DERIVATIONS OF MONOCOMPOSITION ALGEBRAS

A. T. Gainov UDC 519.48

In this paper we establish a connection between the derivations of an arbitrary finite-
dimensional nondegenerate monocomposition algebra ({f= ®/&4 with unity 7/ and the derivations

of its associated KM-algebra /f=</4,x’x§z,f' ('x,y)> . Namely, we prove
THEOREM 1. An endomorphism &0 of the vector space O is a derivation of the algebra

0 if and only if D=0 ., AD <S4, and

(mxy).O = :ceZJX# + ;cxys@,
faD,y)+flzyD) =0

for all z,ye/‘f .

This theorem is then used to obtain a description of the Lie derivation algebra Ler
of the élgebra a wﬁen the finite—dimenéional nondegenerate monocdmposition algebra o=
@&/ @A decomposes into an orthogonal sum of algebras 0Z=£7,1 ...l &, and, in addition,
AxA=4 (Theorem 3).

Suppose %=<0&, I’i) is an arbitrary algebra with unity / over a field ® of char-

acteristic #2. Then it can be represented in the form
o =7%1e4, 1)
where /4- is some subspace complementary to %/ . The decomposition (1) induces on the space*

A the structure of a linear algebra /4= <A,1'xy,;‘°(z‘,5/)> with bilinear form /’(.z;y) :
x'%=/(ac,y)/ t Zxy, .Z’xyelq, (2)

for all :c,yeA .

Now let & be a derivation of the algebra O/ . Then L0=0 and, for all .’ZEA s
20 - /(z) !+ 2P, (3)

where [(x) is a linear form on the space A and P is an endomorphism of the space A .

Proposition 1. An endomorphism & of the space X is a derivatiorzz of the algebra’ o
if and only if $0=0 and the g(:l‘) and P in (3) satisfy the relations

lizxy) =flzPy)+ fxyP), | (%)
(;cxy)p== a:ny +1‘x;/0+ {(“")ﬂ +/(y)w (5)

*By "space" we always mean a vector space over the field & .

=
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for all :r,ye/f .

Proof. Suppose &L is a derivation of the algebra £f and .’Z',}/ are arbitrary elements
of A . Then

(zy)D - 20y + zyD. | (6)

In view of (2) and (3), we have

(xg).@- [_-f (x,y)/+ :cxy] D = {(_z‘xy) /+ (xxy)P;
20y + x4y = [Z(z)uzp:[y + z:[liz)/+ yP] =
- Ef (xp,y)+/'(¢,y/7]f+ [x/’xy +.2'xyp +Z{$)ﬂ +/};)w] .

From these two equalities and (6) we obtain the desired equalities (4) and (5).
The proof of the converse is left to the reader.

A derivation & of the algebra a assumes a particularly simple and convenient form
when the linear form /(.’I:) is zero. Then A= on the space A , and the equalities (4)

and (5) become
FlzDy) + Az y0) =0, )
{Ixi)o@ = :c,@.x; + 2x yD. ‘ (8)

Therefore, the mapping 3@/1—'-/’ is a derivation of the algebra A and, in addition, is a
skew-symmetric linear transformation of the space A relative to the bilinear form 7[(.1‘,}) .
Such derivations of the algebra (! are called skew-symmetric., It follows immediately from
(5) that if &f 1is a quadratic algebra with unity / and /4 is its associated anticommutative

algebra, then all derivations £ of the algebra ({ are skew-symmetric.

Problem. Are all derivations of a nondegenerate monocomposition algebra with unity skew-

symmetric?

It is easy to see that if oZ 1is a derivation of a monocomposition algebra O with s
then <’ is also a derivation of the associéted algebra OZ+, which is again a monocomposi-
tion algebra. If &L is a skew-symmetric derivation of the algebra ot , then it is also a
skew-symmetric derivation of the algebra 0/ . Therefore, an affirmative answer to the above
question for all commutative nondegenerate monocomposition algebras with unity will imply an

affirmative answer to the question in general.

Proposition 2. Suppose = f}b/@A is a commutative monocomposition algebra with unity /
and A=</4,1"5(,7('(.T,i)> is its associated KM-algebra. If &) is a derivation of the algebra
(! , then the linear form Z(:L‘) defined by means of (3) satisfies the following scalar
identities:

Lixd) - 2l f (@ 2)=0, (9
¢ (22, zy)=0 (10)
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for all :r,ye/? )

Proof. By definition of commutative KM-algebra (see [1]), the algebra A satisfies the

following scalar identities:
f(2hz)=Flzy.2)+f yz,2) + Flezy)=0, a1
7"(wz,x2)=/(:py,zz1)+/(gz,mf)+/’(zx,yz‘)=0. (12)

Here and from now on, :l‘,i,-?’,l‘ stand for arbitrary elements of /f .

Using these scalar identities and equalities (4) and (5), we obtain

(@)= H22) P 2) + f (22, 2 P) = 2f (2P 2,2) +2 Elz) Hlz, 2}t (22, 2P)~2l)f 2, 2).

Equality (9) is proved. Also,

Ua*ay) = flzm P zg)tf (zz, (xy) P) =

=2f(zP. x,xy)+23(z}/(¢,£g/}+/(zz,x/’-y)+,"(ww,xvyP)+f(x)/’(:cx~,y)+/(y)/(xx,x)-0.
Thus, equality (10) and Proposition 2 are proved.

Let us turn to the proof of Theorem 1, which was stated in the introduction. In view

of what has been said above, it is a consequence of the following theorem, which we will prove

THEOREM 2. Suppose '4=<"4'$'f,7£(2:y)> is a finite-dimensional commutative nondegenerate
KM-algebra. If the linear form [(d.‘) on the algebra A satisfies the scalar identities (9)

and (10), then it is zero.

Proof. Suppose the linear form. [(w) satisfies (9) and (10). Since the symmetric bi-
linear form /’(a‘,y) is nondegenerate and dimA < o© | there existsan element aed such
that {(z)=f(2,a) for all zed

Using this equality, we rewrite the scalar identities (9) and (10) as follows:
T(xax) = f(z5a)-2f(r.e)f(x,x)=0, | (13)
§(z.a,a.y) = Flz* 2zy,e)=0. (14)

Linearization of these identities yields scalar identities (15) and (16), which are also
satisfied in A :
Ty 2)=f (2yz+ gz + 22y,0) - 2F (malf (4.8) — 2 (ya)f . 2) —2f (z,@)f (2,9)=0, - (5)
§ (z.y,2,8)=f 2y 2t +yz-2t+ 22-41,0)=0. (16)
LEMMA 1.
2°= 0. 17)

Proof. From (13) we obtain
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7 (a,a,a) =/’(a3,a) - 2[{7(0,03.2 —2[/(12,05_[1 0,
hence

fla,a)=0. (18)

Now /'(a,a,:r)- 0 implies /'(03,.2)-0 . Since f(a',y) is a nondegenerate form, we obtain the
desired equality (17).

LEMMA 2.
a’=0. (19)
Proof. The equality /(2,4,2)=0 and identities (11) and (12) yield
7 (zaa.y)+f (yao,2)+{ (2a,40) = - 4 £ (zalf (4,2). (20)
The equality 8(w,y,a,a)==0 yields
f (xoa,ye) = £ (yaa, za)=0. (21)
If in (20) we replace £ by 2@, then, in view of (21), we obtain
f’(maaa,y) = &f (za?)f lya).
Since f{.z-,g) is a nondegenerate form, it follows that
zeea = 2f(z,e%)a. (22)

By the product £ Z,... T, we will always mean the product with right—norméd arrangement

of parentheses, i.e.,
..Uz zH2)2,)... )2,
If in (22) we replace £ by & , we obtain
zraaae = 0.

Multiplying (22) on the right by a4 , we have, in view of the last equality,.ff(x,czzj az'—‘-
0 , from which the desired equality (19) follows.

The lemma is proved.
LEMMA 3.

fxa)=10. (23)
Proof. From (19) and (22) we obtain

zaaa = 0. (24)

Equality (20) with 4=z yields
2
£ (zaa, ) = - 2[f(za)”,

from which, after the substitution I -— 222 , we obtain

4
fizazaa, zaz) = - 8[f(z,a) . (25)
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The equality f(m,:w,,y)=0 yields f’((m'm)a;y)=0 , hence
(za -za)a = 0. (26)
In view of (26), 5(xa,xa,m,z)-=0 implies
f(zaza za, z2) = 0, (27)
From S(xaxa, T, T,2)=0 we obtain
£ (zazaz, zaa) = 0. (28)
If in (12) we make the substitution £—>Za%a, § — 22, Z—~Z, 1 —~&, we obtain
flzazae zo, za) +f (zazac, zoz) + £ (za xaz, z02)=0.
In view of (25), (27), and (28), it follows that %R(z,aﬂiﬂ , hence f(:c,a)aﬂ.
The lemma is proved.
Since f(:c)=/'(x,a) for any €A, it follows that f(:t) is the zero form.
Theorem 2 is proved.

By analogy with the concept of orthogonal sum of quadratic algebras, which was introduced
by Becker [2], we define the orthogonal sum w,lazl veed Ul,l of monocomposition algebras
02;-:[,4‘-,/;-, %] with unities & (i=12, .., 1) , where [,44 , féj is the KM-algebra associated

with the monocomposition algebra X . Suppose A=4,8 . @ A,Lis the direct sum of the algebra

Ao, /4” ; 74'=/;.Lf;l...lf'ﬂ is the orthogonal sum of the bilinear forms /z[:c[,%) , i.e.,

7"(:1',}...+1‘,z,%+...+yﬂ)=7[;{2',,;,) + ..t (2, Y )
for any .12,%,: € Aé ((/"—-/,...,/l) . Then [A,f’] is also a KM-algebra, and we call its associated

monocomposition algebra ﬂ-u.f:@_‘ ‘with unity £ the orthogonal sum of the algebras
0[,,..,,0& and denote it by 05‘=%, 1...1 Of,z .

THEOREM 3. Suppose = [A.f,e] is a finite-dimensional nondegenerate monocomposition
algebra with unity £ Devll is the Lie derivation algebra of a , and A xA=A. 1f

a=a1...14d,, ‘ (29)
then
Lerlt = 4,6...0 4, (30)

is a direct sum of ideals Aé' , where each ideal Z]b- is isomorphic to the Lie algebra J and

Levl; (i=12,...,n) .

Proof. It follows from (29) that /4=/4,9.,. G?/’,l, /45<1/4 (¢=1...,8). Since Ax A=A , we have

/46"( /4/=/46' {é"=4;.,.,/l) . This, as is well known [3, Exercise 19], implies the algebra isomorphism

Der A = Derh, & ...8 Dez4,.
From this relation and Theorem 1 it is easy to obtain the desired decomposition (30).

The theorem is proved.
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ENUMERATION OF THE CLASS L;;

Yu. L. Ershov Upc 517.01

The main problem of the theory of enumerations (see [1] for all concepts not defined
here) is that of finding a "regular" enumeration for one or another class of objects. The
class 6;: of enumerated sets is very useful for defining the concept of a computable func-
tional; the enumerated sets in [’; are also an effective version of the concept of a complete
ﬁ-space [2]. However, the whole class (category) f; is too large (it is not even a set)
to be able to look for a suitable enumeration of it. Therefore, the correct approach is to
look for some countable (concrete) subcatégory equivalent to the whole category Z;; and
then an enumeration of this subcategory. In the present note this will be done. We will
define a family K of enumerated sets in 6; such that any enumerated set in 5:,; is equiv-
alent (even effectively in some sense) to some enumerated set in A . We will define an
enumeration ¢ of this family such that the category operation % and #Zg¢r will be morphisms
of the enumerated set £ r £ into [ s Where i= (K,Z') ; moreover, we will show that the
enumerated set & itself belongs to the class Z;;

Any enumerated set / in 6‘;: is uniquely determined [1] by its approximation l} and
the order & induced on Sa by the order «, . The pair <)’a,s> in this case is a construc~
tive sail. This means that: a) the partially ordered set <Sa ,€> 1is a sail, i.e., for any
two compatible elements 2,6 (i.e., elements for which there exists ¢ such that ¢=( and
f€C ) there exists their least upper bound au'd ; b) the order < is partial recursive on
Y, i.e., the set {<z‘,g>l Voa:s\)aé/} is recursively enumerable; c) the predicate of compati-
bility /\7::‘{<.2',g>)\é$ and Vo}/ are compatible } is recursive; d) there exists a 2-place partial
recursive function & such that &= R and, for <zy>ef , \ﬂ,xu*\g’(ym{,&(ay) . A construc-
tive sail will be denoted as follows: ‘77=</0,5,G,R> . Membership of / in Ck

20
that <J;,s> has a smallest element. We will assume without loss of generality that this

also means

element is )’0 17

Two constructive sails jg=</0,so,50,/(7a> and .Z’=</;,s,,€,,/?,> are called equivalent if there
exists a morphism /1:/, —-/J, such that M 1s an isomorphism of the partially ordered sets

<¢S;,éa> and <S,,S,>. If /EO’ is such that /41{7=V,/ , then for any .’I‘,yE/\/:
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