- M. I. Kargapolov and Yu. I Merzlyakov, Foundations of Group Theory [in Russian], Nauka 2. (1972).
- A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups [in Russian], Nauka (1972). 3.
- V. M. Kopytov, "Ordering of Lie algebras," Algebra Logika, 11, No. 3, 295-325 (1972). 4.

A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka (1970). 5.

6.

S. J. Bernau, "Free abelian lattice groups," Math. Ann., <u>180</u>, 48-59 (1969). J. Martinez, "Varieties of lattice-ordered groups," Math. Z., <u>137</u>, No. 4, 265-284 (1974). 7.

PRODUCT OF TWO GROUPS WITH NILPOTENT SUBGROUPS OF INDEX AT MOST 2

V. S. Monakhov

UDC 519.44

Introduction

Suppose a finite group $\mathcal G$ is the product of its subgroups A and $\mathcal B$, i.e., $\mathcal G=A\mathcal B$. Assume that A has a nilpotent subgroup H of index ≤ 2 and B has a nilpotent subgroup K of index ≤ 2 . Is G then solvable?

Solvability of such a group has been proved in certain special cases, namely; if H and K are cyclic, \mathcal{F} is solvable by Theorem 1 of [1]; if \mathcal{B} is cyclic or \mathcal{H} and \mathcal{B} are Dedekind, solvability of \mathcal{G} follows from [2]. The Wielandt-Kegel theorem [3, p. 674] can also be regarded as a special case of the above situation.

In the present paper we investigate the genral situation. In §1 we establish a number of properties of a hypothetical nonsolvable group of least order admitting the indicated factorization. On the basis of these properties we prove in §§2, 3, and 4 the following

MAIN THEOREM. Suppose a finite group ${\mathcal G}$ is the product of its subgroups ${\mathcal A}$ and ${\mathcal B}$. Assume that A has a nilpotent subgroup H of index ≤ 2 , and B has a subgroup K of index \leq 2. Then \mathscr{C} is solvable in each of the following cases: 1) \mathscr{K} is primary; 2) \mathscr{K} is cyclic; 3) \mathcal{B} is Dedekind; 4) $\mathcal{A} = \mathcal{H}$ and all subgroups of \mathcal{K} are \mathcal{B} -invariant.

The above-mentioned results of [1, 2] and also Theorems 13.6.1, 13.6.2, and 13.10.1 in Scott [4] are special cases of our theorem. In §5 of this present paper we prove a proposi-tion which, with the aid of a result of [5], enables us to generalize Theorem 13.10.3 of [4].

We will need the following notation. Suppose Y is a subgroup of a finite group X. Then:

 y_{v} is the largest X -invariant subgroup contained in y; y^{χ} is the smallest χ -invariant subgroup containing y; X_{ρ} is a Sylow P -subgroup of X, where ρ is a prime; $X_{\rho'}$ is a Sylow ρ -complement of X; Z(X) is the center of X.

We call a subgroup Y quasicentral in X if all subgroups of Y (including Y itself) are X -invariant (cf. the definition in [4, p. 396]).

The remaining notation and definitions are clear from the text and when necessary can be found in [6]. We will frequently use the following lemmas.

LEMMA A [1, Lemma 2]. Suppose a finite group \mathcal{G} is the product of two subgroups A and \mathcal{B} . If A has even order and a cyclic Sylow 2-subgroup and $A \cap \mathcal{B} = \mathcal{A}$, then \mathcal{G} contains a subgroup of index 2.

Translated from Algebra i Logika, Vol. 16, No. 1, pp. 46-62, January-February, 1977. Original article submitted October 2, 1976.

LEMMA B [1, Lemma 3]. Suppose \mathcal{G} is a doubly transitive group of permutations and \mathcal{H} is the stabilizer of some point. Then all involutions in the center of \mathcal{H} are contained in $\mathcal{O}_{p',p}(\mathcal{G})$.

<u>LEMMA C [5]</u>. Suppose a finite group G = AB, where A and B are ρ -closed subgroups. If $A_{\rho} \subseteq B_{\rho}^{C}$, then A_{ρ}^{C} is a ρ -group.

§1. A Study of the General Situation

In this section the object of study is a finite group ${\mathcal G}$, satisfying the following conditions:

F1. \mathcal{G} is the product of two subgroups A and \mathcal{B} ;

F3. K possesses a group-theoretic property \mathscr{G} inherited by subgroups and factor groups;

F4. $\mathcal G$ is nonsolvable, but each nontrivial subgroup and factor group of $\mathcal G$ satisfying F1-F3 is solvable.

Without specifying the property Θ , we establish in §1 some properties of a group satisfying F1-F4. Note that if property Θ is trivial, i.e., if no restrictions are imposed on K in F3, then a group satisfying F1-F4 is a counterexample of least order to the general problem posed at the beginning of this paper.

Thus, we suppose in this section that \mathcal{G} is a finite group satisfying Fl-F4. Let A_2 and \mathcal{B}_2 denote Sylow 2-subgroups of A and \mathcal{B} , respectively, which are permutable and whose product $A_2 \mathcal{B}_2$ is a Sylow 2-subgroup of \mathcal{G} (see [3, p. 676]). Let N be a minimal \mathcal{G} -invariant subgroup and N_2 a Sylow 2-subgroup of N contained in $A_2 \mathcal{B}_2$.

LEMMA 1.1. $\mathcal{R}(\mathcal{G}) = 1$.

<u>Proof.</u> Let R = R(G) be the product of all solvable G -invariant subgroups. Since $G/R = AR/R \cdot BR/R$, and $AR/R \cong A/A\cap R$, and $BR/R \cong B/B\cap R$, it follows that AR/R contains a nilpotent subgroup $HR/R \cong H/H \cap R$ of index ≤ 2 , and BR/R contains a nilpotent subgroup $KR/R \cong K/K \cap R$ of index ≤ 2 . Property Θ is inherited by factor groups, hence KR/R possesses property Θ . If $R \neq 1$, then, by F4, G/R is solvable, hence so is G. Contradiction.

LEMMA 1.2. Subgroup A is not a 2-group and neither is B.

<u>Proof.</u> If, for example, \mathcal{B} is a 2-group, then $\mathcal{G} = \mathcal{A}\mathcal{B} = \mathcal{A}_{2'}(\mathcal{A}_2\mathcal{B}_2)$ is solvable by the Wielandt-Kegel theorem.

<u>LEMMA 1.3</u>. If \mathcal{C} is a proper subgroup of \mathcal{C} containing A, then \mathcal{C} is solvable and $(\mathcal{C} \cap \mathcal{B})_{\mathcal{B}} = 1$. If \mathcal{D} is a proper subgroup of \mathcal{C} containing \mathcal{B} , then \mathcal{D} is solvable and $(\mathcal{D} \cap A)_{\mathcal{A}} = 1$.

<u>Proof.</u> Since $C = A(C \cap B)$ and $C \cap K$ is a nilpotent subgroup possessing property Θ and having index ≤ 2 in $C \cap B$, it follows that C is solvable. Also, G = CB, and if $X = (C \cap B)_B \neq I$, then $X \stackrel{G}{=} X \stackrel{G}{=} X \stackrel{C}{\subseteq} C$, hence $X \stackrel{G}{=}$ is a nonidentity G -invariant solvable subgroup. This contradicts Lemma 1.1. Thus, $(C \cap B)_B = I$. Subgroup \mathcal{I} is handled in a similar way.

LEMMA 1.4. $(|A|, |B|) = 2^m$.

<u>Proof.</u> Assume the contrary. Suppose ρ is an odd prime dividing the order of A and the order of \mathcal{B} . A Sylow ρ -subgroup A_{ρ} of A is contained in \mathcal{H} and is A-invariant. If $A_{\rho}^{\mathcal{G}}A \neq G$, then, by Lemma 1.3, $A^{\mathcal{G}}$ is solvable, which contradicts Lemma 1.1. Thus, $A_{\rho}^{\mathcal{G}}A = G$ and $G/A_{\rho}^{\mathcal{G}} \cong A/A \cap A_{\rho}^{\mathcal{G}}$ is a ρ' -group. A Sylow ρ -subgroup \mathcal{B}_{ρ} of \mathcal{B} is different from the identity and is \mathcal{B} -invariant. Clearly, $\mathcal{B}_{\rho} \subseteq A_{\rho}^{\mathcal{G}}$. By Lemma C, $\mathcal{B}_{\rho}^{\mathcal{G}}$ is a ρ -group, which contradicts Lemma 1.1. Thus, the orders of A and \mathcal{B} have no common odd divisors different from unity.

<u>LEMMA 1.5.</u> AN = G = BN and G is isomorphic to some group of automorphisms of N. In addition, the order of G/N divides 2^{m} and $\langle A_{2'}, B_{2'} \rangle \subseteq N$.

<u>Proof.</u> Since $\mathcal{R}(\mathcal{G}) = 1$, it follows that N is nonsolvable and is the direct product of isomorphic simple groups. By Lemma 1.3, the subgroups AN and $\mathcal{B}N$ coincide with \mathcal{G} , hence $A/AnN \cong \mathcal{G}/N \cong \mathcal{B}/\mathcal{B}nN$. By Lemma 1.4, \mathcal{G}/N is a 2-group of order dividing 2^m . Thus, $A_{2'} \subseteq N$ and $B_{2'} \subseteq N$.

The centralizer \mathcal{C} of \mathcal{N} is \mathcal{G} -invariant and, since the center of \mathcal{N} is equal to 1, we have $\mathcal{C} \cap \mathcal{N} = i$. Therefore, \mathcal{C} is isomorphic to a subgroup of \mathcal{G}/\mathcal{N} , hence $\mathcal{C} = i$ and \mathcal{G} is isormorphic to some group of automorphisms of \mathcal{N} .

LEMMA 1.6. The Sylow 2-subgroup N_{2} of N is nondihedral.

<u>Proof</u>. Assume that N_2 is dihedral. Then N is simple. If N is isomorphic to A_r , then either $A_{2'}$ or $\mathcal{B}_{2'}$ is a nonprimary Hall subgroup of A_r , which contradicts Hall's theorem (see [3, p. 177]). By a theorem of [7], N is isomorphic to $PSL(2,\rho^n)$, where ρ is an odd prime and $\rho^n > 5$.

The order of $\mathcal{PS}_{\perp}(2,\rho^n)$ is equal to $\frac{1}{Z}\rho^n(\rho^{n-1})(\rho^n+1)$, and $\mathcal{PS}_{\perp}(2,\rho^n)$ contains a dihedral subgroup X of order ρ^n+1 . A Sylow ρ -subgroup \mathcal{P} of $\mathcal{PS}_{\perp}(2,\rho^n)$ is elementary Abelian, self-centralizing, and its normalizer M has order $\frac{1}{Z}\rho^n(\rho^{n-1})$, and M/\mathcal{P} is cyclic. The remaining Sylow subgroups of $\mathcal{PS}_{\perp}(2,\rho^n)$ of odd orders are cyclic (see [3, Chap. II]).

We may assume, without loss of generality, that $\mathcal{P} \subseteq \mathcal{H}$. Then $\mathcal{B}_{2'}$ is cyclic. Since \mathcal{P} is \mathcal{A} -invariant, it follows that $N_{\mathcal{G}}(\mathcal{P})$ contains \mathcal{A} , and, by Lemma 1.3, $N_{\mathcal{G}}(\mathcal{P}) \cap \mathcal{B}_{2'} = \ell$. Subgroup \mathcal{H} centralizes \mathcal{P} , hence $N_{\mathcal{L}}(\mathcal{P})/\mathcal{C}_{\mathcal{C}}(\mathcal{P})$ is a 2-group.

Since $M \subseteq N_{\mathcal{G}}(\mathcal{P})$ and $M \cap \mathcal{C}_{\mathcal{G}}(\mathcal{P}) \subseteq N \cap \mathcal{C}_{\mathcal{G}}(\mathcal{P}) = \mathcal{C}_{\mathcal{N}}(\mathcal{P}) = \mathcal{P}$, it follows that M/\mathcal{P} is also a 2-group. Let the order of M/\mathcal{P} be 2^k . Then $\rho'' = 2^{k+\ell} + \ell$ and $|\chi| = 2(2^k + \ell)$. A Sylow 2-

subgroup of M is not a Sylow subgroup of N, hence $M \cap X = I$ and MX = N. But this contradicts Lemma A.

§2. Subgroup K is is Primary

The aim of this section is to prove the following theorem.

THEOREM 2.1. If A contains a nilpotent subgroup H of index ≤ 2 , and B contains a primary subgroup K of index ≤ 2 , then the finite group G = AB is solvable.

<u>Proof.</u> We assume that Theorem 2.1 is false and apply the results of §1. Suppose θ is the property of being primary and \mathcal{C} is a group satisfying F1-F4. Then \mathcal{C} is a counterexample of least order to Theorem 2.1. Group \mathcal{C} possesses all of the properties listed in Lemmas 1.1-1.6, in particular, it follows from Lemma 1.2 that the order of \mathcal{K} is odd. Let \mathcal{K} be a ρ -group, where ρ is an odd prime.

Assume that AK=G. Since the order of H is even, $H_2 \cap Z(A_2)$ is different from the identity and the centralizer of a nonidentity element of this intersection has index equal to a power of P in G. By Burnside's lemma (see [3, p. 491]), G is nonsimple. By Lemma 1.5, N contains K, hence $N=(N\cap A)K$ and N is solvable. This contradicts Lemma 1.1. Therefore, AK does not coincide with G. Hence, $A\cap B=1$ and $B: K\models 2$. By Lemma A,

G contains a subgroup of index 2, and, since (|A|, |B|) = 2, it follows from Lemma 1.5 that |G:N| = 2.

Assume that $H_2 \cap N_2 \cap Z(N_2) = I$. This means that $H_2 \cap N_2$ contains no N_2 -invariant nonidentity subgroups. Therefore, the representation of N_2 by permutations on the cosets modulo the subgroup $H_2 \cap N_2$ is faithful of degree $|N_2:H_2 \cap N_2|$. The index of H_2 in A_2B_2 is equal to 2 (if A=H) or 4. If $H_2 \subseteq N_2$, then $H_2 \cap Z(N_2) = I$ implies $|N_2| = 2$. Contradiction. If H_2 is not contained in N_2 , then $|A_2B_2:H_2| = |N_2:N_2 \cap H_2|$, i.e., $N_2 \cap H_2$ has index 2 or 4 in N_2 . Now, N_2 can be isomorphically embedded in the symmetric group on four letters. Since a Sylow 2-subgroup of the latter is dihedral, this contradicts Lemma 1.6.

Thus, $\mathcal{H}_{2} \cap \mathcal{N}_{2} \cap \mathbb{Z}(\mathcal{N}_{2})$ is different from the identity. The centralizer $\mathcal{C}=\mathcal{C}_{\mathcal{N}}(i)$ of an involution i of this intersection contains the subgroup $\langle \mathcal{H}_{2}^{i}, \mathcal{N}_{2} \rangle$, hence the index of \mathcal{C} in \mathcal{N} is equal to a power of \mathcal{P} . By Burnside's lemma, \mathcal{N} is nonsimple. But \mathcal{N} is a direct product of isomorphic simple groups, hence $i = x\psi$, where $x \neq i$ is an element of a simple group X, that is a direct factor of \mathcal{N} , and ψ is an element of a complement γ to X in \mathcal{N} . Clearly, $\mathcal{C}_{\chi}(x) = \mathcal{C}_{\mathcal{N}}(i) \cap X$. Thus, $\mathcal{C}_{\chi}(x)$ contains $\langle \mathcal{H}_{2^{i}} \cap X, \mathcal{N}_{2} \cap X \rangle$, and

the index of $C_{\chi}(x)$ in χ is a power of the prime ρ . Contradiction. Theorem 2.1 is proved.

§3. Subgroup \mathcal{B} is Dedekind

THEOREM 3.1. If A contains a nilpotent subgroup H of index \leq 2, and \mathcal{B} is Dedekind, then the finite group $\mathcal{G} = A\mathcal{B}$ is solvable.

<u>Proof.</u> Assume the theorem is false. Let \mathcal{G} denote the following property: \mathcal{K} is Dedekind and $\mathcal{K}=\mathcal{B}$. Then a group \mathcal{G} satisfying F1-F4 is a counterexample of least order to Theorem 3.1. Group \mathcal{G} possesses the properties listed in Lemmas 1.1-1.6. Let us study this group in greater detail.

LEMMA 3.1. Subgroup A is maximal in G, $A \cap B = i$ and |A:H| = 2.

<u>Proof.</u> Let M be a maximal subgroup of \mathcal{F} containing A. Then M is solvable and $M \cap \mathcal{B}=1$, by Lemma 1.3. This means that A=M and $A \cap \mathcal{B}=1$. It follows from the Wielandt-Kegel theorem that $A \neq H$.

LEMMA 3.2. The order of ${\mathcal B}$ is odd.

<u>Proof.</u> Assume the contrary, i.e., $\mathcal{B}_2 \neq 1$. Assume that \mathcal{H} has even order. Let S be a 2-subgroup of \mathcal{G} that contains A_2 as a subgroup of index 2. If $\mathcal{H}_2 \cap \mathbb{Z}(S) \neq 1$, then the centralizer of an involution of this intersection properly contains A, which contradicts Lemma 3.1. Thus, $\mathcal{H}_2 \cap \mathbb{Z}(S) = 1$. The representation of S by permutations on the cosets module \mathcal{H}_2 is faithful of degree $|S:\mathcal{H}_2|=4$. Therefore, S is a subgroup of the symmetric group on four letters and $|\mathcal{H}_2|=2$. Now \mathcal{B}_2 has index 4 in $A_2\mathcal{B}_2$. Since $A_2\mathcal{B}_2$ is nondihedral by Lemma 1.6, we have $\mathcal{B}_2 \cap \mathbb{Z}(A_2\mathcal{B}_2) \neq 1$. Therefore, the centralizer \mathcal{D} of an involution of $\mathcal{B}_2 \cap \mathbb{Z}(A_2\mathcal{B}_2)$ contains \mathcal{B} and \mathcal{H}_2 , hence $\mathcal{H}_2 \subseteq (\mathcal{D} \cap A)_A$, which contradicts Lemma 1.3. Thus, \mathcal{H} has odd order.

By Lemma A, \mathcal{C} contains a subgroup of index 2. It follows from Lemma 1.5 that $|\mathcal{C}: N| = 2$. Now, \mathcal{H} is a Hall subgroup of \mathcal{C} and nonprimary by Theorem 2.1. If \mathcal{P} is any Sylow subgroup of \mathcal{H} , then $N_{\mathcal{N}}(\mathcal{P}) = N_{\mathcal{C}}(\mathcal{P}) \cap N = A \cap \mathcal{H} = \mathcal{H}$. By a theorem of Wielandt (see [3, p. 444]), N contains a normal complement to \mathcal{H} . But this is impossible in \mathcal{N} .

Lemma 3.2 is proved.

LEMMA 3.3. \hat{G} is simple.

<u>Proof</u>. Since the orders of A and B are relatively prime, Lemma 1.5 implies that G is simple.

LEMMA 3.4. Subgroup $\mathcal B$ is nonprimary and contains no nonidentity cyclic Sylow subgroup.

<u>Proof.</u> Subgroup \mathcal{B} is nonprimary by Theorem 2.1. Since $\mathcal{H}_{\mathcal{L}}$ is a nonidentity A -invariant subgroup, the center of A has even order. The representation of \mathcal{G} by permutations on the cosets modulo A is faithful of degree $|\mathcal{G}:A|=\mathcal{B}$. Since A is maximal in \mathcal{G} , it follows that \mathcal{G} is a primitive permutation group. The subgroup \mathcal{B} is regular, hence if \mathcal{B} contains a cyclic Sylow subgroup $\neq /$, then, by Theorem 25.4 of [8], \mathcal{G} is doubly transitive. Then all involutions in the center of A are contained in $\mathcal{R}(\mathcal{G})$ (see Lemma B). Contradiction.

LEMMA 3.5. If X is a subgroup containing $\mathcal{H}_{2'}$, then X is a π -group, where $\pi = \pi(A)$ and is solvable.

<u>Proof.</u> Assume that a prime ρ divides the order of X and the order of B. We may assume, without loss of generality, that a Sylow ρ -subgroup X_{ρ} of X is contained in B, otherwise we can replace B by a conjugate subgroup. Group X contains the subgroup $Y_{=}$ $\langle \mathcal{H}_{2'}, X \cap B \rangle$, and, by Lemma IV.4.12 of [3], the normalizer of Y is factorizable. Since the orders of A and B are relatively prime, $Y_{=}(Y \cap A)(Y \cap B)$. By induction, Y is solvable, hence there exists a Hall subgroup $\mathcal{H}_{2'} \mathcal{A}$ of Y, where \mathcal{A} is a Sylow ρ -subgroup of Y. Now $\mathcal{Q} \subseteq B^{\mathcal{G}}$ for some $g \in G$ and \mathcal{A} is $B^{\mathcal{G}}$ -invariant. Since $\mathcal{H}_{2'}$ is A -invariant and $\mathcal{G} = AB^{\mathcal{G}}$, it follows from a lemma of Kegel (see [3, p. 677]) that G is nonsimple. This contradicts Lemma 3.3. Thus, X is a π -group. Since $\mathcal{H}_{2'} \subseteq X$, the Wielandt-Kegel theorem implies that X is solvable.

LEMMA 3.6. Subgroup $H_{2'}$ is not quasicentral in X .

<u>Proof.</u> Assume that all subgroups of $\mathcal{H}_{2'}$ are A -invariant. Since $\mathcal{H}_{2} \cap Z(\mathcal{A}_{2}) \subseteq Z(A)$, we have $Z(A) \neq i$ and, by a theorem of Ito [9], there is an element $b \neq i$ in \mathcal{B} such that $\mathcal{D} = \mathcal{C}_{\mathcal{G}}(b)$ properly contains \mathcal{B} . Clearly, $\mathcal{D} \cap \mathcal{H}_{2'} = i$. Assume that $\mathcal{D} \cap \mathcal{H} \neq i$. Then the centralizer of an involution of $\mathcal{D} \cap \mathcal{H}$ contains $\mathcal{H}_{2'}$ and b, which contradicts Lemma 3.5. Thus, $\mathcal{D} \cap \mathcal{H} = i$. But then $\mathcal{C} = \mathcal{H} \mathcal{D}$ is nonsimple by Lemma A, which contradicts Lemma 3.3.

LEMMA 3.7. If X is a subgroup containing $H_{2'}$, then $X \subseteq A$.

<u>Proof.</u> Assume that $V = \mathcal{O}_{\rho}(X) \neq i$, where ρ is an odd prime. Then V is \mathcal{H} -invariant and $\mathcal{H} \subseteq \mathcal{N}_{\mathcal{G}}(V)$. By Lemma 3.5, $\mathcal{N}_{\mathcal{G}}(V)$ is a π -group, where $\pi = \pi(A)$, hence $|\mathcal{N}_{\mathcal{G}}(V):\mathcal{H}| = i$ or 2 and \mathcal{H} is $\mathcal{N}_{\mathcal{G}}(V)$ -invariant. Consequently, $X \subseteq \mathcal{N}_{\mathcal{G}}(V) \subseteq \mathcal{N}_{\mathcal{G}}(\mathcal{H}) = A$.

Now suppose $\mathcal{O}_{\mathcal{P}}(X) = I$. Since X is solvable, it follows that $\mathcal{I} = \mathcal{O}_{\mathcal{L}}(X) \neq I$ and \mathcal{F} is the

Fitting subgroup of X . Therefore, $\mathcal{G} \supseteq \mathcal{C}_{Y}(\mathcal{F})$ (see [3, p. 277]).

Assume that the order of $C_{\mathcal{G}}(\mathcal{F})$ is divisible by some odd prime $\mathcal{P}\in\pi(A)$. Since $X \subseteq \mathcal{N}_{\mathcal{G}}(\mathcal{F})$ and $\mathcal{C}_{\mathcal{G}}(\mathcal{F})$ is $\mathcal{N}_{\mathcal{G}}(\mathcal{F})$ -invariant, $\mathcal{X}\mathcal{C}_{\mathcal{G}}(\mathcal{F})$ is a subgroup. Since the Sylow \mathcal{P} -subgroups of $\mathcal{X}\mathcal{C}_{\mathcal{G}}(\mathcal{F})$ and \mathcal{X} have the same order, it follows from the equality $|\mathcal{X}\mathcal{C}_{\mathcal{G}}(\mathcal{F})||\mathcal{C}_{\chi}(\mathcal{F})|=|\mathcal{X}||\mathcal{C}_{\mathcal{G}}(\mathcal{F})|$ that \mathcal{P} divides the order of $\mathcal{C}_{\chi}(\mathcal{F})$. Contradiction. Therefore, the order of $\mathcal{C}_{\mathcal{G}}(\mathcal{F})$ is not divisible by the odd primes in $\pi(A)$.

The 2-group \mathcal{F} is contained in some Sylow 2-subgroup $\Lambda_2^{\mathcal{G}}$, $g \in \mathcal{G}$, and \mathcal{F} is not contained in $\mathcal{H}_2^{\mathcal{G}}$. Therefore, a nonidentity element $x \in \mathcal{F} - \mathcal{H}_2^{\mathcal{G}}$ induces an automorphism of order 2 on $\mathcal{H}_{z'}^{\mathcal{G}}$. If yx = xy for some $y \in \mathcal{H}_{z'}^{\mathcal{G}}$, then $y \in \mathcal{C}_{\mathcal{G}}(\mathcal{F})$. Contradiction. Thus, xinduces a regular automorphism on $\mathcal{H}_{z'}^{\mathcal{F}}$. But then $\mathcal{H}_{z'}^{\mathcal{G}}$ is quasicentral in $\mathcal{A}^{\mathcal{F}}$ (see [4, Theorem 12.6.8]). This contradicts Lemma 3.6.

Lemma 3.7 is proved.

LEMMA 3.8. The centralizers of all involutions are 2-nilpotent.

<u>Proof.</u> If *i* is an involution of \mathcal{H} , then $\mathcal{C}_{\mathcal{G}}(i) \supseteq \mathcal{H}_{2'}$ and, by Lemma 3.7, $\mathcal{C}_{\mathcal{G}}(i)$ is contained in A. Consequently, the group $\mathcal{C}_{\mathcal{G}}(i)$ has a normal 2-complement. Since \mathcal{G} is simple, the involutions of $A - \mathcal{H}$ are conjugate to involutions of \mathcal{H} (see [10, p. 265]).

Since a Sylow 2-subgroup of \mathcal{G} is nondihedral, it follows from a theorem of Gorenstein [11] that \mathcal{F} is isomorphic to \mathcal{PSL} (3, 4) or $\mathcal{SZ}(2^{n}), n \ge 3$. The order of \mathcal{PSL} (3, 4) is equal to $2^{6}3^{2}5 \cdot 7$, and all Sylow subgroups of $\mathcal{SZ}(2^{n})$ of odd orders are cyclic. Since \mathcal{B} is nonprimary, \mathcal{B} has a cyclic Sylow subgroup $\ne 1$, which contradicts Lemma 3.4. Theorem 3.1 is completely proved.

<u>COROLLARY</u>. If A is nilpotent and K contains a quasicentral subgroup \mathcal{B} of index < 2, then the finite group $\mathcal{F} = A\mathcal{B}$ is solvable.

<u>Proof.</u> Suppose A is nonmaximal in G. If M is a maximal subgroup of G containing A, then $M \cap K = I \cdot |M \cap B| = 2$, and $|M \cap A| = 2$. Since G = MK, solvability of G follows from Theorem 3.1.

Now suppose A is maximal in G. By Theorem 2.1, A is nonprimary, and, by a theorem of Thompson (see [3, p. 445]), the order of A is even. If the Sylow 2-subgroup A_2 of A is G -invariant, then G is solvable by induction. If A_2 is not G -invariant, then A_2 is a Sylow subgroup of G and $N_G(A_2) = A$. Then G possesses a normal 2-complement (see [3, p. 444]), i.e., G is again solvable. The corollary is proved.

§4. Subgroup K is Cyclic

In this section we prove the following

<u>THEOREM 4.1.</u> If A contains a nilpotent subgroup \mathcal{H} of index ≤ 2 , and \mathcal{B} contains a cyclic subgroup \mathcal{K} of index ≤ 2 , then the finite group $\mathcal{G} = A\mathcal{B}$ is solvable.

<u>Proof.</u> Assume that Theorem 4.1 is false. Suppose \mathscr{O} denotes the property of being cyclic and \mathscr{G} satisfies F1-F4. Then \mathscr{F} is a counterexample of least order to Theorem 4.1. Group \mathscr{G} possesses all of the properties listed in Lemmas 1.1-1.6, in particular, it follows from Lemma 1.5 that a minimal \mathscr{G} -invariant subgroup \mathscr{N} contains a nonidentity cyclic Hall subgroup $\mathscr{B}_{2'}$. Therefore, \mathscr{N} is simple. Let us continue the investigation of \mathscr{G} .

LEMMA 4.1. Suppose C is a proper subgroup of G containing A. Then C is solvable and $C \cap K = I$. If G = CK, then C is maximal in G and the center of C has odd order. <u>Proof.</u> By Lemma 1.3, C is solvable, and, since K is quasi-central in B, we have $C \cap K = I$.

Suppose $\mathcal{G} = \mathcal{C}\mathcal{K}$. Any proper subgroup of \mathcal{G} containing \mathcal{C} intersects \mathcal{K} in the identity, hence \mathcal{C} is maximal in \mathcal{G} . Subgroup \mathcal{C} contains no nonidentity \mathcal{G} -invariant subgroups, hence the representation of \mathcal{G} by permutations on the cosets modulo \mathcal{C} is faithful of degree $|\mathcal{K}|$. It follows from the minimality of \mathcal{C} that \mathcal{G} is a primitive permutation group. Subgroup \mathcal{K} is regular in this representation. If the order of \mathcal{K} is a prime, then \mathcal{G} is either solvable or doubly transitive (see [3, p. 609]). If the order of \mathcal{K} is not a prime, then \mathcal{G} is doubly transitive (see [8, p. 65]).

Thus, in both cases \mathcal{G} is doubly transitive. By Lemma B, all involutions of the center of \mathcal{C} are contained in $\mathcal{R}(\mathcal{G})$. Therefore, the center of \mathcal{C} must have odd order.

LEMMA 4.2. If \mathcal{P} is a Sylow subgroup of A of odd order, then $\mathcal{N}_{\mathcal{G}}(\mathcal{P})/\mathcal{C}_{\mathcal{G}}(\mathcal{P})$ has order 1, 2, or 4.

<u>Proof.</u> Clearly, $A \subseteq N_{\mathcal{G}}(\mathcal{P})$. If $N_{\mathcal{G}}(\mathcal{P}) \neq A$, then $N_{\mathcal{G}}(\mathcal{P}) \cap \mathcal{K} = I$ and $|N_{\mathcal{G}}(\mathcal{P}) \cap \mathcal{B}| = 2$. Since $H \subseteq C_{\mathcal{G}}(\mathcal{P})\mathcal{P}$, it follows that $N_{\mathcal{G}}(\mathcal{P})/C_{\mathcal{G}}(\mathcal{P})\mathcal{P}$ has order 1, 2, or 4.

LEMMA 4.3. A_2 is not a Sylow subgroup of G .

<u>Proof.</u> Assume that A_2 is a Sylow subgroup of G. Then B_2 is contained in A_2 and G = AK. Since H_2 is different from the identity, it follows that $H_2 \cap Z(A_2)$ is different from the identity and is contained in the order of A. This contradicts Lemma 4.1.

LEMMA 4.4. The order of H_2 is at most 2. If $|H_2|=2$, then A_2 is elementary Abelian of order 4 and there exists a dihedral subgroup S of order 8 containing A_2 .

<u>Proof.</u> Since A_z is not a Sylow subgroup of G, A_z is contained as a subgroup of index 2 in some 2-group S.

Assume that $\mathcal{H}_{z} \cap Z(S) \neq i$, and let x be an involution in this intersection. Then $\mathcal{C} = \mathcal{C}_{\mathcal{G}}(x) \geq \langle A, S \rangle \neq A$. Since $\mathcal{G} = \mathcal{C}\mathcal{K}$, we have a contradiction to Lemma 4.1. Thus, $\mathcal{H}_{z} \cap Z(S) = i$.

Suppose $H_2 = 1$. Then H_2 is not S -invariant and H_2 contains no nonidentity S -invariant subgroups. In particular, H_2 is a proper subgroup of A_2 and $|S:H_2|=4$. The representation of S by permutations on the cosets modulo H_2 is faithful of degree 4, hence S is a subgroup of the symmetric group on four letters. Thus, S is dihedral of order 8 and $|H_2|=2$. If A_2 is cyclic, then $Z(S)=H_2$. Contradiction. Therefore, A_2 is elementary Abelian.

LEMMA 4.5. $A \cap B = 1$, |A:H| = 2, and |B:K| = 2.

<u>Proof.</u> Since $A \cap K = 1$, we have $|A \cap B| \leq 2$. If G = AK or G = HB, then G is solvable by Theorem 3.1 or its corollary. Therefore, $A \cap B = 1$ and |A:H| = 2, |B:K| = 2.

<u>LEMMA 4.6</u>. N_2 is non-Abelian.

<u>Proof.</u> Suppose N_2 is Abelian. Then N_2 is elementary Abelian. It follows from Lemma 4.4 that $H_2 = I$. Now (|A|, |B|) = 2 and N has index 2 in G.

If $N_2 \cap K = i$, then $|K_2| = 2$ and $|G_2| = 8$. In this case N_2 is dihedral of order 4. This contradicts Lemma 1.6.

Since \mathcal{K}_2 is cyclic, we have $|\mathcal{N}_2 \cap \mathcal{K}| = 2$ and $|\mathcal{K}_2| \leq 4$, and also $|\mathcal{G}_2| \leq 6$. Consequently, $|\mathcal{N}_2| = 8$. The centralizer of an involution in $\mathcal{N}_2 \cap \mathcal{K}$ contains \mathcal{B} , hence it is solvable and $\mathcal{N} \cong PSL(2,8)$ (see [12]). But the factor group Aut PSL(2,8)/PSL(2,8) has order 3, hence \mathcal{G} cannot be embedded in Aut PSL(2,8). This contradicts Lemma 1.5.

LEMMA 4.7. The order of \mathcal{K} is even, $\mathcal{K}_2 \cap \mathcal{N} \neq \mathcal{I}$, and the centralizer of an involution in $\mathcal{K}_2 \cap \mathcal{N}$ is solvable.

<u>Proof</u>. Assume that $k_2 = i$. If $H_2 = i$, then a Sylow 2-subgroup of G has order 4. If $H_2 \neq i$, then the dihedral group S in Lemma 4.4 is a Sylow subgroup of G. In both cases we have a contradiction to Lemma 1.6. Therefore, the order of K is even.

Assume that $K_2 \cap N = i$. Then K_2 can be isomorphically embedded in G/N. Since $A_2/A_2 \cap N$ is an elementary Abelian group isomorphic to G/N, we have $|K_2| = 2$. Now $N \neq G$

and $|N_2| \le 8$. Contradiction.

Thus, $K_2 \cap N \neq I$. The centralizer of an involution in $K_2 \cap N$ contains B, hence is solvable.

LEMMA 4.8. N_2 is not semidihedral and is not wreathed.

<u>Proof.</u> Suppose N_2 is semidihedral or wreathed. Since N is simple, all involutions of N are conjugate (see [13, pp. 10-11]). The centralizer of an involution in $K_2 \cap N$ is solvable, hence N is isomorphic to PSL(3,3), $M_{\eta \eta}$, or $PSU(3,3^2)$.

The order of $\mathcal{PSL}(3,3)$ is equal to $\mathcal{Z}^4 \mathcal{J}^3 / \mathcal{J}^3$, and a Sylow 3-subgroup is non-Abelian. The normalizer of a Sylow 13-subgroup has order 3.13. If $N \simeq \mathcal{PSL}(3,3)$, then \mathcal{J}^3 divides the order of A and 13 divides the order of B, and also $|N \cap B| = /3$. This contradicts Lemma 4.7.

The order of M_{η} is equal to $2^4 3^2 5 \cdot H$, and the normalizer of a Sylow 3-subgroup has order $2^4 3^2$, and the normalizer of a Sylow 5-subgroup has order 30. If $N \cong M_{\eta}$, then 11 divides neither |A| nor |B|. Contradiction.

The order of $\mathcal{PSU}(3,3^2)$ is equal to $\mathcal{L}^{5}3^{3}7$ and a Sylow 7-subgroup is self-centralizing. If $\mathcal{N} \simeq \mathcal{PSU}(3,3^2)$, then $|\mathcal{N} \cap \mathcal{B}| = 7$, which contradicts Lemma 4.7.

LEMMA 4.9. $|N_{j}| \ge 2^{6}$.

<u>Proof.</u> If $|N_2| \le 2^5$, then N_2 is Abelian, dihedral, semidihedral, or wreathed [14]. Contradiction.

LEMMA 4.10. $K_{g} \cap Z(A_{2}B_{2}) = 1.$

<u>Proof.</u> Assume the contrary. Then the centralizer of an involution $i \in K_2 \cap Z(A_2B_2)$ is solvable and contains a Hall subgroup A_2B . Clearly, $\mathcal{B} = \mathcal{H}(A_2B)$, and it follows from Lemma 1.3 that the order of \mathcal{H} is odd. Therefore, $|A_2| = 2$ and $|\mathcal{G}: \mathcal{N}| = 2$.

Since N contains H, we have $N = H(N \cap A_2 B)$. Subgroup N is simple; hence $N \cap A_2 B$ contains no cyclic subgroups of index ≤ 2 . Thus, N does not contain K, and $N \cap K$ has index 4 in $N \cap A_2 B$.

By Theorem 2.1 \mathcal{H} is nonprimary, and, by Wielandt's theorem (see [3, p. 444]), \mathcal{H} has a Sylow subgroup \mathcal{P} , whose normalizer $\chi = N_N(\mathcal{P})$ properly contains \mathcal{H} . Since $A_2 \cap N = I$, and also $\chi = N_G(\mathcal{P}) \cap N$ and $\Lambda \subseteq N_G(\mathcal{P})$, it follows that $|\chi:\mathcal{H}| = 2$.

Let X_2 be a Sylow 2-subgroup of X contained in N_2 . If X_2 is not contained in $N_2 \cap B$, then $N_2 = X_2 \wedge (N_2 \cap B)$ and $N = X (N \cap B)$ is solvable by induction. Contradiction. Therefore,
$$\begin{split} &\chi_2 \in N_2 \cap \mathcal{B} \quad \text{if } X_2 \subseteq N_2 \cap \mathcal{K} \text{, then } X_2 = \langle i \rangle \text{, and since } X_2 \subseteq N_2 \cap \mathcal{B} \text{ and } X \cap N \cap A_2 \mathcal{B} = \langle i \rangle \subseteq \\ &Z(N \cap A_2 \mathcal{B}) \text{ we have } \langle i \rangle^{\underline{N}} \subseteq \langle i \rangle^{\underline{N}} \subseteq X \text{ and } \mathcal{R}(N) \neq i \text{. Contradiction, Thus, } N_2 \cap \mathcal{B} = X_2 \land (N_2 \cap \mathcal{K}) \text{ and } \\ &N_2 \cap \mathcal{B} = X_2 \land (N \cap \mathcal{K}). \end{split}$$

Group \mathcal{B}_2 contains a cyclic subgroup \mathcal{K}_2 of index 2, hence all maximal subgroups of \mathcal{B}_2 are either Abelian or dihedral (see [10, p. 191]). If $\mathcal{N}_2 \cap \mathcal{B}$ is dihedral, of order >4, then $|\mathcal{N}_2 \cap \mathcal{K}| \ge 4$, and since all elements of $\mathcal{N}_2 \cap \mathcal{B} - \mathcal{N}_2 \cap \mathcal{K}$ have order 2, it follows that $\mathcal{N}_2 \cap \mathcal{K}$ is a characteristic subgroup of \mathcal{N}_2 , hence $\mathcal{N}_2 \cap \mathcal{K}$ is \mathcal{N}_2 -invariant.

Thus, either a Sylow 2-subgroup N_2 of the simple group N contains an Abelian maximal subgroup or the commutator subgroup of N_2 is cyclic. By a theorem of [15], N_2 is Abelian, dihedral semidihedral, or wreathed. Contradiction.

Lemma 4.10 is proved.

LEMMA 4.11. The order of H_2 is equal to 2, and a Sylow 2-subgroup of G has order $\leq 2^{6}$. <u>Proof.</u> Since $K_2 \cap Z(A_2B_2) = i$, it follows that K_2 contains no nonidentity A_2B_2 -invariant subgroups. The representation of A_2B_2 by permutations on the cosets modulo K_2 is faithful of degree $|A_2B_2:K_2|$. If $|H_2|=i$, then $|A_2B_2:K_2|=4$ and A_2B_2 is dihedral of order 8. This contradicts Lemma 1.6.

Thus, $H_2 = t$ and $|A_2B_2:K_2| = 8$. Therefore, A_2B_2 can be isomorphically embedded in the symmetric group of degree 8. Since a Sylow 2-subgroup of the latter has exponent 2^3 , we have $|K_2| \leq 2^3$ and $|A_2B_2| \leq 2^6$.

It follows from Lemma 4.9 that \mathcal{G} is simple with a Sylow 2-subgroup of order 2^6 . Since \mathcal{K}_2 is cyclic of order 8, we obtain from [16], using a theorem of Fong (see [14]), that \mathcal{G} is isomorphic to \mathcal{M}_{12} . In \mathcal{M}_{12} the normalizer of Sylow 3-subgroup has order $3^3 \cdot 4$, and the normalizer of a Sylow 5-subgroup has order $2^3 \cdot 5$. Since the order of \mathcal{M}_{12} is equal to- $2^6 \cdot 3^3 \cdot 5 \cdot 14$, it follows that 11 divides neither $|\mathcal{A}|$ nor $|\mathcal{B}|$. Contradiction.

Theorem 4.1 is completely proved.

Theorems 2.1, 3.1, 4.1 and the corollary of Theorem 3.1 taken together constitute a proof of the main theorem of this paper, which was stated in the introduction.

§5. Product of Groups with Quasicentral Subgroups of Odd Indices

LEMMA 5.1. Suppose ρ is the smallest prime divisor of the order of a group \mathcal{G} and \mathcal{P} is a Sylow ρ -subgroup of \mathcal{G} . If \mathcal{P} is quasicentral in \mathcal{G} , then \mathcal{G} is ρ -decomposable with a Dedekind Sylow ρ -subgroup. In particular, if $\rho > 2$, then \mathcal{P} is contained in the center of \mathcal{G} .

The proof is by induction on the order of ${\mathcal G}$. Suppose x is an element of order ho in Then $\langle x \rangle$ is \mathcal{C} -invariant and so is $\mathcal{C}_{\mathcal{C}}(\langle x \rangle)$. If $\mathcal{C}_{\mathcal{C}}(\langle x \rangle) \neq \mathcal{C}$, then $\mathcal{C}_{\mathcal{C}}(\langle x \rangle)$ is Ρ. isomorphic to a group of automorphisms of $\langle x \rangle$. Since $Aut \langle x \rangle$ is cyclic of order ρ -4 and

is the smallest number dividing the order of $\, {\mathcal G} \,$, we have a contradiction. Therefore, $\mathcal{C}_{\mathcal{C}}(\langle x \rangle) = \mathcal{G}_{\mathcal{C}}$ is contained in the center of ${\mathcal G}$. The factor group ${\mathcal G}/\!\!<\!\!x\!\!>$, is, and by induction, ρ -decomposable, hence C is also ρ -decomposable. Since P is Dedekind and, when $\rho > 2$, Abelian, it follows that \mathcal{P} is contained in the center of \hat{G} when $\rho > 2$.

Now, applying [5], we obtain

COROLLARY 1. If A and B contain quasicentral subgroups of odd indices, then the is solvable. group

<u>COROLLARY 2.</u> If A is 2-decomposable with a modular Sylow 2-subgroup, and B contains a quasicentral subgroup of odd index, then the group $\mathcal{G} = AB$ is solvable.

Corollary 2 generalizes Theorem 13.10.3 in Scott [4].

LITERATURE CITED

- 1. V. S. Monakhov, "On the product of two groups, one of which contains a cyclic subgroup of index 2," Mat. Zametki, 16, No. 2, 285-295 (1974).
- L. Knopp, "Sufficient conditions for the solvability of factorizable groups," J. Alge-2. bra, <u>38</u>, No. 1, 136-145 (1976).
- B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York (1967). 3.
- W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey (1964). 4.
- V. S. Monakhov, "On two theorems of Vedernikov," Dokl. Akad. Nauk BSSR, 15, No. 10, 5. 877-880 (1971).
- S. A. Chunikhin and L. A. Shemetkov, "Finite groups," in: Progress in Science. Alge-6. bra, Topology, and Geometry. 1969 [in Russian], Moscow (1971), pp. 7-70.
- D. Gorenstein and J. H. Walter, "The characterization of finite groups with dihedral Sylow 2-subgroups," J. Algebra, <u>2</u>, 85-151, 218-270, 334-397 (1965). 7.
- H. Wielandt, Finite Permutation Groups, Academic Press, New York-London (1964). 8.
- N. Ito, "A theorem on factorizable groups," Acta Sci. Math., 33, Nos. 1-2, 49-52 (1972). 9.
- D. Gorenstein, Finite Groups, Harper and Row, New York-Evanston-London (1968). 10.
- D. Gorenstein, "Finite groups the centralizers of whose involutions have normal 2-complements," Canad. J. Math., <u>21</u>, No. 2, 335-357 (1969). 11.
- 12. J. Walter, "The characterization of finite groups with abelian Sylow 2-subgroups," Ann. Math., 89, No. 3, 405-514 (1969).
- J. Alperin, R. Brauer, and D. Gorenstein, "Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups," Trans. Am. Math. Soc., <u>151</u>, 1-261 (1970). 13.
- 14. K. Harada, "Finite simple groups with short chains of subgroups," J. Math. Soc. Jpn., 26, No. 4, 655-672 (1968).
- A. S. Kondrat'ev, "Finite simple groups whose Sylow 2-subgroups have cyclic commutator 15. subgroup," Sib. Mat. Zh., 17, No. 1, 85-90 (1976). 16. D. Gorenstein and K. Harada, "Finite simple groups of low 2-rank and the families G_2

(q), $\mathcal{D}_{4}^{2}(q)$, q odd, Bull. Am. Math. Soc., <u>77</u>, No. 6, 829-862 (1971).