COMPUTABLE SINGLE-VALUED NUMERATIONS
S. S. Goncharov UDC 510.51

The problems of the existence and number of inequivalent univalent computable numerations
of families of recursively enumerable sets have attracted the interest of many workers [3,

5, 6-10, etc.].

One of the interesting results along these lines was obtained by Marchenkov [3]: Every
computable family of recursive functions has up to equivalence either one or a countable
number of univalent computable numerations. So far, all known samples of families of re-
cursively enumerable sets have also had this property. However, in this paper we give an
example of a family of recursively enumerable sets which has exactly two inequivalent uni-
valent computable numerations. In this connection the possible number of minimal numerations

of families of recursively enumerable sets is of interest.

We now turn to the main results of this paper. We follow the notation and definitions
in [1, 2, 4]. First we recall some of the definitions we will need. A numeration v:N— 5.
where S 1is a family of recursively enumerable sets, is said to be computable if the set
{<n,nl>|rLGV(ﬁL)} is recursively enumerable; the numeration is called univalent 1if V()= V(M)
for all o # m- . Here and below, N is the set of positive integers {0,4,2,“.}. We recall
that 1f Yy 1is a computable numeration of a family S of recursively enumerable sets, then
there exists apartial recursive function f(n,.m such that vma:{faz,,.mlxeN} . Let -K‘ and
K* [2] be the Kleene universal functions for the families of one- and two-place partial-
recursive functions, respectively. For brevity we write simply K in place of Kz . We
denote by c,g,t‘ [2] the Cantor functions which numerate pairs of numbers. If ¥Gq”nqﬂhﬁ
is a partial-recursive function then we write ﬁ(mbv“‘#a%z) for the value fczb,“,;a%), if it

is computed in less than ¢ steps, and %;z%"“,zh) is not defined otherwise.

We define
Y= { KS(J',n,,.n) [zeN} and z&t(m) = { K:(/',n,.c) lz<l].

It is easy to see that for every computable numeration Y of some family 5 of recursively
enumerable sets, there exists a j such that Y==é . The numeration Yy reduces to a
numeration‘//b(ﬁ)éu/o) if there exists a recursive function f such that YY) f/»fOL). Two
numerations Y and Ju are called equivalent if ))40/0 and /}b(\?.

MATN THEOREM. There exists a computable family of recursively enumerable sets having

precisely two inequivalent univalent computable numerations.
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Proof. The desired set S will be constructed by the priority method. Simultaneous

with the construction of 5 we will construct two univalent inequivalent numerations

Y and /w .
At the & -th stage of the construction, we will define finite pieces )’t(/Z) and

/ut(/z,) of sets in S so that

t = ¢ =
{tgovm)l/LeN} {go/,,(mmeN} S

and Y = U v (fb)» l/u,(rz,) /w(n,) In the construction we will also need some auxiliary
constructlons Thus, at step ¢t we will define fU.nCthnS tpb N—=N, /\fLK N-—>N

partial functions .t for xefy /w} values AL ,77” for 441( and 7, (/L) st(/';b'),
g(d by, d/ (/ o) for # z,e v /u} , which take elther values in N or an undetermined value;

we also comstruct P(t,{/,o) , finite sets /_I (b) for o</< and D@:b for d,z,leN .
In the construction we will use two kinds of pairs: <n,i>, where na,iefN , and fd', od s
where d',ée N , which we will distinguish by the form of brackets used; we consider the lexi-
cographic order 4&‘ on pairs. We will also place markers Z_’ 8,3, 3, @ . The
markers [, [¥] , and (] are pla‘ced on pairs ,t] , the marker [£] on pairs <n,i> ,

and % is placed on four-tuples <g/l, 1,(,:) where g’ gf’gz’n’ 0,/6/\/ and @€ {v,/w}

We write
Mt.- Et.. Lo t..dﬁ.,
i ={ W), S Gl ), Y, z(d,b)]

. t
and say that the function [&],

i is completely defined on n if {2’55;5 and 3&(/2)6;
a;tu (;L(n,ﬂ , or

tl
nel Mg
bL'-‘)t x(/ U ek,

for [d',b’_'] <4 [d',b]‘ and Ioé(/ ; and the function .bé is completely defined on a set
D& N if it is completely defined on n for all nell.

If the marker is present on [;/,&]' at step ¢ then we write
t = t t
X do 5@1’5 ul E'E'J-‘

By the ¢vy,m,i> -list at step { for [<KE

‘n » We mean the linearly ordered set

& t
LY,"‘,Z =< L-v,m,;: ’ = >, where

Z

by i =laG.miy ule)ian, stipten, oty ')lg,'ouem @1

and we define the order -ﬁ( on this set by putting a,<5 for a,,géLym‘-‘ , provided
’ >

one of the following cases occurs:
1]
1 a-= Zg; & 5=$v(/jo')
Z g,o) & 6
s,g, & b

2) a

i

L, .
‘bv(d,o),

3 a

i
It

(Y
Zy(d"’ Y
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noa=886=a,
5 (a =& va=a vigeM (18  the marker D) appears on [j1i7  in ﬂfn(t))
&(66/‘139‘{5’)& the marker IE) appears on EJ :'Jin ﬂ (Vs
6) (a,eMtJ” ") & the marker ® appears on Ll & il e NN & be {4
7) aeM (j" ">&56Mt '¢'Y& (the marker [¥} appears on EJ”"-' and Ed'”,[,"] in
n (t ) & </ ;

m)’

"an af A T s b
8) aeM’ /AR beM 9 (the marker @ appears on [j]57] and [J’ ¢'1 in [ (8)
&J </
By the </l4«,m,,[, > -list at step b for o< K,i we mean the linearly ordered set
¢ t , !
Lf‘ <L/~m , <>, where L/u,m_,; = (Pt(Lv,m,';,) , andt A <6 if there exist @ and (g
[
such that q)t(a,)—a, lf{’(é)-—g and @’46 in l‘y,m.,i,
. P , ¢
By the <L,m,b,/, ("> -list at step Z we mean the submodel l(&,m,b',j',li'> of the model
¢ , . . ¢ _ Al
lzz,,m.,b with base set consisting of the elements £ in L<z’m‘:> such that .2 Am or
b [ . ¢ . y
r= f/Tm or rE Mz(d:' D) , Where E/’”blﬂ £ ﬂm(é) and [d’blj d’ ¢"J. We denote M

and vy , respectively, by ?) and f{} .
At step t+1 we say that we leave the following unchanged:

b+d bed_ b
1) at the point R, the function )\rLK-,L is unchanged if we put K, T K, ;

n n
2) at the point v, the numeration # 1s unchanged if we put 2,5”(@) = ?«t(/’b);
3) the set ﬂi(t*ﬂ, if we put ﬂ;(t+1) = ﬂn((ﬂ;
4) the value P(t-l"l,/',i.), if we put /D(tﬂ,(j,ﬂ 2/)(35,/,5)
5) the value f:{(/‘,b) , if we put f:*’(d',z}) = )(:g',i/) , where aze{v,(/u};
6) the set D;: . if we put D@m’ D@;’b ;
7) at the point A , the function q)t” is unchanged if Lpt”(/L) = (/t(fb);
8) the marker is unchanged if it is neither inserted nor removed at step t+1

We write 5{‘ for the domain of the function {' , and JDf is the range of f

In the construction, six types of steps will be used: the zero step, and types 5[31-{’

§t+2, §t+3, St+tand S5lL+5
We say that the & -number /I is used in the construction at step ¢ if

¢ ¢- ¢ ¢ '
2n) + 2 ’(m)vnéé'J,LU D@J,LU{A:"meN

and i< k8 JU {FEImEN ana i< K30 MG,
for /',b'e/\/

N is used at step { as an index if it is used as a Yy - or /v/ ~index.



A pair <m,i> is used at step ¢ if we perform a construction of type 4£+2 (Case
2 or 3) or St+1  for ¢m,i> .

The pair L_J’[J is used at step I if it is added to or removed from some set ﬂ::,

or else we carry out a construction of type 8L+2 5C+3, §t+4 , or 5t+8, for the pair
[J,LJ , or the marker [3 is attached to L—d',(j] . A

The pair [d"{,] is said to be defined at step & if the value S:(/,&) is defined.

Before giving the construction, we informally give some idea of the construction of the

desired set.

In order to construct our family S , we must constantly bear in mind the following

three properties during the construction of § and the two numerations vy and S
1) v and M numerate in a univalent way the same family S 3
2) the numerations Vv and S are inequivalent;

3) for every univalent computable numeration f of the family S , either \)éf,

or Juréf .
Simultaneous fulfillment of these three properties is made difficult because they are not

all that compatible. The main difficulty is to get them to be satisfied together.

If we wanted to limit ourselves so that only property 1) holds, one step would suffice.
By defining Wn) =Mn) = {2n%, we get fulfillment of condition 1). If we also want to
satisfy property 2), we must define VY and /w in steps. At the zeroth step we put YY) =
/u,"fm = {2n} , and then during the construction we spoil the reducibility of V to Yz by

means of the function AzK(n,2) for every N . To this end it suffices to find a sequence
Ao <5I;Z.A1<___<Am<:ﬂ;<m of v -~indices and arrange that on the pair of VY =-indices An,
and Qn,’ the function AaK(,&) does not reduce VY to Mo Therefore, it is enough to

wait until K(fL,An) and K&, have been defined. Then if K(/L,Am) =, or
K(/L,gl"m) -‘#(ﬂ\,b the function AxK(n,2) is easily seen to be nonreducing. If K(/L,A”_)=An and

Kin, &y =8 , however, we can make the following correction:
»“n n

A,

’/l(
‘/w(A

—

n

=v@) =YY U V@YY {11,
= W) =YY U@ U P

a_

It is clear that if we don't do anything more, the numerations VYV and /.b will be in-

equivalent univalent numerations numerating the same family.

No additional constructions are necessary to get conditions 1) and 3) to hold simultane-
ously. It suffices to take )\ILJ,L to be a computable numeration of all computable numera-
tions of families of recursively enumerable sets and, defining the numerations by V() =
M) = {2n} , a reducing function [Y], for reducing ¥ to ¥, can be constructed as fol-
lows. We wait until a step & such that ymyc b”i(d,m') for some dmeN , and we define
[ilm(m) =dm . It is clear that when the function {, numerates the same set as vy, @m

will be reducing. Our problem is to combine the constructions for satisfying properties 1)
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2), 1) and 3). However, as is seen from the construction, they contradict one another since
after n(m,) has been defined for some 2 , Y/n) can no longer be changed after this
step. In order to overcome this difficulty, we introduce a "stopping' function th:(n,) R
where xe{vvu,] , which so to speak absorbs all the changes within itself. This should be
interpreted as follows: if reducibility by means of i . or g(z,]i, (depending on what
reduces to Jn at step t ) breaks down at some point, then it breaks down in a correspond-
ing way on .Sf(n) or st(n,j . In this case, if reducibility breaks down infinitely many

‘/«z

times, we can arrange by choosing successive values of the "stopping"
s PP

function that there

exists aset in the numeration Xn, which is not present in our family.

We consider the simplest case showing what kind of effects a change of the set vt(e)
has for 8 on which some EZ on Sf(n,) .is defined. Take the situation in which only a
single function /\a',K(m,x/) keeps us from preventing reducibility of vy to M by means of
[ﬂi . Then we find a step Zf/ such that Kt(I/L,A¢) = A_and

n
Kt(lm,yijb)a‘ﬁn, v"('A,g; xi’(a,), vtéér,g < gi‘(g), v*'(sfmﬂ < Xf@’
and at this step we define i(An)=a,, i(ﬁm)=£, m:(sf,l(ﬂ,ﬂ=c<.
After this, we do the following construction:
V) = /wt"’(\f"'( s:'(m\)-:. v*'(sf'm)\ V@) U {x],
SEFEGY = Y a) sy UV U 4,
'/ptw(kpt(‘Am)) = VWigan s Yiay Vs o,
where the numbers x,y,x, are pairwise distinct and prior to this step are not contained

in any set. If Xn is a univalent computable numeration of the family which we construct,

then
t+1 .
Y@y 297y o Y@ 29 k),
i, b '+
Y0 2 YWty oy 2@,

56 2y ey

Thus, the univalence implies that breakdown of reducibility for a single point automatically
implies breakdown at other points, and therefore on sj(m . In this case we replace the

marker by @ , and the value .‘S;(n,) is already "stopping."

We now say a few words about the objects which we define in our construction. The

t
strongly computable numerations \)t(f‘b) and /u,t(n) in the limit give numerations Y(N)= J V(1)
>

20
and/b(/’b) =——.tU t(n,) which. are univalent numerations of the same family, but are in-
>0

equivalent. The functions lft have the property of establishing an equivalence between

2 ,
Vt and ‘/w , and Lp:Q/_n_Lpt defines a reduction of vy and /A/ . Informally, the

>

pair EJ',[,:] will correspond to the i-th attempt to reduce Y or ‘/u to XJ ; correspond-

ingly, a marker [¥] or ‘@ on Q’LJ indicates that at a given moment we are reducing
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) (respectively, il ) to Xd . The pair <N,(> will correspond to the i-th attempt to
t

spoil reducibility of ¥ to M via the function )\zr,K(/L,.X’,) . The value K, gives the

number of attempts at step ¢ to spoil reducibility of Vv to /L by means of the function

AzK(n,2) . The pair A;,Jl,‘: will indicate the ¥V -indices at which we want to spoil
reducibility of ¥ to u by AeKa,@) in the i-th actempt. The functions 4'3 will
reduce the numeration & to )} at step { in the i-th attempt. The function
Atsig,&) Willt be a "stopping function" for reducing & to 2’0‘ in the i-th at-
tempt, and d’.z(//"[’) will define the wvalue in the numeration @ which corresponds

to the set with index sft,(d"“ in the numeration é . Q, is defined throughout as follows:

0:/,0 and J&-ev. Theé functions "Li((/',b) and K;CJ,L) will define "adjacent'" values.

The set ﬂ;(tﬁ) will "count" the attempts to reduce Y or i to numerations X.,d'én,
which are obstructions to preventing reducibility of VY to /A by means of )\.LK(/’L,.Z)) at the
i-th attempt. The function ’D(ﬁ,d',b) will determine the degree of cycling in the definition
of the'stopping function," in order that y and /l/ should numerate the same family. The
function )\tDt’b will define a counter for defining the function ;L .  The marker
+ is associ‘atgd to the pair <I’L,L> and /U whenever we have prevented reducibility of
y to /u by means of /\a‘//((fb,.l‘&) in some i-th attempt. The marker [=] will be associated
to a pair Ed',i,] if the i-th attempt to reduce VY or /4, to (); is unsuccessful, and

we will not thereafter return to the marker. The marker 2  is added in cases when we have
learned either that é is not a univalent numeration, or t%at it does not numerate the set
we wish to construct. At steps of type 5t+{ we will attempt to spoil reducibility of ¥
to /A/ by means of the function )\x‘/K(l’b,.Z'/) . At steps of type 51‘:*2 we will define a
reduction of Y or /o to certain ). at points where reducibility is spoiled. At steps
of type 5t+3 we define a counter D;,a ; at steps of type 4L+4 we extend the
definition of IZJ;:L to elements in D@]t . At step 5t+%5 we introduce the O -th

s
attempt to reduce V to Xt .

We now turn to the formal constructions.

. G v — 9%ny o _ o _ °c A M= T
Step 0. Define /u,(n) =vyn)={in}, cp‘?n)=n,,_ A, = Yn, &, =4n+1, K, 0,, ¢,p(o,/,o)
B .0 o PR
0, °0 is nowhere defined, D;b. =@, %00,0)=2, §,(0,0) =6, £0,0) =10 for all n,ji eN
and g€ {v,/»x . We place a marker ¥] on all pairs g,b] where d',l'/ eN.

Step 5t+1 . We consider T=4t and verify whether there exists an n< 7 such

that no marker [F] is present at 7 and one of the following cases holds.

Ky
Case 1. The function AxK;/b,x,) is defined on A; and W,: and /((ﬂ,A;) = A;, K, )=
T .
,‘7/”:, ﬂ:(T) =g , and neither Afw nor ﬁ;: belongs to ﬂd’,L for (/<ru, if there is no [
: X
on EJ‘,[,] , and neither A’b nor ﬁ": are the second coordinate in a four-tuple to which

a %’_, is associated, where /”<fb, and /<=/<; .

K &
Case 2. The function /\1:Kr(fb,.‘c) is defined on A,L and I, , and /((/L, A:) * A:
T
or /((/’L,-‘F’:) # .7/',: » where K = K .

330



Case 3. Cases 1 and 2 do not hold, but.there exists an LSK;: such that A.t,KT(/L,.r,)
) ) i VTN e . . . A . ]
is defined on {An,ﬂrm}, ﬂm(r)—{<Jo,uo>, o FROR R <de’bc> where /0</1 <,_,</e , and the follow-

ing three conditions hold:
a) for all 5</ , if the marker is present on %\,&A\] but tnere is no [=]
marker, then the function @;';'5 is completely defined on the elements of the set
'y
__<z: n’;i‘,j}y ['o‘ > ;
b) there exists no pair [J; ¢l  such that d'l</b , with the following property:
there exists a number ¢, with 0<8'< ¢ and

G = &< BV e <hp ) VLR <OV G =0 &<,
L

<z,ft,g',,j’,é’>

T

N (@, u D@y, ) 2

and the marker , but not [ , is present at I;j’,i,' ;

c) there is no J”< 7, such that X, appears on a four-tuple with second coordinate

contained in the <%’,fb,l;> -list for z'e {v,/”} , and whose first coordinate is 2

Case 4. The conditions of Cases 1-3 are not satisfied, but there exists an 11(/(;:
such that )\,r,/(r(/z,,x) is defined on {Afw JT;} , and there exists a pair [J,’ ¢7] to which
the marker (Z] (but no marker (=] ) is attached and J"'<n, , and in addition there exists
a number &, 0<3'¢f+1, where

INGE {Q'ofvﬂ,..., EJe’Lc] Vo o%di <o %o fers=s G070,

, T . . T
and the function J",«"" is completely defined on L<z.',fb,b,/8u5y>
present at [({8"&6] all such that: either

a) ((J‘(’“((/.’ <(/-6") Vgl=/'5, & l;l<l;6v» &(D @}‘.’Ll u (5‘ @TI,LI) N L:z,n,‘:./-l,‘-‘/> * ﬁ

(with the marker [Z]

; T
and for :,r,*e{v,/u} none of the numbers in L<z’,'n,£> is the second component of a four-
*

tuple with a marker ,'Z;., for /’(/L , in which the first coordinate is 2" ;
or
g b oot é* i .
b) (cho&é":a) or ﬂm(T) =g and E/,b]¢ ﬂm*(ﬂ , where ﬂm:(r) is such that

<m,0,> <£u<n,6> or [ appears on <m,,i,> , and there exists no L_J",’{,"] such that
the marker occurs,

D&V U SN Ly o0.* 2,

<z.‘,n.,i,,J,o >
and if Jﬂ #J" , then
L—d;blj <&# [J“, "’"]< %"’[’5"] , while if J":Jl , then l./"< b.I;

or

. ; i .
c) b = K,I and A: or 'ng, is the second coordinate of some four—-tuple labeled by a

ZJ" with /'{.n, , or else conditions a) and b) are not satisfied for any 9', (}'J and there
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. 1t ¢ i T T
exists a EJ’UJ such that {An,"ﬁn} N (D.J'ﬁd u 5‘%[’) # @, where the marker [Z7] but not
o ot
= appears at g,bj .
If no such M exists then we leave everything unchanged and pass to the next step.

If there exist A with the above properties, we take the smallest and denote it by fz,a

If the conditions in Case 1) hold for fbo then we take the first two odd numbers a,<_5 B

ol
larger than all the odd numbers in [ yr) and define ﬂ:(Tw"ﬂ =g for (‘<K= KZ ,
reN

/J”(Jr:a) =" a) =V u v u {al,

a) =10 = Via)u VDU (b
o ) =yl ) = yia  u viEd o (6],
Tty g Ky = oK Trirmky Ak
&P (A’bo) nﬁn’a 9 SD (g?no ) Albo 7
on /’Z,D and associate to <n,o,/<> the marker [f] ; we make no other changes and go to the

next step.

If the conditions in Case 2) hold for /Lo , then we associate the marker [_-T-__] to n, and
ULO,K> and define H;(T*-f) = ﬁ for '« K=K,T;; leaving everything else unchanged, we go

to the next step.

If the conditions of Case 3) are satisfied for n, then we consider the smallest 0'0

such that Case 3) holds, and make the following instruction:

T T s
.= , v 11 < m <, <m, 11 th le-
Let 3 gy > '<L<\”"'a"/o>’ <> be the <vna,4> -list and m<m m, all the e
e . . . L Ttd T
ments in U . in the order dindicated. For { , O0€i{ < ¢ we define QD’?m,.) = (m,[; )
Vg 00> v +1

and

T+1

\)T”(nyb) = (apT(mW)) = vT(mb.su vr(mb.ﬁ) ula;l,

V'my = T im) = vimyy U vTim,) U {ag,

Tl _ T < < . . . T
¥ (m_&) =y (m,o) , where T< CLO a,’ . <L a,e are the first numbers not c‘_fmtalned in n%{vv n)
We associate a marker [F to n and </L0,[;o> . For all pairs [j,i]€ ﬂn"(T) and D',[,’] ,

L& , . .
. PR P L .
where (®);<j' 6 there is no marker [I] on Ed,b'] and Lf,i]€ ﬂ:L*(T), where ﬂ”:(T) issuch
* *
that [f] appears on <m*;*> . Then we put the marker [Z] on g/,z}'] and

T 0 = MM LTI G 6 2, 0T

where EJ,L:':] € ”;:(T) and has the largest coordinate among all the pairs satisfying condi-
tion (*). To all EJ',[/'J , where l:>(:.o and L_J',l;':! is defined, we associate to [J’rzj]

the marker [Z]. We choose for each pair [J',i,] € ﬂ:i(ﬂ a number ¢’ such that & (/,1’;')
is not defined, and taking the first three indices a<5< ¢ greater than T and still not

used in the construction, we define
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T+ LT+ TH e
gz (f,l:’)=0,, ‘Saz, <d’bl) =d’x (</’b )_5’

i
wgih=c, M.(TrN =g,

ol . o i

r
where v *F b and v % Ko > nothing else being changed. Then we pass to the next step.

If the conditions of Case 4) hold for fLD , then we take the smallest [’o such that
one of the conditions of Case 4) is satisfied. Choose the largest /' for which there exists
an (', such that one of the cases holds for Eo/,", {1 . We consider for J" the smallest

(' such that one of the conditions is satisfied for l_;" (] omn the pair <n,,L >

oo
). i
If the condition a) is satisfied for [0-/"’ ("] and L—dl’blj ¢ ﬂm*(T) , where <m*,[,*>

<&*</L0,éo> or [ appears on <m*i*> , or else if condition b) is satisfied, we define
bo = b oot . , ] I
ﬂ%(TH) (ﬂ,bo(ﬁu {Ed,b]})\ { Cjigns b |5« 0"}

.
. - b
and for all <m,",[,*> >m4n,o,&o> , if we have 4J',b’>e ﬂm,(T)‘ then we put

MEaT ) = ML DN GG 4,563,

On all the l;j',b”:l such that ('>¢'  and S;((/'l,bﬂ)éN we place a marker [=] and
consider the first three indices T<a,<5 < ¢ which are not equal to indices previously
appearing in the construction; we define

T,k
gz (J’b ) = a/s

Ted oy _def,,_,) _5
qu,.b)— x(d,b.‘.- s

2

where ¥ is the first number such that s:(/:[,*) is not defined. If j’u=KnT
s T+1 T i i . } )

then we define Kr&, =K, *1 and taking the first two indices @< ¢ not vet used

v b+t by o+ 1 ,
in the construction, we set Af: =@ and 4° = 6, n,: (T+1) = &~
(4 o (4

ZT”(J;(;*) =C y

?

If, hoyever, ';/;“I] satisfies condition a) but there exists an <m,f > such that
IR 6 ,
[J"L'] ] ﬂm_,(T) for which
* X ' ‘
LM L™> & <o, >

or the marker [f]. appears on <m/ ;*> , then we set

i _ b L. 'Y

() = MAT (G, ip 10 < 8]
Leaving everything else unchanged, we pass to the next step.

if [J: i satisfies condition c¢), then we take the first two numbers a,<6,. not yet
used in the construction and define
i‘a T T+ T
] +{) = K = K +1
I 3 .

Ry

+1 ¢
and A‘;: =Q, Jl‘:’ =5 ; we leave everything else unchanged and go te the next step.
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Step 5’5‘?‘2 . We define [ =St+ 1,/=Z(t) and seek l'/*, n* and ¢ such that
(;*, n.t[,éT , the marker ZI’ J’< /‘L*’ does not appear, and one of the following conditions

is satisfied.

Case 1. There exist a’/é{\),/b} and 81,52’,55, such that

b= 83, )< b}m(&)’

&

+ tl o 1
EX(Al= XJT ‘), L¢ thJTM‘((/,o ,

; [y . T .
where J"z./'. and (€ {A;,JT,:M‘KM and m</} .
P ]
Case 2. The pair [y,[,:] is the element with smallest left coordinate in ﬂl:.(T) ,

the marker [ , is present on <% ("> and n* , and the marker appears on ;/'* iJ.

Case 1 does not hold, but one of the following subcases. does.

Subcase 2.1. For all elements K,< K, <,..< K‘i’ in the 4,2,_{2,’:&’:/’,4’,) -list, the fol-

lowing conditions hold:
If 0<?¥ ég, then a’LT(KL.)C; b’/-rf I(J;(KL.)) , and there exists a do such that
2 k) < ;{J.T”(dg)‘
Subcase 2.2, # =Y and vTEKOB o I/T(EIJTL(KQ) .
Subcase 2.3. &= u and ulK)G 5}(@4&(@\ :

Subcase 2.4. The marker (=} appears on ;EJ"Z,___] .

%%
é v
Case 3. The pair [j i]¢ ﬂmH(T) , where <m*%i**> < <n* ;%> 3 for every V<,
. .t . il’ T
if the pair g,[,':le ﬂ:,(T) has smallest left coordinate in nn/<T) , then ji, is com-

pletely defined on the <z’,n‘,é',(/,b"> -list, where [Z] is a marker appearing at l_}',&”__],

and there is no "< such that [J,é”] ¢ ﬂ:,(T)‘ for all <®,%i'> . 1In Case 3 we assume
%)

the previous cases are not satisfied; there is no marker [f] on </L*, >, or [jid¢ ﬂn.(T)

and for all g elements in L<aa,n‘;t'a*,(/',57 there exists a d’& such that g’,T(g) Q‘JTH(dZ) 5

if @;L(Z) is defined then d,TE(Z)=d,e, and (B)

i is completely defined on all ele-

T . ’ . r)

ments in L<zm”£,*“> for </n",b"> _<ew(/L',i,'> and is not defined on the éae,nf,u’} ~list.
4 H

" > . . 3 .
If _nf,o and ¢ with the above properties do not exist, then we have everything un-
changed and go to the next step. If these numbers do exist then we choose among them the

smallest triple (n',i",i) (under the lexicographic ordering). Let this triple be (A, {',*,L) .
If the triple satisfies Case 1 then we put a marker Zd on <a';’6“£z,55> . 1If
., . g
ZeéUTMz(JI,Ll) where (/'>d then we put a marker (=] on L—J:LD; we then take the small-
T, !

est | such that SVT(/',/ i") is not defined, and three still-unused numbers J[< a<é <C,

.0

Ted T T+1
and define [z: g’:z}”) =a, S, (J,b y = ct,;(d','[z’) = 5, 7«::’(/

1

,& ) = ¢, where z’e{v,/w}_
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2 ETR
.y . i
For <m*’: o> such that EJ’,O'] € ﬂm..(T) , we define

Moo = MM (03l 72 2, ),

if there is no marker [ on am' **y 3 we put a marker [E] on all the ,t] 5 and
bun I . , ool ben

we define [_I (T+1) ﬂ (T) \ {l;f " I[J 0" S EJ’L':H if [d,z, Je ﬂm"(T\ and no marker

e appears on <m”,(,"> . Then we go to the next step.

. . . = T+{
If Case 2 and Subcase 2.1 hold for the triple (n7i" () then we put j*" (K,)) = d,o

and proceed as follows, depending on the value of ID”:/,L) .

1) For P(T’J’(’) = 0, if a marker appears on I:/,b'] then TH(J U = 3 c/ L) =

r . . . T+d TH
%/v(d’b) ; on the other hand, if the marker [f] appears, then d (d iy = y (d' b) = (J o)

Tl
MRS =s %o\—s (Jn
p(T+4 J,b)—p(r,(/,b) 1,
Taking the first two indices @ and 5, not yet used in the construction, we define
T+t pTHt T+ ., 1.,
A §.0) —8 i) =0, %v+(d’b)=%;: (J,m=5

and putting ﬂ" (T+1) = ﬂb* \ {[(I',L]} we pass to step A.

3
2) For ‘D(TJ’U) ;_if the marker .[Y] appears at [_;/"(;] then S (/” = J
T+(j’” and d, (J,b\ —5 ((/ b) if the marker [#] appears, then ,5 g,,) [j (J y’b)
and d//wt ) = ({/ 6) . Taking the first two still-unused indices w1th T<a,< we
. rf’ [ — _— .
def*lne Z (d )- ET"(/ ) = and ’Z/‘, (J’Uf) = “Lv (d,o) -»6, ,D(T"’ 1,‘J,b g and putting

ﬂ ST+ = ﬂ (T)\ {Ed,oj] , We pass to step A.
.Teq
3) For ID_(T,J',L)=2 , if the marker [J] appears at 9 i , then ;S/w _(J',L\ = ”Z/;((/',M ;
if the marker E appears at g o, then 5 <J o) = Z (J 0) . We take the first two

T+1
indices T<a< B, still unused in the construction and define Z (Jb) 5 (/b) a,

UG = 20 =B, pTeaj,i) = 3 . Ve then pu
i* .* .
MATe s MM {,61],
and go to step A.

4) For P(T,({,L) = 3, if Xx=y , then
TH T#f, ooy _ T ..
8, (0 =1 ((/ D, b, G0 d/«(d"’)’
. Z T‘f"’
%y (d’”‘d‘d“ (J:")‘ (J")
. , Tt T..
i &=, then S (,0)= ¢ N
T T.o.o pTHL . T ..
4 (J") = dv‘d"’)a 8/“ g0 —d,ﬂg,o),
Vo = WG =a,
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where T<a 1s the first index still unused in the construction, ID(T'I' 4,d b) = {

ﬂ (T‘f””— ﬂ (T) {9, ]}, and we pass to step A.

If our triple satisfies Case 2, Subcase 2. 2 then we set P(T+1J vy = 0, put a marker

on Cj,i] , and remove o1, 5?(",6‘7— d/ (J’ Y= Z (J t); we define I;IE;; by putting

T4, T T +1
EJ',; (l{ (I<1))= J.’L.(K) with ‘.—;E';',é undefined in the remaining cases,
¥ ¥
TH _ v 2 .
=g, MalTra) = DN 1,73
and pass to step A.
If Case 2 and Subcase 2.3 hold, then we put a marker on I:(/',z;j , remove [H ,
and set p(T+ 1,/,6) =0,
LS T, T, e, T,
S, G =4, G0 = ”bﬂ(/,b),dv Gl = 8,050,
, T+q -1
then we define @d: by dT:f((l,DT) (Kfﬂ :L’E_]j‘; (KY with @:ﬁ undefined at other points,
=g ,
i/* (’,*
MelT+4) = MTW (17,633,
We then go to step A.

If Case 2, Subcase 2.4 holds, then we set
i/f . L’ {E. .]
ﬂm,(Ti’ﬂ = ﬂn*(T)\ VA !
and pass to step A.

L% T
If Case 3 holds for the numbers n,':z,’: { , then weextend thedefinition of @ji by

putting (for the £ indicated in the condition) ;:1(&) = d,é , the values which have been

found in the present case. We then go to step A.
Step A. Leaving all undefined objects unchanged, we go to the following step.

Step 5t+3 . we put T=5L+2 and d'= £(t) and verify whether there exists an ¢

such that no marker [El = appears at I;j’i,] but the marker [Z] does appear, the function

@J‘TL is completely defined on D@]T and L_J ¢ ﬂb”(T\,- , where ﬂi"'(T) is such that
T e il i
L(z,m.",tl’) DLZ] p. LE suchanpexmts then we take the smallest one, say Uy - We define

Dal}, = D&, USLIU Legmis

T .
where g is the smallest number such that Zﬁ DJ" , and mye> is the smallest pair
T T T
in the lexicographic ordering such that /’:% is not completely defined on Lam,io
1. T Tl
For all 4'>( such that S‘(‘/‘,[,') is defined and all pairs </n‘”; ."*> such that Q,b] €

ﬂL“(T) , we set

me*

ﬂ,f:.(Tﬂ) s ..cr)\{c(,uqlg," L PAAR%Y

m

if no marker [F] appears on <rn > , and we put a marker [=] on ]:j"(;’:] . We make

no other changes and go to the next step.
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Step 5t+1-/ . We put T=5t+3 and J=€(ﬁ) and check whether there exists an (
such that there is no marker [Z] om l;/',z}] but [E appears; whether there exists no
i'«<i such that the pair g,[,':l has minimal left coordinate in some set _ﬂ::‘(T) and

T . e
IZ]TL, is not completely defined on Léaz',m*_”"o , where the marker [z] appears on 9',5'] ;

. T
or else whether Ciilé ﬂ“(T\ for all A - N; whether there exist géD@JL and 'deeN
such that @ (A) is not defined,

¢ U UMU"’) NI BV T
G <, Gatbr =0 U(8,., Im <]
4 i
and (€K } and 2 < JT+ (d) ) and if g/,é]éﬂm,(T)’ then (TL completely de-
fined on Z‘<zm s YW <m® )Veé U Lam” u">>. In this case we define @;tf(a = d,e , while

(mu>4m<mb
for all A such that Sz(J’b) is dye;fn.ned we place a marker (=] on g/,L’] , and for

a pair <m*’ ("*> such that [J',-[,/]e ﬂ;,,.(T) and no marker [F] is present at <m":z;*">
we put
i’“ = L&. H PRI P
(Tt =TT (T {g:l,’:”[d',b <, 0135,
We leave everything else unchanged and go to the next step.

Step 5tt4 . We take three numbers T<a<b<e& not yvet used in the construction,
T+ 1 +
where T=5t+l/ , and define £z (t,O) =a, 5:4({;,0) T+ (t O = 6 A(,; 4(25,0) =

?

for @&¢ {V,/,} . We make no other changes, and go to the next step.,
We make some simple remarks concerning the above construction.
Remark 1. For all 2 and [ we have the equality
V2 sty = vin),

Remark 2. For all n and ¢ there exists an element @qé€ Vt(fb) such that Q¢ vi(my
for all m=#=n

Remark 3. TFor all ¢ and all n#m , the inclusion \)t(n,) c v‘(m is false.

Remark 4. For all L,J and { we have the equalities

Vsl = sl iy, VG = a0,
v‘(tﬁg,m = /»*z/i(o;,a), g = ‘v,
telg.l = S, b0 = 14,0,
Ll = @fgj,m, tdly o = dgd,

4
if the marker [ does not appear on any pair <m%;*> such that Efb] € ﬂ;‘(t) , and &
appears at '[J’b] .

2]
Remark 5. For all ¢ , the value of K; is equal to O and ﬂo(t')_=¢ .

i . [
Remark 6. If q,i,] Eﬂm.(t\ for all t?—td , then starting at some ¢ >¢ the sets

o -9
é@t’m and D;,l , where 26{9,/1}', do not change.
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%
Remark 7. If I_;j’[,:] € ﬂ;*(t) for all (> to- then the pair EJ,L] can be used in

the construction only finitely many times.

Remark 8. 1If [?‘/',[,] € ﬂ’:’(ﬂ for tlé t < tz , then the marker at 9',[,:] does not

change for steps with such ”
Remark 9. If starting at some step the marker appears constantly at the pair
];/',L] then the functions /\isi‘((/',b) and )\td,é(/"ﬂ stabilize.

Remark 10. For every K there exists at most one ¢ such that the marker [ is

placed on  <K,i> and thereafter not removed.

Remark 11, If the marker [Z] appears in step t at 'b'j and Lé L wi*> where
e /] . by
g,&] € ﬂ::(zf) R appears at N *s | and [Z:[ (e) is defined, then ae‘(lf)c 5 (- (e))

Remark 12. If after step éo the set ﬂ ({;) does not change and the marker F]
. 7
does not appear at <m’;*> , then 240 = 2% (Z) for a1l Q€L <az meiks

..
We define f\'!/ = ME(J,O) .

4 t20

LEMMA 1. For all unequal pairs L)"’[,’] and g:’ " and &E{\),/L} , the sets

2
f"}.,b, and ,\’!/u it are disjoint.
E] H
m 3 L .
Proof. We define ((/,c) U M <J ()Y . Since Md" = U Ma'a ((/,b) , it suffices to show
tx0

that for all ¢ and b’d ’("J if Q , 0] EJ’: " , ‘then ﬂ:g,b) N !‘71;((/"',&") =@ . Assume

this is false.

We cons1der pairs I;/',L:] and o_] such that there exists a f/ such that
M (J an M ((f ('Y # ¢ , and we take the smallest { with this property (call it to ).
Since M (0) is defined at Step O only for J L=0 , we have f; >0 . By the choice of

Zo s we have the condition

o 1

(/u)ﬂM ((/z,) 7}

14 ) . P ..
Since during a step Mzg {)} can changefor onepair EJ"’] only, we assume for definiteness
b

that
sy = Mb T Ot Gt 1, Ote=1
Mz(({,b,) - Ma (/,b ), and (Mn(J"’) D Mz ((/,LDV(/”L G
is not defined). Therefore either:
Ve O b .
1) s:"g,m e M, Ghi™,
b, . ST,
2) Loy e M) ¢,
At= 1
3) “b:’g',i) 3 M (J" i,
or 4) d,((/')eM (J"’)

t ¢ t1,
Since ,gzg,é), S::(J',L\, ”b:"(/',zi), d;(/,ﬂ either take values in M,: (J',b) or else are

numbers which have not yet been used in the construction, conditions 1)-4) cannot hold -in any
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of these cases. This contradiction proves the lemma.

LEMMA 2. TFor all N and { the limits &m,K < oo, fun ﬂ:ﬁ(ﬁ) exist and the set
—~>oy

t—’ao 4
of pairs {Ed' ']I]:J' ":lé&m_” ,.(t) and m'4<n+1  and é:"e;’/\/_} is finite.
Proof. We give the proof by induction on A . Assume the lemma has already been proved
for all n<fy, ; we prove it holds for flb . Using the induction assumption, we consider
a step 60’ such that for all ~n<”n, we have Kn_ t&m. k, » and starting at some step t
[ . —a o0
the sets ”m({;) for (4«k® no longer change.

Assume that lm l< < oo does not exist. By the induction assumption, for every (€ N
&mﬂ (fz) exists, and_’t?hereforefor eachi wecan choosea step t after whlch ﬂ (f;) does not
change We flrst show that there exist infinitely many & such that rl UJ) # Z . Where
this is not so, there would exist an o such that for all Z>l;o we have ﬂ (l” =

Consider the step l‘) rrm({é U{t lbéb }) and let

X= {l;” 'J“:J'LIJG ﬂ“‘(t J&<m i > g $14,0> >J.

It is obvious that X is finite. By Remark 6 we choose a step ¢ >zf1l after which
2
J’ = 5|E’_'_|” U D[Z:] , where the marker [Z7] appears permanently on gl,élj , w'é'{\’,,/"} s
and [(-/ (,'J €X and does not change, and no marker Zjl with "<n,o appears. Now choose
. . N AL i
[ such that ¢>¢(, and {A 5‘ In X = @ for all pairs. 9;0’]6)( and {‘A"o’ lenaj N

{the second coordinates of four- tuples on whlch a Z] appears for J"( /zbl = /@
1

vh e i
We now .choose a step é3> tz such that for all V&l the set ﬂn(i) no-longer changes
[ (4
after step ég

! 1
Consider a step §> t! after which the marker [ has already been placed for all
n& R, at which [# occurs. Now consider the step T—5ty+f . By the choice of g s

either Case 1 for & , or Case 4b) must hold at this step. But this is impossible, since in
s

the first case the marker { is placed on f, and « does not get any larger, while
in the second case ”:_(.T\. changes, but by the choice gf tq such a change is not pos-—
sible. Consequently, t}:ere exist infinitely many { such that ﬂ:b(é{) »* ﬁ . Since the

ﬂL(t’) consist of elements in the finite set Xu , there exists an ¥ such that there

are at least two (,a and 54 such that
b by
zelp (t.) and TE ﬂ%(tb.),

But taking t_=mw<{ ], we obtain x,eﬂ 1(6) and &L € ﬂ,:"(ﬁ) . This is impossible by

(]
our construction. Thls contradlctlon shows that &!IL K,f exists and is finite.

We now prove by induction on { that &m ﬂ”’” '(‘6) exists. Assume that for' all 6450

u
our assertion has already been proved, and let {; >z'; be a step after which n"b*’(t) no

I3 * b .
longer changes for ¢<¢, . Consider the sets ﬂ ” ’(1‘;) obtained from n,:H(b) as follows.
(4

(]

Let ﬁ;‘tq < t2.<m<-t‘<_‘_ be the steps at which the set ﬂ (i’;) changes. For all
K and ¢ such that _tKé ¢ <tK”, Case 4 of type 4§Z+1 holds on ‘J,‘; , and nothing is

added to n:’ﬂ(t;-” (elements are only removed); we consider a pair E/,'é] for which the
2 o E
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Case 4 step of type 5t + 1 was carried out. In these cases we set
AL ¢
0 - (+] ) .o
Mo, (& =N (& u{G,ia],

6 '
otherwise, ﬁ o) =N (¢) . We define a sequence <a a, af) for ¢t by
M+ 1 No* 1 =12 ) s

setting a, equal to ' if <K,i'>e ﬂ (t) and a1< ‘—'UJ otherwise. We remark that

for every t we have

t+1 t+d triy t t t
<a’n,°a‘mo-4"“’ab 2 Tl <a’n,o’ a’n,o-w a, .

We thus define a decreasing sequence in the totally ordered set ((w+ 1)*x (W + 1., x(W+1) ,

i "
Therefore, there exists a io such that for all t?ﬁo we have the equality

<at+1 aj;w af+{> - <@ a§°>.

n,? 17

Thus the sequence ﬁ (z‘, stabilizes. However, in this case either ”a (é) ﬂ (t)

i /‘ a Mot Rott ?
starting at some éoul}éo” or ﬂ:"{_f(t) b°+ \ {Ed’b]} for all t?‘ﬁo . Thls occurs
LN
because if [d',zl:] after step to lies in ﬂn, 1({;) , it cannot be removed, since otherwise
. Ao Mt
ﬂb" (t), would change, and hence so would ﬂ ¢ (t) , a contradiction. Thus this condition -

has been proved.

Let us prove the last part of our lemma, i.e., that the set X,L is finite.
0

Assume ch is infinite. Then there exists a smallest d;é /bo"' 1  such that there
(4 4
are infinitely many ¢ with EJ""] € &/Tb H,L”(H . Consider theset Iof alli with this property,

and for every i€l consider the step Z;[ after which ”: H(&) no longer changes Since
for all /’</'0 there exist only finitely ;nany elements ¢ snuch that ’_} ] e &ﬂb ﬂ (lf)
for m*éf?«o‘!‘f and e N (by the choice of /’0). Therefore, there exist 1nf;pltely many
{ such that EJ;?»(;]’ with (el, is a pair with minimal left coordinate in ﬂ’:H( tL:) .

There exists an ¢ for which a step ¢ exists after which the condition
ok
ot , b ¥ e
[J,o]ét@iﬂm.(t),m4 n,t4and j'< [
implies that ﬂ:l.(ﬂ does not change and

tl
<@+ 1,0] > /,4, ﬂ’

l' .
and after step t', «(t) for wm L >s(u<n-+1p > does not change. Let this { be
zi, . Then after step ; (; the conmstruction cannot be carried out for any pairs 9;,5.]
where I >1’o and </LD+ 1,0 > , Where . o >"6 , but there must exist infinitely many
L iy a ¥ .x
> P v , . . . This . .
17 /’a such that L_!/o"’j belongs to ”’7-.”(1‘;"[) and ('o >b"o This contradiction

proves our assertion.

The lemma is proved.

C_OROLLARY 1. For every pair <m,i> only finitely many pairs 9', [,'.] can lie in
U @

t20
LEMMA 3. If a marker changes infinitely many times on Q/,b] then
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lim fz(j,l‘/) =00 exists for f € {5,&,“&,¢j and & E{V,‘k}.

t-s e

Proof. It is enough to show that for infinitely many t, there exists no P.e M:(J"L) .
] VLN
We first show that for all P if pe Mz’((/,a) and t+ 9/ () , where t1<t2 , then
P¢ M (/ ) for all tth . This is true because M (d ¢) can only contain either
elements of M (J () or indices which have not been used previously. Thus, if some /DGM (J,(,)

0
Since the marker on 9',(:] changes infinitely often, we consider a step t1>to’ at which

for infinitely many t , then starting at some step ZL’o’ we have IDeM (J £} for t>/b

the marker for the pair E [,:l is replaced by another marker. In this case, in order

t .. .
for IDGM&(J"O) and IoeM (/,L) , the following must hold:

(t,].6)=0, d:’g/,w = 04y = p,
5:(4,0) =CL, Z:’(/',l;) = 6’

where a,<5 are previously unused numbers. Consider the steps f,;<tz<,., at which the

set M:(J',é) changes. If the marker does not change at step t then Subcase 1 of Case

2 3
2 holds and P(tz* 1,/,1}) = 0 . But then M "(d,b) no longer contains ID , which contradicts

t
our assumption. Hence the marker changes again at step tz , and therefore d,’vg L) = 2’“(/’.

. Ztl. v . ’ T, U I; t
0) = ID’ “(/,l.-.) =a, "b;(d,b) = 5 , where a, 5 are numbers previously unused in the con-
struction and the marker appears at L-d"‘:] . As long as [Zl appears on I;',i,] R
. 7 .
53((’.’5) =p . Consider the first step é>52_ , at which the marker changes. Then

t .. ro -
d, c(/u)=s“<(/'b) = ¢ ’((/'m

II

if &2=vY, and d((/,)"S (J,)—’Z (/b),lf —/b,whlle gf(/,u)

, “z;((/w 5

¢~ 1

where the numbers 0/ 5 were not previously used in the construction. But since 5 s
1

= P we have é ?/1,) # P and 'Zi—f(/,b')# P s and consequently, /Df M?,L) This

contradiction proves the lemma.
LEMMA 4. For every c/‘ there exist only finitely many elements ¢, for which the pair
;%
[:/,o:] € &mﬂb,,({?) for a suitable pair <m* (*>
t—so ™ ?

We give the proof by contradiction. Consider the smallest /'o for which the statement
of the lemma is false. TFor "4/'0 consider the se,t L. for all i such that beginning at
step tlj, the pair EJ . € ﬂ'“'(ﬁ for t?'ti- , where (, ,M, are suitable numbers
We now choose a step t such that for all d ‘JO and oé'.[, then thepair EJ ‘e ﬂ '(ﬂ
for t>ta» , Where b m" are suitable numbers. By the ch01ce of JO’ there exist 1n-

finitely many i such that

G, @ € fim MEA(2)

for suitable 1:*, m* . Let Io be the set of all such i. By Remark 7, for every [,éIo

341



Ui ’ »
there exists a step f; , after which the pair E/n,o] is no longer used. For each m ,
the limit &m, K < oo exists by Lemma 2, and therefore for every m only a finite number
of sets ﬂb(t) are defined. Therefore, there exist infinitely many m_ such that there

exist ¢™  and (;m_ with

0™ €lim ALY
Cost™ etémﬂﬂm (¢

Consider the set M of all such numbers m . By Lemma 2, the sequence )\bﬂ:t(t) stabilizes,
and therefore we consider a step tm. such that ﬂ @)= ﬂ Ct) for all tatm . Since
there are only finitely many pairs 9",(}’] for 4(/0 such that 9,(,] ét&—f:;”::(ﬂ for
suitable o’fm*e N , there are infinitely many m such that the pair %;’ t;mj has
minimal left coordinate in ﬂ:’:‘(tm) .

We consider a step éom such that for every pair %‘ICIJ with (/"<J'o and

gl IJ Et&mn ,(ﬁ) for suitable (J*m*eN the set X/ o does not change; this step
—> oo
exists by Remark 6. Since there are infinitely many m such that 9;, i™e ﬂ::(tm),

only finitely many pairs EJ LJ with the above property, there exists an m, such that
the {2,m, (, > -list does not intersect D- Y U ('J‘(Et"’c , where the marker appears
at 9 b] , and (/4(/0 and QI’ ¢ et%ﬂh(t for suitable (,,/n e N

' .
We consider a step t: such that no pair 9" 5'] such that I:d",i,']¢ (un ”:(tl}) for
. t-bao *

n

L
suitable L’:m*GN belongs to I—J:;,..(t for t>t,_ and <m,**(}“>< <m[, > Consider
a step 6;">mx,{é:, f}m, {3:} such that f, 5K +/ , for all pairs </TL i ><€u </T'L0, bm> none
of the constructions Dholds any longer, and u bm’ is completely defined on ﬁz«,m iMe>
If no such step exists, then after step A , theconstruction of step ‘5'15 +1 cannot be
defined for any pair ‘9;’,[,'], where ¢'>{™ . This contradicts our assumption. If such
a step t:' exists, then Case 3 or 4 holds for the pair E{ L j s and hence either no
pair ]:Jo_,(}'],(:';'[,m" will be used subsequently, or else the set ﬂ (1‘3\ will change. But

both these cases are impossible, and the lemma is proved.
LEMMA 5. For every 4/ only one of the following possibilities holds:

a) The set [ of numbers i such that 8:(4(_,[,) is defined for some L is finite,

d

and all the functions
é:g,m,, s, by, dg/,i,
where R € {\),'M} , stabilize.
b) There exists an an such that for some U the set S:(/,l;ay is defined and there is
no marker [5} on q,(:o] . This pair is used in the construction infinitely often, and

o1 M . ¢ o . . . . .
for all (<{, the pair I;;,b'] is used only finitely many times in the construction;

and for all ¢'> éo either a marker (5] occurs on [J’bj or else Si(d';&') is not

defined for all t. *

Proof. Consider the smallest number /o for which the conditions of the lemma are not

satisfied.
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Since condition a) is false for /.o , we have either
1) the set [ is finite,
do
or
. . . 6{;'.\ )\i_’t.. }\tt,.
2) there exists an {, such that one of the functions MG z(/°l' ) ‘Sz(la"” 7’;9:“7
t .. L
)\ﬁd,z((/,o) , where ze{y,/p} , does not stabilize.

But if case 2) holds, then by our construction, both Case 3 and Case 4 for a step of
type 4f1{ are satisfied infinitely often for the pair [l/;,z;o] . But then Id;: is in-

finite. Therefore, it suffices to consider only this case.

‘
By Lemma 4 there exists a finite number of ¢ such that g;, i€ t&'m ”:S,(ﬂ for suitable
- 00" ¢

l:;,mz e N . We therefore consider the step to , after which we have for all pairs l%,z,':]

such that

il € lim ML)

t—ec

for suitable l;;, m‘.*é N that %,5] € ﬂ::.(t) for {2 to and after ta ’Z;i"\ does notoccur for
: i

Py 4
c/ 4(/0 » We alsoconsider pairs at which amarker [ appears at step é; . There are finitely many
such pairs. Pairs of the type q‘,,l}] will still be used in the construction subsequently,

since [, is finite. We consider the smallest ¢,, such that after step to the pair
14

0’

0%
at step 4; . Then we cannot put the marker (& on '[;ia’[,a] any more, since in order to

[;/o'l’oj is used in the construction and such that there was no marker [ on (]

put it there the comnstruction would require that a pair I:J,L':I with {'<¢ i’n have been used,
but such is impossible by the choice of (;o . If at some step .. appears, then I.o is
finite, and by the foregoing, case a) is satisfied. We now show that the marker goa‘:aj will
be used infinitely many times in the construction. Assume that after step t;>t ‘;fo:ba] is no
longer_used. Then for all t>t’ and <m* L0 *>, the pair [Jo, ﬂ‘.‘(t\ In this case,
after step t, the pair [;/,é'] with i'> 1,0 can only be used either in a step of type 5t+1
(Case 3), in a step of type St+2 (Case 2), or else in a step of type 5t +3. But in
order for a marker to be used in a step of type §5t+1 (Case 3) or type 5t+2 (Case 2),

it is necessary that Case 3 for a step of type l;'o, ] first hold for 5t +1. This is
only possible for finitely many (}' , since at steps (fé t‘ only a finite number of pairs
can be used. In order that g,:}'] satisfy the requirements of a step of type 5t+3,

it is necessary that a step of type 5t+4 or 5t + 1 first be satisfied; but this is only
possible for finitely many ' . Thus we have reached a contradiction. Hence ]:/;,La] is
used infinitely often in the construction; but in this case the marker = appears in-—
finitely many times on all larger [/',5’] for which si((l',i,') is defined. Thus the lemma is

proved.

LEMMA 6. 1If the marker {z] is permanently present on |;/ (] starting at some step

¢

01
and Q¢ &* %(6) for all (3 * S’f({/,b) , then for every t> Z; and Z (J,b\ if a € &«(ﬂ

D,[_\ is used in the construction infinitely many times, and the element &, e 2h(s °(J,bﬂ
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. 6 .
then there exists a twto étf <&l such that Z=Zz’(d,m for 2=V, [ = ’Li’((/,lx\ for # = u
and at step $1 Case 3 of a step of typeljt + 1 holds for [J,Z].

We give the proof by induction on ﬁ)to for the case 2 = 4 (everything is analogous
for £ =Y ). Everything is satisfied for -to by the choice of @, . Consider the small-
est &‘}1 >(JI0‘, such that the lemma is false and let 4 be such that a, e‘/u(g but Z
does not satisfy the hypothesis of the lemma. Since the lemma is true for all steps less
than éf , we have a,0¢/yt'_4(f) . Thus, this number was added to /at’(Z) at step fo .
New numbers are added to sets only in Case 1 and Case 3 of a step of type 5t + 1 ; but by
Case 1, the number 0/0 cannot be added, because of the induction hypothesis and the construc-
tions in a step of type :5'2,‘ + 4/ . 1In Case 3, elements are added to sets from the neighbor
to the right in some list together with a number which had no importance anywhere else. Thus

!
in addition to ¢ there exists a neighbor ¢ containing a But by the :Lnductlon

D .

' -4 s . -4, .. #
hypothesis, § must either be St' ’(/ .Y or zt’ 4(,1,) or " ( Ly . If Z ! 6/0)
w4 A f> : _m
then the condition of the lemma holds. If not, then l = ”b’ 9 b) or 5
since otherwise ¢ will not be used in the construction at step Z,t . If ZI= 'ZI,;’ (/,ﬂ ,
. " ! =1, . Y pt
then we consider the largest step [ £ tf such that Z # ’Lt (,¢), but AR
’ 1
3 ‘(Z' V& 0= /u g,b) . Then at step ¢ 11 either o W) & l'= ”bt”(/, or
14
a ¢/4, (6) E = ’(, (J ) must be defined, and CL E/a, 1(5 . In the first case, since the
sets do not change if the value of (/ ¢t} changes, the above situation is only possible

for a step of type o’é +2 . But in such a step “(,t'”(d',é\ can take a value 8‘ such
that this value was already used in the constructior{uand the marker - appears on '(}] 3
but then after this step the marker [¥] must be replaced by EZ] and there exists a tm t'
for which the above-stated condition is also satisfied. This contradicts the maximality of
Zf”. Thus, the second case ho_l¥ds. But then the marker [ appears on <ﬂ7.fz}*>

during step t"+4 and [J,ijé ”,:,(t”-f-{); after this step ]'%"5:] can again be used in the
construction only if Case 2 of a step of type 4¢+2 previously holds for Q’,zﬁ] . But

. U . .
then ?;,(/:«“5 changes its value to a new value and again our assumption that t is maximal

is violated.

! t—1 -
If £=€: (/',z:) , then Z=\,ij 1(/,(}\ . But by assumption, Z is not equal to

t&m .S/v(/ ¢) , and hence this case is impossible. This completes the proof of the lemma.
-0

LEMMA 7. TFor every é the limit V(Z] MLP(Z exists and 9(63 -/4,%0(6 ; the value ()

is the only one which is taken by the functlon )\ttf*([, infinitely many times.
Proof. We consider an arbitrary leN and some possible cases.
Case 1. Z¢ U%UM(/,”UU{A;, /r:l })
In this case e(f 0(6), ‘(Z) ( and
ot = ¢'E) = L)

and since \)t(g = K Hot(e we have V() —/wtp(@
Case 2. gGU{A ﬂ' Pl &m’Ka}
) R0 ]
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L ¢ g N g
Since all the elements A, , &, where &N and cét Kk, , are pairwise distinct,
. , é
there exists a unique pair N> such that either 6 =/_\" or £=l7f,, . If the marker

' is never placed on this pair, then vt(€)=v°(m and t{Z) D(Z) for all t, and

W)= y°(C) =t&%_r;(,vt(0 and () =pp(l).

If, on the other hand, the marker tl is affixed at step [f], then after this step ‘f(e)
Lpt4(£) and  Y{) = yi(€) for all t>t1 and YY) —/J((/t(ﬁ) Consequently, Lp(m =
g€ ana M@ = ()

Case 3. %t;o Mt(d'i\ . By Lemma 1, in this case there exists a unique pair I;/',[,j
such that U Mt(({ ;y. If starting at some step ta , b ¢ M:(J,é} ar the.pair ['{/',[,_—_I is
not used any more in Case 3 of a step of type 5t +1 in the construction, then as in Case
2, (/t(Z) = t"(ﬁ) and V) = vel) Consequently, LP(Z) = b’(@] and ¥(£) =/Mf(£) If,
on . the other hand, the pair EJ ] is used infinitely many times in the construction in steps of
type &t+1 (Case 3), and if starting at some t ZGM (J ¢) for all t>to , then by Lemma

3 such a situation is possible only when the marker [Z] is permanently affixed to [d’,ﬂ .

If #=VY, then 6 Zuns ((/ (Y , since all the other functions take new values infinitely
often. Since [d,L___I is used 1nf1n1tely many times in the construction in Case 3 of steps of
type t+l , we have P(t,d' i) =2 infinitely often. But one sees easily from the con-
struction that in this case dt(/ = S (J,H . Therefore, Y (5 (J,b\\ = d, (/,b\ and Y’ st (({ (Y =
d/t(/ i for infinitely many t. But since by Remark 9 the functions )\ts*(d ¢Y and }\td, ((// o)
stabilize, we have éﬂﬁ(pt(g &mdt((/ i) and vy() /A/((P(e)) Since all the values, except for

ﬁm,aﬂ (/,b) , of the functions Aé@‘(/ R }\té“// iy, At (/,M are taken only finitely many

tlmes, by our construction, the assertion of the lemma is correct.

If & =um. then Z=dt('é) and &m,s (/) exists, from which as in the previous
/‘V Yy J’ t—'” /v/

case

bm ottt = ff&_z%s;(/,m and () =/4u/(6').

COROLLARY, For every leN there exists an ZIGN such that @kfbwlj =1 .
t—o

The proof is like that of Lemma 7; it is necessary only to consider ((ft)" in place

of (pt .
LEMMA 8. TFor all n and m , if a%xm, then there exists a t1 for which
Sin) & Vm) and vEumy ¢ vy,
and hence v(m<; ymy .,

Proof. 1In order to prove the statement of the lemma, we consider four possible cases

for 7 and m .

Case 1, Either n or m fails to belong to the set

L’JUM(JL)U{ Jr‘neNandb<&/nK }
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o
Let néX . Then vt(m = v(r) for all ¢ , and since /2 does not occur in any of the
t
constructions, vl vt(m;) = @ for every t and the assertion of the lemma is proved (it

suffices to take (f1=0 ). The case m,¢)( is similar.
Case 2., Either 2 or m belongs to the set
b by P Lk .
X, = {An,JI;L ,bét@;kﬂ and nepN7J,

Assume for definiteness that /bex4 . Then /A can only be used once in the construction,

at some step Z'/; , and for all i;ZZZ we have vt(n,\ = vt’m) . Since A is subsequently
not used in the construction, for all ¢£2 t we have vt(/z),;n Vt’(m) and Vt(m,) ? Vt’(n‘\ .
Since at a step é'< t, we have v(n,) t’(n), and so for all t Vt(fL) ;Svt1(m) and Vt(m);b

vb’(m , and consequently, YY) ¢V(fm and vm) & V)

Case 3. There exist ¢ and a pair E/ i such that /LeM(Jﬂ\M ((/(,) or meM(/ N

t”/ . Assume for definiteness that 2ne M (0/,1/) \ M 5/1,) Then after step t + 1 the
vy -—index N will not be used again in the constructlon and v (/2,) = y) for all
+1
£'=2t+1 . But since the relations y (n,\ p \’ my  and vt (m,) ;.5 V () hold at step

1 1
t + 1 for every m and there exists an Jc.tz-vt+ (n)  such that 2¢ Vt+(m) for all Mm

(and this number cannot be added again to any of the sets), we therefore have Vt?zjb)¢ v my

for all mw=n and t' and \Jt+1(/7,) é Vtﬂ(m,\ for all m =/ . Hence the conclusion of the
lemma is valid.

Now for the last possible case.

Case 4. There exist pairs B/,’/,I], [dl:b”] and a to such that R € Mvg;al) and me Mj(/fo”)
for all LLZZ; . In this case, by Lemma 2 we have starting at some step 612% that the

o 5 ot o .
same markers and are permanently present at [/,b] &and 9,& 1, respectively.

If for at least one of the pairs ];/i(/'J or gl,lb’ﬂ , Case 3 of a step of type St +1
is satisfied only finitely many times, then after the step Z; (for which Case 3 holds for

the last time) an argument similar to that for Case 3 proves the lemma.

Thus, it remains for us to consider the last case when Case 3 for a step of type 5t+1

holds infinitely often for both pairs. We consider the four possibilities for &, and &, -

1. &z =& =7V . Inthis case Atst("") and Atsfy;’b'”x stabilize, and the other
elements of the sets Mfg/‘,’,;’) and Myégfb') are constantly renewed. Consequently,

i . /I)

n = &ms(l,“andm &m\S(/

Assume that stabilization of both functions starts with step ézé. Since n#m I;/'/ A

[/ 'i"] , and since both the pairs Q/,IL’] and E/" ;"] are used 1nf1n1tely many times

in the construction, we have :t/ by Lemma 5. Assuming that </ , we prove that for
every t we have Yin) 2 vt*(m,) and  vim) = %y . Consider an @€Y 2n) and éev 4m)
such that a¢ V*(g) for all g#n and 5 & Vti(g for all g #m ; these elements

: ¢
exist by Remark 2. But then by Lemma 6, for every ZfZéz we have Q¢ v?/n) and g)é Yy .

This gives the statement of the lemma in the obvious way.
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2. 2, = 56 —(/w In this case Aédvyl’bl) and Aédv?’,’b’) stabilize. But then
ot 2.
for infinitely many Z' and (‘f” , respectively, we have dfg;o') = Sv(/;o/) and

t",/l,ll — tﬂ.u.u ot
d(b\—s(/m and Y'8)G0") = 51G1ah,
" n - fl ; ’
s’ RS Sc " and V() =/4,ﬂptm),
i_’l ﬁ" t”
pim) =/4/(f (m) . But everything is proved as in the previous case for the elements ﬁ/n, (/71, )
t-»00
and &ms (/" D)
t-so0
This gives the required result.
3. =YV and &= . In this case, }\tst((/"élﬁ and )\ll}d ( "."Y stabilize, and
14 1 . 4 II
the functions )\l%y(/';'&' and Mg (J”" ) take the value &mdt ;L ) infinitely often.

By Lemma 6 there exists @ and 6 such that @ € V(&m5§/ ¢ )) “and if a e V(g) then

A EUM(d,a Y, and 56/4«(&”1,5 )

- !
while if b€ Y(Z’) then ZGUM (/":L y. Let us show that

"t . Lot o
afﬂ(&zns ¢ae")  ana b¢ vllm 547 0%).
We prove that a’¢‘/“’(£’;":;‘>v(/,é )| , the second assertion being proved analogously.

Assume that a,efp(t&'llh?;(j"b")) and consider the smallest { such that
—a

II /1

qlts g =g (”a") a,e,/v(&ms C

and Aé?;(/f&”) and /\tsi(/,b Y have already stabilized. Then there exists an 4 such
that

KA &'ms*(/j’d") md e v Mf{/';é’),

but t(S (/’L' )) (d,L ) , and the function /\.z:(,ot(.z;) is not univalent. Therefore,
Zé U M (/ 0"y and eé UM (/”b”) , which contradicts Lemma 1. We have thus proved our
assertlon in this case also The last remaining case is analogous to the one just considered,

and therefore the lemma is proved.

LEMMA 9, The maps VY and /b numerate the same family and are univalent.
Proof. Let S ={V(/L)‘R,€-N} and S { (RA!R«&N . We show that ﬁ‘ (s S (the
reverse inclusion is proved analogously). Let AeS Then there exists an g such that

t@nz(,ot(é ) = 5 and V(Z) =/wv(8) =l/u @ . Thus, v(ﬂ)— and AE\%. . The fact that
the numeration ¥ 1is univalent follows directly from Lemma 8, and the numeration /4( is

univalent by the corollary to Lemma 7 and the univalence of ¥y .
LEMMA 10. The numerations Yy and /0_ are inequivalent.
Proof. Assuming the contrary, there exists an 1, such that the function /\mK(/L,,,:c)

is general recursive and the equality @) =/vK(/Lo,al) holds for all x.
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Consider the number /% . If the marker [f] is placed on /3 then there exists an [

such that [H is placed on {m,, 6> . But in this case we have
i c ; i iy - ‘ i = i
o) (K, 83 # &, v K, 2,) * 8.} & »(4,) ;/w(A"") & V{3, ) = pdt, )

or

é
)

b Kin, &) = 4, & Ky, 35) =T, &G0 = plal),

since the marker can be affixed only in Case 1, 2, or 3 of a step of type St +1.

But in cases a) and b) the function Aa:/((no,a',) can no longer be a reducing function, since
the numerations Yy and v oare univalent. Thus the marker [F 1is not present on n.
Consider b'a =té;/2 Kﬂi , which exists by Lemma 2. We choose the step &‘a such that /\lfﬂ;(t),
> élu<,z‘a";a>’ /\6,(:0 do not change after this step and no markers are placed on <m,

5)5&4 </‘Lo,b'o>. Such a lfo exists by the definition of limit, Lemma 2, and properties of

the construction.

Co'nsider'a step ‘J';>to . such that th”’o’ Ai) and Kt,(no,ﬁ,fo), [ & (jo are defined. If
K(ILD,A;;) * A‘:D or K(I?,o,!/'/‘,:,") # ﬁ,: , then by Case 2 of a step of type &§C 1, the‘ marker
B is affixed to,. /La . But this is impossible, as we remarked above. Thus, K(ILO,A;;”) =
A‘:" and K({z,o,ﬁ,;”)=ﬁ,;" . By the choice of t1 , after this step no other step of type

o
St+1 holds for any pair <m.,l;> hé&‘ <n’oa‘;a> .

Consider a step tz> t1 of type 5t +1. At this step either Case 1 or Case 4 holds
for the pair ~"%’0'g> . But in the first case the marker must be affixed to n, , while
in the second case the pair (fbo-,éa+l> must be defined, which contradicts the choice of (;v .

Hence our assumption is false.
The lemma is proved.

LEMMA 11. For every computable univalent numeration of a family S ={V(/L) IILEN} ,
there exists a recursive function 3 such that YY) = fg(ﬂ) or /««(IL)=‘€9(/2J for every n.

Proof. Consider a computable univalent numeration ¥ of the family S . Then there
exists ad' such that r(/L) =6.(/L) for every n. We consider the three possible cases
(allowed by Lemma 5):

Case A. There exists an [o such that r'd’b is used infinitely many times in the
construction, and starting at some step the marker [®E] is added to fd’(b] and not subsequent-

ly removed.

Case B. There exists an (}0 such that the pair 9',&;[ is used infinitely often and

the markers on Ag’p';l change infinitely often.
Case C. There exist only finitely many ¢ such that the pair [d',i:l is used in the

construction, and every such pair is used only finitely many times in the construction.

In Case A, the indicated z,'o_ is unique by Lemma 5. Choose a step to after which
no pair [/,é] with (<&, is used again in the construction. Such a step exists, since
otherwise the marker [ would appear at E/":aj and it could not be used infinitely many

times in the rest of the construction.
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We first show that g’,,’oj satisfiesr the conditions of type 4§t +3 steps infinitely
many times. Assuming the contrary, there exists a step 51250, after which no step of type
5tt3 holds for [(/’éoj" Then starting with this step D[Z];% no longer changes. Consider
the smallest ZoeD,t? such that [Z]?L(ZD\ is not defined for all £ and

(¢ 1 Mg
,L T
J () twg < *l%
where the marker [Z] is permanently affixed to [J"[,o] . Choose a step i,:z; t, such that
t‘z is defined on all 5'460- which do not lie in the set
*%

SU An,ﬁ IfLéJ and b‘&n‘bkt}

HU.M(/’“ U{ n,é/ and { < lim K8}

EIvR l«]<&‘|:d,p;| [dades

and such that the ;%o at these numbers does not change. After step (4}2' the conditions
of Case &t +4 will no longer hold either. Thus after step tz. only the conditions
of the steps of type S¢t+71 and SLtR2  can be satisfied for [;/ 1:0] . After step tz
the set t(Z) no longer changes, since it can only change when ZeLﬁ Y t> tz, for
suitable m b and the marker - is added to <m, ("> at step t. But in this case,

since eé Laam v and géD@ , either EJ b{;l or 9 | , where [,'42, R
lie in ﬂ“ (‘b But since é t >t , no pair Ec/ l,':l with &' <L is used any more
in the construction. Hence l;/ ba—_le ” *(f; But in order for to be placed on ,<m,,[, *>
at step t, it is necessary that J"“o be completely defined on the <3;,,mf,1;*> -list, and
consequently on 80 . This contradicts our assumption. Thus @*(ZD) does not change any
more after step tz .
Consider z(@\ = *z(éio) Since )¥; 1is a numeration of .Sy={wmfneN} and by Lemma
5 S {/«({L)lfbeN}, there exists i >7.l7 and d, such that %t}(dl) - Zt"«(fn) Since
g/ 1s used infinitely many times in the construction, after step 2‘; for all i 4(1
either the marker [Z] appears on the pair 9,0 1 or [1/ e ﬂb'(t\ for all tzto.

Then at step T-d}#/ the conditions of a step 5't t 4 holds for the pair 9, l;o] and

e , and = G(J t) and - (Z) is defined. This contradicts ourtassumption. Thus
tZ—{,iD@/"' and since step 5?5 +3 holds infinitely often, _tyo@i’éo is defined on
all e N\D . It follows from our construction that @i(ﬁ) can only change if

L= 6(/ &) fz‘)”ra 2=y or 0/ ='b;(di,io5 for & = , and at Jsgep t the conditions of sub-

case 1 of Case 2 for a step of type 542 hold for 9:"‘;[ . Therefore, if

..
a) xtﬁng,oﬁ stabilizes, then we consider a step tq?-tz, after which stabilization
occurs, and then after step tb(f,) will not change. We set t = [; . If on the other
I

(4 4
hand

b) )\tﬂ"cj,n does not stabilize, then it means that ‘;/";J is used in the construc-

tion infinitely often in steps of type S+ 1 (Case 3). For every £ we find a step t

such that Z¢ Mt‘(/, ) & (@*‘0(8) is defined) or {= &ms ((/, )&]Z]t‘ @) 1s defined. After
t>00
this step, e can no longer remaln equal to g (/"’o) for t—) ta’ since Z 9, takes

values in M fl,p) only, or else is not used even once in the construction.
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We now describe an algorithm for computing the reducing functlong In order to define

the value of 9 at the point Z we seek a step t& such that either

1)
1) é(f) is defined and t >t , or

4 [2
g é 5 ' = 7 .é ) ¢
2) ng L?—,’La) and fg 25:5" where after step t; , for fLéJ and ¢ ﬁﬁfn
L‘t&ﬂc""

the sets ﬂ;({;) do not change any more and the marker [ is not affixed to <R, (>, or
t‘ gy .1, Z . q
3) ZGM / ;') where 9,1,'] b Ej’bo]
For each J"4J such that there exists an L;,, for which the pair ly;(?,] is used in-
finitely often in the construction, we first fix such an ij' . Let be the set of all

s/

numbers 4/ , for which 4, exists. For each J'L/ we fix a step ¢ after which

no pair E/',L'J with j’<(/’ &(;,'4?'/., vl/"¢ 7) is subsequently used in the construction.

Consider 7()':{/[67' on l-_J/a‘:/’] , such that the marker @ is permanently affixed

starting at some step } .

7
For each j'é ;0 we consider a step é., such that some marker @ is permanently

affixed to D"bl'] thereafter and p(t,,/ l; )>U.

Now if %'=a’> , then after step t )J;s ((/,01 stabilizes, while if :z'-# & , then

’\td,t(",ll, stabilizes after step t: We fix d &ﬂ,s 9,7) for 2=2% and put
Z g@,d (J when ## & and find a &+ such that 8(6.) X(d . For each
. * Y= v(A*
€ % L<znb> we consider a number dg such that 2(5) Jj.xd,&) Since the set
Le&mx
L*f
n‘JZm L2005 is finite, this will not affect the recursiveness of g.
i<
el

We now define g. If Case 1 holds then we set 5(5) = tz(l) . If Case 2 holds then we
]

*
put = . ase olds, then we consider several subcases.
(¢) = d,. If Case 3 holds, th id 1 sub

Subcase 3.1, 1If ZEM:t(/’,z’) and
el e Y A Y NI | Y ot s .
(d-(/&o<z,)v9<(/&/¢})v(/ <4 &/ Gy&b <(y;),

4

! A
then we consider a step f?=mzw{te,’t,,’té_j and find dﬂ and é; such that av,(e '66(6{‘6); we set
4

?(e)=d
Subcase 3.2. If ZEME(J iy and / 4/ &J é}& G <b then we find a number dg

and steps tl (J;” é”>£ >W{t t ] such that the marker Z dis affixed to [J;[:I] at
step f; x,(e)c_ b/t(d) , and we set g(g d/e .

Subcase 3.3, If fle€ M (/ ") and ;{(70 then we find a number d/& and steps

et > éé such that Z¢ M (/ J and t(ﬁ\)C b’ (dﬂ, and set 9(6) = d;

Subcase 3.4, If le MZ(J"(’/")’ /'5 }o and )\{;M (J 0:;) does not stabilize, then we
set ¢lb) = 63., if  £=C.. Otherwise, we find t” é>zf and a number dg such that

t' N 6’ t"
Lé M&(J)ly:\ and 2%l) c Z{d d,) > we set 5(():
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Subcase 3.5. If /\lL/M (J i,} stabilizes and conditions 3.1-3.4 do not hold, then we
consider a step é'f after whlch the conditions of Case 3 of steps of type 5t +1 do not
J " o,2 FE
hold for [/ <¢,J. Then we find dz and t>§,, such that tzée and zé(g)cb;(d&) and

et gl)=d,"

We now prove that the function g defined in this way is everywhere defined and reducing.
‘The fact that g is recursive follows from the description of the algorithm for computing g.
We show that for every { the value 5(5) is defined and () = X?(Z) . Consider the
smallest e such that this is false. 1If Case 1 holds for 8, then 3(5) is defined. Thus
2l) # X?(e) . But since 9'51 satisfies the conditions of steps of type 5t +3, in-
flnltely often, we have for infinitely many t that ﬂt(e)(_:. ff?['fil (6)) , and as we have observed,
after step 68” the value Edho(e) does not change and is equal to 9{6) Therefore,
zt(e)g()’tH(g(Zn for fnfinitely many t, and consequently £()G J/g(ﬂ) .

Since by Lemma 8 there are no proper inclusions among the elements of S, we have
20 = Jd(g(@)) . Thus Case 1 cannot be satisfied. Case 2 obviously cannot hold, and therefore,

only the last case remains.

In Subcase 3.3, since Jl¢ 20 there exists by Lemma 3 a t' such that ZﬁM:g;z:{,) and
t'>t
and is flnlte, and there exist t” and d/ (since ()’ is a numeration of O ) such that
Zt(g)(; J/ (d,& . But therefore y(&) is defined and z(e) 39(9(8)) But since by Lemma 8
there can be no proper inclusions among the elements of 5 , we have &) = 5(9(6) 1f

Subcase 3.4 or 3.5 holds for Z then Z * §.1 . If a marker [Z] is permanently affixed to

Then as in Subcases 3.1 and 3.2, after step t' the set aet(e) no longer changes

g',&/-,] and /\tM:(d",Z-,\ stabilizes, then EJ"[, .1 is no longer used from step ﬁ”, on
'

in steps of type 4Z+7 (Case 3). Therefore z(é) does not change after step ‘ﬁ, and

then as before (£) is defined and ;e(e b’?(e) If on the other hand ,\tMtg,b ) does

not stabilize but the marker [g/] is permanently affixed, one sees easily from the construc-

tion that all the elements in z(/’ tij, apart from Z., are renewed after a certain
’ '

time. Therefore there exists a step > zfe such that Z¢ M (/ 3 but then I

is no longer used in the construction and aat(Z) does not change. Consequently,

" ! "
there exist é and dg such that zt(g)g I’t(d‘g); but then, as before, we remark that

?[&) is defined and z(€)=q?(6)

Let us consider Case B. By Lemma 5, in this case the pairs [J,é] where _(3_<~[/o are
only used finitely many times in the construction. Consider a step to after which none of
these pairs is used in the construction. Consider all the steps __t{<tz<,__< t/<<‘" at which
the marker changes on E{/’boj and to< t{. We denote by L value in {V,/w} such
that at step t the marker[Z] appears on ‘—'J"’aj

Consider a number d such that

t, ( st, Cen) =
(), 5 oo = &

We show that
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to . _
‘,-,b-fszf Ji) =dy E2E,

é-'!< =1

Take the smallest 1‘;>lL:1 for which the above condition is false. Then ‘%tqld-é s“t—«
: 2io
(J',ioﬂ =d . If ,tx ; < zf <(fK then since the marker remains on L_/ 50:] in step t, we
b Gk topot e

have S‘zb(.(/,bo) = 5%_’2((/,003 » Ry = R4y and J-,;D(‘Sgt_’ (/,40)) does not change its value.

Therefore our assumption is false, and so t'—‘tk and the marker changes to E

at step tk. But in this case 5::((/,130) = 5;(/,&03 and

AN £, 61 .y o
J:io(s’”é(/’%ﬂ j,z,,(saeé_,(d"’o)) d.
By virtue of our construction, if a marker at I__J,zl changes at step t and a marker
is affixed, then
tH t o b, .. t, b ..
ng (J.,i"(sz(d,bo))) > 2%sie,e,).

Thus 53-(61/) 2 ?;tt(Si:; (J':‘:o)) for all (>0 . Since all the %), {eN are pairwise distinct

and nonempty, by Lemma 3 X.(d\ is an infinite set. Since Y; 1is a numeration of S there
exist e{ and 52 such that é(d) = V(Zﬂ =/~(ez) .  But V(ll) can be infinite only if the

— t
marker (Z] is permanently affixed to the pair Ld/",z]’] starting at some step f and
¢ . [P
- P Y — = ol = _
ef —ﬁﬂ;d/v(/’b ) for & =V and 5, tgzzsy((/’o) for z=m. If ge—/w , then
= Prn ob ot s!
ZZ téfr:%‘“(/’o h
and in addition, gl,_(}_'] is used in Case 3 of steps of type St infinitely often.

. . Jo bt ;
Therefore, these two cases are symmetric and we consider only the one when 81=t&m5v9’,bl) .
—>0

Consider g:bwsiggbl) and a step Z’o after which ,Sf("’o") does not change further, the
t>
marker [Y] is permanently affixed to %’”é'] , and ID(ZI;;’, ';L')>0 . Now take a step
oM
t1>to such that the marker is placed on </‘lf,&*>, at step Zf and [J:L'j € ﬂ;,(é) .

For every
! Mt ot
¢ ¢a% "(f/’”

" !
we consider elements Oy € 24¢')  and a,e,¢ 24@") for a11 0=l . ve prove that

for all £ >¢ the following conditions hold:

1
LA & b’,/ ]
(W) a, ¢ g e Uy, o).
i ! ; 1 ]
(2) If there do not exist steps 4462 such that* (ae)z‘,’ét<tz and at step fo the
-* I
marker is placed on </L”:1}“> and [(/"1,'___] € ﬂ;f"(tql) , while at step tz for 9:5’] the
conditions of Case 2 of a step of type 5i’ t+ 2 are satisfied on the pair <n,“: (Z'*> s
.t LY Y
then @, & V(3G U v(d,yc/,a .
I f R
(3) If steps é< tz satisfying condition (%) exist but P(t,d",l}l) ¥ {, then Ay ¢
2/ 4t ot

v (d/v(/,b ).

We prove the last assertion by induction on t. Assume the result has already been proved

for all zf’ <t ; we prove it for t. If there do not exist t;<tz’ such that (*) holds, or
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t-1
they do exist but zf<t<t then M (/,b) = My 9'10'15 and for all aEM E/ ('Y we have
Yy =y . Consequently, by the induction hypothesis all the conditions also hold for t.

1
If there exist é: < é; such that (*) holds and zf1=lf » then by a property of our
"
construction, for t‘l, there exists no pair é<é; such that (*) holds, and therefore
- 1 ; oy
Q & 2t ‘) for all ze M:—(/',o Y . But at step éf , when a marker is affixed the

values

tl N o ", u
5;<dz,d/ )%’(/a)ﬂg/

’

remain unchanged for all pairs [J",'l;" , and
*'(5‘9 i) = “(59 T (st/’ MU {a),
By Ak
V(S50 = v MUy (my iU {83,
where the numbers 04*6 still are not contained in any set. Therefore condition (1) is

satisfied. Condition (2) also holds, since its condition is false.

Let us prove condition(3). If p(é,’,/':él)* 1, then dt("b') is equal either to
t oo, =17, t-
S for pltli =2 or o &G for plh =2 2 Gro =2l e
The foregoing and the induction assumption imply that in all cases a,, ¢,;ry(d (' ") and
the assertion is proved This result implies that for all &3> t an Zé U M( '1,') we
t/p1\ 20
have v(ﬁ’) ¢ vs (/,1, "y , and since 51—-&IILSV(/,L) , we have y(@ ¢ V(Q) . But for all K

a’*(si‘;‘(/,zau) < yd = V),

and therefore there exists a K(J such that for all K>K0 with zt=v we have
K

., t, .,
Stx(d,bo) étLJOMV(J’,b) . By Lemma 1, the sets M.vb, for different pairs are disjoint, and
Y
therefore JI=J and i'=¢, . But by hypothesis the marker is permanently affixed to
gf’,df:l starting at some step, while the same is not true for L_/,Lo] .  This contradiction

shows that Case B cannot hold.
We now consider Case C. We show that it cannot be satisfied either. To this end we

0
We observe that after step 5(/ +5 there always exists a pair I:d' ;1 without the marker [F)

consider a step { after which no pair rjl’] with (€N is used in the construction.

if Z does not occur beginning at some step. If, starting at step t Z appears on

<zl Z but

SEN ANORE T A O

and the number £ is not subsequently used in the construction, then z‘(Z) =a,t’(6) for all

‘ t>t1 . Thus, ()& Jj(ﬂﬂ and z2(l) < %(ﬂ\) JJ. is a numeration of S, and
there can be no proper inclusions in & (by Lemma 8). Therefore, X.(ﬁ) =g.(£) = 2l) .

But 6:# KL. and by assumption (f/ is a univalent numeration, and therefore 2, does not
occur at any step. Take a pair [;/",;”] such that the marker [Z] is not affixed to it and

let Lo be maximal with this property. For there exists no pair <n%i*> such that
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[/, oj € ﬂ (t) , since otherwise a larger pair with the marker (=] would be defined; since
Zj does not appear, the marker [=] can_only be added because of a pair l;/,b'] with a
smaller second coordinate — but its second coordinate must be greater than (:0 , since

otherwise the marker [ would be affixed to [J',LO] also.

We now take smallest /,'o'é Ly such that there is no marker [=] on [J’ i, ] and
iy
Ed‘,z,;] ¢ ﬂl:.(fo) for all pairs <n%¢*> . If there exists a t such that ji' is com-
"0
pletely defined on D@;’;: , then either a step of type 5t +3  holds for the pair
»*o

Pl

» » y .'
Q, L;j after step ?’Lo , or else there exists an L <t such that (¥%) no marker [&}
- Lo it ., PR . 4 .
appears [J’l’o] , Ed”“oj € ﬂnf(éo) for some pair <r’,¢ " >, and function /.’L:. is not

completely defined on the <&m,(>-1ist, where the marker oceurs on [;,L;”j . Since

the pair [/’(}:l is not used after step (J,‘o , only the second case remains. We take the

oM
smallest ¢

A satisfying condition (*%).

[ i
Consider a step ¢ >{; such that the set ”m,.(zf) for <m*™ (**> <4, <n,*,i,*> no longer
'y t

changes after step and <m"1,"> is not subsequently used in the construction. This is
[ A
possible by Lemma 2. We remark that ;z,” is completely defined on L<zm**b**> for
(4
every pair </TL > <&4 <n, 0 *s . Indeed, if this is not so cctmsid.er the smallest pair
<mn’(; LR such that /,L’,; is not completely defined on L<:e ey
A ¢ ¢
Consider all the elements 21,...,&( in L<aa, YrY, i/> « If the value IZ[J’L:(ZL) s

where 1<{ <K 1is defined, then by Remarks 1land 12

’(6) (@ “(6)) and ;et(fb.) = m*f(ﬂb.)

for all t 6 164K . Since X is a numeration of S , for all 60 there exists a
dz such that 52’(6) b’ (d, Consider a step tz} é1 such that 'yt"(db.) = aet"(g)
and consider the step T 6‘15 + 2, where 5(6)7 and ’L(é) >t2, .  Then the conditions
of Case 3 Tor Case 1 hold for _Q'téo - at this step. But Z cannot be affixed, and there-
fore 4',";' is defined on LGm A / iy >.  But this contradicts the fact that no pair
l:y, i can participate in the construction any longer. This contradiction proves our

assertion. If there is no marker [ on < ¢*> then we can show as above that ZI;{..
yo

¢,
is completely defined on L . It thus remains only to consider the case when the

<z ,n*i* >
marker is present on <naf¢*> .
. tf .
Let (if« gz <. 4 @K be all the elements in 1‘<x,nf,b*> and consider a step éz <
at which a marker [¥] is affixed to <rzf,£*> . Assume for definiteness that ¥ 2 =M.

1

In this case
=l —s*'( ), &=L in
WGl AN AR A
We remark that by the definition of Case 3 of a step of type jt-i-'l s

PG Cpnl,)  ma ) € uit),

b*f v+q
where 0<(<K and t(K) for all b'</< are no longer changed after step Z,; . Since
appears on </L i*> and l;r,,,oj e [l ,.(i\ , we have j;:’(éb) is defined for all i and
s 0
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t1 . by t=1(0)).
P S p @)

Since after step éz the M —indices Z g &K are no longer used in the construction,

17 24’.”’

there are no Z¢ {Zv"" KK} such that /J’(K) - ./‘"th(@ , where {<i<«K and {JZtL s

and therefore the set KJ(;L;JM”)) for 140K can contain only one of the two elements
Y% . -

ae(gl\ or a',(fi_n . If for all (g<¢ <« K we have ‘/yt(&:\g XJ(;:'L: (60.)\ , then we find

do and éa>ﬁ’ such that

et e i@ (@)

073

for 41<{<4<K and /mt"(mg {;’(d/o) . Then at step- T=5c(d’7ma,o<{d, HHZ , Case 2 holds for
the pair [9',[,0"] and the comstruction will be carried out for some pair g,(;’] , which

is impossible. If on the other hand for some (:, 1<6< K we have

2,
pal ) ey @t (A}
then we consider the smallest such i. If &>2, then
i1 _
YO - )
and

Y@ = pC,).

But
i et
=56 * @5,
which contradicts the fact that XJ is a univalent numeration. Hence t=2 .

But we then consider a taf such that

bpy b3 =ita
M) ey (@),

Case 2 holds for [j, éo”:[ at step 50(/,1:3) + 2, and the pair [J‘,L'] will be used in the
construction. But this is impossible by the choice of to . This contradiction completes

the proof of the lemma.

We now conclude the proof of the main theorem. We define 5={YCMIYLEN} . By Lemma 9,
v and M are univalent computable‘numerations of the family S. By Lemma 10, they are
not equivalent. Consider a univalent computable numeration € of S . By Lemma 11, there
exists a recursive function 9 such that ('Vn,)(v(m=f’?cnﬂ or '(Vn,‘)(‘/,.,(m = fg(m\ . Consequent~
ly, \)éf or /Léf , and since the numeration E’ is univalent, it is minimal [1] and
hence S’E‘/u or F=v.

The theorem is proved.

The following corollary can be proved if we make the construction more complicated by
introducing Kk numerations V“__,,vx , K markers AE],..., E’:J , and K~tuples of functions
L t ., LI ’ . t ¢ t
ek(/,o),sk(/,o\,- "J,Kg,b), d/l‘((/,;,\ and functions %’(ﬁ"“’%-i .
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COROLLARY 1, For every ke N there exists a family S of recursively enumerable

sets which has up to equivalence precisely K univalent computable numerations.

A further improvement of the above construction enables us to prove:

COROLLARY 2. There exists a family S such that the family S. of all univalent com-

. . . o . R ..
putable numerations (up to equivalence) of S is computable, but such that S contains infinite-

ly many inequivalent numerations.

10.
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