of the algebra ~ and ~,~ are arbitrary elements 

of ~ Then 

(~)~- ~.~ + x.~. 
In view of (2) and (3), we have 

• ~ .~  + ~ . ~  - [Zc~1 ÷ ~p]:y + ~ . E 4 ~ +  ~P] - 

From these two equalities and (6) we obtain the desired equalities (4) and (5). 

The proof of the converse is left to the reader. 

(6) 

A derivation ~ of the algebra ~ assumes a particularly simple and convenient form 

when the linear form f(~) is zero. Then P--~ on the space ~ , and the equalities (4) 

and (5) become 

f i z - ~ j )  + / l x ,  y~o)-- 0, 
(z,>~)2 = x.2,y + x . ]02,  

Therefore, the mapping ~:A--~A is a derivation of the algebra 

(7) 

(8) 

A and, in addition, is a 

skew-symmetric linear transformation of the space A relative to the bilinear form f(~). 

Such derivations of the algebra $~ are called skew-symmetric. It follows immediately from 

(5) that if C/~ is a quadratic algebra with unity / and A is its associated anticommutative 

algebra, then all derivations ~ of the algebra Cf are skew-symmetric. 

Problem. Are all derivations of a nondegenerate monocomposition algebra with unity skew- 

symmetric? 

It is easy to see that if ~ is a derivation of a monocomposition algebra 0f with / , 

then ~ is also a derivation of the associated algebra ~+, which is again a monocomposi- 

tion algebra. If ~ is a skew-symmetric derivation of the algebra 6 + , then it is also a 

skew-symmetric derivation of the algebra C~ . Therefore, an affirmative answer to the above 

question for all commutative nondegenerate monocomposition algebras with unity will imply an 

affirmative answer to the question in general. 

Proposition 2. Suppose ~-~/~ is a commutative monocomposition algebra with unity / 

and A=<~, @.~, ~ (~)> is its associated KM-algebra. If ~ is a derivation of the algebra 

, then the linear form ~(~) defined by means of (3) satisfies the following scalar 

identities: 

f( 3)_ ~(~}~[~,~#= O, (9) 
L C~. xy)= o (lO) 

418 



for all X , ~ g ~  . 

Proof. By definition of commutative KM-algebra (see [i]), the algebra 

following scalar identities: 

p f x ~ x~) = p(~, ~7) ,P 74 xT) +p f~x.~T)=o. 
Here and from now on, ~,f,%,~ stand for arbitrary elements of 

Using these scalar identities and equalities (4) and (5), we obtain 

n satisfies the 

(ii) 

(12) 

Equality (9) is proved. Also, 

= ZplxP. x.,xy)+2LlxJ/l~,x~J+/C.~x.,.zP.y)+p (~x,x,yP)+E(~)p(x~,~j+llfsp(xx, x)-o. 
Thus, equality (I0) and Proposition 2 are proved. 

Let us turn to the proof of Theorem i, which was stated in the introduction. In view 

of what has been said above, it is a consequence of the following theorem, which we will prove 

THEOREM 2. Suppose A=~,~.~,II~,~)> is a finite-dimensional commutative nondegenerate 

KM-algebra. If the linear form LI@I on the algebra A satisfies the scalar identities (9) 

and (i0), then it is zero. 

Proof. Suppose the linear form L~) satisfies (9) and (i0). Since the symmetric hi- 

linear form II~,~) is nondegenerate and dL~ < =,o , there existsan element ~ such 

that ~(~=i(~ya) for all ~£~ 

Using this equality, we rewrite the scalar identities (9) and (i0) as follows: 

T c~,~',x) - seCx~,a) -z fC~,a~P(~, ,  x~ = o, (13) 

<7 (x ,x ,x ,~)  = fCx~.x~t ,a)=  o, (14) 

L i n e a r i z a t i o n  o f  t h e s e  i d e n t i t i e s  y i e l d s  s c a l a r  i d e n t i t i e s  (15) and ( 1 6 ) ,  wh ich  a r e  a l s o  

s a t i s f i e d  i n  J : 

7cx,~.zJ-f ~,~+ivzx, + , ~ . a ) -  2ffx.,,)P (y,z) -n/'f,q.a,~f-~.~J-,e/'t~-,aJ,,oc'~,#'J--o, (15) 
S (~,~/,Z,~)-P (X~" %~ +~/2" X~ + ZX'~/f, a)--:- O. (16) 

LEMM I. 

~s= O. (17) 

Proof. From (13) we obtain 
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hence 

- - X c o, 

NOW T(o',(2,~)-- 0 implies /(Q3,,~Z~)--O 
desired equality (17). 

LEMI~ 2. 

p(~,a)-o. 
Since ~(¢,~ ) 

(18) 

is a nondegenerate form, we obtain the 

a2-----0. (19) 

Proof. The equality T(~,F,a)=O and identities (ii) and (12) yield 

C =a,~) + f (~o~,~) +t (~a, ~a) = - ~ f c~)P~,~ >. (20) 

The equality 8(~,~,~,a)=O yields 

/(OOai')',~((2) = p ~ ~tO~Cl , .Z~ )= O.. (21) 

I f  in (20) we replace ~ by ~ ,  then, in view of (21), we obtain 

Since f[.~,~) is a nondegenerate form, it follows that 
zaaa = 2f (=,a~)a. (22) 

By the product ~ ~z "-. ~ we will always mean the product with right-normed arrangement 

of parentheses, i.e., 

(... (ctm, x~),v~)x+ ) . . .  )~,,.  

If in (22) we replace ~ by ~ , we obtain 

xcto~z~ - -  O. 

Multiplying (22) on the right by ~z , we have, in view of the last equality, /(~=,~z~Z 2= 

0, from which the desired equality (19) follows. 

The lemma is proved. 

LEMMA 3. 

(23) 

(24) 

(25) 

/(x,a)- O. 

Proof. From (19) and (22) we obtain 

maLz~ = O. 

Equality (20) with ~ = X yields 

from which, after the substitution ~U---~ ~ ,  we obtain 

f(~=~, ~)=- S~c~,a~ ~ 
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The equality T C ~ , ~ , f f ) = O  yields f~.,~---~'-Z~)a;F)~O , hence 

(~ , , ,~ I~ le  ~ O. (26) 

In view of (26), S (~,~,~-~,~)-- 0 implies 

;(.E~.qXZ' .~L"~, ~ ) ~  O. (27) 

From S(~ZZ~Z, 2 . ~ , ~ )  = 0 we obtain 

; [ ~O~a~ ,  ~ ) = O. (28) 

I f  in (12) we make the subst i tu t ion  X - - ~ a ,  ~-*-J~Z, ~ - ~ ,  ~ - - ~ ,  we obtain 

Zn view of (25) ,  (27) ,  and (28) ,  i t  f o l l ows  t h a t - ~ ( ~ , a ~ O ,  hence f?z,a)~o. 
The 1emma i s  proved.  

Since ~(~)=;(Z,a) for any ~£A, it follows that f(Z) is the zero form. 

Theorem 2 is proved. 

By analogy with the concept of orthogonal sum of quadratic algebras, which was introduced 

by BeckeT [2], we define the orthogonal sum ~fl~i ..o~ of monocomposition algebras 

~.=[A.,~., ~] with unities ~ (~= ~2,...,~), where [~ , f~] is the KM-algebra associated 

with the monocomposition algebra ~.. Suppose A-~ o...~ Agis the direct sum of the algebra 

A~ .... ,4; /=~i~i..°i~ is the orthogonal sum of the bilinear forms ~'{~,~), l,e., 
÷ 

for any ~ , y ~  £ A z (~< .... ~). Then [A,#] :~ also a KM-algebra, and we call its associated 

monocomposition algebra ~--~,~ with unity ~ the orthogonal sum of the algebras 

~,°.o,~ and denote it by ~=~ i.°o~ • 

THEOREM 3. Suppose ~= [~, ~] is a finite-dimensional nondegenerate monocomposition 

algebra with unity g ,~B~ is the Lie derivation algebra of ~ , and A x~ =A . If 

~ =  ~ . .0  ~ ~ , (29) 
then 

,Z)ez&~= A, @ . . .  @ A~ (30) 

is a direct sum of ideals A~ , where each ideal A i is isomorphic to the Lie algebra ~ and 

. ~ e ~  ( ~ = ~ 2 , . . i , ~ )  . 

Proof. It follows from (29) that A=~8... ~A~, 44 A (~=~ .... ~). Since AxA= A , we have 

4x~f=Ai ~=~-.,~) This, as is well known [3, Exercise 19], implies the algebra isomorphism 

~ A  -~ -~e~4 ~ . . .  • ..~ezA~. 
From t h i s  r e l a t i o n  and Theorem 1 i t  i s  easy to ob t a in  the  de s i r ed  decomposi t ion  (30).  

The theorem is proved. 

421 



LITERATURE CITED 

i. A. T. Gainov, "Subalgebras of nondegenerate commutative KM-algebras," Algebra Logika, 
15, No. 4, 371-383 (1976). 

2. E. Becker, "Halbeinfache quadratische Algebren und antikommutative Algebren mit assozia- 
tiven Bilinearformen," Abh. Math. Sem. Univ. Hamb., 36, 229-256 (1971). 

3. N. Jacobson, Lie Algebras, Interscience, New York-London (1962). 

ENUMERATION OF THE CLASS ~ 

Yu. L. Ershov UDC 517.01 

The main problem of the theory of enumerations (see [I] for all concepts not defined 

here) is that of finding a "regular" enumeration for one or another class of objects. The 

class C; of enumerated sets is very useful for defining the concept of a computable func- 

tional; the enumerated sets in ~ are also an effective version of the concept of a complete 

-space [2]. However, the whole class (category) C; is too large (it is not even a set) 

to be able to look for a suitable enumeration of it. Therefore, the correct approach is to 

look for some countable (concrete) subcategory equivalent to the whole category ~ and 

then an enumeration of this subcategory. In the present note this will be done. We will 

define a family K of enumerated sets in ~ such that any enumerated set in Cz; is equiv- 
alent (even effectively in some sense) to some enumerated set in K We will define an 

enumeration ~ of this family such that the category operation x and ~0P will be morphisms 

of the enumerated set ~ ~ into ~ , where ~---~IK,~ ; moreover, we will show that the 

enumerated set ~ itself belongs to the class ~; 

Any enumerated set J in ~; is uniquely determined [i] by its approximation ~ and 

the order ~ induced on G 0 by the order ~ The pair ~J0 '~ > in this case is a construc- 

tive sail. This means that: a) the partially ordered set <~,~> is a sail, i.e., for any 

two compatible elements Q,~ (i.e., elements for which there exists C such that ~C and 

~C ) there exists their least upper bound ~O'~ ; b) the order ~ is partial recursive on 

, i.e., the set {<x,~> I ~ ~ }  is recursively enumerable; c) the predicate of compati- 

bility R~.~>I~ and ~ are compatible } is recursive; d) there exists a 2-place partial 

recursive function ~ such that ~=R and, for <I,~>eA ~ , ~U~o~=~(~,~I . A construc- 

tive sail will be denoted as follows: ~=<~,~,~,R> Membership of f in ~ also means 

that <~ ~ > has a smallest element. We will assume without loss of generality that this 

element is ~O 

Two constructive sails ~=<~0 ~0,~0,~> and ~=<~,~,~,~> are called equivalent if there 

exists a morphism ~:~0--~ such that ~z is an isomorphism of the partially ordered sets 

~ o  > and ~f~ If ~E~ is such that/~=~F , then for any ~,~e~: 
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