
be an isomorphism of O~ onto~. 

Theorem 2 has been proved. 
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NILPOTENCY IN JORDAN AND RIGHT ALTERNATIVE ALGEBRAS 

V. G. Skosyrskii UDC 519.48 

It is well known that the structure of a rightalternative (in particular, an alterna- 

tive or associative) algebra A is determined in many respects by the structure of the asso- 

ciated Jordan algebra ~J . In the same way, there is a close connection between the prop- 

erties of a special Jordan algebra J and its associative enveloping algebra J! These con- 

nections play an important role in the study of right alternative and special Jordan alge- 

bras. For example, the use of these connections can be seen in [8, 9, i0]. In the present 

paper we continue the study of these connections. 

In Sec. i we study the connection between various nilpotency conditions on a right al- 

ternative algebra A and its associated algebra . We prove that is nilpotent if and 

only if A is right nilpotent, and that AC+)is locally nilpotent if and only if A is locally 

right nilpotent in the sense of Shirshov. 

In Sec. 2 we establish a relation between the locally finite (in the sense of Shirshov) 

radical ~(J) of a special Jordan algebra 7 with the corresponding radical of its associa- 

tive enveloping algebra ~ Namely, we prove that 

= 
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In particular, when Z = {0 3 we obtain this equality for the locally nilpotent radical 

~(~)" ~{0~ (J) • This result in the case of the locally nilpotent radical generalizes the 

results of [7, 12], which deal, respectively, with the case where JmA (÷) for some alterna- 

tive algebra A and ~-H(A, e) is the Jordan algebra of symmetric elements of an associative 

algebra A relative to the involution e. It follows from the relation connecting the locally 

nilpotent radicals of J and~ ~, that the quotient algebra J/~Z(~) is also a special algebra. 

Therefore, in a special Jordan algebra ~we have the inclusion ~(J)~ ~(~), where ~(~) 

is the McCrimmon radical offend ~{J) is the locally nilpotent radical. It was known 

earlier [5] that /~(J)~ 0 implies~(~)~Q. As another consequence of our result we prove 

that an element~of an alternative algebra A lies in ~Z(~) if and only if the right mul- 

tiplication operator ~ lles in the analogous radical of the right multiplication algebra. 

In the last section we consider Jordan and right alternative algebras satisfying cer- 

tain minimum conditions. In particular, we prove that every quasiregular ideal of a right 

alternative algebra with minimum condition for quadratic ideals is right nilpotent. This 

result answers a question of Thedy [9] and completes the description of right alternative 

algebras with minimum condition for quadratic ideals: Any such algebra is an extension of 

a right nilpotent algebra by a finite direct sum of matrix algebras over division rings and 

Cayley-Dickson algebras. 

i. Right Nilpotency in Right Alternative Algebras 

Let~ denote a commutative associative ring with unity i. All algebras considered in 

this paper are~-algebras. We will employ standard definitions and notation, used, e.g., 

in [1,2]. 

By the operation <,> we mean the~-linear operation in the free right alternative al- 

gehra~[~ on the set of generators ~--{~i,~2,23,.,.,~,,..~ , that acts as follows: 
i I ! 

if~r--(~I,~,..,,~)~ , where 9 is some arrangement of parentheses, then <~=~I~ , ~ , 

where ~Ia ~ . 

In the sequel we will repeatedly use the following 

Proposition 1 (Shirshov [2, 8]). For anyj-polynomial/I~) in the free right alterna- 

tive algebra ~[X] we have the relation ~(~)=<2(2)~. 
We will first prove several simple auxiliary assertions. 

In a right alternative algebra we define ~-llnear transformations ~,~, ~,~ as fol- 

lows: 

LEMMA i. In any right alternative algebra we have the following relations: 

( , )  - + 

" f t t ( , 0  = -  + * " 

,, i ~ ~, 
( 2 ) (..,b"Z ~ 
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The proof of these relations is trivial and amounts to applying the defining identities 

of right alternativity. 

LEMMA 2. Let ~ [X~+f] be the free right alternative algebra on the set of generators 

X~+f-- {~,~,~,..o,~} . Then for any natural number f~ and arbitrary ~f,~,.,o,~m 6 {2z,2~ 

• . . ,  2tZ} we have 
. I  , _ ' m~ . ' 

where 7~/~ (;20,2~,..o,;T~)is a i-polynomial i n  X~+I, that is linear with respect t o  "~'O' and 
where 1~!<~<,,.<~$~/~o 

The proof is by induction on rT~. If /TZ=O,F , then ~ and ~0~ are already of the re- 

quired form. Suppose the desired representation has been obtained for ~K, and suppose 
• l • ~ " ~ } I " " < ~= K+# * Then, by the mnduction assumption, ~'0~ ~' "'" F~=~] "='=' "'~" ' where /~61<61 

...<~, and~;K . IfS<K , then, by the induction assumption, the element l~ , -~&/~a. . . .~ i$ .~ ,  
• l I x,= ~"~ ! I I 

where =~== ]nz, has a representation/i=~i=~ ...=i=t' ' ~=~%..~p,,~. where Cp is a j-polynomial 

in Xn+~ that is linear with respect to ~o and where ~/=~"'WPz" If #> ~s ' then the word 

]~ ~,~gz"' ~s~# has the desired form. 

o b s e r v e t h a t  the  words /i and 
where/~p~S, have a representation of the desired form because of the induction assumption. 

Indeed, as is easily seen from the linearized right alternativity identity, they can be 
. I f I I 

represented as a sum of words of the form /i¢~x~ ...~p, where'-is a )-monomial of degree 

at least 2 in {~,~,~3,...,~I. Representing ~f as a product of i-monomials of smaller degree, 

we consider three cases: 

, 2 )  o - . i l  , , 

where ~,~ are certain/-monomials. In the first two cases, applying (i) and (I') of Lemma 
• i I ~ I  X ~  

i, we obtain by induction that the word /i 0-~ Kz "'" Kp has a representation of the form 

Z~$= Z~Z...=Z~ , where 2~ is a/-polynomial in Xjz+f that is linear with respect to =0 and 

where ~ <Z2~... < "~ . If ~= (~f)~ , then, applying the obvious equality ~-i__ ~Qf,__ 
' I / I 

-Uz~ I~ ((U°~f)o~)-~Uo~f)~ , wearrive at the conditions of the two considered cases. There- 

fore, interchanging in /i _i I I _I ~ r • ~L ...~ the elements ~p and X~ until ~ > ~, we obtain, by 

induction, a representation of the original word as a sum of words of the required form. 

In right alternative algebras there are two definitions of right nilpotency [2]. 

Definition i. An algebra A is called right nilpotent if there exists an ~ such that 
I I 

~1~oX;...~={-.) for any ~I,~,..,,~EA 

Definition 2, An algebra A is called locally right nilpotent in the sense of Shirshov 
t ! t 

if for any finite set ~-cA there exists an ~ such that ~zX~ ~3"'" ~ = O for ILER. 

It is well known that an alternative algebra is locally right nilpotent if and only if 

it is locally right nilpotent in the sense of Shirshov, and in this case it is locally nil- 

potent. 

51 



As Mikheev [4] showed, there exists a right alternative algebra on three generators that 

is locally right nilpotent in the sense of Shirshov, but not right nilpotent. Thus, Defi- 

nitions 1 and 2 are already distinct in finitely generated, right alternative algebras. We 

givebelow a characterization of these nilpotencies in terms of the associated quadratic 

Jordan algebra ~{+). The definition and properties of a quadratic Jordan algebra can be found 

in [9, i0]. 

Proposition 2. Suppose A is a right alternative algebra. Then ~ is locally right nil- 

A(+} potent in the sense of Shirshov if and only if the algebra is locally nilpotent. 

:roof. Suppose A is locally right nilpotent in the sense of Shirshov, ~=IG,,=~,,.., 

~a}_~ , and ~ is the subalgebra oI ~ generated by~ . We will prove that ~, where 
' I I I 

m is a natural number for which Xt/2Z $ ...SE~= g,  if 2~£A ~ • Indeed, it is easy to s e e  

that  fo r  any ffE~m in  the f ree  r ight  a l t e rna t ive  algebra ~ A ~  [ X ~ ,  w h e r e X ~ - ( ~ t , Z 2 , . . . , ~ } ,  

there  e x i s t s  a/-polyno ial in  of  degree  at  l e a s t  such that  ¢ i s  the  image 

under the homomorphism ~ A ~ a ]  ~ A~ for which ~il ' a z • Since, by Proposition 1, <~/>= 

~r, it follows that 6 r= 0 . 

Conversely, suppose the algebra ~[+) is locally nilpotent, and~and ~ are as before. 

We will prove that nZ+~ is a number for ~corresponding to Definition 2, where ~ is the 

index of nilpotency of ~ as a subalgebra of A(+) . Indeed, in ~ [X~], according to Lemma 
I I l f I / 

2, we h a v e ~ l ] ; ~ 3  , . ,~+~=~]b.Z~Z~2, , ,Z[s  , where Cx~X ~ ,K=g2, . . . , /TZ+~ . Since ~ ,  

the ]-polynomial/i has degree at least nz. Therefore, passing to the algebra A under the 

homomorphism ~-~, we obtain ~z.o°~/~+~=~ for any ~z,~2,...,~m+~ 6 A~. 

The proposition is proved. 

We denote by (~t+,)~ the n~-th power of the quadratic Jordan algebra ~c+; , and by ~ 

the right ideal of ~ generated by (~')m. 

LEMMA 3, If br6-(A'+') nz-! then w ~, ..T.Z,T.j,Z" 4 £~'za for any /'1 5F2oX 3 X 4 6/4 

Proof. For elements x,~eA we will write Z--~ if X-~£_~G. It follows from rela- 
I 

tions (i), (i'), (2)and Lemma 1 that ~,I2,..Z;[~°Z)~-~ and Zr~i~;---~'(~). There- 

fore~ 

t - - / ~ t  / _ _ I 

.L A#.~/_II~ t t , , t p , t I SEt ~ t , -,:CI 

The l~mma is proved. 

COROLLARY i. Suppose A is a right alternative algebra without 2-torsion. Then A is 

right nilpotent if and only if A t+) is nilpotent. 

Proof. If A <m>-- 0, then, by Proposition i, (A(+;)nz= 0. Conversely, if I~c+') m= 0, 

--~m A <;m-~>= then_~ = {7 , and it follows from Lemma 3 that 24cm-')~ <4~-~+I>C = 0, i.e., 0. 
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COROLLARY 2. An alternative algebra without 2-torsion is nilpotent if and only if the 

associated Jordan algebra is nilpotent. 

The proof follows easily from Corollary i and the fact that an alternative algebra is 

nilpotent if and only if it is right nilpotent. 

2. Locally Finite Radical of a Special Jordan Algebra 

Let us fix some ideal Z of the operator ring~. We will use below the well-known 

definitions and notation found, e.g., in [2, 3]. 

A finitely generated~-algebra ~ is called finite over Z if there exists a finite 

set of elements ~,g,~, .... ~'6 such that for some natural number ~ we have ~ ~ ~ ~ Z. 
&=/ 

An algebra A is called locally finite over Z if every finitely generated subalgebra ~ of 

is finite over Z . 

As shown in [3], local finiteness over Z is a radical property in certain classes of 

algebras, in particular, in the classes of all alternative and Jordan algebras. In this 

section we study the connection between the locally finite radical of a special Jordan alge- 

bra J and that of its associative enveloping algebra J~. For the existence of a locally fi- 

nite radical we will assume that the operator ring ~' contains an element ~ (see also the 

remark to Theorem i). 

Suppose A is an associative algebra,~ a finitely generated subalgebra, and ~ a fi- 

nitely generated~-submodule of A. In the sequel we will need the following assertions. 

LEMMA 4. If~U~ ~ M , then the algebra ~ is finitely generated as a~-module. 

LEMMA 5. If for some natural number ~ we have the inclusion ~ U ~ ~ Z  , then the 

algebra~is finite over ~. 

The proof of these lemmas repeats almost verbatim, with the natural changes, the proofs 

of Lemmas 7 and 8 of [2, p. 23], hence we omit it here (.see also Lemmas 1 and 2 of [3]). 

Let A~A[X~u{X0) 3 be the free associative algebra on the set of generators X~ O{~0} , 

where X~= {~i~, .... ~a}. we will denote by <~,X~> the ~-module generated by the set of 

monomials of the form ~ , ~ i  2~i *e.~i, , where /44~4(,..<.~K~,K=~2,8,.,,,m, and ~ £ X ~ =  

Let~2~ denote the set 0fj -m0n°mla!s that are linear with respect to ~0 and such that 
the degree relative to the set ~e is at most 2~. 

LEMMA 6. In the algebra ~ [XaU [~oI] we have the inclusion <@,Xa><Xo,Xn> ~<~z~,Xa~ 

where 

Proof. Consider an element of the form ~1% °''~'~*~ o 2, eo.~ in <~,Xa><~,~> 

As is easily seen, it can be represented as a sum of words of the form 

~: ~m ' where B'is a/-monomlal in {20,%,~2,..,,~} such that ~[~)= / and ~w(~)+ 

K. Applying Lemma 2, we obtain a representation of the word ~_~ .... ~. ~ .... ~. as 
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a sum of words of the form #/.2:2: 2. , where ~4~j(... ~ip and " is some - 

"' " ~ ' " "  ~° ore  ' J~ ] monomials in X/zU {=,}  such that ~. //:)'FZ~= K+r~.~/'Z. Theref , I.~. W2, 
XIEI6 " 16 

THEOREM i, Suppose ~is a special Jordan algebra, ~els its associative enveloping 

algebra, and ~Z[J) and ~Z(~ ~) are the locally finite over ~radicals of Jand J~, re- 
spectively. Then ~Z ( J  J=  JZ lJ ')  oJ. 

Proof .  The i n c l u s i o n  ~ : Z ( J ' ) o J - : ~ C J )  i s  obv ious .  Let us prove that  ~ - C J ) =  

(~) . Take an arbitrary element ~E~Z (~# and consider the ideal ~--- ~+ ~ of J . We 

will prove that ~r is locally finite over Z . Obviously, it is enough to show that for any 

, J" finite set T = {QI,O£,,..,G~}, ~_c ~ the subalgebra ~ generated by the set <~, [> in is 

finite over ~ , where < < 7"> is the image of the ~-module (~r#,Xa> under the homomorphism 

~:~]&[X~u {Io) ] ' J" such that @[ma)~-~and {(~TZ)=OZ, 6-~/,2 . . . .  , /Zo 

Consider the set ~ - - - - * ( W 2 ~ )  . Since ~ = ~ ( ~ # ) 6 - , ~ Z ( J ' , )  , i t  fo l lows that W~C--- Z ~ ( J )  . 
Since the associative enveloping algebra of a locally finite over ~ special Jordan algebra 

is locally finite over Z (this follows immediately from Theorem 4 of [2]), for the algebra 

generated by the set ~z~ in ~, there exist a natural number ~ and a finite set {~,Uf; ..... 
f~L 

=-- A such  hat /I Z. 
rrz. 

Consider the Cp-module ~= ~<L~z.,~ ~ ~ . It is finitely generated, since the ~b._ 

module ~r#,A=> is finitely generated. From Lemma 6 we obtain that < ~,~>~-- ~I<Io,X~>Yc-- 

.... ~ ~"2~ ' i ' 

~, T> ~vc -- r r > <  _ < ~ .  W~, ><e,T> ~v-~ c- c<~W., ~ T>c-(A 'vw , ..... ~, ,7-> C___ /~, we have Z~U 

.~#C_~Z. By Lemma 5, the algebra ~ is finite over~ . 

The theorem is proved. 

Remark. In using the theory of Jordan algebras it is sometimes useful to consider a 

somewhat more general case, namely, where we do not impose on the ring ~ the condition 

£~ For this purpose we introduce the so-called quadratic Jordan algebras, which in 
Z 
the case ~ 6~ are easily transformed into linear Jordan algebras. The theory of these 

algebras is the same in many respects as the theory of Jordan'-algebras where ~ E~ 

For example, in quadratic Jordan algebras, as proved in [ii], we have an analog of Zhevla- 

kov's theorem for linear algebras which says that every finitely generated, solvable Jordan 

algebra is nilpotent. Therefore, in particular, in quadratic Jordan algebras we can define 

the locally nilpotent radical, i.e., the largest locally nilpotent ideal ~(J) such that the 

quotient algebra J/~(J) contains no locally nilpotent ideals. Moreover, using the methods 

of proof of [3], we can introduce in the class of these algebras the locally finite over Z 

(whereZ~) radical ~Z(J). It is easy to see that Theorem I is also true, i.e., we 

have the relation ~Z (J)= ~Z(~ ~) O~, where ~ (~) is the corresponding radical of the 

associative enveloping algebra ~* of the quadratic Jordan algebra J. 
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COROLLARY I. Suppose J is a special Jordan algebra and ~Z {J) its locally finite over 

radical. Then the quotient algebra J/'~Z (I~ is special. 

Proof. Let I denote the algebra of J~, generated by ~Z (J) " Then, by Theorem i, 

I O J= ~ (J~. Therefore, 

ie, 3/X is special 
Z 

COROLLARY 2. Suppose J is a special Jordan algebra, ~ (J)is the McCrimmon radical [6] 

of J, and ~(J) is the locally nilpotent radical of J. Then M(J) c .ZCJ). 

Proof. By Corollary i, when Z = {O} the quotient algebra J/.~(J) is special, hence, 
by Theorem 1 of [5], Z(¢~(J))~X(J/.~(J)~ = /7 , where Z~J/~[J)) is the ideal generated by 

the absolute zero-divisors of J-/X(J) . Therefore, /~(J)c_ 2~(Jj. 

COROLLARY 3. Suppose A is a right alternative ~-algebra and ~(A) its right multipli- 

cation algebra. Then the conditions ~E~ Z ~A(+)) X Z {~(A))are and /2'" E equivalent. 

Proof. Let ~A = {O / I~ }. Then ~A is a quadratic Jordan subalgebra of (~(~))(~), and 

~--- Y3z(~ ), where ~z(~)=-{[2£A I~a= Ol . If 86~z(A~+)), then O/E~z(~), since ~ is 

• . . A C + j  , ; a homomorphic image of • By Theorem i, a E ~Z (/~[A)) • NOW suppose ~ £ ~Z [R(~)), hence 

a'£~ z {ATA) . Since ($~A))Z=0 and A(~z~@)--w~ , it follows that a£.Zz{A:+'). 
The corollary is proved. 

COROLLARY 4. In an alternative algebraA, the conditions =e~ Z (,4) and RaE.Z' Z (R{,4))  

are equivalent. 

Proof. We use Corollary 3 and the fact that in an alternative algebra we have ~ (~i ~- 

~ [A(+~. This equality can also be obtained from Theorem i. 

3. Rings with Minimum Condition 

In this section we assume that the operator ring ~ contains an element/. 

Proposition 3. Suppose ~ is a Jordan algebra and R I~) its right multiplication alge- 

bra. Then for any natural numbe ~ we have the inclusion ~(~2~)c-~(~))I 

The proof is by induction on /Z. If ~=/ , then ~/~ z)c- R ~). Assume that for some /Z 

we have ~[~<2~>) c_. ~"(~) . Take arbitrary elements z~2~B<2n>and ~c ~ ~; then ~(Uz~)c ~ 

-RbRcl~27,~azA°cRf~a°~2,,/,~c4,~2c~o6,~'~c~°l./~ , i . e . ,  R(~<2"~">) -c /~ '~ ' (~) .  The p r o p o s i t i o n  i s  

p r o v e d .  

THEOREM 2. Suppose  ~ i s  a l o c a l l y  n i l p o t e n t  J o r d a n  a l g e b r a .  I f  f o r  some n a t u r a l  num- 

b e r  nz the algebra Z~ satisfies the minimum condition for ideals contained in ~ then ~ is 

nilpotent. 

Proof. Consider the sequence of ideals {~"'J of B. Since ~= ~ it follows from 

the conditions on z~ that there exists rg such that Z~ ~>-- Z ~  = z~ ~+~ . Assume that ~'~>~ O, 
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hence the set of ideals Jof B, such that J= JZ~ ~ 0, is nonempty. Fix some minimal ideal 

Jof B such that ,7 = S'~ ~ 0. 

Note that for any ideal/T of B such that I~j , there exists S for which ~TA~s(z~)~- 0. 

Indeed, consider the sequence of ideals _Toni , ~=~roZ~, o..gI#=~_/Z~, .... Since I~Jc~ ~, 

there exists S such that ~s=~$+/=/sB. Therefore, since ~s~ J , we obtain ~s=O. Thus, 

IRS(~)= o. 

We will prove that J~<~----0 , where ~ is such that ~">= ~=>~° Take ZeJ, I~0 ; 

'then I=Z~(~) is an ideal of B and IsJ. Since ~ is locally nilpotent, it follows from 

Zhevlakov's theorem [i] that the algebra ~(~) is also locally nilpotent, hence ZEI. There- 

fore, in view of the remark, there exists $ such that I~s(~) = 0. By Proposition 3, 

/~(~<zCs+¢m)c~s+i(~). _ , hence Z~ <2(s+~)> = 0 • By the choice Of ~ we have the inclusion 

~(,=. ~<2fs+¢)~ , hence Z~ <a>= O. Consequently, ~ =  O° 

Fix K such that J~<~" . . . .  ~ and Jg<':-¢~'#O , and choose ~06 ~'¢> such that JU)o# O . Let 

s be such that (J~o)B~"÷o and (ISo)B<'+'%O. Consider the fonowlng three cases. 

i) Suppose 5~2 , Consider the set Z=(Jmo)Po, where poe~ (s> is such that (~0)~0 . 

We will prove that I~ and I=-J, and that for any ~ we have I=IR~[LI). Indeed, for ~I, 
~zEZ~ and z£J we have (Za)o)(4~z)=(Z(~{2))a)o.+(~[alo~))~-(z~)(a)o~)+(Z(u)o~2))~-(Z~)(~)o~) = 
( ,Z(4~))(A) o . Consequently, (z%)po= {Zpo )~a • Since ((Z4)u)o)/o o =-'((Z/oo)i.Do) 4-~'( '(po~)~o.)+ 

(Zi~o))~+([_Zlto~))/.X)o+('Z'/6t)o~))/~o = - ((~/oo)~o)~)it follows that Z"=~ and T_~ _/"~.  Therefore, 

O~-r-----~r~(~) for any ~. Thus, as mentioned, 2"-J. But since 2((z~o)po)~o---£(a):po)+ 
2e(u)o/~})l~)O + (zz#:)~o = O, we have I~'= 0 , despite the choice of the element ~)0, hence 

8<Z . 

2) Suppose $-/. Consider the set ~=(J~o)~+~)o Since (~){2)~0 =- (~o)~z):- 

.~(8)0~)~)+(~(~)o~I))~2 +(Z~U-)O~Z))~4" (~(~,~))~'=-- ((Z~)O)~2) 4 , we have ~ and /~=~. Also, 

for any ~ we have I~(~)~O , sincere0 ~ ~(~). Thus, In:. As in case 

0. If KS3, then ~)e~z, hence (~)0)~o -- 0 . Thus, ~o = 0 . Contradiction. 

3) Suppose K=2 and there exists an element z~6~ such that (ILz)o)Z~)o~ O, for otherwise 
the desired contradiction follows from 2). Now consider I = (~o)~o • As before, I~ ~ and 

Ic_J , and for any ~ we have f=IRF(d ) Therefore, /-= J. But since 2((Z~lo)~o)a) o n-Z4+ 
~(Za):)U) 0 -- 0 , we obtain JaOo =0. Thus, K'/ and J'=Or~=O. But this means that B <a>-- Z~ ~> 

d-O. 

The theorem is proved. 

COROLLARY. Suppose ~ is a Jordan algebra with minimum condition for quadratic ideals 

and ~ is a locally nilpotent ideal of A. Then ~ is nilpotent. 

Proof. We will show that ~ satisfies the minimum condition for ideals contained in 

~z. Indeed, suppose ~r4 ~ and ~ ~ ~z. We will prove that ~ is a quadratic ideal of A1. 

Take &= =.I~(~;~;.~ E~and =EA . Then {Z'di}= (~6)~'+ (O~,~)=~ C~'~(~)~6~)'~ )+(~"d)I= (~)~'+* ~ ~d~,~?~ ~----- 
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The corollary is proved. (For the case of algebras over a field this is proved in [5]). 

COROLLARY 2. In a special Jordan algebra/satisfying the minimum condition for quad- 

ratic ideals, the quasiregular radical ~(J) is nilpotent. 

Proof. Use the scheme of the proof of the corresponding theorem for the case of alge- 

bras over a field [5, Theorem 4], along with Theorems i and 2. 

THEOREM 3. Suppose A is a right alternative algebra with minimum condition for quad- 

ratic ideals. Then the quasiregular radical ~ [A) of A is right nilpotent, and the quotient 

algebra A/~(A~ is a semisimple Artinian alternative algebra. 

Proof. As Thedy showed [9], A contains a nil ideal ~(A) such that A/Z(A) is a semi- 

simple Artinian alternative algebra. By Corollary 2 of Theorem 2, the Jordan algebra 

(Z(A)) ~+J is nilpotent, hence, by Corollary 1 of Lemma 3, Z(~) is right nilpotent. 

The theorem is proved. 

The author is sincerely grateful to I. P. Shestakov and A. M. Slin'ko for their guid- 
ance. 
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