be an isomorphism of O onto & .

Theorem 2 has been proved.
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NILPOTENCY IN JORDAN AND RIGHT ALTERNATIVE ALGEBRAS

V. G. Skosyrskii ' UDC 519.48

It is well known that the structure of a right alternative (in particular, an alterna-
tive or associative) algebra A is determined in many respects By the structure of the asso~
ciated Jordan algebra Atﬂ . In the same way, there is a close connection between the prop-
erties of a special Jordan algebra J and its associative enveloping algebra.]ﬁ. These con-
nections play an important role in the study of right alternative and special Jordan alge-
bras. For example, the use of these connections can be seen in [8, 9, 10]. In the present

paper we continue the study of these connections.

In Sec. 1 we study the connection between various nilpotency conditions on a right al-
v )
ternative algebra A and 1its associated algebra A . We prove that A is nilpotent if and
, +)
only if A is right nilpotent, and that A is locally nilpotent if and only if A is locally

right nilpotent in the sense of Shirshov.

In Sec. 2 we establish a relation between the locally finite (in the sense of Shirshov)
radical Z;LJ) of a special Jordan algebra J with the corresponding radical of its associa-

. »
tive enveloping algebra J. Namely, we prove that

L, ()= 2,(T%)n].
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In particular, when 2= {0} we obtain this equality for the locally nilpotent radical

L (.7 )- {03 (J ) This result in the case of the locally nilpotent radical generalizes the
results of [7, 12], which deal, respectively, with the case where J"A ™ for some alterna-~
tive algebra A and J-H(A,*) is the Jordan algebra of symmetric elements of an associative
algebra A relative to the involution®. It follows from the relation connecting the locally
nilpotent radicals of J and J s that the quotient algebra J/.Z (J) is also a special algebra.
Therefore, in a special Jordan algebra J we have the inclusion M (J)e Z(J ) where M(J)
is the McCrimmon radical of J and & (J) is the locally nilpotent radical. It was known
earlier [5] that M(JT) # 0 implies 1 (7) 7‘0 As another consequence of our result we prove
that an element X of an alternative algebra A lies in !Z(A ) if and only if the right mul-

tiplication operator Ez lies in the analogous radical of the right multiplication algebra.

In the last section we consider Jordan and right alternative algebras satisfying cer-
tain minimum conditions. In particular, we prove that every qua51regu1ar ideal of a right
alternative algebra with minimum condition for quadratic ideals is right nilpotent. This
result answers a question of Thedy [9] and completes the description of right alternative
algebras with minimum condition for quadratic ideals: Any such algebra is an extension of
a right nilpotent algebra by a finite direct sum of matrix algebras over division rings and

Cayley—Dickson algebras.

1. Right Nilpotency in Right Alternative Algebras

Let ¢ denote a commutative associative ring with unity 1. All algebras considered in
this paper are r-t—algebras. We will employ standard definitions and notation, used, e.g.,
in [1, 2].

By the operation <+> we mean the‘#-linear operation in the free right alternative al-
gebra RALE fX] on the set of generators X"{ 1‘_,,...,.2',,,“.} , that acts as follows:
ifws= (.1’, T, T, )g » Where ¢ is some arrangement of parentheses, then <& > =2, :z‘ :Z‘ - ..13,'; ,
where 51-1—' - yx

In the sequel we will repeatedly use the following

. Proposition 1 (Shirshov [2, 8]). For any /' -polynomial /'{.1.') in the free right alterna-
tive algebra lef [XJ we have the relation }l{x)s <j(z)>.

We will first prove several simple auxiliary assertions.

’ In a right alternative algebra we define % _linear transformations V-Z"Ul‘.' Z/_z.’; as fol-
lows: ) . :
?Vr? 4°%, 7'”3" (z4)z, Z/z',}/ = Z/.zw-y— Uy~ Z/; .
LEMMA 1, In any right alternative algebra we have the following relations:
) wr@®) =- wily + w2,
() w(zey) == wlly, + wVpy'+ ),z

(z)wz’y + ar(:ey)—— wV Y +ur\:¢x+ur y+w'V£;
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The proof of these relations is trivial and amounts to applying the defining identities

of right alternativity.

LEMaA 2. Let RACE[X,,,

Xﬂ {0,.2;,.2'2,,..,.2;[} . Then for any natural number /77 and arbitrary #,,5(2,,..,%.,16 {.Z’,,.Z",,

""‘Z/z} we have

Jbe the free right alternative algebra on the set of generators

L1 Yy oo Ym 2/4 ...z}s,

where /,, /l, ( 2 "1@,) is a/' -polynomial in X,H.,‘ , that is linear with respect to 1’0, and
where /€[, <{,<...<(s& /1.

The proof is by induction onm . If m=/,/ , then Z, and 1'0% are already of the re-
quired form. Suppose the desired representation has been obtained for m&K, and suppose

m= k+{ . Then, by the induction assumption, Z, %’yz’ ym—/ Z/L:c ;z,', ,,,g » Where 1€¢ <l:‘e<
I

<(: and §€K . 1If §<K , then, by the 1nduct10n assumptlon the element /61’ .’E- , b"
/
where Z,= y,,‘, has a representation /‘ .Z‘L ,...Z .Z’t lefaz/,l ’» where 0/, is a J—polynomlal
in X,W that is linear with respect to .r and where P Pr<e <Py If s 1,5 , then the word
j‘- x.' :r- ves .r :I:t has the desired form.
7
Now observe that the words /L.Z' z; ....z (z 1:#) x ....Z'&- and /LI 1‘- ver 1«' ( ).z' ,

where 1/€ps S, have a representation of the desned form because of the 1nduct10n assumption.
Indeed, as is easily seen from the linearized right alternativity identity, they can be
represented as a sum of words of the form /"; U{'c’:’:c;z.,.f;P, where J is a j—monomial of degree
at least 2 in {:L',, .Tz,x_,, :l’}. Representing ¢ as a product of j—monomials of smaller degree,

we consider three cases:

) retowr 2) r=u?, 3) r=(uwly

where &, W are certainj—monomials. In the first two cases, applying (1) and (1') of Lemma
, ’ .
1, we obtain by induction that the word /(;U'JCK’ 1’,(2 15;,,0 has a representation of the form
’ 4 / . H .
22;.227 .Z‘zz... 'ZZK , where ZfL is a /-polynomial in X/H-/ ,
where 7,<Z,<...< 7, . If /= (dw')d , then, applying the obvious equality /= Q' =

that is linear with respect to Z, and

’ 7/ !
LA+ ((an)va)—(ww)u' , wedrrive at the conditions of the two considered cases. There-
. . / 7 / / . 14 / . v .
fore, interchanging in j; .’L“.’ ;c‘.z...zéq.z; the elements .Z‘éa and $t until l;a >t » we obtain, by

induction, a representation of the original word as a sum of words of the required form.
In right alternative algebras there are two definitions of right nilpotency [2].

Definition 1. An algebraA is called right nilpotent if there exists an 2 such that

’ 7 i
T,T,Zy... ,z',;=0 for any .Z",J"e“..,i‘ﬂEA,

Definition 2. An algebra A is called locally right nilpotent in the sense of Shirshov

if for any finite set R A there exists an /M such that Z, :B :B =0 for I; ex.

It is well known that an alternative algebra is locally right nilpotent if and only if
it is locally rlght nilpotent in the sense of Shirshov, and in this case it is locally nil-

' potent.
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As Mikheev [4] showed, there exists a right alternative algebra on three generators that
is locally right nilpotent in the sense of Shirshov, but not right nilpotent. Thus, Defi~
nitions 1 and 2 are already distinct in finitely generated, right alternative algebras. We
give below a characterization of these nilpotencies in terms of the associated quadratic
Jordan algebra A (+)- The definition and properties of a quadratic Jordan algebra can be found
in [9, 10].

Proposition 2. Suppose A is a right alternative algebra. Then A is locally right nil-

+)
potent in the sense of Shirshov if and only if the algebra A is locally nilpotent.

Proof. Suppose A is locally right nilpotent in the sense of Shirshov, A’=_{a,,az,....
QH}EA » and B is the subalgebra of A(H generated bqu . We will prove that 5m= 0, where
m is a natural number for which ..17, .f; ZL‘; $,’,,= g, if .l‘ie"(’ . Indeed, it is easy to see:
that for any reB™ in the free right alternative algebra RALt D(,,_], whereX,L"{(L’,,.Tz,...,-T;_},
there exists a/—polynomial & in XIz of degree at least / such that ¢ is the image of &
uAnder;the ixomoxr;orphism RA gf D(/z] — A, fof whic;h .Z'Zl——* d[ . ﬁincé, by‘ Propbsition i,<w'>-= '
W, it follows that =0 . '

. +

Conversely, suppose the algebra /4 is locally nilpotent, and R and B are as before.

We will prove that m+/ is a number for K corresponding to Definition 2, where 7 is the
+)
index of nilpotency of B as a subalgebra of A . Indeed, in A’A&‘ [X,z], according to Lemma
7 7 / _ ’ 7 7 ! _ A )

2, we have y/}/z yj . ..;,,H,,-Z/L-xz,z[z.., $45 , where,%( EX/Z v K=42,...,M¥n ., Since (S7,
the / ~polynomial /"- has degree at least s . Therefore, passing to the algebraA under the

homomorphism Z; &, we obtain y,y;%;w =0 for any ;/,,%e,...,ym“z& .
The proposition is proved.

1y ) =)
We denote by (A ) the m-th power of the quadratic Jordan algebra AT , and by [rn
.
the right ideal of A generated by (A‘ ))m.

@y ym~f ‘
taoa 3. 1¢ 0€(AY)™, then 202/ 2 2] 2] € L, for any T,,Z,,x,, T, €.

Proof. For elements :t,yEA we will write Z=¢ if z—y 6_7,,,. It follows from rela-
! r
tions (1), (1'), (2) and Lemma 1 that 1)'13,"1‘2’,.,. .2?; (}/"Z) =0 and 0'$,’1'3”='- lf(l;lé) . There-

fore,

Pond gt ol — Lol ol y /I o = ! = -
raz) 2,2 =~ 0(7,1,)'7/2) = 0z (2,2)z, =-02,7,(5D= 0 (2,7,) (%, 4,) = - 7z,
/ s 2, 7 L T2 N A VN AW A | . YN N A 4
z)(5z)202,z)(7,7,)= I(2,ZL)2 Bs- T T, L, T, =~ T, L, L3585 iew RUZ,T,T,Z, €L,

The lemma is proved.

COROLLARY 1. SupposeA is a right alternative algebra without 2-torsion. Then A is

+) .
right nilpotent if and only if A is nilpotent.
<m> o)y 1M
Proof. If AT = J, then, by Proposition 1, (A ) = 0. Conversely, if A7) =0,

4cm-nA<4(m-n+i> c _'Z-m =0 A<4m-3>___ 0.

then _{” = ( , and it follows from Lemma 3 that /2 , i.e.,
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COROLLARY 2. An alternative algebra without 2-torsion is nilpotent if and only if the

associated Jordan algebra is nilpotent.

The proof follows easily from Corollary 1 and the fact that an alternative algebra is

nilpotent if and only if it is right nilpotent.

2. Locally Finite Radical of a Special Jordan Algebra

Let us fix some ideal Z of the operator ring &b . We will use below the well-known

definitions and notation found, e.g., in [2, 3].

A finitely generated‘;b-algebra B 1is called finite over Z if there exists a fmini_te
n
set of elements é], é,é,...,éﬂ €5 such that for some natural number Z we have 8 & z 5‘2
: i =1

An algebra /4 is called locally finite over Z if every finitely generated subalgebra 8 of
/4 is finite over Z .

As shown in [3], local finiteness over Z is a radical property in certain classes of
algebras, in particular, in the classes of all alternative and Jordan algebras. In this
section we study the connection between the locally finite radical of a special Jordan alge-
bra Jand that of its associative enveloping algebra J*. For the existence of a locally fi-
nite radical we will assume that the operator ring % contains an element z/' (see also the

remark to Theorem 1)

Suppose A is an associative algebra,ﬂ a finitely generated subalgebra, and M a fi-

nitely generated qb-submodule of /4 . In the sequel we will need the following assertions.
LEMMA 4. If BUMB = M s then the algebra B is finitely generated as a 95—module.

¥ ¥ 3
LEMMA 5, If for some natural number Z we have the inclusion 5 uMBeMZ , then the

algebra B is finite over JZ.

The proof of these lemmas repeats almost verbatim, with the natural changés, the proofs

of Lemmas 7 and 8 of [2, p. 23], hence we omit it here (see also Lemmas 1 and 2 of [3]).

Let AAAD( u{x}] be the free associative algebra on the set of generators X U{ ﬂ}
where X { ,..-, /1} We will denote by <, X > the ‘p—module generated by the set of
monomials of the form ttx' 1‘ ...$LK, where f€¢ <be<..,<& £2,k=42,3,...,% , and 1’ Ex

(4.2,....2,}.

Let Wh denote the set of j -monomials that are linear with respect to &, and such that
the degree relative to the set X is at most 2z.

LEMMA 6. In the algebra Aid [X v {a: ] we have the inclusion <t,Xa><:z;,,X,,> §<Z‘W2”,xn>
where Ze/ss [X ulz, }]

Proof. Consider an element of the form 72 = .. 1’.2‘ 2 .. 2 in <Z‘, X,,><a;,,X,l> .
- 4T, 074" f2" " T ym

As is easily seen, it can be represented as a sum of words of the form h!'.i’s s, '“'ws .1,‘/’ 1/"2

oo .e , Where ¢ is a/—monomial in {1’ .‘Z" 1“' yeees &y } such that a’ ()= { and 0;((0')4-
f= K. Applying Lemma 2, we obtain a representatlon of the word 2‘0'.1' .Z' _2'5 zZ . ,z/' as
€ 4y mn
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a sum of words of the form z‘/‘,z'az 3

._‘z-‘, 5 where 4,<42<4J<,,,<6p and J; 1is some j -

(-4
nomials i 3 = ;
mo ials in Xﬂu {.’L‘a} such that a/Xn(/ZH.P K+m g #n. Therefore, /‘.’e Wzn_
. *
THEOREM 1 Suppose Jis a special Jordan algebra, J is its associative enveloping

»* -
algebra, and ’ZZ (J) and .Z’Z (.7 ) are the locally finite over Z radicals of J and J *, re—
spectively. Then 'ZZ (J)= ,Z'Z(J*) nJ.

Proof. The inclusion ,ZZ(]*)nJQ-Z'Z(J) is obvious. Let us prove that IZ (J)g R4
(J*) . Take an arbitrary element e ZZ(J) and consider the ideal /= (b + [.7* of .7*. Ve
will prove that 7 is locally finite over Z . Obviously, it is enough to show that for any
finite set /= {a,,az.'-',a,,}, 7€J , the subalgebra B generated by the set <¢,7> 1in J¥ 1s

finite over Z , where <Z’, 7> is the image of the qs-module <.1‘0,Xﬂ> under the homomorphism

pila[Xu{z ] — J" such that p(z,)={ and ¢(z,)=0;, (=12,...,a.
n 0 2 A ¢ ,

Consider the set Wza=’¢ (Wan) . Since {= ¢(¢o)e,ZZ(J) , it follows that W-m_c_ £, V).
Since the associative enveloping algebra of a locally finite over Z. special Jordan-algebra
is locally finite over Z (this follows immediately from Theorem 4 of [2]), for the algebra

.7 *
A'generated by the set Wz/z in J , there exist a natural number N and a finite set {w;,w;,...,

” m
#,} €A such that A" € 2 w; Z,
i=1 [4

z *
Consider the ¥ -module M = ggaf,f >eJ . 1t is finitely generated, since the Pb.-
‘ N
module <.:l‘a,)(,,> is finitely generated. From Lemma 6 we obtain that < £7> = ¢(<1-a,)(”>fl_c_
/ N-2 o N1y Nrl . .
¢z, Wp X ><,X,>"7) ... & i<z, W,, ,X,,>)g<A,MT> c <i§w‘:Z,7'_> S MZ. Ssince < 4,
N - N-1 i N
T><{,7>"¢ <wp W,,,7><e7> £...€<¢4 W, ,7>S<A" 7> € MZ, we have B"u
MB “c MZ. By Lemma 5, the algebra B is finite over Z .

The theorem is proved.

Remark. In using the theory of Jordan algebras it is sometimes useful to consider a
somewhat more general case, namely, where we do not impose on the ring Cr/7 the condition

';é'eqb . For this purpose we introduce the so-called quadratic Jordan algebras, which in
/{
£ 1
algebras is the same in many respects as the theory of Jordan ¢—algebras where 3 €¢ .

the case € 96 are easily transformed into linear Jordan algebras. The theory of these
For example, in quadratic Jordan algebras, as proved in [11], we have an analog of Zhevlia~-
kov's theorem for linear algebras which says that every finitely generated, solvable Jordan
algebra is nilpotent. Therefore, in particular, in quadratic Jordan algebras we can define
the locally nilpotent radical, i.e., the largest locally nilpotent ideal eZ(J) such that the
quotient algebra J/j(]) contains no locally nilpdtent ideals. Moreover, using the methods
of proof of [3], we can introduce in the class of these algebras the locally finite over Z
(where Z < 96 ) radical ,Zfz (J) 1t is easy.to see that Theorem 1 is also true, i.e., we
have the relation .Zz (.7)= ZZ(J*) NJ, where fz (J') is the corresponding radical of the

associative enveloping algebra J* of the quadratic Jordan algebra J.
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COROLLARY 1. Suppose Jis a special Jordan algebra and I (J) its locally finite over
Z radical. Then the quotient algebra J/.Z f) is special.

Proof. Let Z denote the algebra of .7 , generated by ZZ (J) . Then, by Theorem 1,
InJ-.Z (J). Therefore,

j/‘zz ) = J'+.Z"+’/[t+f c. (J")H/Im g(.f"/[)”’,

i.e., ]/_{z (J) is special.

COROLLARY 2. Suppose Jis a special Jordan algebra, M(J) is the McCrimmon radical [6]
of J, and £(J) is the locally nilpotent radical of J. Then M(J) C L(J).

Proof. By Corollary 1, when Z= {0} the quotient algebra J/Z’(J) is special, hence,
by Theorem 1 of [5], Z(J]./Z’(J)) = i(J/.Z(J))= 0 , where Z(J/-Z’(J)) is the ideal generated by
the absolute zero-divisors of v;£(J) . Therefore, M(J) C L(J).

COROLLARY 3. SupposeA is a right alternative ¢—algebra and R(4) its right multipli-
cation algebra. Then the conditions aef (/4 )and a €-Z (F(A)) are equivalent.

Proof. Let #,={a ’aeA} Then K4 is a quadratic Jordan subalgebra of (K (4 ))®

A’ ~A”/3 (A), where 3 (A) {QEA Ma 0} If ae.,l' (A ), then ae.Z’Z(A;), since /a_is
a homomorphic image of /4 . By Theorem 1, @ E-Z (A’(A)) Now suppose d'E.Z’Z(/?(A)), hence
ae-fz( A . Since (3 (,4)) 0 and A /3(,4)_ , it follows that QGZZ (,4(“).

, and

The corollary is proved.

COROLLARY 4. In an alternative algebraA , the conditions (ZE.ZZ (A) and faéfz (R (4))

are equivalent.

Proof. We use Corollary 3 and the fact that in an alternative algebra we have "gz(’”;
.Z (4“’) This equality can also be obtained from Theorem 1.

3. Rings with Minimum Condition

In this section we assume that the operator ring &> contains an element Z’l

Proposition 3. Suppose B is a Jordan algebra and /?(5) its right multiplication alge=-
7
bra. Then for any natural numbé 7 we have the inclusion A’(B<2”>)9 (R(B)).

2
The proof is by induction on z. If z=/, then K (8 )QR(B). Assume that for some 77
2 n 20>
we have R(B°%7)€R"(B) . Take arbitrary elements «, €B° ' and fce B; then Ry 4.7

- Ry R, :? /?azﬂ/?c ?g*/@,&{rg*%f"?"?&'?uh , i.e., R(B<2a+>)SR™(B), The proposition is

proved.

THEOREM 2., Suppose 8 is a locally nilpotent Jordan algebra. If for some natural num-
ber /7 the algebra B satisfies the minimum condition for ideals contained in B” then B is

nilpotent.

7

Proof. Consider the sequence of ideals {5<ﬂ>} of 3. since 3~ € B” it follows from
the conditions on B that there exists Z such that B "= 85”8 =B, Assume that 8~"% 0,
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hence the set of ideals J of &, such that J=JB # ¢ » is nonempty. Fix some minimal ideal
Jof B such that J=JB #0.

Note that for any ideal J of & such that [ &.J , there exists S for which JR*(f)=20.
Indeed, consider the sequence of ideals J,=Z, 7 =7,8, . -.,I Z;; » . Since [;J—C-ﬁm

there exists S such that Is ]s+/ -Z'sﬁ. Therefore, since fsgof , we obtain ]_'s==0- Thus,
ITR%(B)=0

We will prove that JA e J , where 7z is such that B= “7>B. Take 7 €J ,7 740 3

‘then [=,ZA7(15) is an ideal of B and /SJ . Since B is locally nilpotent, it follows from
Zhevlakov's theorem [1] that the algebra A (5 ) is also locally nilpotent, hence Z€/. There-
fore, in view of the remark, there exists § such that IR 3(5)= 0. By Proposition 3,

R(B _<2(5+’>)§/?s+/(5) » hence ZB<2(SM>= {0 . By the choice of /7 we have the inclusion

2(s+n>
A Eﬁ< s> , hence zB8=0, Consequently, JA<%"’=
—m =1,
Fix K such that JB*’= 0 and J 5"“ b‘# J , and choose wo—eﬁ e such that Ju,# 0. Let
S be such that (Ju) )36,#0 and (Jw' )5““) Consider the following three cases.

1) Suppose 532 . Consider the set /= (Jd), )Pa, where g, €8~ is such that Ju,)pg #0 .
We will prove that /<8 and JSJ , and that for any % we have I=Iﬁl(5) . Indeed, for é’,,
aﬁe B and z€J we have (Zag,)(zf{;)= (Z(Zf; é))él)a.‘*'(}l(w,, é;))ﬁ; —(Zé )(u)alf)+(Z(zd,z§))£—(z€)(a),zf;)=
(z(g,é)_)w . Consequently, (za)a)p”= (27 )W, . Since »((Zé)a)a_)/paé—'((z/%)wa)5;-2(( ,Of)a),)'*'
(Z(,D,u),))é'*' (zt,q,bf))a),-*- (z{a},!})),%.= - ((2,b,)wa)5;, it follows that /<A and L€ /A . Therefore,
O*xI SR ’{(5) for any 4. Thus, as mentioned, /= J. But since 2((2;4,),90)%?1(40:,%) +
2(z (“"a/ao))a)a + (Zu):)pa =0, we have Ja)a'=0 , despite the choice of the element &), hence
$<2.

2) Suppose 8= /. Consider the set /= (Ja) )5"’-]20 Since ((,Z f)g)u) ((,za) )5 )5
I((u),!)g)""(z(woé))g +(Z(U)og Dé"*‘ (Z(fg ))60 == ((za), )5 )5 , we have /<A and 7SJ . Also,
for any 1 we have I/Pt(ﬂ)fa . s1nce.7£t) c JR (5) Thus, I=J . As in case 1),((Ju)0)5)a70=
J. 1f K>3, then «), € 8%, hence (.7:1)0)0),, =0, Thus, Jlﬁa= 0 . Contradiction.

3) Suppose k=2 and there exists an element ug,eﬁ such that (Ja)‘,)a)p% 0, for otherwise
thedesired contradiction follows from 2). Now consider = (J'u)a )&, . As before, I < 3 and
IsJ , and for any £ we have Z"'=IA7{(5) Therefore, Z=J . But since 2((zw,)w,)wa =-zw5’+
3(211): )u)”= J , we obtain Jwﬂ=0. Thus, k={ and J=JB=0. But this means that A = B8~
A=0. /

The theorem is proved.

COROLLARY. Suppose A is a Jordan algebra with minimum condition for quadratic ideals
and 8 is a locally nilpotent ideal of A. Then B is nilpotent.

Proof. We will show that £ satisfies .t.he minimum condition for ideals contained in
z
53. Indeed, suppose J < B and 7 < AB°. We will prove that I is a quadratlc ideal of /4
. &) g6} ’ .
Take 6=2/ g €7 and gaeA. Then {¢acy=(aéli+ (i l)= ;(a, Uﬂ f )+(La)(,—(éa)4+2[(

/ )"‘(0 jm g{x)] el .
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The corollary is proved. (For the case of algebras over a field this is proved in [5]).

COROLLARY 2. In a special Jordan algebra.Jrsatisfying the minimum condition for quad-
ratic ideals, the quasiregular radical }'(J) is nilpotent.

Proof. Use the scheme of the proof of the corresponding theorem for the case of alge-

bras over a field [5, Theorem 4], along with Theorems 1 and 2.

THEOREM 3. = Suppose A is a right alternative algebra with minimum condition for quad-
ratic ideals. Then the quasiregular radical ;'(A) of A is right nilpotent, and the quotient
algebra A/;(A) is a semisimple Artinian alternative algebra.

Proof. As Thedy showed [9], A contains a nil ideal Z(A) such that AAZ(A) is a semi-

simple Artinian alternative algebra. By Corollary 2 of Theorem 2, the Jordan algebra

(z (AN

The theorem is proved.

is nilpotent, hence, by Corollary 1 of Lemma 3,.Z(A) is right nilpotent,

The author is sincerely grateful to I. P. Shestakov and A. M. Slin'ko for their guid-
ance.
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