F. S. Kerdman

The study of Lie groups in the large is based to a significant extent on the Schreier theorem on the extension of local homomorphisms of a simply connected topological group to a homomorphism in the large. Appropriate analogs of this theorem for Moufang loops in different particular cases have been used in [5] for the construction of a simply connected analytic Moufang loop with a preassigned tangent Mal'tsev algebra. The analog of the Schreier theorem for analytic Moufang loops with solvable tangent Mal'tsev algebra, obtained in the same article, had enabled us to give a classification of these loops. In the present article the restrictions on the tangent Mal'tsev algebra are removed. As a consequence, we obtain a classification of connected analytic Moufang loops with an arbitrary preassigned tangent

Mal'tsev algebra.

1. Let G be an analytic Moufang loop and $a \,\epsilon G$. As usual, \mathcal{R}_a and \mathcal{L}_a are the operators of the right and the left multiplication by the element a ,

$$xR_a = xa$$
, $xL_a = ax$.

A homomorphism $\varphi: \mathcal{G} \to \mathcal{G}$ is called a pseudoautomorphism if there exists an element $c \in \mathcal{G}$ such that for arbitrary $x, y \in \mathcal{G}$

$$c \cdot (xy) \varphi = (c \cdot x\varphi) \cdot y\varphi. \tag{1}$$

The element c is called the companion of the pseudoautomorphism φ . We know [6] that the operators $T_x = \tilde{L}_x R_x$ and $R_{x,y} = R_x R_y \tilde{R}_{xy}$ are pseudoautomorphisms of the Moufang loop G with the companions x^3 and $[\dot{y}, x] = \ddot{y}' \dot{x}' y x$, respectively.

If A is the tangent Mal'tsev algebra of the loop \mathcal{G} , then to each subalgebra A_o of the algebra A there corresponds a subloop U_o of the local analytic Moufang Loop U, where U is a sufficiently small neighborhood of the identity of the loop \mathcal{G} . Let us consider \mathcal{G}_o of finite products of elements of U_o with arbitrary arrangement of parentheses and equip it with the intrinsic topology: A subset V of \mathcal{G}_o is open if and only if for each \mathbf{zeV} there exists a neighborhood $V_{\mathbf{z}}$ of the identity of the local loop U_o such that $\mathbf{zV}_{\mathbf{z}} \subset V$. Let us verify that the space \mathcal{G}_o forms an arcwise-connected topological Moufang loop with respect to the multiplication in G.

Let $W_{i_1,...,i_k}$ be T-words in $x_{i_1,...,i_k} \in U_0$ (see [5]). If $a = \{x_i W_{i_1}..., x_k W_k\}$ is a word with a certain arrangement of parentheses, then $a = \langle x_i \overline{W}_i ... x_k \overline{W}_k \rangle = x_i \overline{W}_i R_{x_{\overline{z}} \overline{W}_k} ... R_{x_k \overline{W}_k}$, where W_i are also T-words in $x_{i_1,...,i_k} \in U_0$. We carry out induction on K. Let $a = \{x_i W_{i_1}..., x_n W_n\} = bc$, where b and c are words of length less than n. Then $b = \langle x_i \overline{W}_i ... x_k \overline{W}_k \rangle$, $c = \langle x_{k+1} \overline{W}_{k+1}... x_n \overline{W}_n \rangle$, and it is sufficient to consider the case n > K+1. If $u = \langle x_{k+1} \overline{W}_{k+1}... x_{n-1} \overline{W}_{n-1} \rangle$, $v = x_n \overline{W}_n$,

Translated from Algebra i Logika, Vol. 19, No. 3, pp. 284-299, May-June, 1980. Original article submitted September 19, 1979.

then $\alpha = \beta R_{u,\sigma}^{-1} \ u \cdot \sigma$. Since $R_{u,\sigma}^{-1}$ is a T-word in x_1, \dots, x_n (see [5, Lemma 6]), it follows that $\beta R_{u,\sigma}^{-1} = \langle x_1 \overline{W}_1, \dots, x_k \overline{W}_k \rangle$, where $\overline{W}_1, \dots, \overline{W}_k$ are T-words in $x_1, \dots, x_n \in U_o$ (see [5, Lemma 5]). The word $\beta R_{u,\sigma}^{-1} \ u$ has length n-1 and the induction hypothesis is applicable to it. The induction is carried out. In particular, each element $\lambda \in \mathcal{C}_o$ can be represented in the form $\alpha = \langle x_1 W_1, \dots, x_n W_n \rangle$, where W_1, \dots, W_n are T-words in $x_1, \dots, x_n \in U_o$.

Let \boldsymbol{x} and \boldsymbol{y} be arbitrary elements of \boldsymbol{G}_{0} and V be a neighborhood of the identity of the local loop U_{0} . For the continuity of the multiplication in \boldsymbol{G}_{0} it is sufficient that there exists a neighborhood $V_{\boldsymbol{x},\boldsymbol{y}}$ of the identity of the local loop U_{0} such that $\boldsymbol{x}V_{\boldsymbol{x},\boldsymbol{y}} \subseteq \boldsymbol{x}\boldsymbol{y}\cdot\boldsymbol{V}$. By what we have proved above, $\boldsymbol{x} = \langle \boldsymbol{x}_{t}W_{t}...\boldsymbol{x}_{n}W_{n} \rangle$ and $\boldsymbol{y} = \langle \boldsymbol{x}_{n+1}W_{n+1}...\boldsymbol{x}_{k}W_{k} \rangle$, where $W_{t,...,W_{k}}$ are T-words in $\boldsymbol{x}_{t},...,\boldsymbol{x}_{k} \in U_{0}$. For arbitrary elements $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{G}_{0}$ we will have $\boldsymbol{x}\boldsymbol{a}\cdot\boldsymbol{y}\boldsymbol{b} = \boldsymbol{x}\boldsymbol{y}\cdot(\boldsymbol{a}\overline{W}_{t}\cdot\boldsymbol{b}\overline{W}_{2})\overline{W}$, where $\overline{W}, \overline{W}_{t}$, and \overline{W}_{2} are T-words in $\boldsymbol{x}_{t},...,\boldsymbol{x}_{k} \in U_{0}$ (see [5, Lemma 11]). It is easily seen that for an arbitrary T-word W in $\boldsymbol{x}_{t},...,\boldsymbol{x}_{k} \in U_{0}$ and an arbitrary neighborhood V of the identity of the local loop U_{0} there exists a neighborhood V_{0} of the identity of the local loop U_{0} such that $V_{0}W \subseteq V$. Consequently, there exists a neighborhood $V_{\boldsymbol{x},\boldsymbol{y}} \subseteq U_{0}$ of the identity such that $\boldsymbol{a}, \boldsymbol{b} \in V_{\boldsymbol{x},\boldsymbol{y}}$ for $(\boldsymbol{a}\overline{W}_{t}\cdot\boldsymbol{b}\overline{W}_{2})\overline{W} \in V$.

This is what was required to be proved.

Thus, G_o is a topological Moufang loop. Now the arcwise connectedness of the space \hat{G}_o follows from the fact that \hat{G}_o is generated by neighborhood U_o of the identity in it. We will call \hat{G}_o the subloop of \hat{G} corresponding to the subalgebra A_o .

LEMMA 1. Let \mathcal{G} be an analytic Moufang loop, A be the tangent Mal'tsev algebra G, A_{o} be a Lie subalgebra of A that is a direct sum of subalgebras: $A_{o} = B \oplus \mathcal{G}$, where B is a semisimple and C is a solvable Lie algebra. Then the subloop \mathcal{G}_{o} , corresponding to the subalgebra A_{o} , is an arcwise connected group.

<u>Proof.</u> Let us consider a neighborhood U of the identity of the loop G such that a canonical coordinate system of the first kind [1] can be introduced in it. If V is the Lie subgroup in U that corresponds to the subalgebra A_o , then we can assume that for arbitrary $x, y, z \in V$ the elements [x, y], $xy \cdot z$, $x \cdot yz \in U$. As shown above, each $x \in G_o$ has the form $x = \langle x_1 \dots x_n \rangle$, where $x_1, \dots, x_n \in V$. Moreover, if $x, y, z \in V$, then $xy \cdot z = x \cdot yz$ or $x R_{y,z} = x$. We show that $x R_{y,z} = x$ for arbitrary $x \in G_o$ and $y, z \in V$.

Let $x = \langle x_1 \dots x_n \rangle$, where $x_1, \dots, x_n \in V$, and suppose that the above statement is valid for words of length less than n. Since $\mathcal{C} = [x, y]$ is the companion of the pseudoautomorphism $\mathcal{R}_{y,x}$ it follows by the induction hypothesis and (1) that

$$x \mathcal{R}_{y,z} = (\bar{x} x_n) \mathcal{R}_{y,z} = \bar{c}^{\dagger} [c \cdot \bar{x} \mathcal{R}_{y,z}] \cdot x_n \mathcal{R}_{y,z} = \bar{c}^{\dagger} (c \, \bar{x} \cdot x_n),$$

where $\bar{x} = \langle x_1 \dots x_{n-1} \rangle$. The element $c = [x, y] \in U$, and, consequently, there exists a $c_o \in V$ such that $c = c_o^m$ for a certain natural number m. By the induction hypothesis, we have $\bar{x}R_{c_o,x_n} = \bar{x}$. By virtue of the Moufang theorem, the set $\{\bar{x}, c_o, x_n\}$ generates a subgroup in G (see [6]). Finally, we get $xR_{y,z} = \bar{c}(c\bar{x}\cdot x_n) = \bar{x}x_n = x$.

Now let $\alpha, \beta \in G_{\sigma}$ and x and y be arbitrary elements of V and set c = [y, x]. Then, by what we have proved

$$c \cdot ab = c \cdot (ab) \mathcal{R}_{x,y} = (c \cdot a \mathcal{R}_{x,y}) \cdot b \mathcal{R}_{x,y} = ca \cdot b,$$

whence it follows that $c \in N(G_o)$, where $N(G_o)$ is the associative center of the Moufang loop G_o .

Let us consider the decomposition $V = V_1 V_2$ of the local Lie group V into a direct product of local normal divisors V_1 and V_2 , corresponding to the decomposition of the algebra $A_o = B \oplus C$. Since B is a semisimple algebra, the inclusion $[V, V] = N(G_o)$ implies that $V_i = N(G_o)$. Let us denote the subloops of the Moufang loop G_o that are generated by the sets G_1 and G_2 by V_1 and V_2 , respectively. Then $G_1 = N(G_o)$. If $\tilde{G_2}$ is a simple Lie group with tangent algebra C, then a local homomorphism $\Psi: \tilde{G_2} \to G$ corresponds to the embedding $\Psi: C \to A_o = B \oplus C = A$. Since the algebra C is solvable, it follows by [5] that Ψ can be extended to a homomorphism $\tilde{\Psi}$ in the large. It is clear that $\tilde{G_2}\tilde{\Psi} = G_2$. Consequently, G_2 is a group. It follows from the equation $[V_1, V_2] = e$, where e is the identity of the loop G, and the inclusion $G_i = N(G_o)$ that $[G_i, G_2] = e$. Hence $G_o = G_i G_2$ is a group. It has already been observed that $\tilde{G_o}$ is arcwise connected.

The lemma is proved.

We know [8] that only two nonisomorphic Cayley-Dickson algebras exist over the field \mathbb{R} of real numbers. These are the division algebra of Cayley numbers and the splittable Cayley-Dickson algebra. There exists only one (up to isomorphism) (splittable) Cayley-Dickson algebra over the field \mathcal{L} of complex numbers. Let F denote either \mathcal{R} or \mathcal{L} and \mathcal{K} be a Cayley-Dickson algebra over F. Then the commutator algebra $\mathcal{K}^{(-)}$ is decomposed into the direct sum of the one-dimensional center and a seven-dimensional simple Mal'tsev sub-algebra: $\mathcal{K}^{(-)} = F \oplus V$, where $V = [\mathcal{K}, \mathcal{K}]$ is the linear space that is spanned by all the commutators of the algebra K. We define functions $t: \mathcal{K} \to F$ and $n: \mathcal{K} \to F$ on K such that for arbitrary $x, y \in \mathcal{K}$

$$x^{2} = t(x)x - n(x), \quad n(xy) = n(x)n(y),$$

where the quadratic form n(x) on K is nondegenerate.

If $x, y \in V$, then we will denote their product in the Mal'tsev algebra $x \cdot y$ by V. We know [2] that a nondegenerate symmetric bilinear form (x, y) is defined on V such that for $x, y, z \in V$

$$(x \cdot y) \cdot y = -(y, y) \cdot x + (x, y) \cdot y,$$
 (2)

$$(xy,\chi) = (x,y\chi), \tag{3}$$

$$x_{y}, x_{y}) = (x, x)(y, y) - (x, y)(y, x).$$
 (4)

Moreover, for $a = x_o + x \in F \oplus V(x_o \in F, x \in V)$ we have

$$n(a) = x_o^2 + (x, x).$$
 (5)

$$G = \{x \in K \mid n(x) = i\},\$$

Then G forms an analytic Moufang loop with respect to the multiplication in the algebra K with the tangent algebra isomorphic to V; moreover, for $\mathcal{F} = \mathbb{R}$ the space G is analytically isomorphic to S^* or $S^3 \cdot \mathbb{R}^4$, and for $\mathcal{F} = \mathbb{C}$ the algebra K may be considered as a 16-dimensional simple algebra over \mathbb{R} , and the space G is analytically isomorphic to $S^* \times \mathbb{R}^*$ (see [5]).

We denote the subalgebra of K over the field F that is generated by arbitrary elements $a, b \in G$ by K(a, b). Let us set $G(a, b) = \{x \in K(a, b) | n(x) = 1\}$. Since K(a, b) is an associative algebra, it follows that G(a, b) is a subgroup of the loop G; moreover $a, b \in G(a, b)$. In the sequel we will be interested in the topological structure of the group G(a, b). For brevity we set $G_0 = G(a, b)$ and $K_0 = K(a, b)$.

We know that each subalgebra of a Cayley-Dickson algebra that is generated by two elements has dimension at most four. Consequently, the commutator algebra $K_o^{(-)}$ is decomposed into the direct sum of the one-dimensional center and a Lie subalgebra: $K_o^{(-)} = F \oplus \mathcal{I}$, where $\dim_F \mathcal{I} = 3$. Let us analyze the cases $\dim_F \mathcal{I} = 0, 1, 2, 3$ one by one. The expression $\hat{\mathcal{G}}_o = \hat{\mathcal{G}}_o \cup (-1) \hat{\mathcal{G}}_o$ means that $\hat{\mathcal{G}}_o$ has two connected components $\hat{\mathcal{G}}_o$ and $(-1) \hat{\mathcal{G}}_o$, where $1 \in \hat{\mathcal{G}}_o$ and, consequently, $\hat{\mathcal{G}}_o$ is a subgroup. The omitted computations can be easily restored:

a) $\dim_F Z = 0$, $G_0 = \{1, -1\}$;

b) $\dim_F \mathbb{Z} = I$, $\mathbb{Z} = (\mathcal{C}_I)_F$, $(\mathcal{C}_I, \mathcal{C}_I) = \mathcal{L}$, and for $\mathcal{X} = \mathcal{X}_O + \mathcal{X}_I \mathcal{C}_I \in F \oplus \mathbb{Z}$, by virtue of (5), we get $\mathcal{N}(\mathcal{X}) = \mathcal{X}_O^2 + \mathcal{L} \mathcal{X}_I^2$. The following cases are possible:

- $F = \mathbb{R}:$ 1) $\mathcal{A} = 1;$ \mathcal{G}_{o} is homeomorphic to S';
 2) $\mathcal{A} = 0, -1;$ $\mathcal{G}_{o} = \overline{\mathcal{G}}_{o} \cup (-1)\overline{\mathcal{G}}_{o};$ $\overline{\mathcal{G}}_{o}$ is homeomorphic to \mathbb{R} . $F = \mathbb{C}:$ 3) $\mathcal{A} = 0,$ $\mathcal{G}_{o} = \overline{\mathcal{G}}_{o} \cup (-1)\overline{\mathcal{G}}_{o};$ $\overline{\mathcal{G}}_{o}$ is homeomorphic to \mathbb{R}^{2} ;
- 4) $\mathcal{A}=1$; \mathcal{G}_{o} is homeomorphic to $S' \times \mathcal{F}$.
- c) $\dim_F \mathcal{I} = 2, \mathcal{I} = (e_1, e_2)_F.$

1) **Z** is an Abelian Lie algebra, i.e., $e_1 \times e_2 = 0$. Then, by virtue of (2), we get $0 = (e_1 \times e_2) \times e_2 = -(e_2, e_2)e_1 + (e_1, e_2)e_2,$

whence $(e_1, e_2) = (e_2, e_2) = 0$, and analogously $(e_1, e_1) = 0$. Thus, by virtue of (5), the norm $n(a) = x_0^2$ for each $a = x_0 + x \in F \oplus Z$. Consequently, $\overline{G_0} = \overline{G_0} \cup (-1)\overline{G_0}$, and if $F = \mathbb{R}$, then $\overline{G_0}$ is homeomorphic to \mathbb{R}^4 .

2) χ is a solvable non-Abelian Lie algebra. Then we can choose a basis such that $\ell_1 \star \ell_2 = \ell_1$. Using (2), we get

$$\ell_{1} = (\ell_{1} \times \ell_{2}) * \ell_{2} = - (\ell_{2}, \ell_{2}) \ell_{1} + (\ell_{1}, \ell_{2}) \ell_{2},$$

whence $(\ell_2, \ell_2) = -i$ and $(\ell_1, \ell_2) = 0$. In the same manner, from the equation

$$0 = (\ell_2 \times \ell_1) \times \ell_1 = - (\ell_1, \ell_1) \ell_2 + (\ell_1, \ell_2) \ell_1$$

we get $(\ell_1, \ell_1) = 0$. Consequently, the norm $n(x) = x_o^2 - x_z^2$ for $x = x_0 + x_1 \ell_1 + x_2 \ell_2 \in F \oplus Z$. If F = R, then $G_o = \overline{G_o} \cup (-1)\overline{G_o}$ and the space $\overline{G_o}$ is homeomorphic to R^2 . But if F = C, then the group G_o is connected and is homeomorphic to $S^1 \times R^3$.

d) $\dim_F Z = 3$, $Z = (\ell_1, \ell_2, \ell_3)_F$. Since the Lie algebra Z is generated by two elements, the basis ℓ_1, ℓ_2, ℓ_3 can be chosen in such a way that $\ell_1 \times \ell_2 = \ell_3$. Moreover, without loss of generality, we can assume that $(\ell_1, \ell_2) = 0$. Further, by virtue of (3), we have $(\ell_1, \ell_3) = (\ell_2, \ell_3) = 0$. If $(\ell_1, \ell_1) = \infty_1$ and $(\ell_2, \ell_2) = \infty_2$, then by (4) we get $(\ell_3, \ell_3) = \alpha_1 \propto_2$, and the norm $n(x) = x_0^2 + \alpha_1 x_2^2 + \alpha_2 x_2^2 + \alpha_1 \alpha_2 x_3^2$ for $x = x_0 + \sum_{i=1}^3 x_i \ell_i \in F \oplus Z$. The following cases are possible:

- F = R:1) $\alpha_1 = 0, \alpha_2 = 0, -1; \ G_0 = \overline{G}_0 \cup (-1) \overline{G}_0 \text{ and } \overline{G}_0 \text{ is homeomorphic to } R^3;$ 2) $\alpha_1 = 1, \alpha_2 = 0, -1; \ G_0 \text{ is homeomorphic to } S' \times R^2;$ 3) $\alpha_1 = \alpha_2 = 1; \ G_0 \text{ is homeomorphic to } S^3.$ F = C:
- 1) $\alpha_1 = \alpha_2 = 0$; $\hat{G}_0 = \bar{G}_0 \cup (-1) \bar{G}_0$; and \bar{G}_0 is homeomorphic to R^6 ; 2) $\alpha_1 = 0, \alpha_2 = 1$; \hat{G}_0 is homeomorphic to $S' \times R^5$;
- 3) $\alpha_1 = \alpha_2 = i$; \hat{G}_0 is homeomorphic to $\hat{S}^3 \times R^3$.

In the case $\mathcal{F} = \mathcal{C}$ the topological structure of the group \mathcal{G}_{o} is elucidated in the same manner as that of the whole group G in [5].

The following remarks will also be useful to us.

<u>Remark 1</u>. Let $x \in G_o$ be such that $x \neq \pm i$. Then either x or -x belongs to a one-parameter subgroup of G_o .

Indeed, if $\mathcal{K}_{\boldsymbol{x}}$ is the subalgebra in K generated by the element x, then $\mathcal{K}_{\boldsymbol{x}} \subset \mathcal{K}_{\boldsymbol{o}}$ and $\mathcal{K}_{\boldsymbol{x}}^{(\cdot)} = \boldsymbol{F} \oplus \boldsymbol{Z}_{\boldsymbol{x}}$, where $\dim_{\boldsymbol{F}} \boldsymbol{Z}_{\boldsymbol{x}} = I$. The subgroup $\mathcal{G}_{\boldsymbol{x}} = \{a \in \mathcal{K}_{\boldsymbol{x}} \mid n(a) = I\}$ of $\mathcal{G}_{\boldsymbol{o}}$ is Abelian and contains x: Moreover, either $\mathcal{G}_{\boldsymbol{x}}$ is connected or $\mathcal{G}_{\boldsymbol{x}} = \{\bar{\mathcal{G}}_{\boldsymbol{x}} \cup (\mathcal{H}) | \bar{\mathcal{G}}_{\boldsymbol{x}}, \text{ and the subgroup } \bar{\mathcal{G}}_{\boldsymbol{x}}$ is connected. In the latter case either \boldsymbol{x} or $-\boldsymbol{x}$ belongs to $\bar{\mathcal{G}}_{\boldsymbol{x}}$, and it is sufficient to use the following well-known proposition: Each element of a connected Abelian Lie group belongs to a one-parameter subgroup of this group.

<u>Remark 2.</u> Let \mathcal{G}_o be one of the connected subgroups, enumerated in the paragraphs b)d). Then the element $i \in \mathcal{G}_o$ belongs to a certain one-parameter subgroup \mathcal{G}_o .

Indeed, as usual, let $\mathcal{K}_{o}^{(-)} = \mathcal{F} \oplus \mathcal{Z}$. From the classification given above it is obvious that \mathcal{G}_{o} is connected if and only if there exists an $x \in \mathbb{Z}$ such that n(x) = 1. Considering the subalgebra \mathcal{K}_{x} , generated by this element in the algebra K, and the subgroup G_{x} connected with it, we see that G_{x} is a connected Abelian group that contains -1. The proof is completed in the same way as in the preceding remark.

<u>Remark 3.</u> Let \hat{G}_o be one of the connected, but not simply connected, subgroups, enumerated in the paragraphs b)-d). The space \hat{G}_o has the form $\hat{S}' \times R''$, $\kappa = Q/Q, Q, 3, 5$, and contains a one-parameter subgroup $\hat{G}_o^* = \hat{S}' \times \hat{O}$, where \hat{O} is the origin of coordinates in the Euclidean space R''. Then there exists a subgroup \hat{G}_o of the loop G such that the space \hat{G}_o is homeomorphic to the sphere \hat{S}^3 and $\hat{G}_o^* = \hat{G}_o$.

Indeed, it is easily seen that \hat{G}_{o}^{\star} is contained in a subalgebra \tilde{K}_{o}^{\star} of the form $(\ell, \ell)_{R}$, where $(\ell, \ell) = \ell$. The subalgebra \tilde{K}_{o}^{\star} can be embedded in the subfield of quaternions \hat{K}_{o} of the algebra K. We take the subgroup $\hat{G}_{o} = \{x \in \hat{K}_{o} \mid \pi(x) = \ell\}$ as the desired subgroup.

<u>Remark 4.</u> G contains an element b such that the subgroup $a \in G$ is connected for each G(a, b).

It suffices to take an element $b \in V$ such that (b, b) = i.

Let us now consider the problem of extension of local homomorphisms of simply connected Moufang loops, solved earlier for loops with a solvable tangent Mal'tsev algebra, in another important particular case, where the tangent algebra is semisimple.

Let A be a semisimple Mal'tsev algebra over \mathcal{R} . Then $A = A_0 \bigoplus_{\boldsymbol{\alpha} \in \mathcal{I}} \bigoplus_{\boldsymbol{\alpha}} A_{\boldsymbol{\alpha}}$, where A_0 is a semisimple Lie subalgebra and $A_{\boldsymbol{\alpha}}$ are non-Lie simple Mal'tsev algebras. The analytic Moufang loop

$$G = G_0 \times \prod_{\alpha \in I} G_{\alpha} , \qquad (6)$$

where \hat{G}_0 is a simply connected Lie group with the tangent algebra \hat{A}_0 and $\hat{G}_{\underline{z}} = \{a \in K_{\underline{z}} \mid n(a) = i\}$, $K_{\underline{z}}$ being a Cayley-Dickson algebra over F = R or \mathcal{C} such that $K_{\underline{z}}^{(-)} = F \oplus A_{\underline{z}}$, has a tangent algebra that is isomorphic to A. If $a \in \hat{G}$, then we will denote the projection of $a_{\underline{z}}$ in a by $\hat{G}_{\underline{z}}, a_{\underline{z}} \in \hat{G}_{\underline{z}}$. Let $a, b \in \hat{G}, K_{\underline{z}}(a, b)$ be the subalgebra of $K_{\underline{z}}$ that is generated by the elements $a_{\underline{z}}$ and $\hat{b}_{\underline{z}}; \hat{G}_{\underline{z}}(a, b) = \{x \in K_{\underline{z}}(a, b) \mid n(x) = i\}$, and $\hat{G}_{\underline{z}}(a, b)$ be the connected component of the group $\hat{G}_{\underline{z}}(a, b)$ that contains the identity, and $\hat{G}(a, b) = \hat{G}_0 \times \prod_{\underline{z} \in I} \widehat{G}_{\underline{z}}(a, b)$.

If G' is a connected analytic Moufang Loop and $\, arphi \,$ is a local homomorphism of Loop G into G', then the following lemma is valid.

<u>LEMMA 2.</u> Let a, and b be arbitrary elements of G and let $\varphi_{a,\delta}$ be the restriction of the local homomorphism φ to the subgroup $\overline{\mathcal{G}}(a,\delta)$. Then $\varphi_{a,\delta}$ can be uniquely extended to a homomorphism $\widetilde{\varphi}_{a,\delta}$ of the group $\overline{\mathcal{G}}(a,\delta)$ into the loop G'.

<u>Proof.</u> Since the tangent algebra of the Lie group $\overline{\mathcal{G}}(a,b)$ is either simple or is a solvable Lie algebra, it follows that the tangent algebra A(a,b) of the group $\overline{\mathcal{G}}(a,b)$ has the form $A(a,b) = \mathcal{B} \oplus \mathcal{C}$, where B is a semisimple and C is a solvable Lie algebra. Let us consider the homomorphism $\overline{\varphi}$ of the algebra A(a,b) into the tangent Mal'tsev algebra A' of the loop G' that is induced by the local homomorphism $\varphi_{a,b}$. If $A'(a,b) = [A(a,b)] \overline{\varphi}$, then $A'(a,b) = \mathcal{B}' \oplus \mathcal{C}'$, where $\mathcal{B}' = \mathcal{B} \overline{\varphi}$ is a semisimple and $\mathcal{C}' = \mathcal{C} \overline{\varphi}$ is a solvable Lie algebra.

Let $\overline{G}'(a, b)$ be the subloop of the loop G' that corresponds to the subalgebra A'(a, b). By Lemma 1, $\overline{G}'(a, b)$ is an arcwise connected subgroup. It is obvious that $\varphi_{a, b}$ is a local homomorphism of $\overline{G}(a, b)$ onto $\overline{G}'(a, b)$.

For its extension to $\overline{\mathcal{G}}(\alpha, \delta)$ we use a modification of the method set forth in [7]. Let $x \in \overline{\mathcal{G}}(\alpha, \delta)$ and let f(t) be a path in $\overline{\mathcal{G}}(\alpha, \delta)$ such that $f(0) = \ell$, where ℓ is the identity of the loop G, and f(t) = x. As shown in [7], to the path f(t) corresponds a path f'(t) in $\overline{\mathcal{G}}'(\alpha, \delta)$ that satisfies the following conditions:

 \checkmark) f'(0) = e', where e' is the identity of the group $\overline{G}'(\sigma, \delta)$.

 \mathcal{A}) If U is that neighborhood of the identity of the Loop G in which the local homomorphism φ is defined, then there exists an $\mathcal{E} > 0$ such that

$$f(t_1)'f(t_2) \in U$$
 and $f'(t_1)'f'(t_2) = \varphi(f(t_1)'f(t_2)).$

for $|t_1 - t_2| \leq \mathcal{E}$. Path f'(t) is determined uniquely by these conditions.

Let us set $x\tilde{\varphi}_{a,b} = f'(t)$ and show that the so-defined element $x\tilde{\varphi}_{a,b} \in \bar{b}'(a,b)$ does not depend on the choice of the path f(t) that joins the elements e and x (notwithstanding the possibility that $\bar{b}(a,b)$ may not be arcwise connected). The idea of the proof consists in the replacement of the path f(t) by a path that is homotopic to it and passes through certain simply connected subspaces, lying in subgroups. We need the following lemma.

LEMMA 3. Let f be a path in a direct product of topological spaces $X \times Y$ such that $f(0) = (x_0, y_0)$ and $f(1) = (x_1, y_1)$. Then f is homotopic to the product of paths $h \cdot k (f \sim h \cdot k)$, where h is a path in the subspace (X, y_0) that joins the points (x_0, y_0) and (x_1, y_0) and k is a path in the subspace (x_1, Y) that joins the points (x_1, y_0) and (x_1, y_1) .

<u>Proof.</u> Let us represent the path f in the form of a pair $[f_1, f_2]$ and set for $0 \le s \le 1$

$$f^{s}(t) = \begin{cases} [f_{1}((1+s)t), f_{2}((1-s)t)], & 0 \leq t \leq t_{s} = \frac{1}{1+s} \\ [f_{1}(1), f_{2}((1+s)t) - 2st_{s})], & t_{s} \leq t \leq 1. \end{cases}$$

It is obvious that $f^{\circ} = f$, $f' = h \cdot k$ and f° is a homotopy that connects these two mappings.

÷

Let us return to the proof of Lemma 2. Let g(t) be another path in $\overline{G}(a, b)$ such that g(0) = e and g(1) = x, and let g'(t) be the path in $\overline{G}'(a, b)$ that corresponds to it. We show that f'(1) = g'(1). For this let us consider the set $I_1 = \{ \angle e I | \overline{G}_{\angle}(a, b) \text{ is a subgroup in } G_{\angle} \}$ that is not simply connected. If $\angle e I_1$, then the space $\overline{G}_{\angle}(a, b)$ can be represented in the form $\int_{-\infty}^{1} R^{\kappa}$, $\kappa = 0, 1, 2, 3, 5$. In addition, the path $f_{\angle}(t)$ has the origin at the point $f_{\angle}(0) = i \in \int_{-\infty}^{1} x = 0$ and the end at the point $f_{\angle}(1) = x_2 = (x_{\angle}^{(1)}, x_{\angle}^{(2)})$. By Lemma 3 the path $f_{\angle}(t)$ is homotopic in $\overline{G}_{\angle}(a, b)$ to the product $h_{\angle} \cdot k_{\angle}$, where

$$h_{\boldsymbol{x}}(t) \in \boldsymbol{\mathcal{G}}_{\boldsymbol{x}}^{*}(\boldsymbol{\alpha},\boldsymbol{b}), \ h_{\boldsymbol{x}}(t) = (\boldsymbol{x}_{\boldsymbol{x}}^{(t)},\boldsymbol{\boldsymbol{\theta}}), \quad k_{\boldsymbol{x}}(t) \in (\boldsymbol{x}_{\boldsymbol{x}}^{(t)}, \ \boldsymbol{\mathcal{R}}^{*})$$

for $0 \neq t \neq 1$. If $\not\prec \notin I_{i}$, then we set $h_{i}(t) = f_{i}(t)$ and $k_{i}(t) = f_{i}(t)$ for $0 \neq t \neq 1$. Then f(t) is homotopic in $\overline{b}(a, b)$ to the product $h \cdot k$, where h(t) and k(t) are paths in $\overline{b}(a, b)$ whose

projections on \hat{b}_{λ} are equal to $h_{\lambda}(t)$ and $k_{\lambda}(t)$, respectively, $\lambda \in I \cup \{0\}$. Under a continuous deformation of the path f(t) in $\overline{b}(a,b)$ without change of the end points, the image f'(t) will also be continuously deformed in $\overline{b}'(a,b)$ without change of the end point [7]. Therefore the end points of the path f' and $(h \cdot k)'$ coincide. The path $(h \cdot k)'$ is the product of paths $h' \cdot k'$, where h' is the path in $\overline{b}'(a,b)$ that corresponds to the path h and k', by construction, depends only on the element k'(0) = h'(1) and the path k. Analogously, the path g(t) is homotopic in $\overline{b}(a,b)$ to a product $m \cdot n$, where $m_{\lambda}(t) \in G_{\lambda}^{*}(a,b)$ and $n_{\lambda}(t) \in (x_{\lambda}^{(1)}, \mathbb{R}^{k})$, $0 \leq t \leq I$, for $\lambda \in I_{\lambda}$ and h(t) = m(t) and $g' \sim m' \cdot n'$. Now, to prove the equality f'(t) = g'(t) it is sufficient to show that k'(t) = n'(t).

As a preliminary we prove that h'(1) = m'(1). For this, using Remark 3, we embed the subspaces $\hat{b}_{\lambda}(a,b)$ in simply connected subgroups $\hat{b}_{\lambda}(a,b)$ of the loop $\hat{b}_{\lambda}, \lambda \in I_{1}$. For $\lambda \notin I_{1}$ we set $\hat{b}_{\lambda}(a,b) = \bar{b}_{\lambda}(a,b)$ and consider the subgroup

$$\hat{\boldsymbol{6}}(\boldsymbol{a},\boldsymbol{b}) = \boldsymbol{6}_{\boldsymbol{o}} \times \prod_{\boldsymbol{a} \in \boldsymbol{I}} \hat{\boldsymbol{6}}_{\boldsymbol{a}}(\boldsymbol{a},\boldsymbol{b}).$$

As in the subgroup $\overline{b}(a,b)$, in the loop G' there corresponds to it an arcwise connected subgroup $\hat{b}'(a,b)$ such that the restriction of the local homomorphism \forall to $\hat{b}(a,b)$ is a local homomorphism of this subgroup onto $\hat{b}'(a,b)$. The paths h(t) and m(t) Lie in $\hat{b}(a,b)$. Defining the corresponds paths in $\hat{b}'(a,b)$ that satisfy the conditions \measuredangle) and β), we obviosuly get the already considered paths h'(t) and m'(t). The group $\hat{b}(a,b)$ is, by construction, simply connected. Consequently, $\hbar \sim m$ in $\hat{b}(a,b)$; whence $\hbar' \sim m'$ in $\hat{b}'(a,b)$. In particular h'(t) = m'(t).

To complete the proof of the lemma, it is now sufficient to observe that the paths k(t) and n(t) lie in a simply connected subspace of the space of the group $\overline{\mathcal{G}}(a, b)$. Since these paths have a common origin and a common end, it follows that $k \sim n$ in $\overline{\mathcal{G}}(a, b)$. Moreover, by what we have already proved, k'(0) = h'(1) = n'(0); whence k'(1) = n'(1).

Thus, we have shown that the element $x\tilde{\varphi}_{a,b} = f'(t)$ does not depend on the choice of the path f in the group $\overline{b}(a,b)$ that satisfies the conditions f(0) = c and f(t) = x. It is proved, verbatim as in [7], that the so-defined mapping $\tilde{\varphi}_{a,b} : \overline{b}(a,b) \longrightarrow \overline{b}'(a,b)$ is a homomorphism that extends the local homomorphism $\Psi_{a,b}$ and also that it is unique.

This is what was required to be proved.

We pass to the construction of the homomorphism $\,\widetilde{arphi}\,$ of the loop G into G' that extends the local homomorphism $\,arphi\,$. Let us consider the set

$$E = \{ x \in e_0 * \bigcap_{\alpha \in I} G_\alpha \mid x_\alpha = \pm 1, \, \alpha \in I \},$$

where e_o is the identity of the group \hat{b}_o . For $x \in E$ we find $a, b \in \hat{G}$ such that $x \in \bar{b}(a, b)$. Let us set $x\tilde{\varphi} = x\tilde{\varphi}_{a,b}$ and show that the so-defined element $x\tilde{\varphi}$ does not depend on the choice of $a, b \in \hat{G}$. Indeed, let $c, d \in \hat{G}$ be such that $x \in \bar{b}(c, d)$. If $d \in I$ for a certain $x_d = -i$, then $\bar{b}_d(a, b)$ contains -1, and therefore the group $\hat{b}_d(a, b)$ is connected. By Remark 2 the element x belongs to a certain one-parameter subgroup h(t) of the group $\bar{b}(a, b)$. Analogously $x \in q(t)$, where g(t) is a one-parameter subgroup of the group

 $\overline{\mathcal{G}}(c,d)$. It is obvious from the proof of Remark 2 that the subgroups $h_{\mathfrak{a}}(t)$ and $g_{\mathfrak{a}}(t)$ are contained in two-dimensional subalgebras of the algebra $\mathcal{K}_{\mathfrak{a}}$. Consequently, there exist $\mathcal{U}, \sigma \in \mathcal{G}$ such that $h(t), g(t) \subset \overline{\mathcal{G}}(\mathcal{U}, \sigma)$. If \mathcal{U} is a neighborhood of the identity of the loop G in which the local homomorphism \mathscr{Y} is defined and y and z are elements of \mathcal{U} such that $y = h(\mathcal{C}_{\mathfrak{a}})$ and $\mathfrak{X} = g(\mathcal{C}_{\mathfrak{a}})$ and $\mathfrak{X} = g^m = \mathfrak{X}^n$ for certain natural numbers m and n, then $\mathfrak{X}\widetilde{\mathcal{Q}}_{\mathfrak{a},\mathfrak{b}} = (\mathcal{Y}\mathcal{Q})^m = \mathfrak{X}\widetilde{\mathcal{Q}}_{\mathfrak{a},\mathfrak{a}}$.

Let a, b, c, and d be arbitrary elements of G and let $u \in \overline{G}(a,b) \cap \overline{G}(c,d)$. Then $u \widetilde{\varphi}_{a,b} = u \widehat{\varphi}_{c,d}$. Indeed, $u = u_o \overline{u}$, where $u_o \in G_o$ and $\overline{u} \in e_o * \prod_{\substack{\leftarrow I \\ \substack{\leftarrow I$

 $(x\overline{\mu})\widetilde{\varphi}_{a,b} = (x\overline{\mu})\widetilde{\varphi}_{\rho,s} = (x\overline{\mu})\widetilde{\varphi}_{c,d},$

whence $\overline{u}\,\widetilde{\varphi}_{a,b} = (xx\overline{u})\widetilde{\varphi}_{a,b} = x\widetilde{\varphi} \cdot (x\overline{u})\widetilde{\varphi}_{a,b} = x\widetilde{\varphi} \cdot (x\overline{u})\widetilde{\varphi}_{e,d} = (xx\overline{u})\widetilde{\varphi}_{e,d} = \overline{u}\widetilde{\varphi}_{e,d}$. It is obvious that the mappings $\widetilde{\varphi}_{a,b}$ and $\widetilde{\varphi}_{e,d}$ coincide on \mathcal{G}_{o} , so that $u\widetilde{\varphi}_{a,b} = u_{o}\widetilde{\varphi}_{a,b}\cdot\overline{u}\widetilde{\varphi}_{a,b} = u_{o}\widetilde{\varphi}_{e,d}\cdot\overline{u}\widetilde{\varphi}_{e,d} = u\widetilde{\varphi}_{e,d}.$

It is now natural to set $u \in \overline{b}(a, b)$ for an arbitrary $u\widetilde{\varphi} = u\widetilde{\varphi}_{a, b}$. By what we have proved above, this definition does not depend on the choice of suitable $a, b \in b$. By virtue of Remark 4, there exists an element $b \in b$ such that the group $u \in b$ is connected for each b(a, b). Consequently, $a \in b(a, b) = \overline{b}(a, b)$, and the mapping $\widetilde{\varphi}$ is defined on the whole space G. It remains to prove that $\widetilde{\varphi}$ is a homomorphism.

<u>LEMMA 4.</u> For arbitrary $x \in E$ and $y \in G$

$$x y)\widetilde{\varphi} = x\widetilde{\varphi} \cdot y\widetilde{\varphi} = y\widetilde{\varphi} \cdot x\widetilde{\varphi}.$$

<u>Proof.</u> By Remark 4 there exists $\chi \in G$ such that $G_{\chi}(y, \chi)$ is connected for each $\varkappa \in I$. Then $G(y,\chi) = \overline{G}(y,\chi)$, $E \subset G(y,\chi)$ and the statement of the lemma follows from the equation xy = yx and the fact that the mapping $\widetilde{\psi}$ coincides with the homomorphism $\widetilde{\psi}_{y,\chi}$ on $G(y,\chi)$.

The lemma is proved.

LEMMA 5. Let ${\mathcal A}$ and b be arbitrary elements of G. Then the mapping \widetilde{arphi} is a homomorphism on ${\mathcal G}(a, {\boldsymbol b})$.

<u>Proof.</u> Each element $u \in \hat{G}(a,b)$ can be represented in the form $u = xu_o$, where $x \in E$ and $u_o \in \bar{G}(a,b)$. Moreover, $E \subset G(a,b)$, so that $\hat{G}(a,b) = E \cdot \bar{G}(a,b)$. The mapping $\bar{G}(a,b)$ acts as a homomorphism on the group $\tilde{\Psi} = \tilde{\Psi}_{a,b}$. Let x be an arbitrary element of E and u_o and u_o be arbitrary elements of $\bar{G}(a,b)$. Let us consider the pseudoautomorphism $T_{x\tilde{\psi}}$ of the Loop G' with the companion $(x\tilde{\psi})^3 = x^3\tilde{\psi} = x\tilde{\psi}$. Setting, for brevity, $z\tilde{\psi} = x'$ for $x \in G(a,b)$ and using Lemma 4, we get

$$\boldsymbol{x}' \cdot \boldsymbol{u}_{o}' \boldsymbol{\sigma}_{o}' = \boldsymbol{x}' \cdot (\boldsymbol{u}_{o} \boldsymbol{\sigma}_{o})' = \boldsymbol{x}' \cdot (\boldsymbol{u}_{o} \boldsymbol{\sigma}_{o})' \boldsymbol{T}_{\boldsymbol{x}'} = (\boldsymbol{x}' \cdot \boldsymbol{u}_{o}' \boldsymbol{T}_{\boldsymbol{x}'}) \cdot \boldsymbol{\sigma}_{o}' \boldsymbol{T}_{\boldsymbol{x}'} = \boldsymbol{x}' \boldsymbol{u}_{o}' \cdot \boldsymbol{\sigma}_{o}',$$

$$\tag{7}$$

i.e., the triple x', u'_o, s'_o is associative. If $y \in \mathcal{E}$, then

$$(u_{o} \cdot y \sigma_{o})' = (y \cdot u_{o} \sigma_{o})' = y' \cdot u_{o}' \sigma_{o}' = u_{o}' \cdot y \sigma_{o}' = u_{o}' \cdot (y \sigma_{o})'.$$
⁽⁸⁾

Here we have again used Lemma 4 and Eq. (7). Let u and v be arbitrary elements of $\hat{b}(a,b)$ such that $u = \mathbf{x}u_o$ and $r = y\sigma_o$, where $\mathbf{x}, y \in E$, and $u_o, \sigma_o \in \overline{\hat{b}}(a,b)$. Then, substituting $y\sigma_o$ for σ_o in (7), which is possibly by virtue of (8), we get

$$(u\sigma)' = x' \cdot (u_{\sigma} \cdot y\sigma_{\sigma})' = x'u_{\sigma}' \cdot (y\sigma_{\sigma})' = (xu_{\sigma})'(y\sigma_{\sigma})' = u'\sigma'.$$

The lemma is proved.

The following lemma is now easily obtained.

LEMMA 6. Let G be a semisimple analytic Moufang loop of form (6), G' be a connected analytic Moufang loop, and \mathscr{Y} be a local homomorphism of G into G'. Then \mathscr{Y} can be uniquely extended to a homomorphism $\widetilde{\mathscr{Y}}$ of the loop G into G'.

Indeed, the above-constructed mapping $\tilde{\varphi}$ extends the local homomorphism φ . If \hat{a} , $\delta \in \hat{b}$, then $a, \delta \in \hat{b}(a, b)$ and, by Lemma 5, we have $(ab)\tilde{\varphi} = \hat{a}\tilde{\varphi}\cdot \delta\tilde{\varphi}$. The uniqueness of the homomorphism $\tilde{\varphi}$ is obvious. The lemma is proved.

We now formulate the main theorem.

<u>THEOREM 1.</u> Let G and G' be connected analytic Moufang loops, G be simply connected, and \mathscr{Y} be a local homomorphism of the loop G into G'. Then \mathscr{Y} can be uniquely extended to a homomorphism $\widetilde{\mathscr{Y}}$ of the loop G into G' into the large. If \mathscr{Y} is a local isomorphism and the loop G' is simply connected, then $\widetilde{\mathscr{Y}}$ is an isomorphism of the loop G onto G'.

<u>Proof.</u> We start the proof with the last statement. In this case, without loss of generality we can consider the simply connected analytic Moufang loop, constructed in [5], as G. Then $G = P \cdot N$, where P is a semisimple subloop of the form (6), N is a simply connected solvable normal divisor of the loop G. Let Ψ_{ρ} and Ψ_{N} denote the restrictions of the local homomorphism Ψ to P and N, respectively. By Lemma 6, Ψ_{ρ} can be extended to a homomorphism $\tilde{\Psi}_{\rho}$ of the loop P into G'. In its turn, Ψ_{N} can also be extended to a homomorphism $\tilde{\Psi}_{N}$ of the loop N into G' by virtue of [5]. If u is an arbitrary element of G and u = pa, where $\rho \in P \cdot A \in N$, then we set

$$\mu \widetilde{\varphi} = \rho \widetilde{\varphi}_{\rho} \cdot \alpha \widetilde{\varphi}_{N}. \tag{9}$$

It is easily seen that $\tilde{\varphi}$ is a properly defined mapping of the loop G into G' that extends the local homomorphism φ . We prove that $\tilde{\varphi}$ is a homomorphism of the loop G into G'. For this let us consider an infinitesimally generated element $x \in P$ and an arbitrary $a \in N$. As in [5], we can show that

$$a T_x \widetilde{\varphi} = a \widetilde{\varphi} T_x \widetilde{\varphi}. \tag{10}$$

If ρ and s are arbitrary elements of $\rho = \langle \rho_1 \dots \rho_n \rangle$, and $s = \langle s_1 \dots s_m \rangle$, where ρ_1, \dots, ρ_n , s_1, \dots, s_m are infinitesimally generated elements of the loop P, and $\alpha, \beta \in \mathbb{N}$, then by [5]

$$pa \cdot sb = ps \cdot (a W_1 \cdot b W_2) W, \tag{11}$$

where W, W_i , and W_i are T-words $\rho_1, \dots, \rho_n, S_1, \dots, S_m$. An analogous equality holds G' also for arbitrary α', δ' and $\rho' = \langle \rho', \dots, \rho'_n \rangle, S' = \langle S'_1, \dots, S'_m \rangle$ if ρ'_i and S'_j are infinitesimally generated elements of the loop G'. Using (9)-(11), we get

$$(pa\cdot sb)\widetilde{\varphi} = (ps)\widetilde{\varphi} \cdot (aW_1 \cdot bW_2)W\widetilde{\varphi} = (p\widetilde{\varphi} \cdot s\widetilde{\varphi}) \cdot (a\widetilde{\varphi}W_1' \cdot b\widetilde{\varphi}W_2')W' = (p\widetilde{\varphi} \cdot a\widetilde{\varphi}xs\widetilde{\varphi} \cdot b\widetilde{\varphi}) = (pa)\widetilde{\varphi} \cdot (sb)\widetilde{\varphi},$$

where W'_1, W'_1 , and W'_2 are T-words of the loop G' that are obtained from W, W_1 , and W_2 by replacing the elements $\rho_1, \ldots, \rho_n, S_1, \ldots, S_m$ by $\rho_1 \widetilde{\varphi}, \ldots, \rho_n \widetilde{\varphi}, S_1 \widetilde{\varphi}, \ldots, S_m \widetilde{\varphi}$, respectively. Here the homomorphicity of the mapping $\widetilde{\varphi}$ on P and N has also been used.

Thus, $\tilde{\varphi}$ is a homomorphism of G into G' that generates the local homomorphism \mathscr{V} . Since \mathscr{V} is a local isomorphism and G' is generated by each of its neighborhoods of the identity, it follows that $\tilde{\varphi}$ is a covering of G onto G'. Since G' is simply connected, it now follows that $\tilde{\varphi}$ is an isomorphism of the loop G onto the loop G', which was required to be proved.

Let us consider the general case of a local homomorphism φ of a simply connected loop G into a connected analytic Moufang loop G'. By virtue of what we have proved above, we can consider the simply connected analytic Moufang loop, constructed in [5], as G, and the extending homomorphism $\tilde{\varphi}$ can be defined by Eq. (9).

The theorem is proved.

2. We formulate some consequences of Theorem 1.

<u>THEOREM 2.</u> Let G be a connected analytic Moufang loop, A be the tangent Mal'tsev algebra of the loop G, and A_o be a Lie subalgebra of A. Then the loop G_o , corresponding to the subalgebra A_o , is a Lie group. In particular, if A is a Lie algebra, then G is a Lie group.

<u>Proof.</u> Let us consider the simply connected Lie group $\hat{\mathcal{G}}_o$ with the tangent algebra \mathcal{A}_o . The local homomorphism $\varphi: \hat{\mathcal{G}}_o \to \mathcal{G}$, induced by the inclusion $\mathcal{A}_o \subset \mathcal{A}$, can be extended to a homomorphism in the large by Theorem 1. The image of the Lie group $\hat{\mathcal{G}}_o$ under this homomorphism is the subloop \mathcal{G}_o ; whence the statement of the theorem follows.

<u>Remark.</u> It should be observed that the subgroup \mathcal{G}_o , corresponding to the subalgebra \mathcal{A}_o , is understood in the sense of the definition given at the beginning of this article, i.e., as a group equipped with the intrinsic topology. But if \mathcal{G}_o is equipped with the subspace topology of the space G, then \mathcal{G}_o may turn out to a nonclosed subspace and may not be a Lie group.

The following theorem gives a classification of the connected analytic Moufang loops that are locally isomorphic to a given loop.

<u>THEOREM 3.</u> Let \mathcal{U} be the class of all connected analytic Moufang loops that are locally isomorphic to a given loop. Then the class \mathcal{U} contains a unique (up to isomorphism) simply connected loop $\tilde{\mathcal{G}}$. An arbitrary loop G from the class \mathcal{U} is a homomorphic image of the loop $\tilde{\mathcal{G}}$ such that the kernel of the covering homomorphism $\psi: \tilde{\mathcal{G}} \to \mathcal{G}$ is a discrete central

normal subgroup of the loop $\ \widetilde{\mathcal{G}}$.

This theorem follows easily from [3, 5] and Theorem 1.

In conclusion, we formulate two theorems that are analogs of theorems of Pontryagin [7] and Mal'tsev [4] and characterize normal subloops of simply connected analytic Moufang loops.

THEOREM 4. Let G be a simply connected analytic Moufang loop and N' be a local normal subloop of it. Then a certain neighborhood of the identity of the loop N' can be embedded as a neighborhood of the identity in a normal subgroup N of the loop G in the large.

THEOREM 5. Every connected normal subloop N of a simply connected analytic Moufang loop G is simply connected.

With regard for [5] and Theorem 1, the proof of Theorem 4 is carried out verbatim as in [7]. To prove Theorem 5 we can use the plan of arguments from [4], applying, where necessary, the results of [5] and Theorem 1.

The author is deeply grateful to E. N. Kuz'min, under whose guidance this article has been written.

LITERATURE CITED

- E. N. Kuzmin, "On the connection between Mal'tsev algebras and analytic Moufang loops," Algebra Logika, <u>10</u>, No. 1, 3-22 (1971).
- E. N. Kuz'min, "On a class of anticommutative algebras," Algebra Logika, 6, No. 4, 31-50 (1967).
- 3. A. I. Mal'tsev, "On general theory of algebraic systems," Mat. Sb., <u>35</u>, No. 1, 3-20 (1954).
- A. I. Mal'tsev, "On simply connectedness of normal divisors of Lie groups," Dokl. Akad. Nauk SSSR, <u>34</u>, No. 1, 12-15 (1942).
- 5. F. S. Kerdman, "Analytic Moufang loops in the large," Algebra Logika, <u>18</u>, No. 5, 523-555 (1979).
- V. D. Belousov, Fundamentals of the Theory of Quasigroups and Loops [in Russian], Nauka, Moscow (1967).
- 7. L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1973).
- K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, Near-Associative Rings [in Russian], Nauka, Moscow (1978).