
PROPERTIES OF THE JOIN OF VARIETIES OF ALGEBRAS 

G. V. Dorofeev UDC 519.48 

By the join of varieties ~ and ~ of algebras over a commutative associative ring 

qb we mean the smallest variety ~=~~+~ , containing ~ and ~ This operation was 

considered in [1-3], where it was shown, in particular, that the varieties of accessible and 
generalized accessible algebras, and also the varieties of standard and generalized standard 
algebras studied by A. Albert, R. Schafer, and E. Kleinfeld with coauthors, can be obtained 
by means of the join operation from the varieties of associative, alternative, commutative, 
and Jordan algebras. 

The representation of some variety ~ as a join of varieties ~ and $~ solves in a 

specific sense the identity problem in a free algebra Æ~ of the variety ~ : An identity 

is satisifed in the algebra ~F if and only if it is satisfied in the free algebras / 

FT~ and ~=~ of the varieties ~ and 

There naturally arises the question of the possibility of carrying over other proper- 
ties of varieties to their join. A simple argument, given below, shows that the join of 
varieties having finite basis rank also has finite basis rank. At the same time, the join 
of varieties of finite axiomatic rank can have infinite axiomatic rank. Also, the join of 
Spechtian varieties is Spechtian. On the other hand, the join of varieties, each of which 
is defined by a finite number of identities, need not have a finite number of defining iden- 
tities. 

In addition, we show in this paper that certain theorems involving relations among dif- 
ferent types of nilpotency carry over to the join of varieties. 

1 °. Suppose ~'~'F are varieties of algebras over a ring ~,~= ~+~ and 

A~,4,£~are free algebras of these varieties on ~ generators. Ler ~~,~~,~~ denote the 

varieties generated by these algebras. Clearly, ~~~~~,~~~~, hence the ~ -ideals 

of these varieties are related by the inclusion 7/~)c~~)nT~ ~~ ) ; we will show that 

the reverse inclusion also holds. 

Indeed, suppose an identity /(~«...,~~) is satisifed in ~~ and ~~ ; this means 

that for any elements 4 I~I,"°,X~)""'~~~J-'~~ ) of a free nonassociative algebra the varieties 

79~ and ~ satisfy the identity F (~~,~ .... ,x~ ),ù.~(~,.,~~. But this identity is then satis- 

fied in Æ ,hence the identity /{~,..,~~) is satisfied in Æf In other words, 

Recall that the basis rank of a variety ~ is the smallest number ~=Z~f~), for 

which ~~~ ~] . From the above argument we at once obtain 

As is well known, a variety ~ of algebrls is called Spechtian if every algebra of 
this variety possesses a finite basis of identities. In other words, every ascendingsequence 
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of T 
carries over to the join of varieties. 

THEOREM 2. The join of two Spechtlan varieties is Spechtian. 

Proof. Suppose the varieties 7~ and ~ are Spechtian, ~=~+ ~ , and in a free 

algebra C of the variety ~ there is given an increasing sequence 

of T -ideals. The algebra C is a subdirect sum of free algebras A and B of 22~ and 

2Z, hence in C there are Æ -ideals I and K such that ~O K = 0, Æ/I ~zA , C/K~--IF° 

By hypothesis, the ascending sequence 

of 7 -ideals of A stabilizes, so for some f we haue the equalities (re+Z)/I=($.~+i)/~= .... 

frôm which it follows that ~+I = r~+!+I = .o 

On the other hand, to the ascending sequence of i -ideals ~ n Ic ~ n Ic., of Æ cor- 

respnds an ascending sequence 

(? nz  + æ)læ~ ( G n Z + æ ) / ~ c ( ~ n z + K V ~  c . . .  

of ~ -ideals of 3 , hence from some /zz on we haue the equalities 

( r~  n z ÷ ~ ) / æ  = { , ~ + ,  n z + K ) I K  = . . . ,  

from which it follows that ~o/+K=~+~nI+K=... At the same time, for any ~ we haue 

(~Df)O K= 0 , so that from our equalities, in view of the modularity of the lattice of 

ideals, we obtain Trnn_/=T m+ j O~. 

Thus, we haue shown" that ~+~-~+/+I=.., ~ nI= ~+IOZ-... for /D=nlaX{g,nz} , 

hence, using once again the modularity of the lattice of ideals, we obtaln ~ = ~+/=... , 

which means that the sequence (I) stabilizes. 

The theorem is proved. 

2". In this section we will show that the join of the variety ~~ of commutative 

algebras and the variety ~O~~ ~ of solvable algebras of index 2 cannot be defined by a 

finite system of identities. Recall that an algebra is called 8olvable of index 2 if it 

satisfies the identity (Z~)(Z~)= 0 
THEOREM 3. Suppose a variety p of algebras over a ring ~ is defined by a system 

of identities 

-ideals of a free algebra of this variety stabilizes. We will show that this property 

(3) 
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where T is either a right or left multiplication by an element of the algebra, 

Then p = Co,q'tn*E + SOße! 
Proof. First note that ~ satisfies the system of identities 

(f~,~j T~, ... 7«~ )Ct~)= o (~=o,4~ . . . .  ) .  (5) 

Indeed, if, for example, 7zL=L~ , then 

and the proof of the identities (5) is easily completed, using (4) and (2), by induction on 
the number of left multiplications in the product. 

Let A be a free algebra of ~ with set of free generators X Regarding X as 

linearly ordered consider in the free commutative algebra ~=A/A t ,~r , , where is the ideal 

of A generated by all commutators, the set ~ of regular (in the sense of [5]) words lying 

in the ideal generated by the set ~A~. Let ~ denote the set of monomials of A sent 

into aword of ~ under the homomorphism ~:A-'A~ ~, which is identical on % We will 

A~A * prove that 3 generates as a qo -module the ideal C of ~ generated by the set 

Suppose ~- is an arbitrary monomial of the ideal C and ~~~~ We will show 

by induction on the degree ~ of ~- that w-eß For a=@ we haue ~ =~5" '~=~l~e ' 

and the identities (4) (with ~z=O ) and (2) allow us to permute the factors in ~ and in 

B , and also to permute ~ and ~~ themselves. By means of these permutations the element 

~- can be reduced to a form ~~ such that ~'~ is a regular word of ,~ That is to say, 

U/z~eß, hence ~-~~ , i.e., ~-~B. 

Now suppose ~)# ; assume that any monomial in C of degree ~~ belongs to B , and 

suppose the monomial uJ:-=~~ has degree ,z + f If the degree of ~ is i, then ~E~ 

and, by the induction assumption, ußzE~ ; we may obviously assume that ~~ ~B . But then 

the word ~~f.~~~ is regular, i.e,, ~fz~o~ffE~, hence ~~~~~ ; using (3), we obtain 

~=~uf z =~~~7¢B. The case where ~ has degree I is handled analogously. 

Finally, if both m7 and ~~ haue degree greater than i, then they belong to A ~ , 

and then identities (5) and (2) allow us to permute the factors in each arbitrarily and also 
to permute them with each other. Clearly, by means of these transformations the element w- 

can be reduced to a form ~Y~ such that u.;Iße~ and therefore, ~Y=~Y~e~. 

Thus, every monomial ~e~ belongs to 7~ , so that the set ~ indeed generates the 

ideal O as a c/5 -module. 

Now let ~ be an arbitrary element of ~~A ~ ~ ~~ ; then J=~c~ 6 ~~~~,~~~) and ~~= 

~ (~ ¢)= 0 • But the regular words ~# in A are linearly independent, hence ~~=0 , 
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so that C=0 That is to say, ÆnAL0 , which means that ~ = ~o/Tzrr~+ $Oß~ ~, 

The theorem is proved, 

Note that the system of identities (2)-(4) is not independent: it suffices, for exam- 
ple, to require the fulfillment of the identities (3) only for right multiplications, i.e., 
to replace the system of identlties (3) by the system 

(6) 

and derive the remaining identitles (3) from (6). 

Nevertheless, the system (2)-(4) is not equivalent to any finite subsystem. To prove 
this we construct the following example. 

Ler ~=I~,~~ .... ~ be a set, ordered in accordance with the increase of indices, con- 

taining more than one element, and let n ~/ be a fixed integer. Let ~ denote the set of 

associative words in alphabet X of length at most ~÷9 , and define on the set ~ of 

linear combinations of elements of ~ with coefficients from a given ring ~ a multiplica- 

tion , by defining it on the basis B as follows. 

Suppose [,~6B are words of length ~ and ~ , respectively; we call a word ~~.~. 

regular if ~~~ , and we write ~.~= ~.~P~. 

Pur: 

a) for ~4- ~~/z+2 

i ~E " if ~;~/, Æ=l; 

b) for ~+ ~= /z+# 

B~« = ~« , if ~=2 , « regular: 

~~, if l=z , Z noù~«~~~, 

c) all other products equal to zero. 

We will prove that the resulting algebra A satlsfies identities (2) and (3) and the 

identitles (4) with ~~~ Note first that for any elements 2,~,Z,~ eß for which the sum 

of the degrees is at most ~+2 , we have II«~)«(Z«~)= 0 , hence süch elements satisfy all of 

the identities (2)-(4). Moreover, any product in which the sum of the degrees of the factors 

is equal to ~+3 or greater than ~+~ is equal to zero. It remains, therefore to consider ele- 

ments for which the sum of the degrees is equal to ~+# . 

Suppose the sum of the degrees of 2,~Z,~ E/~ is equal to R~# Assume these elements 

do not satlsfy (2). Then X~~ ~0,Z«~~0 , and it follows from a) that at least one factor 
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in each of these nonzero products has degree i; furthermore, it follows from b) that another 
of the elements has degree i, and then the remaining fourth element has degree greater than 

i, since ~*# m Æ . It also follows from a) that the elements æ and ~ , as weil as 

and ~ , are equivalent, so we need only consider the single case >=xÆ , Z = x~, ~= x~. 

For ~~ ~ we have 

and similarly for ~ ~~ we have 

which contradicts our assumption. This contradiction shows that A satisfies identity (2). 

That ~ satisfies the identities (3) for monomials of summary degree ~+# is obvious, 

since the first element of the commutator on the left-hand side has degree at most ~+J , 

hence is equal to zero either by a) or by c). 

Suppose, finally, that ~~~ and assume that an element #-= [~~~]~z/..~z ~~~~), in 

which the sum ~ of the degrees of the monomials ~,~,~,.,Zm,~,~ is equal to ~4# is non- 

zero. Clearly, m«~, otherwise ~~~+~ > ~+# . It follows from a) that ~,~,~7,..~m 

have degree i, and since ~~2«~#2 , the degree of ~~~ is greater than 2, hence £-O by 

b), which, by assumption, is false. This contradiction shows that ~ satisfies the identi- 

ties (4) for any nz~g. 

On the other hand, 

= ~~ ~ ~ . . .  x~+~ + «~+~ ca+ ~ - m~ x, x~... x~~,  ~ù+~ m ~  = 

Thus,  A s a t i s f i e s  a l l  of  t he  i d e n t i t i e s  ( 2 ) - ( 4 )  e x c e p t  t h e  L d e n t i t y  (4) c o r r e s p o n d i n g  to  

m=& . Th±s means c h a t  i t  i s  i m p o s s i b L e  to  d i s c a r d  any of  the  i d e n t i t i e s  (4) f rom the  s y s -  

tem ( 2 ) - ( 4 ) ,  hence  t he  gLven s y s t e m  i s  n o t  e q u L v a l e n t  to  any f i n i t e  s u b s y s t e m .  

Thus,  t he  v a r i e t y  ~gm¢r~+ ~OffV z c a n n o t  be de fLned  by a f i n i t e  s y s t e m  of  L d e n t i t i e s ,  

e r e n  though  each  component  v a r i e t y  i s  de fLned  by a s i ngLe  i d e n t L t y .  

We will now construct, for each natural number ~ , and example of an algebra such that 

every subalgebra with ~ generators belongs to the variety ? , but the algebra itself does 

not. It follows from the existence of such a series of examples that ? has infinite 

axiomatic rank [4]. 

Let X = {~~,~,..} be a set, ordered in accordance with the increase of indices, and let 

~ / be a fixed integer. For each associative word ~ in alphabet ~ containing no re- 

peated letters we denote by l~i the word of the same composition in which the letters appear 

in increasing order; also, we write ~~ ~, if ~~ does not appear in the composition of 

f. 
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Denote by ~I the set of associative words in alphabet X, in each of which all letters 

~£ X ere distinct and, from the third on, appear in increasing order, and by ~2 the set 

of words of the form ~(~~-) , where f£BT, the lenght of ~ is greater than 2, and X~,~.~ 

$, ~«/. On the set A of linear combinations of elements of the set ~=~fU~e with co- 

efficients from some ring ~ • contalning 1/2 we define a multiplication , by defining it on 

the basis ~ as follows: 

a) ~~5.=~rix/ for any distinct ~I~~ and 5" ; 

b) X~*~-~-~a x~ ~i)~~.I~ql~ , where ~ is the number of inversions of indices of 

the generators in the word px~ , for any ~=~~~~ e~, (where ~ can be empty) and any 

¢) X»5-,B=~-~.~,=~(I~fS.I) for any ffe~ of length greater than «+2 

d) all other products ere equal to zero. 

Note first that the resulting algebra ~ satisfies the identities 

from which (2) and (3) follow at once. 

At the same time, Identity (4) with ~z= ~+/ does not hold in A : indeed, according 

to a), ~~f~~ =- ~~2 - ~zX~ "~a+~« ~+~=X~+4 X~+ £, and, applying b) and c), we obtain 

, and any 

= .r, x~ x3....r~÷.~+ (.r,,+« %+5)-  xzx,  ~ " "  x,.,+«* x.~+~ x~+« = 

= x, ~ x~ . . .  x t+ 3 (x , , ,«  x~.« ) - ~ ~  x j  ....re+ s (x«+~ x~+« ). 

Thus,  A does  n o t  b e l o n g  t o  ~ . 

We w i l l  p r o v e  t h a t  f o r  f~~/z i d e n t i t y  (4) h o l d s  i n  A . Assume t h e  c o n t r a r y :  s u p -  

pose  t h a t  f o r  some s e t  of  monomials  we have  

f= ~ , ~ ] ~ « ,  . . .  z«ù,, ( t , , « )#o .  (9) 

I t  f o l l o w s  a t  once  f rom (7) and (8) t h a t  a l l  o f  t h e  e l e m e n t s  2 , ~ / , Z I , . . .  , Z m b e l o n g  to  .~ , and 

when fR~O t h e  e l e m e n t s  ~ and /L a l s o  b e l o n g  to  ~ , o t h e r w i s e  t he  l a s t  m u l t i p l i c a t i o n  

i n  f i s  p e r f o r m e d  in  a c c o r d a n c e  w i t h  d ) ,  which  c o n t r a d i c t s  ( 9 ) .  However,  .77+2 ~< ~ + 2  , 

hence  t he  l a s t  p r o d u c t  i n  / c o r r e s p o n d s  t o  d) anyway,  which  a g a i n  c o n t r a d i c t s  ( 9 ) .  T h e r e -  

fore, /n=O 
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On the other hand, when ~=0 we obtain from (8) that at least one of t, u belongs to 

; then we may assume that ~~~ belongs to ~ , and the last multiplication in / is 

performed either in accordance with c) or d), and in both cases /=0 , which contradicts (9) 

Thus, when ,n~~ identity (4) indeed holds in 

Now observe that the product 

is a skew-symmetric function on A of the arguments ~,o.,Z~ Indeed, if all of the ele- 

ments ~,..,Z~ are monomials, then, in view of (7) and (8), {= 0 , if at least one of them 

does not belong to X ; but then it follows from b) that f is skew-symmetric on the set of 

monomials of A But f is multilinear and is therefore skew-symmetric on all of ~ . 

Finally, suppose C is a subalgebra of ~ having a generating system ~ consisting of 

elements. We will prove that ~ satisfies all of the identities (4). Suppose the pro- 

duct (i0) is nonzero for some set of monomials in the generators of ~ Then, by what we 

have proved, m >~ If all of the elements ~,Z; ..... z~ belong to ~ , then they are not 

all distinct, hence /=0 by skew-sy~~etry. If some ~ does not belong to ~ , then it is 

a product of at least two elements of 2 and therefore belongs to A ~ . But then {=0 in 

view of (8). Hence, C satisifes all of the identities (2)-(4), and so ~c~ . 

Thus, ~ does not belong to ~ , whicle each subalgebra having ~ generators does 

belong to this variety. In other words, A£~~ (see [4]). Consequently, each variety 

~~ is different from ~ , hence ~=~om~+~O~~ ~ has infinite axiomatic rank, while 

the component varieties ~o~nz and ~O[f z have axiomatic ranks 2 and 4, respectively. 

Note also that the faet that p has infinite axiomatic rank implies that this variety can- 

not be defined by a finite system of identities, which we proved earlier. 

3 ° . A property ~ of varieties of algebras will naturally be called join-~redita~ 

if the join of two varieties possessing property ~ also possesses property ~ In this 

section we will prove the heredity of certain properties of varieties involving various 

types of nilpoteney of algebras. 

We introduce two auxiliary notations. Suppose ~ is an algebra over a ring ~, and 

X is a generating system of this algebra. For any subsets ~I, ~2 ~ A we denote by 

BI ~ ~2 the 96 -submodule generated by the elements of A , obtained from elements /i~il , 

~~ )6B I by replacing one or several generators .~/...,Xf~ by any element ~ ~~'7'"" ~'x I~ ~~" 

Also, for any subset ~ of the free nonassociative algebra ~ with generating system 

we denote by ~(A} the image of ~ under the homomorphism Æ--~A , which is identical 

on X 

LEMMA I. Suppose ~,~,C are free algebras of the varieties ~, ~ and ~= ~~Z+~ 

respectively, with generating system X , and let QI' ~z be two subsets of the free non- 

associative algebra F with the same generating system and P a fully characteristic:ideal of f .* 

*In English, "fully invariant" is more common than "fully characteristic" -- Translator. 
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Then the inclusions 

~, (A) c P(A) , ( n )  

#2 Iß) = p(B) 
(12) 

imply 

(Q, ,  Q~)(c) a p(c) .  (13) 

Proof. Inclusions (ii) and (12) are obvlouslysystems of identities satisfied in the 

algebras ~ and ~ , respectively, i.e., in the varieties ~ and ~ We will assume that 

each of these identities is written in the form 

} ~ (3l~t,...,Tgtt)--,OL~ " (~r.~,..,Xi/t )=0,  (14) 

(15) 

where the polynomlals ~,~~,/~;~, P2# can be regarded as elements of Æ belonging to ~, 

~Z' p and P , respectlvely. 

Thus, the varieties ~ and ~ satlsfy (14) and (15), and then on substituting into 

the left-hand side of (14) elements of the form ~~-~e~ in place of one or several arguments 

X~,..,~z- « we obtain an identity in the variety ~ , or, equivalently, in the algebra 

Slnce ~ is a fully characteristic ideal of ~- , this substitution reduces, modulo P, to 

a substitution into the polynomial /~ of elements ~~ , the result of which belongs to P 

Thls means that inclusion (13) holds. 

The lemma is proved. 

Ler us recall some deflnitlons pertaining to various types of nilpotency of algebras. 

For a glven algebra A we pur A I A t <i> ~[f]--A -- -A, ,/~(o)= A , and define inductively the fol- 

lowlng subalgebras : 

= A"-~/+ «-~ .4 ~ A"A + . . .+  AA , 

A'"'= A"-'> A, A c'~J = AA ~"-~ A «"= (A'"-"/ 

An algebra A is called nilpotent (resp., right nilpotent, left nilpotent, solvable) 

if there exlsts ~ such that ~a= 0 (resp. ~~» -MS Q dù~ , --0,~ = ,~=0). The smallest ~ for whlch 

this equallty holds is called the index of the corresponding type o'f nilpotency. An algebra 

is called a nil algebra of bounded index if all subalgebras with one generator are nil- 

potent and their indlces of nilpotency are bounded in the aggregate. 

LEMMA 2. In any algebra ,4 we have, for any natural numbers • and ~ , the following 

inc lu s ions : 

~~+~ ~+~ 2 ~ 

A a A « A , ( 1 6 )  
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,4 ~ * A  (17) 

c A * A , (18) 

Œ A . (19) 

Proof. Obviously, the lemma will be proved if we establish these inclusions in a free 

nonassociative algebra A with countable free generating set ~ . 

Suppose ~g~" is a monomial in the generators of ~ ; isolating the "last" multipli- 

cation, we write it in the form ~/= , where ~ ~ , and then, applying the same 

, /e~÷t-~ 
method to ~, we obtain ~ = ~ ~~ &, where ~~ After « such tran~forma~ions 

we have i=~~~~ . , T~I where ~~ ~A ~¢ But then, taking a generator X~X not appearing 

. ~ . . . r , ,  ~ '~' in the composition of ~ we can obtain ~ from the monomial ~ ~ by replacing 

by ~~ Consequently, ~C 4 « A~~ , hence (16) holds. 

To prove (17) it suffices to observe that any monomial of A <s+~> can be obtained 

from some monomial of ~ «~+«> by replacing the first generator occurring in it by a mono- 

mial of A«t> Inclusion (18) is proved analogously. 

Finally, it follows from the obvious equality A (**t~ iA(~,)~~~that anymonomial of A («+~# 

can be obtained from some monomial of ~(~~ by replacing all generators occurring in it 

by monomials of ~(~~ 

Let us now consider the following two properties of varieties of algebras: ~ {~Z)~=~ 

!'every right nilpotent algebra ~e~ is nilpotent," ~I~Z)~ " every solvable algebra 

A E~ with a finite number of generators is nilpotent." 

If a variety ~Z possesses property ~ , then for any natural number a there exists 

B-~I~# such that a free algebra A of this variety satisfies the inclusion 

C >), 

where is the ideal of A generated by the set 

of a variety ~ possessing property ~ we have for some 

(20) 

Similarly, in a free algebra 

~ ~(~~ the inclusion 

In a free nonassociative algebra Æ putting ~~ ~ ~ =F ~ , = , a a and taking as Æ the fully 

characteristic ideal generated by the set ~«n» , we obtain from (20) and (21) that the 

algebras A and ~ satisfy conditions (ii) and (12) of Lemma i. Consequently, in a free 

algebra C of the variety ~=~*~ we have ~~ ~~~(~~n>) and, in view of (16), C t~~ 
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CÆ~~~~~c~~Æ~Œ(~~»~ But this means that the variety ~ possesses property ~ , hence 

property ~ is join-hereditary. 

Now suppose that varieties ~ and ~ possess property ~~,~=~+~ , and A,~,C 

are free algebras of these varieties on ~ generators. Then for any ~ there exist ~ 

B(M,~) and ~=~[R,~) . such that ~~c(~ ],~C(~ ) , hence it is easy to obtain from Lem- 

mas i and 2 that U c (Cr~') . Thus, property ~ is also join-hereditary. 

By similar arguments, varying the subsets ~7 and ~~ and the ideal P , we can prove 

the heredity of several other properties of varieties; for example, the properties "every 
ùnil algebra of bounded index is solvable," "every nil algebra of bounded index with a finite 
number of generators is nilpotent," "every left nilpotent algebra is nilpotent," and "every 
anticommutative algebra is nilpotent" are join-hereditary. 

If we apply our results to some specific varieties of algebras, we obtain the following 
assertlons. 

THEOREM 4. Every right nilpotent, generalized accessible algebra over a ring ~ con- 

taining 1/6 is nilpotent. 

Indeed, the variety ~~cc of generalized accessible algebras over a ring 96 contain- 

ing 1/6 is the join of the variety ~~~ of co~utative algebras and the variety ~~~ of 

alternative algebras [2], and in both of these varleties the assertion of the theorem holds 
[6]. 

THEOREM 5. Every solvable, generalized standard algebra with a finite number of genera- 

tors over a ring ~ containing 1/6 is nilpotent. 

Indeed, the variety ~~~ of generalized standard algebras over a ring 9 b, containing 

1/6 is the join of the variety ~0~ of Jordan:algebras and the variety ~~~ of alternative 

algebras, and in both of these varieties the assertion of the theorem holds [6, 7]. 

This result was obtained by Io P. Shestakov for certain wider classes of algebras under 

the weaker restrlction ~c9 O [8]. 

TNEOREM 6. Every anticommutatlve, generalized accessible algebra over a ring ~~ con- 

taining 1/6 is nilpotent. 

Indeed, it is easy to see that every commutative and every alternative algebra satisfy 
the assertion of the theorem, 

Note that it is proved in [8], under weaker restrictions, that if an algebra ~ sat- 

isfies the hypothesis of Theorem 6, then ~~=Æ . 

In conclusion, we give an example showing that if in varieties ~ and ~ every right 

nilpotent algebra of index ~ is nilpotent of index ~ , then in the join of these varie- 

ties the index of nilpotency of a right nilpotent algebra of index ~ can be strictly larger 

than N . 

Ler ~ be an algebra with basis t~,~C, ~, e} over some ring ~ and suppose only the 

following products of basis elements are nonzero: ~z_Q aff=~,~C=_~~=Æ. It is easy to see 

that ~ is accessible and is right nilpotent of index 3, but its index of nilpotency is 4. 

At the same time, every commutative or associative algebra that is right nilpotent of index 
3 is nilpotent of index 3. 
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This example also shows that the variety ,~ivL~ 3.1.~ of right nilpotent algebras of index 

3 forms a nondistributive triple with the varietles ~rroß and A~ , otherwise we would 

have the inclusion 

which contradicts the above example. 
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THE LATTICES OF VARIETIES OF LATTICE-ORDERED GROUPS AND LIE ALGEBRAS 

N. Ya. Medvedev UDC 519.46 

Let ~O,~~,o~o,~e be the «ategories of linearly ordered groups, lattice-ordered 

groups, linearly ordered Lie algebras, and lattice-ordered Lie algebras, respectively. As 
usual, concepts from the general theory of groups and Lie algebras attributed to these 

categories will be denoted by prefixes o- and E- or by subscripts 0 and E , for exam- 

ple: O-group, ~ , ~ -homomorphism, O -approximable ~ -group, the E -variety ~~ of 

all Abelian E -groups, and so on. The letters o and E will not be used for other pur- 

poses. 

It is well known that ~~ is the smallest nontrivial element in the lattice of ~ - 

varieties of ~ -groups. In this present paper we will answer negatively Question 8 of [7] 

concerning the uniqueness of an element which is minimal over d e , namely, we will prove 

that the lattice of ~ -varieties of solvable 0 -approximable ~ -groups contains exactly 

three elements which are minimal over C~ e On the other hand, we will prove that the lat- 

tice of ~ -varieties of Lie E -algebras contains exactly one element which is minimal over 

the ~ -variety of Abelian Lie ~ -algebras. 

Reeall that the class ~~ of all ~ -groups in the signature <,,-~ /, ~ A> and the 

class ~~ of all Lie ~ -algebras in the signature <+,[],',O°V,A> are varieties. The Car- 

tesian (direct) product of ~ -groups, in which ~~~ if and only if ~~~ß for all com- 
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