AUTOSTABILITY OF MODELS

S. S. Goncharov and V. D. Dzgoev UuDC 517.15

A sufficient condition is found for nonautostability of models which has made it possible
to prove in a unified way criteria for autostability for distributive structures with rela-
tive complements, and for linear orders, and has also made it possible to prove nonautostabil-
ity of certain structures. The proof of Proposition 1 was obtained by the authors jointly;

the remaining results of this work were obtained by V. D. Dzgoev.

A countable model 7 1is called constructivizable if there exists a numeration Y: N-—
[#2]  such that the fundamental predicates and functions of % become recursive. A con-
structivizable model # 1is said to be autostable if given any two constructivizations V
and #4 there exists an o -automorphism of 70 and a recursive function f such that Vf==oéfl

The relevant definitions are in [8].

1f ?\a'o.myl',,)' is a formula and 7% a model, then
glm)={<q,,...a,>\m = ¢(a,,.. 2}

If Mgf;lﬁll , and G, <0 , where |#| is the basic set of the model # and @ 1is the
signature of 79 , then 727/‘/\//0 will denote the submodel of  with basic set Ma , and
?7”(50 is the restriction of 9 to the signature &, . TIf 7370 is a submodel of mrs,,
(ﬂlocﬂlP@o) , then we also write WZ‘,EWZ . The domain of definition and the range of a
partial function will be denoted by 5\7[) and f)f , respectively. If £#,../ . 1is a set of
numbers, then <h—>=<lzo,...,fl,(> denotes the index of this set in some effective numeration
of all such sets, and 7 denotes an ordered set of these elements. If f is a function with
a single variable then /(ﬁ) denotes the ordered (k + 1l)-tuple 7[(/10), ---77[(fl,<). The set

of natural numbers is denoted by N.

We introduce some definitions which are useful in the description which follows. Let
(??7, v) be a constructive model. It is then easy to see directly from the definition that
there exist a strictly computable chain of signatures gQ.., SG,S...;0 -=ﬂL;Ja@ﬂ , where @ is
the signature of the model % , a strictly computable chain of‘}finite models WZ:, neN

with signatures G, neN and a general-recursive function / such that

¥y y
i)y M =U‘mn| is a recursive set;
(ii) m,fc;m:,, and m:: om, for every nel;
(iii) vf”(N”)=/3?ZI and vfyflmn_li mﬂ—> M is an isomorphic imbedding.
v
We call such a sequence of models m,, , /76/‘/, together with the function 7[‘ , a repre-—

sentation of the constructive model (727,v) .
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Let ¢=E/1N50 be an infinite conjunction of Y -formulas and let /7 ( /ZE/V} f)
g )

be some representation of the constructive model (WZV

]5; = {<m0,,,,,m€>lm = ¢(y/(rna),. ..,Vyﬂ(nze)),

and for every sequence of sets ﬁa,,,,,mdz such that My=<My,..,M, there exist infinitely

We define

many t and isomorphic imbeddings ¢, :72715—-7?2#, which have for some (&d the following

two properties:
, t s+ Y
(1) mt“‘/#: 1 sb (Sﬂ (mg)f"'ysﬂ(mg»; where (p =t}{\0 ’0[ 3

(ii) ¢  is the identity on |73Zm| and on the elements of the sets /TZ/ for /'<(}

We now introduce the notion of branching found by S. S. Goncharov.

v v
Main Definition. A representation /7V=<{73Z”,/Z€/V},7[‘ > branches for an V -formula if

m
for every ()0 the set _B;l is nonempty and ¢(Wl)\3¢ is finite.

A model 0 has branching if there exist an Y -formula y anda constructivization Y
v
such that the representation /7V=<{m”,ne/\/},f} of the constructivization v of 7%
branches for the VY -formula ¢ .

A class of constructivizations of the model 7% is called effectively infinite if given

any computable class of constructivizations of Ml we can effectively construct a constructi-
vization which is nonautoequivalent to every constructivization in the given class.

Proposition 1. If a constructivizable model #7 has branching, then the class of con-

structivizations of M 1is effectively infinite.

Proof. Let (S,)’) be some computable class of constructive models isomorphic to 7% .
We consider a constructivization 7 for V , a computable sequence of infinite V -formulas,
and a representation /7\, which branches for ¢ . We will construct in steps a construct-—
ivization M and a representation /7ﬂ=<{771:1ﬂ€/\/} ,7£’M> for /U. having the desired
properties. We also consider representations for the family (S,)’) . We denote by <{WZ;Z,
n E/V},f'm> a representation for (WZ,,Z,/'LIL { (a, m )) which is constructed effectively

in terms of m.

At each step t we will construct a finite model WZZ( , a partial numeration /jt
partial map /d , and an auxiliary function % . During the construction we will also use
markers <m,k> , where miKeN . Let Z,,..,L¢ be all the variables in the formula ¢ . We
order all sets of numbers </7,.., /77!> by their indices in some fixed computable numeration.

We will also affix markers <m,,...,/M ,> to the markers <m, K>.

In the construction we will use the p.r.f. Lﬂ.t;l' (Z) which is universal for the class
of one-place partially recursive functions. We denote by 7[',1 J,‘) the value of a function

if it has been computed in fewer than t steps. Otherwise, the value is undefined.
We now turn to a direct description of the construction.

Step O. maﬂ_=¢, /L_/_a=/élo=}j, Zlfﬂ,/l) = ¢ for all n.
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. . t+/
Step t + 1. We check whether there exists a marker <«/7,K> < 4/ such that 7£K is
24
defined on {0,...,1(Lz, (ﬂ?,/(>>}and /{ﬂZ,/?;i )Q{X(m,a),,..,)’ (m,Z(L‘,<m,/<>))} , whether such

a marker is nowhere found, or else whether it appears somewhere but with a marker <my,..., mz>;

we also check whether one of the following two properties holds:

, o+ H 4
either (i) ?V/LX (7t 7[; (/Z)) is not an isomorphic imbedding of %Zz Pb‘;[; into 771/77 3

or (ii) condition (i) does not hold and there exist numbers p,7,,..,7, not greater than

y v
t + 1 and an isomorphic imbedding (|, — 7 such that
¢ +

my = $”t(/ (/ﬂ,ﬂt(ﬂ‘,)% NS (rrz,//(t(/ze))
and
my, = ¢ (e @), ... e @),

bt
but (,0P@=o'a/6_, , where (/Llé) (G) contains all numbers to which markers are affixed which are

less than <m,Kk> ; and for all sets /7,...,/M, such that
<Mgyeoo,Mp> < <7€<(ﬂo)1' .‘,%f( (11,7 >,

s m m bt ~f .
if all the my,is€, belong to ’mw and Wlwl: ‘/ , then all the 7{ (m‘;) for osé€
belong to M and
+* *
<m o mE > > <o), o (n)>

m L, %
or else mfu‘: RR% (ma,.,.,/ﬂ:).

If no such marker exists then we pass to part A (cf. below), which concludes step t + 1.
If such markers exist, we choose the marker with the smallest index. Let it be <m,k> . 1If
condition (i) holds for <m,K> then we affix this marker to all elements in ?ZZZ/ , all
markers larger than <m,K> are removed, and we remove all markers from all markers not
smaller than <m,k> . If condition (ii) holds for <m,Kk> then we choose the smallest set
<fly,..nllg> such that (ii) holds. We remove all markers from all markers not less than
< K> s and all markers not less than <m,K> are also removed. We relabel the elements
of the model m;, so that the indices of the elements [Ztsﬂ(o),...,/_jtgﬂ(Kt) become respec-—
tively the numbers 0,4,..,Kz , where 0,—Kt=\m:] , and we fix this numeration /—Jtﬂiim;*/’_’lm;ﬂl
We now define on the set lm;“} the predicates and constants induced by the map ﬂt{ from
WZ;, , and we denote the resulting model by ?ﬂ;ﬂ . We affix a marker mﬁ,} to the ele~
ments of <m,k> , and on <m,K> we affix the marker <7#,,...,7,> , where </,/?> is minimal

satisfying property (ii). We put

/uﬁ"——, v/jz?ﬁ’, v(f+1,<mk>) = l\WZ;HI

4
the number of element of the model 732#/ , and for g+ <m K> we put ‘Z(f*f.fl)= l(?f,ﬂ) and go

to the next step.

H v
A. We extend the map /.—(f: ‘mzf |—*|WZZ¢ |to a map

_ i 4 -1 Y
/d :lmé.u'“_*lmz‘ﬂl

onto
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- v + [
and put 2’22 —tﬁ) ’(mt“),,at - V//./ ﬁl, ’Z(Lz+/,ﬂ)=’l/2(,ﬂ) for all n; we then go to the next

4"
o H . . —EH 4
step, defining in mz‘ﬂ the predicates induced by # from the model mtﬁ

H H A
We now consider the sequence of models ?ﬂo le, E,..Qmﬂg... and put m‘ut,u m:

By Lemma 5, we can define the map
— A %
Hln) = Zlm/ Kon),

which is defined for all n. Since for each n there exists a tp such that # (/z) =Iu ”(/z) for
all > Z/z , the restriction of /( to every Wlﬂ is an isomorphic imbedding of m into
UWZ , and hence by the definition of the representation for Y , we obtain that V/‘,IJ
1”;0311 isomorphism of WZ onto % . We now put /u(/z}‘-l}}‘f,li{fl) for all ze AN . By Lemma 6,
the numeration M is a constructivization, and by Lemma 7 it is nonautoequivalent to every

constructivization in S. This concludes the proof of the theorem.

Remark 1. The marker <z,,..., #,> is removed from <m,k> if a marker less than <m,k>

is affixed, or else
M 1¢: (y(m,/zo),,..,/(m,/zté)).

Remark 2. 1If a marker smaller than <mk> 1is only affixed a finite number of times,

then the marker <7,,...,M,> 1is also affixed only finitely many times to <77,K>

LEMMA 1. If the marker <m,k> 1is affixed infinitely many times, then the function
f) is everywhere defined and 3’(/72,7[;< (/V))= |Wlml .

The proof follows from the definition of the function / and part (i) of the above

construction.

LEMMA 2. TIf all markers less than </7,K> are affixed only finitely many times, then

<m,K> 1is also affixed only finitely many times.

Proof. Assume the contrary. Then by Lemma 1, X(m,ﬂ(/\/))= fmm] and 7[; is an every-

where defined function.

Let 2‘ be a step after which no marker smaller than <m,4> remains. We choose p such
that |Wlﬂl contains all numbers to which markers smaller than <m,K> are affixed at step
7f0+/ . Let (/[M)\ﬁ% contain d elements. Since B is nonempty and gﬁ(%)\ﬁ‘ﬁ contains
exactly d elements, there exist in 7/ at least d + 1 sets of elements ﬂZo,...,ﬂId such that

Mpgﬂ(,ﬁ/) , where /gd

. . . — —_/ . .
We consider sets of indices Mm,,...,/My contained in ﬁ/K such that /(mﬂz )= /nm,,_
/(m,n‘z[}) =r77,;, , and a step Z; after which these sets are contained in Jof;t . From these
sets we select the set /ﬁ* with largest index. After step Z‘ each set </m,,...,Mp,>

can be affixed to the marker <m,k> only finitely many times.

Consider a step f7>2‘0 such that all the numbers in these sets are contained in Jo/'

and WZ”:’(’ = Qt’ holds for those sets for which K¢ . Thus, there exist sets ), a”
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such that Zﬂr:wl(m /7 (/n for !/'<d/ and &’>d , and for all sets /Z with indices
smaller than the index 77 _elther ﬂL==f71 for some i<d’ or M= W J/(/rz %m(ﬁ)) .

Consider a step zf)Z,L such that all the numbers in these sets which are contained in
éyo m;n are already contained in WZD‘ and if 707 ¢(/(m 7‘—0”1(1'7_2))) then mif_nf: Y -
We choose the sets of numbers mo*"‘ /77«[;/ such that 7’(/71 )=m ,.,,,7[](% )=rm m and a step
fl,>Zfz after which all the numbers in these sets lie in mzs . Since after step ta each
marker <mK> can be affixed to the marker <mig,---) Mp?> only finitely many times, there
exists a step (1; >Z§ after which only markers larger than m* are affixed to <mK> .
But in this case, after step /1 7/; will not change on the sets /7Lo”,... /'TL—C:Z . If for some
set /éd the formula 1 %ﬂ(//’(ﬂb )) holds in the model, then we consider a step
Z% Zvl,, for which WZ i S” (_t" ) and for which a marker /77;;’ is affixed to the
marker <m,K> and is thenceforth not removed. If for all j we have m E=l/(/lt(/7_z//f/))
then at least one of these sets belongs to B; . But then there exists a step ij?'/i, at

which the condition of our step is satisfied for the marker <m,K> of the above set and a

marker <m,/'> , where /sd’ , is affixed to <m,Kk> . This contradicts our hypothesis.
COROLLARY. Every marker <mK> 1is affixed only finitely many times.

LEMMA 3. There are infinitely many markers <> which at some step are affixed and

thenceforth not removed.

Proof. Assume the contrary. Let there exist a step -éa after which all markers, if
they have been affixed, are removed. Consider the smallest marker which is affixed after
the steps Zto and t,?'b‘ . It is clear from the construction and part (ii) above that this
marker can only be removed if the marker affixed to it is changed, and consequently another
marker will be affixed to it, which marker is again affixed; since all markers are affixed
only finitely many times, at some step the marker is permanently affixed. 1In order to con-
clude the proof of the lemma, we show that after step to at least one marker is affixed.

Assuming this is false, we consider a number m larger than all markers present at step Z‘o

and a recursive rearrangement frn . Since )J(O, 7Em (K)) gives an isomorphic imbedding of
tgﬂm into ##, there exists a step as in Lemma 2 to which the marker «m0> should

be affixed. If this is not the case, then the conditions of (i) aboveholds for the marker <m,X>

at some step and it will be affixed, contrary to assumption.

LEMMA 4. T1f after step fo a marker is permanently affixed to the element n, then for
all 2%, we have ﬁt(n)=,£2t°(/z).

The proof follows directly from the construction.

LEMMA 5. The value /ﬁ(/z)-=&m/7*(n) is defined for all nand gt N =V,

The proof of the lemma follows from Lemmas 3 and 4 and the fact that Illt gives a re-

arrangement of l?ﬂz«l for every t.

" LEMMA 6. The numeration H(n)= y%;ﬁ'(/z) is a constructivization of the model 7
Y]

The proof is obtained from Lemma 5 and the definition of the relations on JZZt
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LEMMA 7. The constructivization H is nonautoequivalent to every constructivization

in S.

Proof. Assume the contrary and let 4 be autcequivalent to a constructivization

}ﬁz/ (ﬂL/L) . Consider a general-recursive function £< such that

plr)=y (m fom) ad §f (m, {,(¥)=12,

for all ne N and the marker </mK> . Using the construction in Lemma 2 and the corollary
of Lemma 2, it can be shown that the marker <m,K> 1is permanently affixed at some step
(not subsequently removed), since otherwise it would be affixed infinitely often, which con-

tradicts the corollary of Lemma 2.
Proposition 1 is proved.

The effectiveness of Proposition 1 can be demonstrated by employing it to prove a number
m
of results. Throughout the remainder of this section, the set i5¢ is taken as in the
definition of branching, except that in each specific case, the formula ¢' will be chosen

in a suitable way.

We call a lattice a structure with relative complements if for any Q<X = 5 there

exists a y such that XNY=a, xug=5 .

THEOREM 1. The following conditions are equivalent for a constructivizable distributive

structure with relative complements and zero:
(1) the structure is nonautostable,
(2) the structure has infinitely many atoms,
(3) the class of all constructivizations of the structure is effectively infinite.

Proof. Let LD,V) be a constructive distributive structure with relative complements
and zero. The nontrivial part of the proof involves showing that Dhas btanching. Put
Y= Vy (y cr— (z:g vy =0), i.e., ¥(z) selects the atoms of the structure. Consider
a representation for D obtained by putting j?m equal to the substructure generated by
{VO,V/,.,., Vﬂ?}. We relabel the elements so that their indices form an initial segment of

N.
m .
We show that the set 23¢ contains element @ having the following property:

(*) @ is an atom of D which is contained in an atom z of 27m such that .ZL is an
infinite Boolean algebra, or else the atom @ in Z 1is not contained in j7m and there
exist infinitely many elements of D not intersecting elements of 2" . (For zel) the
structure _/72 = {:L'E_/7 l z EZ} is the ideal generated by the element z. It is obvious that

for distributive structures with relative complements and zero, . is always a Boolean

4
algebra.)
Indeed, assume that @ satisfies condition (%) and éZEZ@ 5 J% is an infinite Boolean
m
algebra and z is an atom in 2 . We show that there exist infinitely many t such that
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. £ T+
there exists a ¢ -isomorphic imbedding of: D% dnto D and ¢(@) 1is not an atom
. Z4/ . +H ¢
in 7 . Assume that at some step 7>m the atom b has been computed in 2" \7D" and

é7c ¢ ¢ Z , where ¢ is an atom in

For éZ{G_Dt we define ¢ as follows:

y dubd & daoa:
VD=4 6 v dpa.

+
It is verified directly that ¢ 1is an isomorphism and @@) is not an atom in j?t /.
Since by hypothesis _Z} is an infinite Boolean algebra, there obviously exist infinitely

many such t and isomorphisms ¢

m
We consider analogously the case when @ d.ﬂ, a anatom in D, and there exist infinitely
. . . . . m . .
many elements in D not intersecting with elements in JZ . It is only necessary to wait
. . . + .
until the step t at which an atom b in 27t/ has been computed and b lies under some atom

of the algebra i?é . We define the imbedding ¢ as before, i.e., for (ZEJyt we have

& dud & daa;
PO=V Yl dza.

Our hypothesis again guarantees the existence of infinitely many such steps t and im-
m
beddings ¢ . It is clear from this that 23¢ contains all elements which satisfy con-
m
dition (*). It is easy to see that only finitely many atoms in D fail to lie in Z3¢

This completes the proof. We note that Theorem 1 was announced in [5].

As a corollary of Theorem 1, we obtain a well-known result of Goncharov [1] concerning

autostability of Boolean algebras.

Before proving the following theorem, we give a definition. We will say that two ele-
ments <a,cf> in a linear order L are adjacent if @< g and VceL, ((aec‘-f) — (e =
cvéd=c) .

THEOREM 2 (cf. [6]). Let L be a constructive linear order. Then the following con-

ditions are equivalent:
(1) L is nonautostable;
(2) L has infinitely many pairs of adjacent elements;
(3) the class of all constructivizations of L is effectively infinite.

Proof. As in the preceding assertion, it suffices to show that a constructive linear
order (L,V) containing infinitely many pairs of adjacent elements has branching. We con-
sider a representation for (L,Q) obtained by putting L, equal to the finite linear order

<{vo,v1,...,vn},=> .

We define Z/f(:[‘,y) = $<9&VZ($<2'<¥—‘-(£=Z,VZ=£)) . We fix meN and show that
m .
Zgy»consists of the set of pairs <1E53 of adjacent elements of L such that either these

elements are positioned between adjacent elements of Ly, between which there also lie in-
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finitely many elements of L, or else a,{ are larger than the largest element of Lp and
there exist in addition infinitely many elements of L with the same properties, or else the
elements of the pairl{d,g)' are less than the smallest element in Ly and there also exist |
infinitely many such pairs of elements. 1In fact, let ¢<{ ,<0,5> a pair of adjacent
elements in Z/ » <@ a pair of adjacent elements in Ly with n7<@< g<m, , and there let
exist infinitelymany elements of L laying between <s7,/> . Assume that at some step £t>m
an element ¢ has been computed in LL‘H and r<Qx<,..<g;<C<&, < ,..<}a,<-<a,<t‘5< 5;<

K,,...,gs are all elements of L; lying between n and m.

<{;<m , where O,,...,,Q

We define @ :lyg =Ly, by:

¢ i Z= aa-l'/’

9(z) = iy 0 2=y Oy
aQ, if T=Q
2z otherwise .

It is obvious that ¢ is an isomorphic imbedding, and this situation can be repeated

infinitely many times.

We intentionally do not consider all the possible cases, but hope that if desired the
reader will treat them himself using an analogous method. 1t is also easily seen that
m
W(L)\.B¢ is finite.

THEOREM 3 [6]. There exists an autostable model (¢f such that the cartesian product

OZZ is nonautostable.

Proof. C(onsider some one-valued constructivization \)0 of the linearly ordered set
2+Z , where [-<{,%\0<a <rn},< > and 2=<{d,{},<> such that in terms of the ¥, -index
of /z we can decide whether n. is equal to & or / , and if not, then effectively find
numbers 7 and 7 such that Vﬂ(,'z\) = % 5 and conversely, in terms of which we can now define
a numeration y of the partially ordered set (2 +[)‘(2+f) by putting: V() = (¥, (£(n)),

VD (Z(/L))) , where ¢./.7 are Cantor functions [10] enumerating pairs of natural numbers.

We now define

A= v({<a b>,<ba>,<a.a>, <b.6>Y)),

= i IZNEYRIES
A Auv <z, ><97>< >/’2y7:9¢ 2 .
0</0<g0</0<g

We now consider the models %,...,ﬁ%f,... with basic sets Aa,...,A.é,.... respectively, and
the partial order induced on them from the partially ordered set (f wvia the numeration VY
It is clear that <{ t’tEN} Ld > is-a representation of the constructivization V . We
remark that the set ¥Y() < {<.T y>\0[|= M(I%)} is equal to the set

{<<a >,<b, >>\p<geA/} {«fa><F 2,62\ p<ge ) Ulko,8><a,8>,<ba><ba>).
Consider the set _5 . We show that

B™2 B %{«a

v - ><£P»}g

g
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relatively prime ¢ >/7, 0<P<i} U{<<g£,a>,<§,f>>|/o,¢ relatively prime U‘P<%¢>’”}-

We consider in L't the natural ordering on the rational numbers and elements a)f in L¢
which are smaller than all the rational numbers in the ordering, with &< K . Then Lf x
Lt = Oft . The collection Li is a linearly ordered set, and we therefore consider its ele-

ments in the order:

2<b<5z, <3< <2y, .

y /I\L]’ow let <a0,5;>,,.,,<cz,(,5k> be a sequence of pairs in % ((¥) and <aK,5;<>=‘<<CI, Z >,
< L2 : s ’ . 0

g >> . Consider among the pairs <ab-,z€.>, ¢t €K, thosesuch that @, §f[,m and ‘{'ﬂoﬂ
and let 4 be the smallest of all indices of pairs with this property. Such pairs exist,

since by hypothesis <CZK,gK> is such a pair. Assume for definiteness that

[4

cz.=<a,-§>, {»= <{, ’—;1>,

Lo ’ 14

Py and ¢ relatively prime.

7
Consider a step t>m . Assume that the element E/‘ directly follows '—0-7- in L.
/ ” 7
Consider the first step £>¢ such that Azu contains an element a,,— such that
AR

g <g" —9—, Then in this step we can consider the isomorphic imbedding ¥ Ulf/_/ “"'wbu

defined as follows:
Pr )

<zy> i ;%7 VZ=0a;
7

<z, 2

g

m
It is easy to see that ¢ satisfies conditions (i) and (ii) in the definition of 5¢ , and

plcay>) =

otherwise

therefore since the sequence <aa,é'o>,....,<d,<. g,(7 and step t were chosen arbitrarily, the

existence of branchings has been proved. Using Proposition 1, we now conclude our proof.

TIn conclusion, we give an example; the idea of its proof is very closely related to the

ideas in this section. The variant of the proof which we present uses Theorem 3 directly.

Let (?32,#) be a constructive model. We denote by Autm the group of automorphisms
of the model 9% . We say that an automorphism (€ Autm is recursive for the construc-
tivization vV if there exists a recursive function f such that 50\’ = 9}‘0 . It is obvious

that the set of recursive automorphisms forms a group. We denote it by Au'l'(ﬂl,V).

Proposition 2. There exist a constructivizable model (i having continuum many auto-

morphisms, anda constructivization ¥  such that the group of recursive automorphisms

AUJL (WL, y) is trivial.

Proof. We construct the constructivization V of the linear order w-Z (here o de-
notes the product of the linear orders, not the cartesian product). We fix a constructive

ordering of N of the rational numbers type ‘Z , where < is the usual ordering of N of
u type. We define on N? a linear ordering 4 of type u)'g :

£

<a,,f>4<c,d><d=> aszo or {@=C and f<af),
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By Theorem 3 there exists a computable set bk}éeﬂ‘ of pairwise inequivalent construc-

tivizations of & . The desired constructivization of td? is

w) = <Lw), ¥y, (i)>.

Indeed, let f be a recursive function, V an automorphism of the linear order CD‘Z

such that
VFo= gy ()

We remark that since @ has no nontrivial automorphisms, any automorphism of Z induces
an automorphism of LU:Z » and conversely. Let #y,a,,... be an effective enumeration of the
Y indices of some copy of & . For definiteness, we assume that these are the indices of
the elements <@,,0>,<@,,7>,...,<q;,7>,... (cf. the definition of the ordering < ). Then
the automorphism ¢ takes these elements into the elements <5:0>,<é9%m. Relation (%)
permits us to effectimely find the ¥ indices of the images under ¢ . This last in fact

means that the constructivizations of the corresponding copies of « are equivalent, which

contradicts their choice. Proposition 2 was announced previously in [2].

Examples of models with finite groups of recursive automorphisms can be constructed

analogously to the above construction.
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