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A sufficient condition is found for nonautostability of models which has made it possible 

to prove in a unified way criteria for autostability for distributive structures with rela- 

tive complements, and for linear orders, and has also made it possible to prove nonautostabil- 

ity of certain structures. The proof of Proposition 1 was obtained by the authors jointly; 

the remaining results of this work were obtained by V. D. Dzgoev. 

A countable model ~ is called constructivizable if there exists a numeration V: ~ • 

l~I such that the fundamental predicates and functions of ~ become recursive. A con- 

structivizable model ~ is said to be autostable if given any two constructivizations 

and ~ there exists an ~ -automorphism of ~ and a recursive function f such that ~f=~~ 

The relevant definitions are in [8]. 

If ~~~0,.,,~~) is a formula and ~2Z a model, then 

~(~z )~{<ao  . . . . .  a«>l~~ ¢(~o,...,o,~)}. 
If A{O~I~ 1 , and Óo ~ ~ , where [~I is the basic set of the model ~ and O is the 

signature of ~ , then ~#«%~'O will denote the submodel of ~ with basic set ~0 , and 

~~@o is the restriction of ~'~ to the signature @0 If ~0 is a submodel of ~Z~60 

(~o ~~r@o) , then we also write ~0~@~Z . The domain of definition and the range of a 

function will be denoted by ~~I and ~f , respectively. If fgo,...,tlK, is a set of 
i 

partial 

numbers, then <~>=<~o,...,aK> denotes the index of this set in some effective numeration 

of all such sets, and ~ denotes an ordered set of these elements. If f is a function with 

a single variable then f(~) denotes the ordered (k + l)-tuple ~~'n0) .... ~f(~K)- The set 

of natural numbers is denoted by N. 

We introduce some definitions which are useful in the description which follows. Let 

{22f 7~) be a constructive model. It is then easy to see directly from the definition that 

there exist a strictly computable chain of signatures @o~.. ~~~~.. " ~ "= U ~ù , where ~ is 

the signature of the model ~ , a strictly computable chain of~finite models 2~Z ¢«, ~~A/ , 

with signatures @~, rgE~ and a general-recursive function f such that 

(i) ~~=[Jl~~I is a recursive set; 

(ii) ~~Z: ~ 2~Z%,~ and ~~Z:= 0,m~ for every ~ e ~; 

(iii) ~f~~/~~)=/~Z~ and ~f~~~~~I' 22Z~--~ ~ is an isomorphie imbedding. 

We call such a sequence of models ~n , /Z6~, together with the function , a repre- 

sentation of the constructive model (~,V) 
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Let ~TEB{~ be an infinite conjunction of ~ -formulas and let ~=<{v~,~E~j,f~ 

be some representation of the constructive model I~~9) • We define 

Bnz ~ , .. 

and for every sequence of sets ~o,...,~t d, such that .~d=<tno,...,mg>, there exist infinitely 

many t and isomorphic imbeddings ~ '~~/{--~~r~~+ i which have for some ~~~ the following 

two properties: 

(i) ~~+t ~ "I ¢~rt.(99Imo) ~ , .,50(fTZF))~ where ¢~+t=~' 0 ~a~ ; 

(ii) « is the identity on I~~I and on the elements of the sets ~/ for /<~ 

We now introduce the notion of branching found by S. S. Goncharov. 

Main Definition. A representation /7~=<l~%,~E~},f ~~ branches for an ~ -formula if 

for every ~ the set ~~ is nonempty and ~I~'~)" is finite. 

A model ~ has branching if there exist an ~ -formula ~ anda constructivization ¢ 
p 

such that the representation ~V=<I~~,~E~},f } of the construetivization ~ of ~'~ 

branches for the V-formula 

A class of constructivizations of the model ~'~ is called effectively infinite if given 

any computable class of constructivizations of ~ we can effectively construct a constructi- 
vization which is nonautoequivalent to every constructivization in the given class. 

Proposition i. If a constructivizable model ~'~ has branching, then the class of con- 

structivizations of ~ is effectively infinite. 

Proof. Len 18, ß) be some computable class of constructive models isomorphie to ~ . 

We consider a constructivization ~ß~ for V , a computable sequence of infinite V -formulas, 

and a representation ~v which branches for ¢' We will construct in steps a construct- 

ivization ~ and a representation /7~=~{~~~~E~},f~> for /~~ having the desired 

properties. We also consider representations for the family .iS~f) • We denote by <I~r~7, 

~~},fm> a representation for (~r~m,~~ ~ ~ß~/72)) which is constructed effectively 

in terms of m. 

At each step t we will construct a finite model ~~ , a partial numeration ~~, a 

partial map ~ , and an auxiliary function ~ . During the construction we will also use 

markers <~~~> , where /~,KE ~ • Let ~0,.o~~C be all the variables in the formula ~ . We 

order all sets of numbers <n/o, .... m~> by their indices in some fixed computable numeration. 

We will also affix markers <mo~ .... trL~> to the markers <m,~> . 

In the construction we will use the p.r.f. ~a~f~(~) which is universal for the class 

of one-place partially recnrsive functions. We denote by ~~ IX) the value of a fnnction 

if it has been computed in fewer than t steps. Otherwise, the value is undefined. 

We now turn to a direct description of the construction. 

Step 0. ~f=¢, ~°=~°=~i ~[0,#)= O for all n. 
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B~ 
+! 

Step t + i. We check whether there exists a marker <~Tz,~> ~ ~+/ such that is 

defined on {O,..,~g(~,(~77,/<>)}and /[~77,70~~/)~ {y(07,0),.~~ Io?~ZI~, <mT«K>)) 5 , whether such 

a marker is nowhere found, or else whether it appears somewhere but with a marker <mS,..m~_ , 

we also check whether one of the following two properties holds: 

e i t h e r  ( i )  %f~~ (/TZ, 2~ [a)) i s  no t  an i somorph ic  imbedding of  ~r~ ~~ß~+/ i n t o  )?17 m ; 

or (ii) condition (i)does ~ot hold and there exist numbers /O, f lo , . . , f l  £ not greater than 

t + 1 and an isomorphic imbedding ~: " ~#+f such that 

and 

but  ¢ ~ ß = ~ g ,  where  ( j ~ ) / ( ~ )  c o n t a i n s  a l l  numbers to  which  marke r s  a r e  a f f i x e d  which a r e  

l e s s  t han  <f~~~> ; and f o r  a l l  s e t s  fflo,...~/Tl. B such t h a t  

< ~ 0 , . . , ~ e >  < <f,~~«o), ..,/,~ (,z«~ >, 

if all the mg,b.<g, belong to ~¢*I and ~~41~ ¢ , then all the [r?Z6) for £-<B 

belong to M and 

<mo,...,r~e > ><f~(~zol,...,f~~«el> 

or  e l s e  ~+! ~= q ~ I t T Z ° ' " ' ' / / z e  ) '  

If no such marker exists then we pass to part A (cf. below), which concludes step t + i. 

If such markers exist, we choose the marker with the smallest index. Let it be <rr~,~> . If 

condition (i) holds for <m~K> then we affix this marker to all elements in ~~ , all 

markers larger than <m,K> are removed, and we remove all markers from all markers not 

smaller than <~~K> If condition (ii) holds for <m~K> then we choose the smallest set 

<~0,,ù~S> such that (ii) holds. We remove all markers from all markers not less than 

~m,K> , and all markers not less than </77, K> are also removed. We relabel the elements 

of  t h e  model ~ff+l so t h a t  t he  i n d i c e s  of  t h e  e l e m e n t s  %~'99(0),0.0,~ ) become r e s p e c -  

- ~ ~  ~ ~  1 -~ « 1 tively the numbers O,~,..,K i , where ~~~I~ ] , and we fix this numeration ~ :L ~,¢ l~'dlZ+ / 

We now define on the set l~ff+~l the predicates and constants induced by the map ~ from 

~r~~+ t , and we denote the resulting model by ~ ! . We affix a marker ~~¢4¢ to th e ele- 

ments of <m~K> , and on <t?7,K> we affix the marker <r/o~..,~e> , where <{,~> is minimal 

satisfying property (ii). We put 

the number o f  element of  the model ~ ¢ ~« , and f o r  « @ < m , ~ >  we put « ( t « . ~ ) - « / i , ~ )  and go 

to the hext  s tep.  

A. We extend the map ~z~: l~~'-+'~Ito a ma p 

I m~+,l ~-:-il I onto ~ o¢+f 
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and put ~«If=[~~~) -(I~r~'~~+f),~L ~+f= Ill> -~÷f, ¢L(~+~RI=~[~~IJ for all n; we then go to the text 

in ~~~~~v the predicates induced by _~~+f from the model ~~+~ step, defining 

We now consider the sequence of models ~f~~~~,..~~;C.. and put ~~L~/~~U~ß'~~ 

By Lemma 5, we can define the map 

which is defined for all n. Since for each n there exists a t n such that ~~(~)=F~n(~) for 

all ~~~~ , the restriction of 7 to every ~~ is an isomorphic imbedding of ~ß into 

U ,~~f , and hence by the definition of the representation for ~ , we obtain that 4~ß 

is an isomorphism of ~~ otto ~ . We now put /I(~)-~~~[R) for all ~E~ By Lemma 6, 

the numeration ~ is a constructivization, and by Lemma 7 it is nonautoequivalent to every 

constructivization in S. This concludes the proof of the theorem. 

Remark i. The marker «.Ro,.. , ~Æ> is removed from <m~K> if a marker less than <m~K~ 

is affixed, or else 

Remark 2. If a marker smaller than <~,~> is only affixed a finite number of times, 

then the marker <~o,...,R#> is also affixed only finitely many times to <~~K> 

LEMMA i. If the marker <~~K~ is affixed infinitely many times, then the function 

fk is everywhere defined and ~[P2,~~ (~~)= I~~i 

The proof follows from the definition of the function £ and part (i) of the above 

construction. 

LEMMA 2. If all markers less than <~,K> are affixed only finitely many times, then 

<~,K> is also affixed only finitely many times. 

Proof. Assume the contrary. Then by Lemma I, y(~F~.~x[N~)= I~ml and <~ is an every- 

where defined function. 

Let ~o be a step after which no marker smaller than <m,~>, remains. We choose p such 

#I contains all numbers to which markers smaller than <n?~K> are affixed at step that l~p 

~O+f Let 9~ ) m~ contain d elements. Since 2~ is nonempty and ¢(~ )'~~ contains 

exactly d elements, there exist in ~ at least d + 1 sets of elements ~0,.»~$ such that 

~~~C~'), where /_~~ 

We consider sets of indices ~P ... ~i 07 , ~ contained in ~fK such that ~i~~~I0)=~~,0..~ 

=/rg d , and a step after which these sets are contained in ~ ~o From these 

sets we select the set ~~ with largest index. After step ~0 each set <~o,...,~e> 

can be affixed to the marker ~m,K> only finitely many times. 

Consider a step ~I>~o such that all the numbers in these sets are contained in ~f~1 
-- f --I and ~m ~' ~7 ~~~ holds for those sets for ~hich ~~~ Thus, there exist sets nT.oy.«~/TZdl 
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such that ~~ ~C~ (~,~Æ~f~~)l) for ~~~' and ~'>~~ , and for all sets Æ with indices 

smaller than the index ~o either ~=~~ for some or ~~~ ~ C~,~~(/~)J • 

Consider a step ~2>~o such that all the numbers in these sets which are contained in 

U '~ Kg '~ u~~O ~ß':~ are already contained in,, ~,,, and if ~ , q ~ (B l'r/" 6, 7 u ~,~))) then _ ~~ ~ ] ~ßl'~-"J " 

We ~hoose the  sets  of  n~mbers ~ ~ , . . , ~ «  such t hat  ~ C ~ ; ~ - - - ~ ~ , . . , P l ~ 4 ' , ~ - - - - - ' ~ U ,  a~d a s tep  

~I~~~ after which all the numbers in these sets lie in ~ß~ Since after step ~o each 

marker <n%K> can be affixed to the marker <rr6o,... ~£> only finitely many times, there 

exists a step ~#~~3 after which only markers larger than ~~ are affixed to <~»~> . 

But in this case, after step ~~ ~# --~' ~~~ , will not change on the sets ~0 .... , ~ If for some 

set ~'~~~ the formula -7 ~(/~~~(/~,Y)) holds in the model, then we consider a step 

~> ~# for ~~4(~~Z)) and for which a marker ~ is affixed to the 

marker ~~,~> and is theneeforth not removed If for all j we have ~~=~~~~(~i~)) • ~" , 

then at least one of these sets belongs to ~~ But then there exists a step ~~~ at 

which the condition of out step is satisfied for the marker <~?,K> of the above set and a 

marker Ffgj> , where j~ , is affixed to <~7~~> This contradicts our hypothesis. 

COROLLARY. Every marker <~?,~> is affixed only finitely many times. 

LEMMA 3. There are infinitely many markers <~,K> which at some step are affixed and 

thenceforth not removed. 

Proof. Assume the contrary. Let there exist a step ~o after which all markers, if 

they have beet affixed, are removed. Consider the smallest marker which is affixed after 

the steps ~ and ~#~~ It is clear from the construction and part (ii) above that this 

marker can only be removed if the marker affixed to it is changed, and consequently another 

marker will be affixed to it, which marker is again affixed; since all markers are affixed 

only finitely many times, at some step the marker is permanently affixed. In order to con- 

clude the proof of the lemma, we show that after step ~o at least one marker is affixed. 

Assuming this is false, we consider a number m larger than all markers present at step 

and a recursive rearrangement f~ Since ~(~fm (K)) gives an isomorphic imbedding of 

~~o~~; , into ~, there exists a step as in Lemma 2 to which the marker <m,O~ should 
be affixed. If this is not the case, then the conditions of (i) aboveholds forthemarker~Æ,K> 

at some step and it wiil be affixed, contrary to assumption. 

LEMMA 4. If after step ~o a marker is permanently affixed to the element n, then for 

all ~~~o we have ~~/~)=~~(~). 

The proof follows directly from the eonstruction. 

LEMMA 5. The value p~l w~~p~~) is defined for all n and ~ ! ~ o-~to j~" 

The proof of the lemma follows from Lemmas 3 and 4 and the fact that p~ gives a re- 

arrangement of l~;I for every t. 

LEMMA 6. Th@ numeration ~(~) = F~~~) is a constructivization of the model ~'~ 
# 

The proof is obtained from Lemma 5 and the definition of the relations on ~~ 
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LEMMA 7. 

in S. 

Proof. 

for all ~~ 

The constructivization ~ is nonautoequivalent to every constructivization 

Assume the contrary and let ~ be autoequivalent to a constructivization 

Consider a general-recursive function ~~ such that 

~cù.)=~ c~,f,~c~~) and J (, , , f~/m)=~ù-, 
and the marker <m, J(> . Using the construction in Lemma 2 and the corollary 

of Lemma 2, it can be shown that the marker <m,K) is permanently affixed at some step 

(not subsequently removed), since otherwise it would be affixed infinitely often, which con- 

tradicts the corollary of Lemma 2. 

Proposition 1 is proved. 

The effectiveness of Proposition 1 can be demonstrated by employing it to prove a number 
m 

of results. Throughout the remainder of this section, the set ~~ is taken as in the 

definition of branching, except that in each specific case, the formula ~ will be chosen 

in a suitable way. 

We call a lattice a structure with relative complements if for any ~~X~ 6 there 

exists a y such that æN~=~, ~U~~~ . 

THEOREM I. The following conditions are equivalent for a constructivizable distributive 

structure with relative complements and zero: 

(i) the structure is nonautostable, 

(2) the structure has infinitely many atoms, 

(3) the class of all constructivizations of the structure is effectively infinite. 

Proof. Let CD, V) be a constructive distributive structure with relative complements 

and zero. The nontrivial part of the proof involves showing that Dhas branchingo Put 

~(~) ~ ~~ (~ ~~ , (X=~V~ ~= 0)) , i.e., ~~~) selects the atoms of the structure. Consider 

a representation for D obtained by putting ~~ equal to the substructure generated by 

I ~O,~f,0°.~ ~~~. We relabel the elements so that their indices form an initial segment of 

N. 

We show that the set ~; contains element a having the following property: 

(*) ~ is an atom of D which is contained in an atom z of ~ such that ~g is an 

infinite Boolean algebra, or else the atom ~ in ~ is not contained in and there 

exist infinitely many elements of D not intersecting elements of ~~ • (For ZE~ the 

structure /-~~ ~ {~E-~ I ~ ~Z} is the ideal generated by the element z. It is obvious that 

for distributive st~uctureswithrelative complements and zero, 4 is always a Boolean 

algebra.) 

Indeed, assume that ~ satisfies condition (*) and aeg, z ; 4 is an infinite Boolean 

algebra and z is an atom in We show that there exist infinitely many t such that 
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there exists a ~ -isomorphic imbedding of! /_~~ into ~~#! and ~(a) is not an ätom 

in /_~~~! . Assume that at some step ~ »~ the atom b has been computed in ~~÷~~~ and 

c O E Z , where c is an atom in / 

For ~£B~ we define ~ as follows: 

It is verified directly that ~ is an isomorphism and ~~) is not an atom in ~~« . 

Since by hypothesis 2Z is an infinite Boolean algebra, there obviously exist infinitely 

many such t and isomorphisms 

We consider analogously the case when Œ ~~~ » a an atom in D, and there exist infinitely 

many elements in D not intersecting with elements in ~ ~ It is only necessary to wait 

until the step t at which an atom b in ~~+f has been computed and b lies under some atom 

of the algebra /~~ We define the imbedding ~ as before, i.e., for ~E2 # we have 

{ ~ u t  , ~f d ~ ~ ;  

Our hypothesis again guarantees the existence of infinitely many such steps t and im- 

beddings « It is clear from this that ~~ contains all elements which satisfy con- 

dition (*). It is easy to see that only finitely many atoms in D fail to lie in ~'¢ 

This completes the proof. We note that Theorem 1 was announced in [5]. 

As a corollary of Theorem i, we obtain a well-known result of Goncharov [i] concerning 

autostability of Boolean algebras. 

Before proving the following theorem, we give a definition. We will say that two ele- 

ments ~O,~> in a linear order L are adjacent if ~< ~ and ~cEL, ((a~C~~) ~ ~~= 

c v ~ = c ) )  

THEOREM 2 (cf. [6]). Let L be a constructive linear order. Then the following con- 

ditions are equivalent: 

(i) L is nonautostable; 

(2) L has infinitely many pairs of adjacent elements; 

(3) the class of all constructivizations of L is effectively infinite. 

Proof. As in the preceding assertion, it suffices to show that a constructive linear 

order (~,~) containing infinitely many pairs of adjacent elements has branching. We con- 

sider a representation for (~,~) obtained by putting L n equal to the finite linear order 

<~~o, v«,..., ~~~, ~ > 

We define ~(«,~) ~-- ~<~~VZ(=«Z~#---~(~=~Vg=~)) We fix ~~~ and show that 

B~ consists of the set of pairs <~,~> of adjacent elements of L such that either these 

elements are positioned between adjacent elements of Lm, between which there also lie in- 
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finitely many elements of L, or else ~,{ are larger than the largest element of L m and 

there exist in addition infinitely many elements of L with the same properties, or else the 

elements of the pairl~O,~> are less than the smallest element in L m and there also exist , 

infinitely many such pairs of elements. In fact, let ~<~ , <O~~> a pair of adjacent 

elements in ~ , ~<F/Z a pair of adjacent elements in L m with ~~~< ~<zr~ , and there let 

exist infinitelymany elements of L laying between <~«rr~> Assume that at some step ~~I?L 

an element c has been compnted in ~~÷¢ and ~<Os<,..<~~<~<~~+¢< ,,,<~~<~<~< ~I<... 

<4<nz , where O~ ..... ~K, 4,..,~s are all elements of L t lying between n and m. 

We define ¢ : L# ' D~+I by: 

Q« 

I t  i s  obv ious  t h a t  

infinitely many times. 

if £ = __£7~'4" f J 

, i f  2 = '  ~ i + 2  ' ' ° ' ' a K  ' 

, i f  $ - - 0 . ;  

otherwise, 

is an isomorphic imbedding, and this situation can be repeated 

We intentionally do not consider all the possible cases, hut hope that if desired the 

reader will treat them himself using an analogous method. It is also easily seen that 

~~)~~~ is finite. 

THEOREM 3 [6]. There exists an autostable model ~ such that the cartesian product 

~2 is nonautostable. 

Proof. Consider some one-valued constructivization ~0 of the linearly ordered set 

+~ , where £=<{DIÆ«/Z ~tTb},~ > and ~=<{G,~},<> such that in terms of the ~o-index 

~ and if not, then effectively find of ~ we can decide whether tL is equal to ~ or , 

numbers r& and zfL such that qo(~) = ~ ; and conversely, in terms of which we can now define 

a numeration ~ of the partially ordered set (2~~) (2-~~) by putting: V(/?) = (~0 (~(/z)), 

~0 ~~(rg))) , where C. ~.~ are Cantor functions [i0] enumerating pairs of natural numbers. 

We now define 

4 ~ ~({«~,~>,<~,<»,«.<»,<f.6>~), 
A,~AouV-'(f< P P ,o' I ù <7>,<7, 7,> b' P,«,7-t } / '  

O<,o<~.o<p'«7'J) 

We now consider the models ~0,..,~{,.. with basic sets Ao,..~ ~ ..... respectively, and 
the partial order induced on them from the partially ordered set ~ via the numeration 

It is clear that <I~~ I~~N}, D~B~ is a representation of the constructivization ~ We 

remark that the set ~f(~)~{~a~,~>l~~ ~(£~~~)) is equal to the set 

Consider the set ~~ We show that 

rg 
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relative.lyprlme ~>lr&, O < ' D < ~ }  UI~/<~-~a>,<~,S>~> iD,,q, relativelyprime O'~p~'~,«>,'rZ}. 

We consider in ~~ the natural ordering on the rational numbers and elements ~)~ in L t 

whieh are smaller than all the rational numbers in the ordering, with dl< ~. Then ~~ × 

= . The collection L t is a linearly ordered set, and we therefore consider its ele- 

ments in the order: 

Now let <a0,~o> ..... ~'~x,(~> be a sequence of pairs in ~(Œ)and <~«,~«>= ««, ~---~>, 

<~, ~ »  . Consider among the pairs <~~,~>, b~K, thosesuch that ~~¢~m and ~~~~ 

and let ~o be the smallest of all indices of pairs with this propertyo Such pairs exist, 

since by hypothesis <~#,~~> is such a pair. Assume for definiteness that 

Bl and ~ relatively prime. 

Consider a step ~>rrg 

= P,> I«~ 
p/ 

Assume that the element -- directly follows /)7 in L t . 

p-- 
Consider the first step ~~~ such that ~~i contains an element ~, such that 

__ P" p, PI < < Then in this step we can consider the isomorphic imbedding ~: (~~LI ~ O~Z~' 
defined as follows: 

It is easy to see that ~ satisfies conditions (i) and (ii) in the definition of ~~ , and 

therefore since the sequence <ao,~O~ ..... ,<ŒK. (~~ and step t were chosen arbitrarily, the 

existence of branchings has been proved. Using Proposition i, we now conclude our proof. 

In conclusion, we give an example; the idea of its proof is very closely related to the 

ideas in this section. The variant of the proof which we present uses Theorem 3 directly. 

Let (~,~) be a constructive model. We denote by A~~ the group of automorphisms 

of the model ~ We say that an automorphism ~EA~~~ is recursive for the construc- 

tivization ~ if there exists a recursive function f such that ~~ = ~f . It is obvious 

that the set of recursive automorphisms forms a group. We denote it by AU~(~'~,9). 

Proposition 2. There exist a constructivizable model ~ having continuum many auto- 

morphisms, and a constructivization # such that the group of recursive automorphisms 

Ag~ (~~ ~ ) is trivial. 

Proof. We construct the constructivization V of the linear order ~°~ (here • de- 

notes the product of the linear orders, not the cartesian product). We fix a constructive 

ordering of N of the rational numbers type ~~ , where ~ is the usual ordering of N of 
U' type. We define on N z a linear ordering ~ of type ~'~ : 
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By Theorem 3 there exists a computable set I%~ißN' of pairwise inequivalent construc- 

tivizations of t/) The desired constructivization of ~0~ is 

9(re) = < ~(a), 9e«»(,~ ~m)>. 
Indeed, let f be a recursive function, ~ an automorphism of the linear order O),f 

such that 

We remark that since ~ has no nontrivial automorphisms, any automorphism of ~ induces 

an automorphism of ~f~ , and conversely. Let ~0,~I,.'' be an effective enumeration of the 

indices of some copy of ~ For definiteness, we assume that these are the indices of 

the elements <~ogO>,<~0,1>~...~~ao,~>,.. (cf. the definition of the ordering ~ ). Then 

the automorphism ~ takes these elements into the elements <~O>,<~4>~ .... Relation (*) 

permits us to effectimely find the ~ indices of the images under ~ This last in fact 

means that the constructivizations of the corresponding copies of ~ are equivalent, which 

contradicts their choice. Proposition 2 was announced previously in [2]. 

5. 

6. 
7. 

8. 

9. 

i0. 

Examples of models with finite groups of recursive automorphisms can be constructed 

analogously to the above construction. 
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