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A b s t r a c t .  Attenuation coefficients of perturbed gamma-ray angular correlations are 
calculated for classical extranuclear fields which fluctuate at random both in direction and 
in magnitude. Explicit expressions are given for time-integral attenuation coefficients. 
Time-differential attenuation coefficients have been calculated numerically. The theory 
applies to any correlation time. 

1. Introduction 

In a recent paper [1] we have described the exactly soluble FOGA model for the perturbation of angular cor- 
relations due to randomly-fluctuating extranuclear magnetic or electric fields. The model assumes that the 
strength of the perturbing field can change at random according to a Gaussian probability distribution, while 
the direction of the field has to remain fixed with time. For an isotropic interaction one must average over the 
direction as, for example, in magnetic domains. The same assumption of a "fixed orientation" of the axis of 
interaction is inherent in the Blume model [2] in which the perturbing magnetic field is allowed to jump between 
two possible states. Similarly, the attenuation coefficients for a magnetic field of the fixed orientation type 
jumping between three possible states have been given by Spanjaard and Hartmann-Boutron [3]. 
It has been argued [4] that the fluctuating isotropic hyperfine interaction in highly-ionized and -excited free 
atoms can be simulated by such stochastic "fixed orientation" models, provided that the average lifetime of the 
electronic states, described by the correlation time ~c of the model, is not much smaller than the typical time of 
observation of the perturbation process. In this case the dipole rule A m s = 0, + 1 for the free decay of the elec- 
tronic states favours the approximate preservation of the initial orientation of the hyperfine field if J > 1. Fixed 
orientation models become meaningless for free ions, however, if the correlation time is small compared to the 
observation time. In this case one must average over the direction of the perturbing field within the observation 
time in each individual nucleus. Such situations may conveniently be simulated by stochastic models using the 
simplifying assumption that the direc t ion  of the perturbing field fluctuates completely at random, i.e. that after 
each "jump" the orientation of the axis of interaction is equally likely in any direction. For free ions this as- 
sumption obviously contradicts the dipole rule. Nevertheless, such models are of interest because the actual 
behaviour of perturbing systems can usually be approximated by one or other of the limiting cases of "fixed 
orientation" or "fluctuating orientation". Throughout this paper the latter term will be understood to signify 
random changes of the axis of interaction without memory of the past. 
A stochastic model of the fluctuating orientation type has been given by Scherer [5]. This model applies to the 
isotropic magnetic hyperfine interaction a I .  J for free atoms in a gas. The orientation of the atomic angular 
momentum J is assumed to be completely random after each collision with a neighbouring gas atom. The size 
of J is assumed to be preserved. In the following a model of the fluctuating orientation type will be described 
which uses the classical interaction Hamiltonian - ~. H. Some of the stochastic details of this model are similar 
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to those of the Scherer model. It will be allowed, however, that the orientation as well as the size of the perturbing 
interaction fluctuates at random. In Section 2 a short description of the statistics of our model will be given. In 
Section 3 the intermixing of the quantum mechanical and probabilistic aspects of the model will be formulated 
and in Section 4 explicit results for time-integral attenuation coefficients are given and compared with the 
perturbation theoretic results of Abragam and Pound [6]. In Section 5 time-differential attenuation coefficients 
will be discussed. 

2. Statistics of the Fluctuating Orientation Model 

We start by selecting a sample of random points tl, t e . . . . .  t . . . . .  having uniform probability distribution in the 
time interval (0, t) and assume ordering according to 0 < q < te... < t,... < t. The model implies that the probability 
of having exactly n points in the time interval of length t is given by the Poisson distribution 

P{n in(0, t)} = ~  e -z~, (1) 

where 2 is the mean number of points per unit time and L = 1/2 will be called the correlation time. We assume 
that in each time interval (t,, t,+l) the size as well as the direction of the perturbing magnetic field H is fixed. 
Exactly at the points t, the direction f2,_ 1 of the field is abruptly changed and it will be allowed that also the 
size of the field/4,_ 1 is changed, i.e. the initial magnetic field of strength H o , pointing in the direction f2 o , abruptly 
jumps to H a in the direction (21 at the random point t~. The angle of Larmor-precession around the direction f2 o 
is given by 

(DO tl = -- gl ~ -  Ho tl, 

the precession angle around Q1 is 0) l(t 2 -  tl) and col is allowed to be different from COo, and so on. The events 
{O o in (0, q)}, {01 in (q, t2) }, ... {~2, in (t,, t,+l) } are assumed to be independent and uniformly distributed in the 
solid angle 4 zr, i.e. the n-th order probability distribution [7] has the form 

W(~2 o 0; 01 tl; ...O, t,) = W(f2 o 0)- W(f21 q)... W(f2, t,) = ~ . (2) 

Similarly, the events {coo in (0, tl)}; {col in (q, t2)}.., are assumed to be independent: 

W(coo 0; col tl;...co, t,) = W(co 0 0). W(co 1 tO... W(co, t,) (3) 

and the first order distribution W(co) has to be specified. Finally, we assume that the strength of the interacting 
field and its direction are uncorrelated, i.e. the joint distribution of co and f2 is given by 

W(co, f2)-= W(co) - W(f2). (4) 

3. Calculation of the Attenuation Factors 

3.1. General Expressions 
The general form of the perturbed angular correlation function is given by [-8] 

W(kl, k2, t) ~ Ak~(1) Ak2(2) " N, N2 -+ ENd*tO, q~l)" Yk~:(O2, +z) = " Gk, k2(t)[(2kx+l)(2k2+l)] k, t 1 
kl , k2 

N1, N2 

with the perturbation factor 

GN1Nz tt~ - -  ( klk2 ~~ ~ (-1)2~+m"+mb[(2kl + l)(2k2 + l)] + I I 
ma , mb m'a - -  m a 

(5) 

~1) (I'\ mb -- m kN~) (mblA(t)lma)(m'blA(t)lm'a)*" 
(6) 

The time evolution operator A (t) describes the change in population of the substates Ira) with time and is given 
by the interaction Hamiltonian ~f - -  - p .  H according to 

A(t ' - t" )=exp [ - h  gf  . (t '-t")] (7) 

Z. Physik (1974) 
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if ~ does not depend on time. In fact, in our model, Eq. (7) represents the correct operator within each time 
interval (t,, t,+ 0. Since the perturbing magnetic field H changes at the random points q,  t2, ... t n . . . . .  the mean 
value (the mathematical expectation) of the perturbation factor (6) has to be calculated�9 This can be done in a 
very convenient way if the ensemble of nuclei is divided into classes according to the number of "flips" of the 
magnetic field in the time interval (0, t). Since the events {no flip in (0, t)}, {one flip in (0, t)} . . . .  {n flips in 0, t)}... 
are mutually exclusive and their sum equals the certain event, the mean of the perturbation factor is given by 
the following rule of probability theory: 

(,-:_u:u~ tt~\ = E Y f~N1N2 I 
' ~ lk lk2  \ J / t l , t 2 , . . . t n  . . . .  - -  I . ~ k l k 2  J t l , t 2  . . . .  t n , . . .  

- ~; ~ c - ~ l n = 0  } P(n=0) N1N2 __ . . . . .  + E { Gk~k~ In}.,,~ . . . .  ~ . P(n) + ... (8) + E { G k ,  ke I n -  1},~ P(n= 1)+ NIN2 - -  ~ L ~ k I  k2 

where the expectation assuming n flips at exactly the points t:, t 2 . . . .  t n is defined by 

E {G~2[n},,~ ~ .... ,~ = ~ ' " ~  G~'~2 " W(coo s 0; col ~2~ q ;. . .)de%. d%. . .  dco,. dOo.., dO,. (9) 

P(n) is the probability that exactly n flips occur in (0, t), as given by the Poisson distribution Eq. (1). 

3.2. Class with Static Interaction 

The first term in Eq. (8) describes the class of nuclei with a completely static interaction and can easily be evaluated 
following the well-known procedure [8]. The interaction Hamiltonian is diagonal in a system having the z' axis 
parallel to s the direction of the magnetic field H o. The direction ~?o will be specified by the Euler angles 
((Po, 0o, 0) with respect to the z axis. If ]p) denotes the eigenstates in the z' system, Jm) being those in the z system, 
we have 

Ira,) =-~, ]p) (plma), (rob] = E  (mblP') (P'], 
p p'  

where the matrix elements are given by the rotation matrix 

(p[m,)  =D~r)~,(tp o, 0 o, 0), , _ o) (mblp )--  Dmbp'(O, --Oo, --q)o)" 

The matrix elements in Eq. (6), assuming no flip in the interval (0, t), are therefore given by 

(mblA(t) lm,)= ~ (t) (I) Drab p, (0, '90, -- (PO) - -  " Dpm,((Po, '90, O) e-ip~176 (p'[p) 
p , p '  

- -  ( D  -" - - 2  Dmbp(O' --00'  --(00)" O(/~),(9o, '90,0) .e  ,p,oot, 
P 

where the energy eigenvalues Ep of the interaction Hamiltonian are written in terms of the Larmor frequency co o 

E v = - p .  h coo = - P  "g~ #NHo �9 

According to (6) and (9) the first term in the series (8) is now given by 

N1N2 __ ln-O)= dcooW(coo) dOoW(Oo). Z Z ( - 1 )  2'+mo+m  
m a , m b  p ,p"  

�9 D (~) (fl - ' 9 o  - ( ~  (~) Dpma((Po, '90' O) 13(I)* O, I") (1)* �9 ~ m g p '  ( - - - ' 9 0  - -  q ) o ) "  - - p ' m ' a  ( (]?0 '  ' 9 0  O )  m b p \  v ,  , ~ , 

I ~ r l ) ( I  , I kN;).e-i(P-P"~~ 
�9 [(2kl + 1)(2k2 + 1)]~ ( / ,  _rn, \rob_rob 

Inserting for W(Oo) the uniform distribution of Eq. (2), integration over the Euler angles simply yields 

{Gkkln=O}= [.dcoo'W(~o)~ (I, I kN)2 e_i(p_p,)o, ot, (10) E 
p,p'\p --p 

where by virtue of the orthogonality of the D-functions k 1 = k 2 = k results and the perturbation factor becomes 
independent of N: and N 2. To evaluate the last expression further, the probability distribution W(coo) has to be 
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specified. We arbitrarily choose a Gaussian distribution, 

W(coo) = 1 
[ (0 2 ] exp t (1 1) 

2 (0225 -=' 

(results for other distributions will be given in Section 4 whereas the more general aspects are discussed in 
Section 5) and obtain 

I +k [ N 2  ( c o 2 )  t 2 ] 
2 exp . (12) E {Gkkln =0} = G~~ 2k+  1 u= -k 2 

3.3. Class with one Discontinuity Point 

The second term in Eq. (8) describes the class of nuclei which witness at exactly the point t a one flip of the per- 
turbing field. The interaction Hamiltonian J(~ is diagonal in the system z' parallel to f20 within the time interval 
(0, tl), whereas in the subsequent interval (q, t) a new system with z" axis parallel to s must be chosen in order 
to diagonalize ~ .  Denoting the Euler angles of the direction s by (cpl, 01,0) and the eigenstates in the system z" 
by [q), we have 

Al (t-- tl) Ao(q)  Imp) = A  1 ( t -  tl) ~ ]P) (plm.) e -iv~~176 = ~, Al ( t -  q ) [q) ( qlP) (pimp)" e -ip~ 
P P,q  

= 2 Iq) (qlP)  ( p l m , ) .  e -iq~ e -ipm~ 
P,q 

If the matrix element (q[p) which couples the z' and z" systems is written in the form 

( q l p ) = ~ , ( q l m ) ( m ] p ) = 2  a) (i) Dqm(q)l ,  01, --  0 0 O)" Dmv(O, , -qOo), 
m m 

we obtain for the matrix elements in Eq. (6) 

(mb]Al ( t - -q )Ao( t l )  ]ma). (mb[' Ax(t--q)Ao(q)[re'a)* = ~ ~'mbq('~a) 0, - 01, - q h ) "  D~r~(~ol, 0> 0) 
p,q,m 

p ' , q ' , m '  

a> a> " ) *  (0 ,  - 0 0 ,  - (Po) Dpma((po , 00,0)" r~(I)* ill --uq 1 - - e l ) "  D~*,~*((px, 01,0)" Din, v, �9 Drop(O, - 0 0 ,  - - ~ o ) "  l~'mi, q''--' ' 

�9 D m* t,~ , 0~, 0). exp [ - i(q - q') co 1 �9 (t - t 1)]. exp [ - i (p - p') co o �9 tl] p' m'a U~V O u 

If this expression is used in (6), multiplied according to (9) by 

1 
W(co 0 0  00j col ~'~1 tl.) = (4~2~)2 " W(coo)" W((D1), 

and integrated over the Euler angles and the interaction frequencies coo and co~, one obtains 

2(1 I s k ) 2 ( : , _ I  k t e . e x p [  ( q - q ' ) e ( 2 2 ) ( t - t l ) e ] e x p [  (P-P')2(c~ (13) 

where for both W(coo) and W(col) the same Gaussian distribution (11) has been used. As in Section 3.2 we have 
k 1 = k 2 = k and the dependence on N 1 and N 2 has disappeared, which is, of course, a consequence of the spatial 
isotropy of the model. On comparison of Eq. (13) with the corresponding expression (12), it is seen that (13) can 
be written 

E {Gkk(t)ln= 1}t, = E  {Gkk (t -- q)[n=0} �9 E {Gkk(q)ln=O } . (14) 

The last two equations give the expectation of Gkk(t) assuming one flip at exactly the point h. Actually the discon- 
tinuity point is equally likely to occur anywhere in the time interval (0, t). The average of Eq. (13) over q has, 
therefore, to be calculated with the uniform probability density W(t l )d t  I =d t l / t  that the discontinuity occurs 
at tl in dq .  The final result is 

t 

E {Gkk (t)ln = 1 } .  P(n = 1) = 2.  e-  z,~ G~O)(t - t 1). G(k ~ (t,) dtl ,  (15) 
o 

Z. Physik (1974) 
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where the shorthand notation of Eq. (12) has been used 

(o) Gkk (t) -- E {Gkk (t) ln-- 0} (16) 

for the attenuation factors of a completely static interaction. It should be noted that the property specified by 
Eq. (15) and the subsequent expressions (18) and (19) are, of course, quite independent of the probability distri- 
bution W(co). The Gaussian distribution (11) has been used as an illustrative example only. 

3.4. The Attenuation Coefficients 

The procedure discussed in Section 3.3 can be generalized to the case of n discontinuities at exactly specified 
points in the time interval (0, t). An expression similar to (13) can be derived which comprises now the product 
of n + 1 exponentials. As before, this expression has to be averaged over the random occurence of the dis- 
continuity points. The probability density of the ordered points t 1, t 2 . . . . .  t,, which are independently and 
uniformly distributed in (0, t) is given by [9] 

n! 
W(t 1 , t 2 . . . .  t,) = - - .  

' t n 

The final result can be written as the n-th order convolution 

t tn t2 

E{Gkk(t)Jn}'P(n)=2"e-~t~C(~176 ~o "kk - 1) d t , -  1 , . .  ~G~~ (17) 
o o o 

which is an obvious extension of Eq. (15). 

From Eq. (8) we now obtain the attenuation coefficient 

t t n t 2  

<Gkk(t)> = e - z t  2"~ G ( f ) ( t - t , ) d t , ~  "~(~176 ~, n - t , - a ) d t , - 1  . . .~G(f)( ta)dt l .  (18) 
n=O 0 0 0 

The mathematical structure of this expression is identical to the corresponding equation of the Scherer model [5]. 
To evaluate Eq. (18) we use the technique of the Laplace transform discussed by Blume [5]. The Laplace trans- 
form of the n-th order convolution reduces to the n-th order product and we obtain from Eq. (18) 

< ~ (p)> = @)(p  + 2) + ,~ ES~ ~ (p + 2)3 2 +. . .  + 2"-1 [~o) (p + 2)3" +. . .  

with the notation 
o0 

G ( p ) -  ~ e -p'  G(t)dr .  
o 

Summation of the geometric series gives 

<Gkk(p)> = G~~ +2) (19) 
1 - 2  ~-(~ + 2) V k k  t r  

This basic equation connects the attenuation factor for the fluctuating interaction with the attenuation factor 
for the class of nuclei with a static interaction. 
If the Laplace transform is inverted, one obtains from Eq. (19) the following inhomogeneous Volterra integral 
equation of the second kind for the time-differential attenuation coefficients 

t 

(Gkk(t)> = G(f)(t) �9 e -Xt+ 2 ~ (akk(t')> G(f)(t--t ')  �9 e -;~(t-'') d ( .  (20) 
o 

The time-integral attenuation coefficients, however, are most easily calculated directly from Eq. (19). Due to 
the close relation between the definition of the Laplace transform and the time-integral attenuation coefficients, 
one has simply 

<Gkk(CO) > = 1  ~e_t/,<Gkk(t)> d t = p .  <4kk(P)>lv=X/,. (21) 
T o 

Z. Physik (1974) 
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4. Results for the Time-Integral Attenuation Factors 

4.1. Gaussian Distribution of the Perturbing Field 

In order to obtain the time-integral attenuation coefficients from (21), the Laplace transform of the static 
interaction term (12) has to be inserted into Eq. (19). The Laplace transform of Eq. (12) is 

1 {1 k ] ~  27~ [1- (b  ( p p2 ]}  
G(k~ 2 k + l  P+N~a N2( ~ ]/2N2(o2})]exP[2N27-~o2} (22) 

and the attenuation coefficients are found from (19) to be 

<Gkk(OO)>Gau~ = (2k+ 1) <co2}} z 

with 
<co~> ~ 

"5 
l + - -  

Zc 

<002> =g2  ~ <H2>, 

~-t-N~--1N [1 -- ~ , (23) 

(2k+l) . (coz}~z ~+N22__1 ~- 1 - ~  .exp 

(24) 

where z c = 1/2 is the correlation time, z the lifetime and g1 the, g-factor of the intermediate nuclear state I and 
<H2> the second moment of the Gaussian distribution (11) of the size of the perturbing magnetic field. In 
Eq. (23) 4~(x) is the normalized error function 

2 
c b ( x ) = ~ - !  e-"2 du 

and the sum extends to all positive integers N =  1, 2 .... , k. Since the attenuation coefficients are independent 
of N 1 and N 2 and have the property k I = k 2 = k, the angular correlation function of Eq. (5) reduces, of course, to 

W(& oo)= ~ (Gkk(Oe)}- Akk. Pk(COS O). (25) 
k 

4.2. Uniform Distribution 

Attenuation coefficients for other distributions can be immediately calculated from Eq. (10). For a uniform 
(rectangular) distribution of the frequency of interaction 

-- -- (_Oma x < 0) < O)ma x 
W(co) = 2(.Oma x ] / / ~  <(.02>r ' 

0 elsewhere 

one obtains for the class of nuclei with a static interaction 

sin (N O)max t)_~ G~~ 1+ ~ 2. 
1 N=I N" 0)max t J" 

It is very convenient to use the second moment <~o2} instead of the parameter g0ma x because this quantity 
facilitates a comparison with other stochastic models. The time-integral attenuation coefficients for the uniform 
distribution are found to be 

l /3z + 2 ~ 1 arctg(~/~ N z) 
<Gkk(O())}unifor m = 1 N=I N (26) ~/~ {" ~ " ~ ' ~ 1  } 

(2k+l)]/3(c~ 1 (2k + l ) l /~ (o)z>~ z 1/3 z + 2 X ' l~  arctg(1/~ N z ) 

with the parameter z as defined in Eq. (24). 

Z. Physik (1974) 
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4.3. Delta Distribution 

The limiting case of the b distribution 

W(co)=6(o)-c%) 
leads to a model, in which the direction of the interacting field is allowed to fluctuate at random, but the size 
H 0 of the field remains fixed in time. The Laplace transform of the corresponding expression (10) is simply 

1 +k 1 

G(k~ 2k+-- ~ N=~ k p+i  N o) o ' 

and the time-integral attenuation coefficients are 

1 +k 1 
x 

2 k + l  N=-k 1+.~ + i N @ 9 2 ) ~ ,  

(Gkk (Oe))~ = t '~ , (27) 

1 2 k + l  ~ 
N = - k  l + ! + i N ( c o z ) ~ z  

"Cc 

where the sums extend to all integers - k ,  . . . ,0, 1,2 . . . .  , k. For the 6 distribution we have (co2)~=O)o, but 
the second moment symbol will be retained for purpose of general notation. The attenuation coefficient 
(G22(o0)}~ is shown in Fig. 1 (solid lines). As a function of the relative strength of fluctuation, given by the 
ratio of nuclear lifetime r and correlation time ~,  the amount of irreversible attenuation of the angular cor- 
relation generally decreases from static interaction (on the left-hand side of the figure) to extremely fast fluctuation 
(on the right-hand side). Typically, there are, however, intermediate regions of particularly strong perturbations. 

The minima of the attenuation factors are an interesting feature of the exactly soluble ~ orientation" 
models (for exceptions, however, see the note at the end of Section 4.4). Stochastic perturbation of the "fixed 
orientation" type does not show this behaviour. In Fig. 1 the attenuation coefficient of the fixed orientation 
Blume model I2] is shown for comparison. Since a jump of the magnetic field from + H o to - H o in the Blume 
model is equivalent to a jump of the initial direction of the unique field H 0 to the antiparallel one in our model 
and since, furthermore, Poisson statistics (1) are also inherent to the Blume calculations, the two models only 
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Fig. 1. Time-integral at tenuation 
coefficients (Ge2(oo)}a from Eq, 
(27) for continual random reorien- 
tation of the axis of the perturbing 
magnetic field. The size of the field 
is assumed to be fixed in time 
(6 distribution, (o)2)~=COo). The 
attenuation coefficients from the 
"fixed orientation" Blume model 
[2] and the perturbation theoretic 
Abragam and Pound model [6] 
are shown for comparison 

Z. Physik (1974) 



152 F. Bosch and H. Spehl 

g 

1.0 
z 
laJ 

0.9 

la_ 
u_ 0.8 U.I 
o 

0.7 
Z 
O 

0.6 

z 0.5 
la2 
i- 
�9 ~ 0.4 

0.3 
r 

0.2 
Z 
"T 
lal 0.1 
Z 
I - -  

10 4 

- -  f luctuat ing orientation 

. . . . . . . . .  f ixed orientat ion 

. . . . . . .  A b r a g a r n  and Pound 

Fo~A ~-- ..f j-- 

/ 
_ \ / .  , J ~ -  2 : .  / /  / , /  

_ G o o ~ i a n  . ~ / ~ ' - '  " ' , ' /  / /  
.......... ~._ 11 II / .t . I//'/ / / i /  
- 11 .////1\1~ "I ~ /  xll_ _ ..I'I I 

,'l ./ / 
i 7 i / 

- FO~A j /  / i l l ~  
~.,., gi , . ,  / 

6 uniform" ,./ Gaussian 
/ -  6 uniform / ~ /  --%,/ 

I I I I ~ I I I I ~'-----'T~--~'~I 1 1 I I I I I I I I 

I 10 10 2 10 3 10 h 

RELATIVE STRENGTH OF FLUCTUATION "I: 
"I; c 

Fig. 2. Comparison of the attenuation coefficients 
for the three probability distributions discussed 
in Sections 4.1 to 4.3. The F OG A model [1] is 
shown as an example of a "f ixed orientation" 
perturbation. In the proper limit the dependence 
of the attenuation coefficients on the specific dis- 
tribution W(<o) cancels 

differ with respect to the assumptions of fixed or fluctuating orientation. As can be seen from the figure, the 
models exhibit a similar behaviour in the static and the fast fluctuation region. The main deviations occur 
in the intermediate region by filling up the minima. Similar remarks apply to the FOGA model [1] which 
should be compared to the fluctuating orientation model with Gaussian distribution, Eq. (23) (see Fig. 2). 

4.4. Relation to the Abragam and Pound Model 

As can be easily calculated from Eqs. (23), (26) and (27), the time-integral attenuation factors reduce to 

1 if ~zc < ~ 
(Gkk(~ ~ 1 +�89 k(k+ 1) (co2)~ ~ ~ c ~(co2)~ %< 1, (28) 

independent of the three probability distributions W(~o). Clearly, Eq. (28) is the well-known attenuation coef- 
ficient for a fluctuating magnetic interaction of the Abragam and Pound model [6]. It is interesting to note 
that in the perturbation theoretic treatment of Abragam and Pound the actual distribution of the frequency 
of interaction cancels, i.e. the parameter (co 2) is the second moment of a completely unspecified distribution. 
The mathematical background of this important fact will be discussed in Section 5. 
The property specified by Eq. (28) is most clearly illustrated in Fig. 2 in which examples of the attenuation 
coefficients for the three distributions discussed in Sections 4.1 to 4.3 are compared with the Abragam and 
Pound model. All the attenuation factors of the fluctuating orientation model smoothly touch the Abragam 
and Pound curve with increasing relative strength of fluctuation. This behaviour is much less pronounced 
for the fixed orientation models, a fact which is also illustrated in the plot of (G22(oo)) versus (G44(oo)) in 
Fig. 3. Whereas all fluctuating orientation curves for ~h~> 102 merge into the Abragam and Pound magnetic 
dipole limit, the fixed orientation model of Blume [2] yields a curve which is nearly independent of ~/-c~ (the 
dependence on ~/zc cannot be displayed in the figure). The FOGA model produces curves with a marked 
dependence on ~/~, but they do not merge in the Abragam and Pound limit either, except for very weak 
perturbations. 
It is also interesting to note the dependence of the hard-core values of the attenuation factors (marked by dots 
in Fig. 3) on the relative strength of fluctuation. Whereas the fixed orientation models invariably produce the 
well-known hard-cores (2k+ 1) -1 for isotropic magnetic dipole interaction, the hard-cores of the fluctuating 
orientation model decrease to zero with increasing -c/x~. The hard-core attenuation factors are independent 
of the distribution W(co) of the interaction frequency. 
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The Blume model [2] shows 
a rather weak dependence on 
the parameter z/~ c which can- 
not be displayed in the figure. 
Attenuation coefficients for an 
electric quadrupole interac- 
tion with I = 2  are also shown 

The fluctuating orientation model is easily extended to the case of an electric quadrupole interaction. For a 
fluctuating field gradient having axial symmetry and with its magnitude fixed (6 distribution), results for I = 2 
are included in Fig. 3. Details are given in Ref. 10. 
We finally note that not all probability distributions W(co) yield attenuation coefficients which merge in the 
Abragam and Pound coefficients in the proper limit. A distribution W(e)) with a Lorentzian shape (Cauchy 
distribution), for example, with half width C%w, will produce attenuation factors with the property 

(Gkk(OO))Cauchy-->O f o r  COHw'C>~ I ,  

even for z c ~ O, in sharp contrast to the models previously discussed. This is due to the fact that the moments 
of the Cauchy distribution diverge. More details are given in Ref. 10. 

5. Results for Time-Differential Attenuation Factors 

Time-differential attenuation coefficients are obtained by numerically solving the integral equation (20), using 
an iteration procedure. In Fig. 4 typical results for three probability distributions of the interacting fields 
(Gaussian, uniform and 5 distribution) are compared. The attenuation coefficients of the fixed orientation 
Blume J-2] and FOGA [-1] models are also shown. As already pointed out in Section 4, the Blume curves should 
be compared with the curves for the 5 distribution whereas the FOGA curves correspond to the coefficients 
for the Gaussian distribution. It is interesting to note that all attenuation coefficients of the fluctuating orientation 
model are closely approximated by the Abragam and Pound coefficients in the limit (coz) { ~c< 1, except in 
the region close to t=O. The initial slope of the Abragam and Pound coefficients is not reproduced. This is 
not surprising because, strictly speaking, the Abragam and Pound coefficients should not be used for t-~ 0 
due to the condition t>> % inherent to this model. 
In fact, a rather general expression for the time-dependent attenuation factors for (co2) { Zc < 1, but not involving 
the additional condition t/z~ >> 1, can be obtained as follows: 
Eq. (10) for the attenuation factors for a static, isotropic interaction can be written in the form 

1 +k +~ 
Gk~ 2 ~ W(oJ)cos(No~t).dco 

N= --k --oo 
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where W(og) is assumed to be an arbitrary distribution of the interaction frequency. By expanding the cosin- 
function in a power series we have 

1 { ~ N 2 t  2 N 4 t  4 } 
G~~ 2 k + l  - - ~ .  ( ~ ~  (~~ ' 

where the moments 
+ c o  

<~o"> = 5 co" w(co) d~o 
- o o  
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H(o) t have been introduced. According to Eq. (19) the Laplace transform of "-'kk ( ) is needed for the argument p+,~. 
We have 

~ O ) ( p + 2 ) = l f  1 2 _ . [  _ ~  N 2 (co z) 1 q_~ N 4 ( 0  4 ) 1 .. .] 

1-~ P2 2 k + l  22 ( p )  a l + ~ _  N 2 k + l  2~ ( P )  ' 1 + ~ -  ~" 

We conveniently introduce the parameter c~, according to 

( , ,2 . )=~.  (,o~)., 
where e, depends, of course, on the distribution W(co). For the 6 and the Gaussian distribution, for example, 
we have e, = 1 and e, = (2 n -  1)!!, respectively. Using this parameter, it is seen that in the Laplace space a series 

e is generated. If ((j)2)�89 ,.Cc ~ 1, we may neglect all terms comprising expansion in powers of @92)/22 = (092) L 
the parameters c~,, n > 1, with the result that the attenuation coefficients prove to be independent of the dis- 
tribution W(co). If this approximation is used in the nominator and denominator of Eq. (19), it is a simple 
procedure to invert the Laplace transform by finding the poles of (Gkk(P))" The result for the time-differential 
coefficients is 

k N 2 1 
Ck= ~ 2 k + l - 6  k(k+l) ;  ((.O2)~Zc.~.l. 

N = I  

The corresponding time-integral coefficients are simply 

1/1 - 8 c~(o) 2) ~ 
sinh ( 1  ~ l / i -  8 Ck (~02) z~)}, 

(29a) 

1 2 
(Gkk(~))= 2ck/~oz\zz  / Qo ) ~ r c ~ l .  (29b) 

1-t: 
L 

1 + - -  
17 

It should be noted that the condition t >> z c or z >> L is not required in deducing Eqs. (29). Eq. (29 b) reduces to 
Eq. (28) if this condition is introduced. Furthermore, all physically "reasonable" distributions W(co) yield the 
same attenuation factors due to the fact that the parameters c~, (which represent the distribution) are not in- 
volved in this first order approximation. The only relevant parameter is (co2), the second moment of a com- 
pletely unspecified distribution. Obviously, in a higher order approximation only distributions with the same 
parameter c~ 2 will produce identical attenuation coefficients. By extending step by step the scope of the theory 
with respect to the strength of interaction (co2) �89 L, one inevitably produces attenuation coefficients which 
depend more and more on the finer details of the distributions. The slight variations for (o)2) �89 L=0.1 and 
(co2) �89 %=0.25 for the three distributions shown in Fig. 4 may be said to be due to the differencies in the fourth 
moments. It is obvious that distributions with diverging moments (such as the Lorentzian distribution mentioned 
in Section 4.4) have to be excluded from these considerations. 
It can easily be seen that Eq. (29 a) closely reproduces the Abragam and Pound coefficients except for the initial 
slope. This behaviour can be understood by noting that within a limited time interval, t ~ z~, most of the excited 
nuclei witness a static field. The chaotic disorder, which highly simplifies the treatment, gradually develops 
only in course of time. Therefore, the initial decrease of anisotropy should be similar to the behaviour encountered 
in static, isotrop interactions, i.e. vanishing initial slope. 

6. Conc lus ion  

An exactly soluble stochastic model for the perturbation of angular correlations has been developed in which 
classical magnetic (or electric) fields are assumed to fluctuate randomly both in direction and size. The stochastic 
process for the perturbing field is assumed to be homogeneous in time and isotropic in space. As a consequence 
of the latter assumption the angular correlation function is given by (25). Explicit time-integral attenuation 
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coefficients are given in Eqs. (23), (26) and (27) for a Gaussian, a uniform and a 6 distribution for the magnitude 
of the perturbing magnetic fields. Time-differential attenuation coefficients have been calculated numerically 
from the integral equation (20). Results are shown in Fig. 4. The approximation (29) is obtained from a series 
expansion of the Laplace transform (19). 
It should perhaps be emphasized that one has to be very careful in applying results of stochastic models to actual 
physical situations, for three main reasons. First of all, there is a considerable amount of speculation inherent in 
the specific choice of the distribution of the perturbing fields. A glance at Fig. 4 shows the drastic dependence of 
the time-differential attenuation coefficients on the distribution W(co). It is of invaluable importance that in the 
limit (co2)+%~1 this dependence disappears (for physically "reasonable" distributions). This fact has been 
illustrated in Section 4.4 and discussed in connection with Eq. (29). Secondly, the classification of the interaction 
according to "fixed orientation" and completely random "fluctuating orientation" is, of course, a limiting 
concept. The results of the present paper may facilitate, however, the understanding of intermediate situations. 
And, finally, all the stochastic models published so far assume statistically stationary interactions. For free ions 
recoiling into gas or vacuum [11], for example, this assumption is expected tohold approximately if a sufficiently 
short time interval for the observation of the perturbation process can be ~elected experimentally. This last 
restriction is irrelevant for liquid or gaseous sources in thermal equilibrium. For such cases the fluctuating 
orientation model appears to be an extension of the Abragam and Pound model to interactions of arbitrary 
strength and arbitrary correlation time. 

We would like to thank A.Weckherlin for preparing parts of the numerical results. All calculations were performed on the Univac 1106 
of the Rechenzentrum der Universitgt Freiburg. 
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