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PRODUCT OF TWO GROUPS WITH NILPOTENT SUBGROUPS OF INDEX AT MOST 2 

V. S. Monakhov UDC 519.44 

Introduction 

Suppose a finite group ~ is the product of its subgroups ~ and B , i.e., ~=AB 

Assume that ~ has a nilpotent subgroup Æ of index ~ 2 and B has a nilpotent subgroup 

æ of index ~ 2. Is ~ then solvable? 

Solvability of such a group has been proved in certain special cases, namely; if Æ and 

æ are cyclic, ~ is solvable by Theorem I of [I]; if ~ is cyclic or I/ and ~ are Dede- 

kind, solvability of ~ follows from [2]. The Wielandt--Kegel theorem [3, p. 674] can also 

be regarded as a special case of the above situation. 

In the present paper we investigate the genral situation. In §i we establish a number 
of properties of a hypothetical nonsolvable group of least order admitting the indicated fae- 
torization. On the basis of these properties we prove in §§2, 3, and 4 the following 

MAIN THEOREM. Suppose a finite group ~ is the product of its subgroups ~ and 2. 

Assume that ~ has a nilpotent subgroup ~of index ~ 2. and ~ has a subgroup K of index 

2. Then ~ is solvable in each of the following cases: i) ~ is primary; 2) K is cy- 

clic; 3) ~ is Dedekind; 4) ~= H and all subgroups of K are ~ -invariant. 

The above-mentioned results of [i, 2] and also Theorems 13.6.1, 13.6.2, and 13.10.1 in 
Scott [4] are special cases of our theorem. In §5 of this present paper we prove a proposi- 
tion which, with the aid of a result of [5], enables us to generalize Theorem 13.10.3 of [4]. 

We will need the following notation. Suppose y is a subgroup of a finite group X . 

Then: 

Yx is the largest X -invariant subgroup contained in y ; 

y~ is the smallest X -invariant subgroup containing y ; 

Xp is a Sylow ~p -subgroup of X , where p is a prime; 

~p~ is a Sylow p -complement of X ; 

~~Xl is the center of X 

We call a subgroup y quasicentral in X if all subgroups of y (including y it- 

self) are X -invariant (cf. the definition in [4, p. 396]). 

The remaining notation and definitions are clear from the text and when necessary can 
be found in [6]. We will frequently use the following lemmas. 

LEMMA A [i~ Lemma 2]. Suppose a finite group ~ is the product of two subgroups A and 

B . If A has even order and a cyclic Sylow 2-subgroup and ~~~= ~ , then ~ contains a 
subgroup of index 2. 
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LEMMA B [i, Lemma 3]. Suppose ~ is a doubly transitive group of permutations and 

H is the stabilizer of some polnt. Then all involutions in the center of H are contained 

in 0~~~ (~} . 

LEMMA C [5]. Suppose a finite group ~= AB , where A and 2 are p -closed sub- 

groups. If Ap~~FÆ, then A~ is a p -group. 

§i. A Study of the General Situation 

In this section the object of study is a finlte group 0, satisfying the following con- 

ditions: 

FI. 0 is the product of two subgroups ~ and B ; 

F2. A contains a nilpotent subgroup Æ of index ~2 , and B contains a nilpotent 

subgroup K of index ~2 ; 

F3. K possesses a group-theoretic property ~ inherited by subgroups and factor 

groups; 

F4. ~ is nons01vable, hut each nontrivial subgroup and factor group of ~ satisfying 

FI-F3 is solvable. 

Without specifying the property ~, we establish in §i some properties of a group sat- 

isfying FI'F4. Note that if property ~ is trivial, i.e., if no restrictions are imposed 

on K in F3, then a group satisfying FI-F4 is a counterexample of least order to the gener- 

al problem posed at the beglnning of this paper. 

Thus, we suppose in this sectlon that ~ is a finite group satlsfying FI-F4. Let 4 

and ~2 denote Sylow 2-subgroups of A and ~ , respectively, which are permutable and 

whose product 44 is a Sylow 2-subgroup of Æ (see [3, p. 676]). Let N be a minimal 

-invarlant subgroup and A/~ a Sylow 2-subgroup of ~ contained in ~J~z" 

LEMMA I.i. Æ(~)=1. 

Proof. Let ~=Æ~) be the product of all solvable ~ -invariant subgroups. Since 

~/Æ~~~/Æ[B~/Æ , and ~Æ/Æ ~ A~nÆ, and ~Æ/~ = ~/2ÆÆ , it follows that ~Æ/Æ contalns a 

nilpotent subgroup ÆÆ/~ ~H/hn Æ of index ~ 2 , and BÆ/Æ contains a nilpotent subgroup 

KÆ/Æ~æ/KO Æ of index ~2 . Property ~ is inherited by factor groups, hence K~/R 

possesses property ~ . If Æ~{ , then, by F4, ~/Æ is solvable, hence so is O . Con- 

tradicCion. 

LEMMA 1.2. Subgroup ~ is not a 2-group and neither is B. 

Proof. lE, for example, ~ is a 2-group, then ~-~B- ~2,(~;B~) is solvable by the 

Wielandt--Kegel theorem. 

LEMMA 1.3. If 0 is a proper subgroup of ~ containing A , then ~ is solvable 

and (0~~~=I. If 2 is a proper subgroup of ~ containing ~ , then x7 is solvable 

and ( 2 o A ) A  = f" 

P r o o f .  S ince  C = A [ C n B )  and C o K  i s  a n i l p o t e n t  subgroup p o s s e s s i n g  p r o p e r t y  8 

and having index  ~ 2 i n  COB , i t  f o l l o w s  t h a t  C i s  s o l v a b l e .  Also ,  G=CB , and i f  X= 

~ßnB}~ ¢/, then X Q=X ~C-- ~ec O , hen¢e X Q is a nonidentity ~ -invariant solvable sub- 

group. This contradlcts Lemma i.i. Thus, (C~~~=% 
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Subgroup D is handled in a similar way. 

LEMMA 1.4. (IA],Ißl)-2 ~. 

Proof. Assume the contrary. Suppose p is an odd prime dividing the order of A and 

the order of B A Sylow Æ -subgroup Ap of A is contained in Æ and is A -invariant. 

If A7~~~, then, by Lemma 1.3, A G is solvable, which contradicts Lemma i.i. Thus, 
_ 

A7A~ ~ and ~/~~ ~A/~oA~ is a Æt -group. A Sylow p -subgroup ~ of ~ is dif- 

ferent from the identity and is B-invariant. Clearly, ~~~~. By Lemma C ~7 is 

a p -group, which contradicts Lemma i.i. Thus, the orders of A and ~ have no common 

odd divisors different from unity. 

LEMMA 1,5, Aß = G =~~ and ~ is isomorphic to some group of automorphisms of ~ In 

addition, the order of ~/N divides ~~ and ~~i,~2j~~~ 

Proof. Since ~(~}~ ! , it follows that ~ is nonsolvable and is the direet product 

of isomorphic simple groups. By Lemma 1.3, the subgroups ~~ and ~~ coincide with ~ , 

hence ~/A~H ~O/~~ß/~n~ By Lemma 1.4, ~/H is a 2-group of order dividing ~m . Thus, 

~Zt ~Æ and Bzl ~N. 

The centralizer C of N is ~ -invariant and, sinee the center of N is equal to i, 

we have 0~ N= I Therefore, Æ is isomorphic to a subgroup of C/~ , hence ~=! and 

is isormorphic to some group of automorphisms of N 

LEMMA 1.6. The Sylow 2-subgroup ~ of h' is nondihedral. 

Proof. Assume that ~ is dihedral. Then ~ is simple. If ~ is isomorphic to ~~ , 

then either ~z~ or ~~, is a nonprimary Hall subgroup of ~r , which contradicts Hall's 

theorem (see [3, p. 177]). By a theorem of [7], ~ is isomorphic to PSL(2,p ~} , where p 

is an odd prime and ~~~S. 

The order of pSL~~~nl is equal to ~p~(p~'-f}(p~+ I}, and pS~(~,~ ~) contains a dihe- 

dral subgroup X of order ~~+f . A Sylow D -subgroup /7 of D~~ (7, p ~} is elementary 

Abelian, self-centralizing, and its normalizer ~ has order ~~~~~fl, and ~/~ is cyclic~ 

The remaining Sylow subgroups of pSL (2,~~) of odd orders are cyclic (see [3, Chap. II]). 

We may assume, without loss of generality, that P~H Then ~, is cyclic. Since P 

is A -invariant, it follows that /VB(D} contains A , and, by Lemma 1.3, ~~(P}~~~~= f. 

Subgroup H centralizes ~ , henee /VB(D)/$~(~~ is a 2-group. 
Since ~~N~~~) and ~oC~(~}~N~~$(~#=CH (~)=~, it follows that ~/~ is also a 

2-group. Let the order of ~/D be ~~ . Then p +! and IXI=~~~+I}. A Sylow 2- 
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subgroup of ~ is not a Sylow subgr0u p of N , hence ~oX=f and /~X =N . But this con- 

tradicts Lemma A. 

§2. Subgroup K is is Primary 

The aim of this section is to prove the following theorem. 

THEOREM 2.1. If A contains a nilpotent subgroup H of index ~ 2, and ~ contains a 

primary subgroup ~ of index ~ 2 , then the finite group ~=~~ is solvable. 

Proof. We assume that Theorem 2.1 is false and apply the results of §i. Suppose ~ is 

the property of being prlmary and ~ is a group satisfying FI-F4. Then ~ is a counter- 

example of least order to Theorem 2.1. Group ~ possesses all of the properties listed in 

Lemmas 1.1-1.6, in particular, it follows from Lemma 1.2 that the order of K is odd. Ler 

K be a ~-group, where p is an odd prime. 

Assume that A~=~. Since the order of ~ is even, /~/;~Z (A;) is different from the identi- 

ty and the centralizer of a nonidentity element of this intersection has index equal to a 

power of p in ~ By Burnside's lemma (see [3, p. 491]), ~ is nonsimple. By Lemma 1.5, 

N contains ~ , hence AI'(NOA}æ and N is solvable. 

Therefore, AK does not coincide with ~ . Hence, 

contains a subgroup of index 2, and, since (]A[,I~])=~ 

This contradicts Lemma i.I. 

AnB=/ and l3: æ~2 . By Lemma A, 

, it follows from Lemma 1.5 that 

Assume that /~~B/~~nZ(N~)---f This means that #/~nÆ 2 contains no ,~ -invariant non- 

identity subgroups. Therefore, the representation of ~ by permutations on the cosets 

modulo the subgroup H z ~ N~ is faithful of degree I~: #/~~ Nzl. The index of H~ in A;~ z 

is equal to 2 (if A=Æ ) or 4. If ~~~ , then ÆiNZ[Nz)=/ implies I~I=2 Contradic- 

tion. If I/z is not contained in N~ , then IA~2~z:H~I--IN~:6Q/?'~ I , i.e., ~nH z has in- 

dex 2 or 4 in ~ Now, N~ can be isomorphically embedded in the symmetric group on four 

letters. Since a Sylow 2-subgroup of the latter is dihedral, this contradicts Lemma 1.6. 

Thus, #/~B~'~BZ(~) is different from the identity. The centralizer ~=~N[~} of an 

involution ~ of this intersection contains the subgroup <~>,~>, hence the index of 

in /~ is equal to a power of /~ By Burnside's lemma, N is nonsimple. But A/ is a 

direct product of isomorphic simple groups, hence ~--~ , where ~~f is an element of a 

simple group X. that is a direct factor of N , and ~ is an element of a complement F 

to ~ in Æ . Clearly, ~X(~)=~N(L)I'IX. Thus, uPX(',~) contai~s <Hz«nX,/~~~X> , and 
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the index of ~X(~} in X is a power of the prime p . Contradiction. 

Theorem 2.1 is proved. 

§3. Subgroup ~ is Dedekind 

THEOREM 3.1. If A contains a nilpotent subgroup /I of index ~ 2, and ~ is Dedekind, 

then the finite group ~= ~~ is solvable. 

Proof. Assume the theorem is false. Let ~ denote the following property: Æ is 

Dedekind and Æ=B Then a group ~ satisfying FI-F4 is a counterexample of least order 

to Theorem 3.1. Group ~ possesses the properties listed in Lemmas 1.1-1.6. Let us study 

this group in greater detail. 

LEMMA 3.1. Subgroup ~ is maximal in ~ ,AOB~i and I~ :~I=~o 

Proof. Let ~/ be a maximal subgroup of ~ containing A Then ~ is solvable and 

~ß3~! , by Lemma 1.3. This means that A=~/ and ~ n~=/ 

Kegel theorem that A ~ H0 

LEMMA 3.2. The order of ~ is odd. 

Proof. Assume the contrary, i.e., ~7~I . 

It follows from the Wielandt-- 

Assume that H has even order. Let S be a 

2-subgroup of ~ that «ontains A z as a subgroup of index 2. If ,/"/~0~[~) ~ /  , then the 

centralizer of an involution of this intersection properly contains A , which contradiets 

Lemma 3.1. Thus, ~ZOZ(8)=I. The representation of $ by permutations on the cosets 

module >/~ is faithful of degree I$:H21=#. Therefore, S is a subgroup of the symmetrie 

group on four letters and IH~I=2 Now ~~ has index 4 in 4~; . Since A2~ z is nondihe- 

dral by Lemma 1.6, we have ~~~~~z~)~~. Therefore, the centralizer ~P of an involution of 

BÆZ{~~Z~ z) contains B and ~ , hence ~~~BN~)A , which contradicts Lemma 1.3. Thus, 

H has odd order. 

By Lemma A, ~ contains a subgroup of index 2. It follows from Lemma 1.5 that I~: ~I =2. 

Now, H is a Hall subgroup of $ and nonprimary by Theorem 2.1. If ~ is any Sylow sub- 

group of Æ , Chen ~N[P)=NG[~)NÆ=An~=~ By a theorem of Wielandt (see [3, p. 444]), 

contains a normal complement to H. But this is impossible in ~ . 

Lemma 3.2 is proved. 

LEMMA 3.3. ~ is simple. 

Proof. Since the orders of A and ~ are relatively prime, Lemma 1.5 implies that 

is simple. 
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LEMMA 3.4. Subgroup B is nonprimary and contains no nonidentity cyclic Sylow subgroup. 

Proof. Subgroup 2~ is nonprimary by Theorem 2.1. Since H z is a nonidentity ~ -invari- 

ant subgroup, the center of ~ has even order. The representation of ~ by permutations on 

the cosets modulo ~ is faithful of degree I~:~I=3 . Since ~ is maximal in $ , it fol- 

lows that ~ is a primitive permutation group. The subgroup 2 is regular, hence if J con- 

tains a cyclic Sylow subgroup #/ , then, by Theorem 25.4 of [8], ~ is doubly transitive. 

Then all involutions in the center of ~ are contained in R(G) (see Lemma B). Contradic- 

tion. 

LEMMA 3.5. If X is a subgroup containing ff£, , then X is a ~ -group, where ~=~(~) 

and is solvable. 

Proof. Assume that a pr±me p divides the order of X and the order of ~ . We may 

assume, without loss of generality, that a Sylow p -subgroup Xpof ~ is contained in B, 

otherwise we can replace ~ by a conjugate subgroup. Group ~ contains the subgroup y= 

~ff£,XO~> , and, by Lemma IV.4.12 of [3], the normalizer of y is factorizable. Since 

the orders of ~ and ~ are relatively prime, y=(YnA)(~nB). By induetion, y is sol- 

vable, hence there exists a Hall subgroup #/;,~ of y , where ~ is a Sylow ~ -subgroup 

of ~ . Now ~~~~ for some ~~~ and ~ is B ~-invariant. Since #/;, is ~ -invariant 

and ~=~~~ , it follows from a lemma of Kegel (see [3, p. 677]) that ~ is nonsimple. This 

contradicts Lemma 3.3. Thus, X is a ~ -group. 

rem implies that ~ is solvable. 

LEMMA 3,6. Subgroup ~~, is not quasicentral in 

Since ~IG X , the Wielandt--Kegel theo- 

× . 

Proof, Assume that all subgroups of fr2' are A -invariant. Since ff~o~(A~)-~Z(A} , 

we have Z(A~B I and, by a theorem of Ito [9], there is an element ~~/ in z~ such that 

B=C G (~) properly contains ~ . Clearly, 2QBI = / . Assume that DOB~{. Then the cen- 

tralizer of an in volution of D~H contains ff~r and ~ , which contradicts Lemma 3.5. 

Thus, DNH = / . But then O--H2 is nonsimple by Lemma A, which contradicts Lemma 3.3. 

LEMMA 3.7. If ~r is a subgroup containing ~, , then X g 

Proof. Assume that V=Op(X)?~4 , where ~ is an odd prime. Then V is H" -invari- 

ant and #/~ff& ~V). By Lererem 3.5, ~~(V) is a qE -group, where ~=«{A;. hence 17/G{V):HI=! 

or 2 and H is fr3 ~V) -invariant. Consequently, XGAIÆ {V)c-fi/3(HI=A. 

Now suppose Op[X)=/. Since X is solvable, it follows that ~=O2(X)#f and ~- is the 
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Fitting subgroup of X Therefore, ~-~~ (~-) (see [3, p. 277]). 

Assume that the order of ~GI~-) is divisible by some odd prime ~e~ (~). Since X 

#/G (~) and SG (~) is ~& (~)-inuariant, X~ G (~) is a subgroup. Since the Sylow ,~ - 

subgroups of ~~~ I~) and [ haue the same order, it follows from the equality iÄ~~(~)ll~I~ll = 

l[[I~~I~)l that p divides the order of ~X(~) Contradiction. Therefore, the order of 

BÆI~) is not divisible by the odd primes in ~ I~) - 

The 2-group ~ is contained in some Sylow 2-subgroup ~~ , ~EG , and ~ is not eon- 

tained in H~ Therefore, a nonidentity element ~£~-/~~~ induces an automorphism of 

order 2 on ~/z~. If ~~=~ for some ~eH~~ , then ~~~& (~). Contradiction. Thus, 

a regular automorphism on #/z~. But then H~~ is quasicentral in ~~ (see [4, induces 

Theorem 12.6.8]). This contradicts Lemma 3.6. 

Lemma 3.7 is proved. 

LEMMA 3.8. The centralizers of all involutions are 2-nilpotent. 

Proof. If ~ is an involution of H , then ~ (~~ ~#/;, and, by Lemma 3.7, ~& ~~) is 

contained in ~ Consequently, the group ~G I i) has a normal 2-complement. Since ~ is 

simple, the involutions of A - ~ are eonjugate to involutions of ~ (see [i0, p. 265]). 

Since a Sylow 2-subgroup of ~ is nondihedral, it follows from a theorem of Gorenstein 

[ii] that $ is isomorphic to P$L (3, 4) or ~ZI2~), ~~3 The order of P~B (3, 4) is 

equal to 265;~.~ , and all Sylow subgroups of SZ CI ~) of odd orders are cyclic. Since 

B is nonprimary, ~ has a cyclic Sylow subgroup ~ / , which contradicts Lemma 3.4. 

Theorem 3.1 is completely proved. 

COROLLARY. If ~ is nilpotent and K contains a quasieentral subgroup ~ of index 

2, then the finite group $= ~~ is solvable. 

Proof. Suppose A is nonmaximal in ~ . 

A , then ~~K=I.I~oBI=Z , and IMn~l=Æ 

Theorem 3.1. 

Now suppose ~ is maximal in æ 

If ~ is a maximal subgroup of ~ containing 

Since ~=ÆK , solvability of ~ follows from 

By Theorem 2.1, A is nonprimary, and, by a theo- 

rem of Thompson (see [3, p. 445]), the order of A is even. If the Sylow 2-subgroup A~ of 

A is ~ -invariant, then ~ is solvable by induction. If ~ is not G -invarlant, then 

B2 is a Sylow subgroup of ~ and ~&(A~) = A Then ~ possesses a normal 2-complement 

(see [3, p. 444]), i.e., ~ is again solvable. The eorollary is proved. 
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§4. Subgroup K is Cyclic 

In this section we prove the following 

THEOREM 4.1. If A contains a nilpotent subgroup H of index ~2 , and B contains 

a cyclic subgroup ~ mf index ~ 2 , then the finite group ~ = A~ is s01vable. 

Proof. Assume that Theorem 4.1 is false. Suppose ~ denotes the property of being 

cyclic and G satisfies FI-F4. Then ~ is a counterexample of least order to Theorem 

4.1. Group G possesses all of the properties listed in Lemmas 1.1-1.6, in particular, 

it follows from Le=~a 1.5 that a minimal ~ -invariant subgroup N contains a nonidentity 

cyclic Hall subgroup B~~. Therefore, N is simple. Let us continue the investigation of 

LEMMA 4.1. 

and CnK--I 

Proof. 

£nK=/. 

Suppose 0 is a proper subgroup of G containing ~ Then ~ is solvable 

If ~=CK , then D is maximal in G and the center of C has odd order. 

By Lemma 1.3, C is solvable, and, since K is quasi-central in ~ , we have 

Suppose ~=CK . Any proper subgroup of $ containing C intersects K in the identity, 

hence ~ is maximal in $ Subgroup C contains no nonidentity $ -invariant subgroups, 

hence the representation of $ by permutations on the cosets modulo C is faithful of de- 

gree IKI . It follows from the minimality of C that G is a primitive permutation group. 

Subgroup K is regular in this representation. If the order of K is a prime, then ~ is 

either solvable or doubly transitive (see [3, p. 609]). If the order of æ is not a prime, 

then G is doubly transitive (see [8, p. 65]). 

Thus, in both cases G is doubly transitive. By Lemma B, all involutions of the center 

of C are contained in ~(~) Therefore, the center of $ must have odd order. 

LEMMA 4.2. If Æ is a Sylow subgroup of A of odd order, then X$(P)/C G IP) has order 

i, 2, or 4. 

Proof. Clearly, ~c---N G IP) • If ~/~LP#~A , then ~BiP)BK=I and IA~[B)n31=£ Since 

, it follows that A~~D~/C~IP)P has order I, 2, or 4. 

LEMMA 4.3. A z is not a Sylow subgroup of 

Proof. Assume that ~ is a Sylow subgroup of ~ . Then 2~ a is contained in ~~ and 

~=AK . Since H 2 is different from the identity, it follows that H z n Z~Ae) is different 

from the identity and is contained in the order of ~ . This contradicts Lemma 4.1. 
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LEMMA 4.4. The order of n~ is at most 2. If I//~I=2 , then ~ is elementary Abelian 

of order 4 and there exists a dihedral subgroup $ of order 8 containing A z . 

Proof. Since Az is not a Sylow subgroup of ~ , A a is contained as a subgroup of index 

2 in some 2-group $ . 

Assume that / ' /~OZ(S)~t,  and let X be an involution in this intersection. Then 0 = 

BG~~~<A,S~~~. Since ~=CK , we have a contradiction to Lemma 4.1. Thus, /'/~OZ(3) = I. 

Suppose #/~~/. Then #/~ is not $ -invariant and ~/~ contaißs no nonidentity S -invari- 

amt subgroups. In particular, 4 is a proper subgroup of 4 and I$:~I=~. The repre- 

sentation of $ by permutations on the cosets modulo H~ is faithful of degree 4, hence 

is a subgroup of the symmetric group on four letters. Thus, 

IHz]=2. If A~ is cyclic, then Z(~)=/q~ Contradiction. 

Abelian. 

LEMMA 4.5. A n .B=  I , ]A : / ' /1=2 , and I z3 "K I=Z .  

P roo f .  Since AQK= ( , we have IAnBI*a. I f  O=AK 

S is dihedral of order 8 and 

Therefore, ~~ is elementary 

or $=HB , then $ is solvable 

by Theorem 3.1 or its corollary. 

LEMMA 4.6. Æ~ is non-Abelian. 

Proof. Suppose ~ is Abelian. 

4.4 that H~~! Now (I~l,l~l)=2 

If Æ2nK=f , then l ~ l = æ  and 

contradicts Lemma 1.6. 

Since K~ is cyclic, we have IN~0KI=~ 

Therefore, AnB = I and IA : Æl=~, Iß : KI=~. 

Then ~ is elementary Abelian. It follows from Lemma 

and N has index 2 in 

IGel = 8. In this case ~ is dihedral of order 4. This 

and IK;]~4 , and also [~]~~ Consequently, 

l~l =8. The centralizer of an involution in ~~nK contains B , hence it is solvable and 

Æ~ PSL ~Æ) (see [12]). But the factor group ~~~D$L(g$)/PSL(23) has order 3, hence 
cannot be embedded in Aaß ÆSL ($Æ). This contradicts Lemma 1.5. 

LEMMA 4.7. The order of K is even, æa~ N ~ / , and the centralizer of an involution 

in K~O N is solvable. 

Proof. Assume that ~=/. If Hz= ! , then a Sylow 2-subgroup of $ has order 4. If 

/~zB/ , then the dihedral group S in Lemma 4.4 is a Sylow subgroup of $ In both cases 

we have a contradiction to Lemma 1.6. Therefore, the order of K is even. 

Assume that ~ N ~= f . Then ~ can be isomorphically embedded in Æ/N Since 

~/A~o ~ is an elementary Abellan group isomorphic to $/N , we have I~I=2 Now ~~$ 
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and IA/~Ic ~ • Contradietion, 

Thus, /(2 N Æ~/ . The centralizer of an involution in /(20A/ contains Æ , hence is 

solvable. 

LEMMA 4,8. N z is not semidihedral and is not wreathed. 

Proof. Suppose N2 is semidihedral or wreathed. Since N is simple, all involutions of 

Æ are conjugate (see [13, pp. i0-ii]). The centralizer of an involution in æ~ß#/ is 

solvable, henee N is isomorphlc to ÆSL(3,3) , ~/71, or PSU(3,3~). 

The order of P$L 13.3) is equal to ~~3s13 , and a Sylow 3-subgroup is non-Abelian. 

The normalizer of a Sylow 13-subgroup has order 3.13. If A/-----PS/J ~3,3) , then $ J divldes 

the order of A and 13 divides the order of B , and also !NnBl=13 This contradicts 

Lemma 4.7. 

The order of Kl is equal to ~~JE.H , and the normalizer of a Sylow 3-subgroup has 

order 2~J ~ , and the normalizer of a Sylow 5-subgroup has order 30. If #/=~~ , then ii 

divides neither IAI not I~l . Contradiction. 

The order of PS~ (J,~) is equal to Z$33~ and a Sylow 7-subgroup is self-centralizing. 

If ~--~~ PS~(3,J ~) , then I/~OBI--7 , which contradlcts Lemma 4.7. 

ùLEMMA 4.9. INel~2 F 

Proof. If I/~21 ~2 F , then #/2 is Abelian, dihedral, semidlhedral, or wreathed [14]. 

Contradiction. 

LEMMA 4.10. /~~ OZ (A~B~)-- 4. 

Proof. Assume the contrary. Then the centrallzer of an involution ie~zoßIA~/~ z) is 

solvable and contalns a Hall subgroup AzB . Clearly, ~=?/~AzB) , and it follows from Lemma 

1.3 that the order of H is odd. Therefore, I~~I=2 and ID:NI=2 . 

Since N contains H, we have N=H(A/~A;B) . Subgroup A/ is simple; hence NnA2B con- 

tains no cyclle s ubgroups of Index _~2 Thus, A/ does not contain K , and #/~K has index 

4 in N~42F 

By Theorem 2.1 H is nonprimary, and, by Wielandt's theorem (see [3, p. 444]), H has 

a Sylow subgroup P, whose normalizer X=~~ IP) properly contains H. Since ~~~ N = / , 

and also X=N6[P)oN and ~ _c#&(~) , it follows that IX'///=2. 

Ler ~z be a Sylow 2-subgroup of ~ contained in ~; If X 2 is not contained in ~~~, 

then ~= ~ ~ (~2 ~ ~) and ~= X (N ~ ~) is solvable by inductlon. Contradlction. Therefore, 
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~=Nzoß . If Xz~NzBK , Chen X&=<~> , and sin«e ~~~zOß and XnNnA~B=<Z>£ 

Z(No~z~) we have <~>~<~>X~X and R[N)~4. Contradiction, Thus, ~/zoß=XaK(N~nK) and 

Group ~~ contains a cyclic subgroup ~ of index 2, hence all maximal subgroups of 

Bz are either Abelian or dihedral (see [i0, p. 191]). If N~o ~ is dihedral, of order 

>4 , chen I~f, ~I~# , and since all elements of /Vzn~-~/znK 

thac ~nK is a characteristic subgroup of ~ , hence #/znK 

Thus, eiCher a Sylow 2-subgroup /V z of the simple group N 

subgroup or Che commutator subgroup of ~ is cyclic. 

dihedral semidihedral, or wreaChed. Contradiction. 

Lemma 4.10 is proved, 

F 
LEMMA 4.11. The order of ~ is equal to 2, and a Sylow 2-subgroup of ~ has order ~ 

Proof. Since ~zN~(~z~z)= / , it follows that ~z contains no nonidentity ~~~ -invarianc 

subgroups. The representation of ~~ by permutations on the cosets modulo Kz is faithful 

of d«gree I~2~2" /(21 If IHzl--/ 

This contradicts Lemma 1.6. 

Thus, /~=I and IA~~2:/(~I=~ . 

have order 2, it follows 

is ~ -invarianc. 

contains an Abelian maximal 

By a Cheorem of [15], Nz is Abelian, 

, Chen IA~~2:~21=# and 4~~ is dihedral of order 8. 

Therefore, A2~ ~ can be isomorphically embedded in 

the symmetric group of degree 8. Since a Sylow 2-subgroup of the la~ter has exponent 2 S , 

we have IK2i~~ 3 and J~~ßzl~~ ~. 

It follows from Lemma 4.9 that ~ is simple wiCh a Sylow 2-subgroup of order 26 . Since 

~~ is cyclic of order 8, we obtain from [16], using a Cheorem of Fong (see [14]), chat Æ 

is isomorphic to ~2 In Æ1~ Che normalizer of Sylow 3-subgroup has order 3J.~ , and 

the normalizer of a Sylow 5-subgroup has order 2J°~ Since the order of ~~ is equal to- 

26.3~~14 , it follows that II divides neither IA! nor ~i • Contradiction. 

Theorem 4.1 is completely proved. 

Theorems 2.1, 3.1, 4.1 and che corollary of Theorem 3.1 taken together constiCute a proof 
of the main theorem of this paper, which was stated in the introduction. 

§5. Product of Groups wich Quasicentral Subgroups of Odd Indices 

LEMMA 5.1. Suppose p is the smallest prime divlsor of the order of a group ~ and p 

is a Sylow p -subgroup of ~ If ~ is quasicentral in ~ , chen ~ is cD -decomposable 

wiCh a Dedeklnd Sylowp-subgroup. In particular, if ~>2 , chen p is contained in the 

center of ~ . 
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The proo~ is by induction on the order of Æ , Suppose x is an element of order p in 

B. Then <Æ> is ~ -invariant and so is ~~(<~>) . If CG(<~>)~~ , then ~/C&(<~>~ is 
isomorphlc to a group of automorphlsms of <m>. Since ~~~<x> is cyclic of order p-4and 

is the smallest number dividing the order of ~ , we have a contradiction. Therefore, 

~(<~>)=~, and is contalned in the center of ~ The factor group ~/~~>, is, 

by induction, ~o-decomposable, hence ~ is also ~-decomposable. Since ~ is Dedekind and, 

when ~>2 , Abelian, it follows that P is contained in the center of ~ when ~>Z . 

Now, applylng [5], we obtain 

COROLLARY I. If ~ and ~ contain quasicentral subgroups of odd indices, then the 

group is solvable. 

COROLLARY 2. If ~ is 2-decomposable with a modular Sylow 2-subgroup, and 2 contains 

a quasicentral subgroup of odd index, then the group ~=@~ is solvable. 

Corollary 2 generalizes Theorem 13.10.3 in Scott [4]. 
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