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PRODUCT OF TWO GROUPS WITH NILPOTENT SUBGROUPS OF INDEX AT MOST 2

V. S. Monakhov UDC 519.44

Introduction

Suppose a finite group G is the product of its subgroups A and B , i.e., £=48
Assume that A has a nilpotent subgroup 4 of index «2 and B has a nilpotent subgroup
K of index € 2. Is & then solvable?

Solvability of such a group has been proved in certain special cases, namely; if # and
K are cyclic, & is solvable by Theorem 1 of [1]; if B is cyclic or # and B are Dede-
kind, solvabiiity of & follows from [2]. The Wielandt—Kegel theorem [3, p. 674] can also
be regarded as a special case of the above situation.

In the present paper we investigate the genral situation. In §1 we establish a number
of properties of a hypothetical nonsolvable group of least order admitting the indicated fac-
torization. On the basis of these properties we prove in §§2, 3, and 4 the following

MAIN THEOREM. Suppose a finite group & is the product of its subgroups A and B.
Assume that 4 has a nilpotent subgroup # of index <2 and B has a subgroup K of index
< 2, Then ¢ is solvable in each of the following cases: 1) K is primary; 2) K is cy-
clic; 3) # is Dedekind; 4) A= # and all subgroups of A are B -invariant.

The above-mentioned results of [1, 2] and also Theorems 13.6.1, 13.6.2, and 13.10.1 in
Scott [4] are special cases of our theorem. In §5 of this present paper we prove a proposi-
tion which, with the aid of a result of [5], enables us to generalize Theorem 13.10.3 of [4].

We will need the following notation. Suppose Y is a subgroup of a finite group X .
Then:
yx is the largest X -invariant subgroup contained in VY ;
yx is the smallest X -invariant subgroup containing Y ;
X, is a Sylow P -subgroup of X , where is a prime;
- e
X, is a Sylow g -complement of X ;

)
Z(X) is the center of X .
We call a subgroup Y quasicentral in X if all subgroups of Y (including “y it-
self) are X -invariant (cf. the definition in [4, p. 396]).

The remaining notation and definitions are clear from the text and when necessary can
be found in [6]. We will frequently use the following lemmas.

LEMMA A [1, Lemma 2]. Suppose a finite group & is the product of two subgroups A and

B . 1f A has even order and a cyclic Sylow 2-subgroup and AnNB = / , then [ contains a
subgroup of index 2.
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LEMMA B [1, Lemma 3]. Suppose @ is a doubly transitive group of permutations and

# 1is the stabilizer of some point. Then all involutions in the center of 4 are contained

in 021'2 (G) .

LEMMA C [5]. Suppose a finite group G=AB , where 4 and & are P =-closed sub-
groups. If A/,Eﬂ;o , then AP is a @ -group.

§1. A Study of the General Situation

In this section the object of study is a finite group &, satisfying the following con-
ditions:

Fl. & 4is the product of two subgroups 4 and 7 ;

F2. A contains a nilpotent subgroup /4 of index <2 , and B contains a nilpotent
subgroup A of index <2 ;

F3. K possesses a group~theoretic property & inherited by subgroups and >factor
groups;

F4. & 1is nonsolvable, but each nontrivial subgroup and factor group of & satisfying
F1-F3 is solvable.

Without specifying the property &, we establish in §1 some properties of a group sat-
isfying F1-F4. Note that if property d is trivial, i.e., if no restrictions are imposed
on A in F3, then a group satisfying F1-F4 is a counterexample of least order to the gener-
al problem posed at the beginning of this paper.

Thus, we suppose in this section that ¢ is a finite group satisfying F1-F4. Let é
and .52 denote Sylow 2-subgroups of A and B , respectively, which are permutable and
whose product ,{34 is a Sylow 2-subgroup of & (see [3, p. 676]). Let A be a minimal
G -invariant subgroup and A/a a Sylow 2-subgroup of A contained in Aa Bz .

LEMMA 1.1. R(G)=/.

Proof. Let F=R() be the product of all solvable ( -invariant subgroups. Since
G//?*-A/?/K"_ﬂ/?/,(’ , and AR/R x A/Ank’, and BR/g ’25/3/7/? , it follows that AR/R contains a
nilpotent subgroup H/?/R a_’-h’//y'n/? of index 2, and E/?//? contains a nilpotent subgroup
KA’/,?:-".’K/Knp of index €2 . Property & is inherited by factor groups, hence K/V//P
possesses property & . If /?74/ , then, by F4, 5’//? is solvable, hence so is & . Con-
tradiction.

LEMMA 1.2, Subgroup A 1is not a 2-group and neither is Z.

Proof. If, for example, J is a 2-group, then G=AB= AZ’ (/1213‘2) is solvable by the
Wielandt—Kegel theorem.

LEMMA 1.3. If C is a proper subgroup of & containing A , then C 1is solvable
and (5n3)3=/ . If 2 is a proper subgroup of & containing B , then 2 is solvable
and (_DFIA)A =1.

Proof. Since O=A(CnB) and (nK is a nilpotent subgroup possessing property &
and having index €2 in (On3 , it follows that /' is éolvable. Also, G=CB , and if X=
[L’nE)B#/, then XG=X30=X0‘£C’ , hence X[', is a nonidentity & ~invariant solvable sub~
group. This contradicts Lemma 1.1. Thus, (CNB)y=/,

32



Subgroup & is handled in a similar way.

LEMMA 1.4. (IA1,1B1)=2",
Proof., Assume the contrary. Suppose o 1s an odd prime dividing the order of A and

the order of A& . A Sylow ,p -subgroup /4/, of A is contained in 4 and is 4 -invariant.
1f A/ffhé@ , then, by Lemma 1.3, 4¢ is solvable, which contradicts Lemma 1.l. Thus,
APGA=-(? and 5//74/0, EA/AnA/S is a ,0/ -group. A Sylow p -subgroup zlfi,, of 8 is dif-
ferent from the identity and is & -invariant. Clearly, Z}’,QAff . By Lemma C, .3: is
a p =-group, which contradicts Lemma 1.1l. Thus, the orders of A and B have no common
odd divisors different from unity.

LEMMA 1.5. AN=6=BN and & is isomorphic to some group of automorphisms of # . 1In
addition, the order of &/y divides 2™ and </42,,£2,>£;/V.

Proof. Since R(G)=1 , it follows that A is nonsolvable and is the direct product
of isomorphic simple groups. By Lemma 1.3, the subgroups AN and BN  coincide with & ,
hence A/AnN QéG//VgE/Zn,V, By Lemma 1.4, &/¥ 1is a 2-group of order dividing 2™ . Thus,

A, €N and B, SN.

The centralizer ( of AN 1is { -invariant and, since the center of A is equal to 1,
we have (nA=7/ . Therefore, ¢ is isomorphic to a subgroup of &’/,V , hence {=/ and
G is isormorphic to some group of automorphisms of A

LEMMA 1.6. The Sylow 2-subgroup A/z of A is nondihedral,

Proof. Assume that A, is dihedral. Then N is simple. If AN is isomorphic to A, ,
then either Az’ or ﬂzz is a nonprimary Hall subgroup of /4’ , which contradicts Hall's
theorem (see [3, p. 177]). By a theorem of [7], A is isomorphic to PS§/ (2,,0”) , where p
is an odd prime and /D'L>f.

The order of PSL(z,pn) is equal to —z{p” (pﬂ—/)(pﬂi- /), and pgz,(,g,/g”) contains a dihe-
dral subgroup X of order P/ . A Sylow p -subgroup » of PAS§L (2,/0") is elementary
Abelian, self-centralizing, and its normalizer M has order Zi/a" (/on—/). and M/P is cyclic,
The remaining Sylow subgroups of 2§/ (z,pﬂ) of odd orders are cyclic (see [3, Chap. II]).

We may assume, without loss of generality, that FZ &/ . Then ZZ, is cyclic. Since 2
is A -invariant, it follows that A/G(p} contains A4 , and, by Lemma 1.3, /ﬁ/&(ﬁ)ﬂﬂz,=/.
Subgroup 4 centralizes p , hence %('D)/CG('D) is a 2-group.

Since MQ/VG (P) and MncG(P)gA/né’G(p)=£’N (P)=F, it follows that M /P is also a
2-group. Let the order of M/PZ be 2% . Then ,o’f‘=2k+/+/ and |XI=Z(2'€+/). A Sylow 2-
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subgroup of M is not a Sylow subgroup of N , hence MnX=7 and MX=A/ . But this con-
tradicts Lemma A,

§2. Subgroup K is is Primary

The aim of this section is to prove the following theoreﬁ.

THEOREM 2.1. If A contains a nilpotent subgroup # of index < 2, and B contains a
primary subgroup K of index «2 , then the finite group G=AB is solvable.

Proof. We assume that Theorem 2.1 is false and apply the results of §1. Suppose 8 is
the property of being primary and G is a group satisfying F1-F4. Then ¢ 1is a counter-
example of least order to Theorem 2.1, Group & possesses all of the properties listed in
Lemmas 1.1-1.6, in particular, it follows from Lemma 1.2 that the order of K is odd. Let
K be a p-group, where p is an odd prime.

Assume that AK=£ . Since the order of A4 1iseven, féﬂZ(Az) is different from the identi-
ty and thg centralizer of a nonidentity element of this intersection has index equal to a
power of £ in & . By Burnside's lemma (see [3, p. 491]), & is nonsimple. By Lemma 1.5,
N contains A , hence AN=(¥NA)K and N is solvable. This contradicts Lemma 1.1.

Therefore, AA does not coincide with & . Hence, ANB=/ andl3: AKk2 . By Lemma A,
& contains a subgroup of index 2, and, since (|Al,IBI)=2 , it follows from Lemma 1.5 that

1G:N =2

Assume that 4, NAN,NZ(N,)=/ . This means that #nA, contains no A, -invariant non-

identity subgroups. Therefore, the representation of Aé by permutations on the cosets

modulo the subgroup /4 NN, 1is faithful of degree [N, ¢ /'én/vzl. The index of /4, in 45,

is equal to 2 (if A=H ) or 4. 1If /é_c;/\é , then ﬁéﬂZ(/Vz)=/ implies Mél=2 . Contradic-
tion. If 4 dis not contained in A, , then IAzﬂje:{‘/z|=l/\{e:/Vzn #, |, i.e., ANN# has in-
dex 2 or 4 in /Yz . Now, /\{e can be isomorphically embedded in the symmetric group on four
letters. Since a Sylow 2Z-subgroup of the latter is dihedral, this contradicts Lemma 1.6.
Thus, //znA/anz(,vz) is different from the identity. The centralizer 6’=0~ (() of an
involutidn 7 of this intersection contains the subgroup </7é'/,/Vz>. hence the index of ('
in N is equal to a power of 2 . By Burnside's lemma, A 1is nonsimple. But A is a
direct product of isomorphic simple groups, hence /5——«1'# s where $74/ is an element of a

simple group X, that is a direct factor of AN , and 4 1is an element of a complement y

to X in ¥ . Clearly, Gx(m)=£’,v(z)nx. Thus, ﬂx{.z.') contains </l:g/ﬂX,/V2ﬂX> , and
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the index of Ux (z) in X is a power of the prime P . Contradiction,
Theorem 2.1 is proved.

§3. Subgroup B 1is Dedekind

THEOREM 3.1. If A contains a nilpotent subgroup # of index< 2, and 5 1is Dedekind,
then the finite group &= AB is solvable,

Proof. Assume the theorem is false. Let # denote the following property: A is
Dedekind and A=% . Then a group & satisfying F1-F4 is a counterexample of least order
to Theorem 3.1. Group & possesses the properties listed in Lemmas 1.1-1,6. Let us study
this group in greater detail.

LEMMA 3.1. Subgroup A is maximal in & ,ANB=/ and lA:HI|=2.

Proof. Let M be a maximal subgroup of & containing A . Then M is solvable and
MnB={ , by Lemma 1.3. This means that A=4 and ANB=/ . It follows from the Wielandt—
Kegel theorem that A+ /.

LEMMA 3.2. The order of B is odd.

Proof. Assume the contrary, i.e., Z?:z#/ . Assume that # has even order. Let § be a

2-subgroup of £ that contains /42 as a subgroup of index 2, If /‘énz(«”%/ , then the
centralizer of an involution of this intersection properly contains A ,» which contradicts
Lemma 3.1. Thus, //ZHZ(5)=/. The representation of J by permutations on the cosets
module /;é is faithful of degree |S"-/‘/2‘=4 . Thérefore, § is a subgroup of the symmetric
group on four letters and [4l=2 . Now B3, has index 4 in A, 5 . Since 4,5, is nondihe-
dral by Lemma 1.6, we have -anZ(Az‘%)’é/' . Therefore, the centralizer J of an involution of
BNnZ{4,8,) contains F and #, , hence ﬁég(ﬂﬂ/’)A , which contradicts Lemma 1.3. Thus,
H Thas odd order.

By Lemma A, & contains a subgroup of index 2. It follows from Lemma 1.5 that & : N|=2

Now, A4 is a Hall subgroup of & and nonprimary by Theorem 2.1, If # is any Sylow sub-
group of # , then A/N(p) -=A/G(P)n/V=Anf/=/-/ . By a theorem of Wielandt (see [3, p. 4441), N
contains a normal complement to # . But this is impossible in N .

Lemma 3.2 is proved.

LEMMA 3.3. ( 1is simple.

Proof. Since the orders of A and A are relatively prime, Lemma 1.5 implies that

& is simple.
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LEMMA 3.4. Subgroup B is nonpr;’.mary and contains no nonidentity cyclic Sylow subgroup,

Proof. Subgroup B is nonprimary by Theorem 2.1, Since /4, is a nonidentity A -invari-
ant subgroup, the center of A has even order. The representation of ( by permutations on
the cosets modulo A is faithful of degree [#:A|=8 . Since A is maximal in & , it fol-
lows that & is a primitive permutation group. The subgroup B is regular, hence if A5 con-
tains a cyclic Sylow subgroup %/ , then, by Theorem 25.4 of [8], & is doubly transitive.
Then all involutions in the center of A are contained in P(@) (see Lemma B). Contradic-
tion.

LEMMA 3.5. If X is a subgroup containing /‘72, , then X is a & -group, where Z=%(4)
and is solvable.

- Proof. Assume that a prime o divides the order of X and the order of A . We may
assume, without loss of generality, that a Sylow o -subgroup X,a of X is contained in 3,

otherwise we can replace B by a conjugate subgroup. Group X contains the subgroup Ve

</¥31,Xnﬁ> , and, by Lemma IV.4.12 of [3], the normalizer of Yy 1is factorizable. Since

the orders of A and B are relatively prime, VY=(YnA)(YnA). By induction, Yy 1is sol-
vable, hence there exists a Hall subgroup /‘/2,4 of VY , where & is a Sylow , -subgroup
of y . Now 0<3? for some gel and 4 1is B? _invariant. Since Hy 1is A -invariant
and 5”=/45} , it follows from a lemma of Kegel (see [3, p. 677]) that £ is nonsimple. This
contradicfs Lemma 3.3, Thus, X dis a 7 -group. Since /fz,g X , the Wielandt—Kegel theo-
rem implies that X is solvable.

LEMMA 3.6. Subgroup /7’2, is not quasicentral in X .

Proof. Assume that all subgroups of 4, are A —invariant. Since #NZ(4)SZ(4) ,
we have Z(AX*/ and, by a theorem of Ito [9], there is an element ##7/ in 3 such that
D=&, ()  properly contains B . Clearly, In#, =1 . Assume that JNH#/. Then the cen-
tralizer of an involution of 2N/ contains /72/ and { , which contradicts Lemma 3.5.
Thus, .ZNH =/ ., But then #=A4Z  1is nonsimple by Lemma A, which contradicts Lemma 3.3.

LEMMA 3.7, 1If X is a subgroup containing /'ér , then X c 4

Proof. Assume that V=0p(X)7é/ , where p is an odd prime, Then V  is 4 -invari-
ant and f/Q/VG(V) . By Lemma 3.5, NG(VJ is a T -group, where %=7(A), hence [/IG(V):;‘/)=/
or 2 and # 1is A/G(V) -invariant. Consequently, XQ/VG(V)E/VG(H):A'

Now suppose 0/,()()=/. Since X 1s solvable, it follows that 5{=02(X)7é/ and ¥ is the
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Fitting subgroup of X . Therefore, fQCX (£) (see [3, p., 2771).

Assume that the order of C‘G (#) 4is divisible by some odd prime ,D€7Z(A) . Since X¢€
/VG (£) and 06' (%) 1is /\/@ (¥) -invariant, X(f@ (¥) 1is a subgroup. Since the Sylow A2 -
subgroups of XCG (¥) and X have the same order, it follows from the equality iXUG._ (J‘f)\lcx(g)F
IXHCG(f)\ that p divides the order of fx(?) . Contradiction. Therefore, the order of
55 (£) 1is not divisible by the odd primes in % (A) .

The 2-group # is contained in some Sylow 2-subgroup /4; s 965 , and ¥ 1is not con-
tained in ﬂj . Therefore, a nonidentity element ze¥ - //j induces an automorphism of
order 2 on Hz',g If yz=zy for some yeﬁj/ , then ;e% (). Contradiction. Thus, T
induces a regular automorphism on /7"; . But then /-/2‘,9 is quasicentral in A? (see [4,
Theorem 12.6.8]). This contradicts Lemma 3.6.

Lemma 3.7 is proved.

LEMMA 3.8, The centralizers of all involutions are 2-nilpotent.

Proof. If ¢ dis an involution of # , then (. (iJ2/, and, by Lemma 3.7, G (0) is
contained in A . Consequently, the group C’@ (¢) has a normal 2-complement. Since & is
simple, the involutions of A -4 are conjugate to involutions of # (see [10, p. 265]).

Since a Sylow 2-subgroup of { is nondihedral, it follows from a theorem of Gorenstein
[11] that J is isomorphic to A2SZ (3, 4) or 8z(2"), 223 . The order of PS. (3, 4) is
equal to 25325-7 , and all Sylow subgroups of JZ (2%) of odd orders are cyclic. Since
B 1is nonprimary, B has a cyclic Sylow subgroup #/ , which contradicts Lemma 3.4.

Theorem 3.1 is completely proved.

COROLLARY. If A is nilpotent and A contains a quasicentral subgroupB of index

< 2, then the finite group &=AF 1is solvable.

Proof. Suppose A is nonmaximal in & . If A is a maximal subgroup of & containing
A, then MnK=/{.|\MnBl=2, and IMNAl=2 . Since &=MK , solvability of & follows from
Theorem 3.1.

Now suppose A is maximal in & . By Theorem 2.1, A is nonprimary, and, by a theo-

rem of Thompson (see [3, p. 445]), the order of A is even. If the Sylow 2-subgroup Az of
A is & -invariant, then & is solvable by induction. If Az is not ( -invariant, then
/43 is a Sylow subgroup of { and /VG (/42)= A . Then & possesses a normal 2-complement

(see [3, p. 444]), i.e., £ is again -solvable. The corollary is proved.
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§4. Subgroup K 1is Cyclic

In this section we prove the following

THEOREM 4.1. If A contains a nilpotent subgroup 4 of index €2 , and B contains
a cyclic subgroup K of index <2, then the finite group & = AB 1is solvable.

Proof. Assume that Theorem 4.1 is false. Suppose & denotes the property of being
cyclic and & satisfies F1-F4. Then 7 1is a counterexample of least order to Theorem
4.1. Group & possesses all of the properties listed in Lemmas 1,1-1.6, in particular,
it follows from Lemma 1.5 that a minimal & -invariant subgroup A contains a nonidentity
cyclic Hall subgroup B,,.. Therefore, AN 1is simple. Let us continue the investigation of
G .

LEMMA 4.1. Suppose ( is a proper subgroup of & containing A . Then ' is solvable
and OnNK=/ . If G£=CK , then 0 1is maximal in (& and the center of ( has odd order.
Proof. By Lemma 1.3, C is solvable, and, since K is quasi-central in B , we have

Cnk=1.

Suppose (=CK . Any proper. subgroup of ( containing ( intersects A in the identity,
hence ( is maximal in & . Subgroup ( contains no nonidentity & -invariant subgroups,
hence the representation of /£ by permutations on the cosets modulo ( 1is faithful of de-
gree [Kl. It follows from the minimality of [ that & 1is a primitive permutation group.
Subgroup K is regular in this representation. If the order of A is a prime, then - is
either solvable or doubly transitive (see [3, p. 609]). If the order of K is mnot a prime,
then & bis doubly transitive (see [8, p. 651]).

Thus, in both cases & is doubly transitive. By Lemma B, all involutions of the center
of { are contained in ®(#) . Therefore, the center of  must have odd order.

LEMMA 4.2. If P 1is a Sylow subgroup of A of odd order, then /VG (/D)/C& (P) has order
1, 2, or 4.

Proof. Clearly, A SN, (P) . 1f N, P)#A , then NatP)NK=1 and | N, (P)nBl=2 . Since
//QC’G(P)P , it follows that /\«'(,,(P)/’%(P)p has order 1, 2, or 4.

LEMMA 4.3, Az is not a Sylow subgroup of &

Proof. Assume that 4, is a Sylow subgroup of ¢ . Then 32 is contained in /42 and

2
=AK . Since A4, is different from the identity, it follows that #, nZ(A,) 1is different

from the identity and is contained in the order of A . This contradicts Lemma 4.1.
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LEMMA 4.4, The order of //2 is at most 2. If I[#,1=2 , then /42 is elementary Abelian
of order 4 and there exists a dihedral subgroup § of order 8 containing /42 .

Proof, Since /42 is not a Sylow subgroup of & , /42 is contained as a subgroup of index
2 in some 2-group S .

Assume that #,NZ(S)#/, and let £ be an involution in this intersection. Then (=
(p (2)2<A,§>#A. Since G=CK , we have a contradiction to Lemma 4.1. "I‘hus, HnZ(8)=1.

Suppose A,7/. Then /#, is not J -invariant and 4, contains no nonidentity § -invari-
ant subgroups. In particular, /Z is a proper subgroup of AZ and IS://ZI=4. The repre-
sentation of § by permutations on the cosets modulo Hy 1is faithful of degree 4, hence S
is a subgroup of the symmetric group on four letters. Thus, § is dihedral of order 8 and
IHyl=2. 1f A, is cyclic, then Z{($)=H, . Contradiction. Therefore, A, 1is elementary
Abelian.

LEMMA 4.5. AnB=/, |A:HI=2 , and |B:K|=2.

Proof. Since AnK=1 , we have [AnBls2. 1f B=AK or [=HB , then & is solvable
by Theorem 3.1 or its corollary. Therefore, ANB =1 and |A:H|=2, |B:K|=2.

LEMMA 4.6. N, is non-Abelian.

Proof. Suppose Nz is Abelian. Then A, is elementary Abelian. It follows from Lemma
4.4 that M=/ . Now (IA1,1B1)=2 and N has index 2 in &

1f N,nK={ , then [Ky]1=2 and |G,/=8. In this case /\é is dihedral of order 4. This
contradicts Lemma 1.6.

Since K, is cyclic, we have |A,nKl=2 and IK,|€4 , and also IGls#% . Consequently,
IN,]=8 . The centralizer of an involution in N,nK  contains 2B , hence it is solvable and
NP8 (28) (see [12]). But the factor group AufpSL(&J)/IPSL (28) has order 3, hence &
cannot be embedded in Aut PSL (2,8). This contradicts Lemma 1.5.

LEMMA 4.7. The order of A is even, A,N N %/ , and the centralizer of an involution
in A’zn/V is solvable.

Proof. Assume that /(2=/. If H.e=/ , then a Sylow 2-subgroup of  has order 4. If
H,#/ , then the dihedral group § in Lemma 4.4 is a Sylow subgroupbof & . 1In both cases

we have a contradiction to Lemma 1.6, Therefore, the order of A 1is even.

Assume that K,NN=4/ . Then K,

A, /Aeﬂ/\/ is an elementary Abelian group isomorphic to £#/y , we have [K|=2 . Now N#G

can be isomorphically embedded in 6—’//\/ . Since
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and lAélsB . Contradiction,

Thus, /(2nN+/ . The centralizer of an involution in A, NA  contains B , hence is
solvable.

LEMMA 4.8, Ne is not semidihedral and is not wreathed.‘

Proof. Suppose /Vz is semidihedral or wreathed. Since /V’ is simple, all involutions of
N are conjugate (see [13, pp. 10-11]). The centralizer of an involution in /(ZnA/ is
solvable, hence N is isomorphic to P84 (3, 3) .VM,, , or PSU (3,3%).

The order of P8L (3.3) is equal to 2%3°13 , and a Sylow 3-subgroup is non-Abelian.

The normalizer of a Sylow 13-subgroup has order 3-13. If N« PS8/ (3,3) , then 3’ divides
the order of A and 13 divides the order of B , and also |NnFl=7/3 . This contradicts
Lemma 4.7.

The order of M// is equal to 24325'-// , and the normalizer of a Sylow 3-subgroup has
order 243z , and the normalizer of a Sylow 5-subgroup has order 30. If NgMﬂ , then 11
divides neither JAl nor |Bl . Contradiction.

The order of PS4 (3.32) is equal to 25337 and a Sylow 7-subgroup is self-centralizing.
If N PSeL(3,3%) , then INNnZ|=7 , which contradicts Lemma 4.7,

LEMMA 4.9. [N, > 2%

Proof. If '/V2’s2‘5 , then Nz is Abelian, dihedral, semidihedral, or wreathed [14].
Contradic’tion.

LEMMA 4.10, K, NZ (4,8, )= 1.

Iixl:_g_f_. Assume the contrary. Then the centralizer of an involution L'e/(enZ(AZBZ) is
solvable and contains a Hall subgroup 4,5 . Clearly‘, t=#(4,8), and it follows from Lemma
1.3 that the order of # 1is odd. Therefore, Mz|=3 and [2:Nl=2 .

Since N contains 4, we have N=#(NnA,B) . Subgroup ¥ is simple; hence NN A,B con-
tains no cyclic subgroups of index <& . Thus, N does not contain A , and ANK has index
4 in NNA, B

By Tﬁeorem 2.1 H is nonprimary, and, by Wielandt's theorem (see [3, p. 444]), # has
a Sylow subgroup P, whose normalizer X=/VN (P) properly contains /4 . Since AzﬂN =1,
and also X=N (P)NN and AENﬁ(p) , it follows that [X:/|=2.

Let Xa be a Sylow 2-subgroup of X contained in /V; . If Xe is not contained in /\/BHB.

then /Ve= X, A (N,nB) and N=X(NnB) 1is solvable by induction. Contradiction. Therefore,
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XgN,nB . 1f X,eN,nK , then X,=<i> , and since X,SA,n8 and XnNnA,B=<i>E
Z(NN4,B) we have <i>L<i>*SX and R(N)#/. Contradiction, Thus, A,nB=X,4(A,nK) and
N,nB=X, A (N nK).

Group Bz contains a cyclic subgroup £, of index 2, hence all maximal subgroups of
V.Ba are either Abelian or dihedral (see [10, p. 191]). If A,nZ is dihedral, of order
>4 , then A1, K24 , and since all elements of A,NB-ANK have order 2, it follows
that Nzn'K is a characteristic subgroup of #, , hence /Vzﬂ/( is /Vz -invariant.

(4

Thus, either a Sylow 2-subgroup #, of the simple group A contains an Abelian maximal

2
subgroup or the commutator subgroup of Nz is cyclic. By a theorem of [15], /Vz is Abelian,
dihedral semidihedral, or wreathed. Contradiction.

Lemma 4.10 is proved.

LEMMA 4.11. The order of Hz is equal to 2, and a Sylow 2-subgroup of & has order s 25.

Proof. Since K,NZ(4,B,)=/, it follows that K, contains no nonidentity 4,B, -invariant
subgroups. The representation of /4133 by permutations on the cosets modulo /(2 is faithful
of degree Meﬂai K| . 1f IHl=1 , then [4,8,:K)=4 and 4B, 1is dihedral of order 8.
This contradicts Lemma 1.6.

Thus, /f2=/ ar}d" IAéBZ-ZKa [=8. Therefore, AZBz can be isomorphically embedded in
the symmetric group of degree 8., Since a Sylow 2-subgroup of the latter has exponent 23 s
we have leis23 and 14,8 |s 2%

It follows from Lemma 4.9 that £ is simple with a Sylow 2-subgroup of order 26 . Since

K, is cyclic of order 8, we obtain from [16], using a theorem of Fong (see [14]), that &

is isomorphic to M,z . In M, the normalizer of Sylow 3-subgroup has order 33-4 , and
the normalizer of a Sylow 5-subgroup has order 2"-5‘ . Since the order of Mlz is equal to-
26-33-5'-// , it follows that 11 divides neither |4! nor !Bi . Contradiction.

Theorem 4.1 is completely proved.

Theorems 2.1, 3.1, 4.1 and the corollary of Theorem 3.1 taken together constitute a proof
of the main theorem of this paper, which was stated in the introduction.

§5. Product of Groups with Quasicentral Sﬁbgroups of 0dd Indices

LEMMA 5.1. Suppose 2 is the smallest prime divisor of the order of a group & and P
is a Sylow o -subgroup of F . If P is quasicentral in £ , then & is P —decomposable
with a Dedekind Sylow o -subgroup. In particular, if p>2 , then 0D is contained in the

center of _G .
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The proof is by induction on the order of £ . Suppose X is an element of order P in
P . Then <z>is £ ~-invariant and so is EG(<1‘>) . If ‘CG(<.2'>)745 , then G/E’G(<.1‘>)
isomorphic to a group of automorphisms of <x>. Since Aut<x> 1is cyclic of order p-7and

is the smallest number.dividing the order of & » we have a contradiction. Therefore,

%((1')):5, and is contained in the center of & . The factor group &/<z>, is,
by induction, .© -decomposable, hence & 1is also /J—decomposable. Since 2 is Dedekind and,
when pP>2 Abelian, it follows that /2 is contained in the center of & when pe .

Now, applying [5], we obtain

COROLLARY 1. If A and B contain quasicentral subgroups of odd indices, then the

group is solvable.

COROLLARY 2. 1If A 1is 2-decomposable with a modular Sylow 2-subgroup, and JB contains
a quasicentral subgroup of odd index, then the group &=A4B 1is solvable.
Corollary 2 generalizes Theorem 13.10.3 in Scott [4].
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