SCHREIER THEOREM FOR ANALYTIC MOUFANG LOOPS

F. S. Kerdman UDC 512.55:512.81

The study of Lie groups in the large is based to a significant extent on the Schreier
theorem on the extension of local homomorphisms of a simply connected topological group to
a homomorphism in the large. Appropriate analogs of this theorem for Moufang loops in dif-
ferent particular cases have been used in [5] for the construction of a simply connected
analytic Moufang loop with a preassigned tangent Mal'tsev algebra. The analog of the Schreier
theorem for analytic Moufang loops with solvable tangent Mal'tsev algebra, obtained in the
same article, had enabled us to give a classification of these loops. In the present article
the restrictions on the tangent Mal'tsev algebra are removed. As a consequence, we obtain
a classification of connected analytic Moufang loops with an arbitrary preassigned tangent

Mal'tsev algebra.

1. Let G be an analytic Moufang loop and aeb . As usual, Ra, and La are the

operators of the right and the left multiplication by the element A ,
2R, = za, xl,=ax.
A homomorphism ’{G_’ G is called a pseudoautomorphism if there exists an element ceb

such that for arbitrary -t,gé@

c'(:cgw = (c-a:(f)-gq). (1)
The element ¢ 1is called the companion of thepseudoautomorphism ¢ . We know [6] that
i
the operators _[;2 L.z Rz and R R ﬁ/ are pseudoautomorphisms of the Moufang loop § with

the companions &° and ng:l #_i —y.ll s respectlvely

1f A is the tangent Mal'tsev algebra of the loop G , then to each subalgebra Ao of
the algebra A there corresponds a subloop Uo of the local analytic Moufang Loop U, where
U is a sufficiently small neighborhood of the identity of the loop @ Let us consider Go
of finite products of elements of Us with arbitrary arrangement of parentheses and equip
it with the intrinsic topology: A subset V of 60 is open if and only if for each .I:E.V
there exists a neighborhood V,’ of the identity of the local loop U, such that a:VECV .

" Let us verify that the space Go forms an arcwise-connected topological Moufang loop with

respect to the multiplication in G.

Let W,, W be T —words in 2., L€ Uo (see [5]). If Q ={£,W,...£,M} is a word
with a certain arrangement of parentheses, then QA = <.c,|A_/,...a:‘W,‘> =‘C,Wf R-L'z-‘wz. ...RE‘W‘ , where Wé
are also 1 -words in L. ., X € Uo . We carry out induction on K . Let QA= {23, e Lp ,L}=6C,
where b and ¢ are words of length less than n. Then 6= 4.1:,\'\/, -BWK> c = <.1’,‘HW(H .z:n_\z\_/,p ,
and it is sufficient to consider the case A >k+71 . If u-<1a”V%H an“4ﬂ>, U=J%“é’
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-~ . ~1 ]
then a:éku’ru.u. Since ku-,u is a T -word in Z,...,Ln (see [5, Lemma 6]),
1 vl Vi W =
it follows that 5kuﬂr=<x,\r\/,...azl\«\/,<> , where \MI,,,A,W; are | -words in &,...,Ln€ U, (see
[5, Lemma 5}). The word 52,;”(1_ has length 2 —{f and the induction hypothesis is applic-

able to it. The induction is carried out. In particular, each element J,EGO can be rep-

resented in the form a,=<x,la/,....c,lw,>, where \/V”.,,,W,L are T-words in &,,..,Tp€ Uo-

Let X and 3 be arbitrary elements of 60 and V be a neighborhood of the identity
of the local loop Uo . For the continuity of the multiplication in 5,, it is sufficient
that there exists a neighborhood V‘T"ﬂ of the identity of the local loop Uo such that
.c\/z’g'y\/x’#‘:‘tg-v . By what we have proved above, .t=<.2:,W,...J:,,Wn> and 9=<.’(’,,“1WM,”LKL\/‘<>,
where \/Vf’__,,\}\/K are T-words in .Z:,,...,Lké Uo . For arbitrary elements a,éeGo we will have
za,yé =1:g~(a/W,'5WZ)V_¥/, where \/—V, ~W—,, and Wz are T-words in d:,,...,.z:‘&Ua (see [5, Lemma
11]). It is easily seen that for an arbitrary T-word W in &z,,..., % €U, and an arbitrary
neighborhood V of the identity of the local loop Us there exists a neighborhood Vo of
the identity of the local loop Uo such that VOWCV . Consequently, there exists a
Uo of the identity such that a,,éé V.r,,? for (aW,-éWz)Wc:V

neighborhood V;,g‘:

This 1s what was required to be proved.

Thus, Go is a topological Moufang loop. Now the arcwise connectedness of the space

60 fellows from the fact that 60 is generated by neighborhood Uo of the identity in it.
We will call Ga the subloop of 6 corresponding to the subalgebra AO.

LEMMA 1. Let O be an analytic Moufang loop, A be the tangent Mal'tsev algebra G,
Au be a Lie subalgebra of A that is a direct sum of subalgebras: AozB@C , where B is a
semisimple and C is a solvable Lie algebra. Then the subloop Go, corresponding to the

subalgebra Ao , 1s an arcwise connected group.

Proof. Let us consider a neighborhood U of the identity of the loop 6 such that
a canonical coordinate system of the first kind [1] can be introduced in it. If V is the
Lie subgroup in U that corresponds to the subalgebra Ao , then we can assume that for
arbitrary z,g,ZéV the elements Ex,y], zz/-z,x-yzeu .  As shown above, each &€ Ga has the
form X =<&,..2,” , where x,,‘..,.c,LeV . Moreover, if ‘B,y,lév , then J:?~1=a:'g1 . or

.z:?{“ac . We show that &R, =z for arbitrary J:éGa and g,ZGV.

g
Let =<x,...2,>, where ;c,,,.‘,a:név, and suppose that the above statement is valid for

words of length less than n. Since C=[Z,g] is the companion of the pseudoautomorphism

Rgﬁ it follows by the induction hypothesis and (1) that
.Z:Ryf CE AL ¢t c-z’:kg,l)‘z:,,ky,; =CleE x,),

where I=<X,..%,,>. The element € =([%,yJel) , and, consequently, there exists a eV such
gooe Ty y

that ¢ =c: for a certain natural number m . By the induction hypothesis, we have
Ekca,a:n=‘i . By virtue of the Moufang theorem, the set {Z,¢,,%,} generates a subgroup in G
(see [6]). Finally, we get x735ﬂ=51((:1—5'.2n) =Ex,= 2.

180



Now let a,,éGGo and x and y be arbitrary elements of V and set '<:=Eg,x,] . Then, by

what we have proved
c-o.é=c«aé)k,c,f/c-al’w)-é/?x’#=ca-5,

whence it follows that ce N() , where N(Go) is the associative center of the Moufang loop

6,

Let us consider the decomposition V=-V1 VL of thelocal Lie groupV into a direct product

of local normal divisors V, and VL » corresponding to the decomposition of the algebra
A{7 =B®( . Since B is a semisimple algebra, the inclusion [V,V] & N({,) implies that
V,CN(GI) . Let us denote the subloops of the Moufang loop Go that are generated by the
sets 61 and Gz, by V, and Vz_ , respectively. Then Gq‘:N(G,,) . If 61. ig a simple

Lie group with tangent algebra C, then a local homomorphism Z;L -6 corresponds to the
embedding kpC —’Ao =B®C <A . Since the algebra C is solvable, it follows by [5] that Y
can be extended to a homomorphism q) in the large. It is clear that G;_\P :Gz. . Consequent-
1y, Gz is a group. It follows from the equation [vth]:e , where e is the identity of the
loop G, and the inclusion G,CN(GO\ that [6“6;\ =€ . Hence Goz G, Gz, is a group. It has

already been observed that Go is arcwise connected.
The lemma is proved.

We know [8] that only two nonisomorphic Cayley—Dickson algebras exist over the field ﬂz
of real numbers. These are the division algebra of Cayley numbers and the splittable Cayley—
Dickson algebra. There exists only one (up toisomorphism) (splittable) Cayley—Dickson
algebra over the field C ot complex numbers. Let f  denote either K or  and K be
a Cayley—Dickson algebra over F . Then the commutator algebra Kﬂ is decomposed into
the direct sum of the one-dimensional center and a seven-dimensional simple Mal'tsev sub-
algebra: KM: F®V , where V =D<,K:| is the linear space that is spanned by all the com-~
mutators of the algebra K. We define functions Zf:/<—‘>F and n:K—F on K such that for

arbitrary £,y € K

zt=tar -y, nzy) =/L(-2:)/’L(y),

where the quadratic form n(x) on K is nondegenerate.

If :c,?év , then we will denote their product in the Mal'tsev algebra I'}f by V
We know [2] that a nondegenerate symmetric bilinear form (z,g) is defined on V such that

for J,,(L/,Zé V

TP TG prr gy, (2)

(xy,x) = («t,yz), (3
= - (4
(B, T4 =(2, XY, ) = (2,4XY, 2. )

Moreover, for @ =&,* zefFeo Viz,eF, xe V) we have
n@ =z +, 2. (5)
Let us set
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6 ={reKnm) =1},

Then G forms an analytic Moufang loop with respect to the multiplication in the algebra K
with the tangent algebra isomorphic to V; moreover, for F=R the space G is analytically
isomorphic to S or S*KRY , and for F=C the algebra K may be considered as a 1l6-dimen-
sional simple algebra over R , and the space G is analytically isomorphic to 5’! K; (see

(5D

We denote the subalgebra of K over the field F that is generated by arbitrary elements
a,be6 by Ka,8). Let us set 6ea,b) = freKia,B)Inxy=1} . Ssince Kia, 8 is an
associative algebra, it follows that G(&,é) is a subgroup of the loop G; moreover 0«,56
66(@5)_ In the sequel we will be interested in the topological structure of the group
6(&, 4y . TFor brevity we set 6:, =6@,6) and /(0=K(a,,5) .

We know that each subalgebra of a Cayley—Dickson algebra that is generated by two ele-
ments has dimension at most four. Consequently, the commutator algebra K;—) is decomposed
into the direct sum of the one~dimensional center and a Lie subalgebra: K:)‘;F@Z , where
dLszﬁj . Let us analyze the cases a/[mFZ=Q_,1,z,3 one by one. The expression Gozgau(—f)go
means that 60 has two connected components 60 and (-1) é, , where 1€ ED and, consequently,

60 is a subgroup. The omitted computations can be easily restored:

a) dim,.2=0, G,=1{1,-1},

b) dZmFZ=/, yA = (&), (€,e)=« , and for &=L, +I,e€ F®Z , by virtue of (5), we
get /Z(;C):J',;-F a(-ﬁf. The following cases are possible:

F=R:

1
1) «=1; 6\0 is homeomorphic to S

.
3

2) «=0,-1; 6,=GUNG,; G
F=C:

is homeomorphic to ﬂz

—

3)  «=0, 50=5“0U(_1)@"o-, 50 is homeomorphic to R? ;

4y k=1, Go is homecomorphic to S*K .
) dimZ=2,71=1(¢,).
1) Z is an Abelian Lie algebra, i.e., €xe,=0 . Then, by virtue of (2), we get
0 =(g,xe,) e, = ~ (ea,ez)e,#- (e,,€,)€,,
whence (¢,,¢,) =(¢,,¢,) =0, and analogously (¢,,€,)=0. Thus, by virtue of (5), the norm

/z(o,)=.1'.‘;’ for each a=x,+trefel - Consequently, 6°=GOU(-1)60, and if F=R , then

-G_D is homomorphic to R*, and if F=(, then @; is homeomorphic to R’

2) X 1is a solvable non-Abelian Liealgebra. Then we can choose a basis such that

g,x€, =¢ . Using (2), we get

6’, = (L’,xé’z)*ez = - (ez,ez)e7 + (E'éz>22’

182



-/ and (¢,,6,) = 0.

whence (82, g,) = 10 €,

0= (4x8)x8 =

we get (¢,,6 )y =0

F=P , then 6-:7=Zjo U(‘/)éjo and the space GD is homeomorphic to Rz

In the same manner, from the equation

7 - (é,,é’,)é’z + (37'92)91

Consequently, the norm n(a:)=:coz— l‘zz for $=1'”+.T,€,+.2‘ZBZEF@Z . If

But if F=C , then

1 pd
the group @o is connected and is homeomorphic to S xR .

d) dfm,FZ=3, AN CNANA Jg

the basis e,,ez, 83 can be chosen in such a way that 9,"82 = 33 .

generality, we can assume that (e, e, )=0

1* 72

(22,% )=240 If (@,,8,)=o[7 and

possible:

F=FR:

1) «=0,0=0,—4;
2) =1 o,=0,-1,
3) K =o,=1;
F=C:

1) «==0; 6=GuNE ; and

G

2) =0, =15 G,

G

73 G,

3) K=o

F=C

In the case

(82,6’2)=m[2 , then by (4) we

2 2 2 2 3
norm fz(a:)=:co+oc/.z; +tog L + o, T, for x:_z'o+z

Go'=£0U (—/) @o and go is homeomorphic to

the topological structure of the group

Since the Lie algebra Z is generated by two elements,

Moreover, without loss of
Further, by virtue of (3), we have (§,,4,)=
get (4,6)=«¢x, , and the

The following cases are

Tl € F&Z.
¢ ¢

=1

{ 2
6,, is homeomorphic to S "P ;

3
60 is homeomorphic to S .

— 6
00 is homeomorphic to R

{ 5
is homeomorphic to SR

3 3
is homeomorphic to S xK

G

A is elucidated in the same

manner as that of the whole group G in [5].

The following remarks will also be useful to us.

Remark 1. Let Ie€ Go be such that z# % /

parameter subgroup of Go

Indeed, if K
KH=F®Z where dim.Z =1
z z Fz -
&

contains x: Moreover, either T is

connected. In the latter case either

to use the following well-known proposition:

belongs to a one-parameter subgroup of

Remark 2. TLet 6:0 be one of the
d). Then the element (€ 50 belongs
Indeed, as usual, let Ka(_)== Fe z .
that Go is connected if and only if
ing the subalgebra K.z' , generated by

connected with it, we see that Gy is a

is completed in the same way as in the

" is the subalgebra in K generated by the element x, then

Then either x or —x belongs to a one-

and

Krc/(a

The subgroup Ez={a €KI[-/'L(£1)=/} of 5‘0 is Abelian and

connected or Gx= GzUH)GI’ and the subgroup Gz is

z G,

z
Fach element of a connected Abelian Lie group

or -2 belongs to and it is sufficient

this group.

connected subgroups, enumerated in the paragraphs b)~-

G, -

to a certain one-parameter subgroup "

From the classification given above it is obvious
zel

this element in the algebra K, and the subgroup G,

there exists an such that #n{z)=1. Consider-

connected Abelian group that contains —l. The proof
preceding remark.
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Remark 3. Let @o be one of the connected, but not simply connected, subgroups,
enumerated in the paragraphs b)-d). The space 5'; has the form S'xkf k=014 3,5 , and
contains a one-parameter subgroup @;—= S/xo , where @ is the origin of coordinates in
the Eucli/\dean space RK . Then there exists a subgroup é\n of the loop G such that the

x A
space A is homeomorphic to the sphere 33 and Ga o Ga

g

* *
Indeed, it is easily seen that @& is contained in a subalgebra Ka of the form

0
U’e)l? , where (£,¢)={ . The subalgebra K*  can be embedded in the subfield of quatern-

0
A ~ A
ions K, of the algebra K. We take the subgroup @0={1'E K, |a()=1} as the desired sub-

group.

Remark 4. G contains an element b such that the subgroup ael is connected for

each 6(0,5) .
It suffices to take an element 4€VY such that (ﬂ[, 8)=1 .

Let us now consider the problem of extension of local homomorphisms of simply connected
Moufang loops, solved earlier for loops with a solvable tangent Mal'tsev algebra, in another

important particular case, where the tangent algebra is semisimple.

Let A be a semisimple Mal'tsev algebra over F . Then A =A092@A , where AD is
ole] oL
a semisimple Lie subalgebra and /‘L are non-Lie simple Mal'tsev algebras. The analytic
Moufang loop

=6~ ¢E (6)

el

where 6-; is a simply connected Lie group with the tangent algebra Aa and €£=£a ng

lnlg) = /} s Ke( being a Cayley—Dickson algebra over F=F or C such that K,,LH = Fe A.C’
has a tangent algebra that is isomorphic to A. If cel , then we will denote the projec-
tion of ¢, in a by [r; ,G_LE@QL- Let a,ge G, Ky (a,/) be the subalgebra of /(d that
is generated by the elements &, and ic H L%c(a,n/)={xe/<ec(a,f)l/z&)=f} , and E((a,g) be the
connected component of the group 6306 (a, £) that contains the identity, and @_(aj) =

611G, @b
O wer %
If G' is a connected analytic Moufang Loop and ¢ 1is a local homomorphism of Loop G

into G', then the following lemma is valid.

LEMMA 2. Let @ and b be arbitrary elements of G and let gﬁag be the restriction of
the local homomorphism ¢ to the subgroup E(a,g) . Then 1, § can be uniquely extended

. ~/ A . +
to a homomorphism Spa,zf of the group & (a, f} into the loop G'.

Proof. Since the tangent algebra of the Lie group —Q(a,é} is either simple or is a
solvable Lie algebra, it follows that the tangent algebra Aw,6) of the group &a, §) has
the form A(a,zf)=569 A , where B is a semisimple and C is a solvable Lie algebra. Let us
consider the homomorphism 5—5 of the algebra Aa,6) into the tangent Mal'tsev algebra A'
of the loop G' that is induced by the local homomorphism 500‘57 . If Al(a, 5) = [:/4{0,5)] o,
then A'(a,f) =Blﬂ9 0’ , Where .5"—=.3¢ is a semisimple and €/= [’573 is a solvable Lie algebra.
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Let G_' (a,g) be the subloop of the loop G' that corresponds to the subalgebra A'(a,g) .
By Lemma 1, 5" (a,f) is an arcwise connected subgroup. It is obvious that Sﬂa,g is a

local homomorphism of & (@, £) onto 6:—’([7, )

For its extension to E_(G, g) we use a modification of the method set forth in [7]. Let
TE€ G—(a,ﬁ) and let /'(f/) be a path in G—((Z,g) such that 7“0) =§¢ , where € 1is the identity
of the loop G, and 7"(%)=$ . As shown in [7], to the path 7[’(2{) corresponds a path 72,(2f)
in 6—;’(0, f) that satisfies the following conditions:

o) 7["(0) =¢', where &' is the identity of the group EI(G, f)

A) If {/ 1is that neighborhood of the identity of the Loop G in which the local

homomorphism ¢ is defined, then there exists an &> 0 such that

7[,(751)‘/72(3[2) e/ and f,(f,)_{][/ﬂ//z) = fﬂli‘z)(f,)- 7[1(2’12))

/
for [t1_tz‘é8 . Path )/‘{f) is determined uniquely by these conditions.

Let us set x&?; ==/%/) and show that the so-defined element .ﬂ?;g eg'(a,f) does not
depend on the choice of the path £(t) that joins the elements e and x (notwithstanding the
possibility that G}Q’é) may not be arcwise connected). The idea of the proof consists in
the replacement of the path f(t) by a path that is homotopic to it and passes through certain

simply connected subspaces, lying in subgroups. We need the following lemma.

LEMMA 3. Let f be a path in a direct product of topological spaces X*Y such that
/’(0)=(x0,%) and 71'(/)= (1;,%) . Then f is homotopic to the product of paths h-k (f’"’ﬁ-é) >
where h is a path in the subspace (X,ya) that joins the points (xo,yo) and (1’7,%) and
k is a path in the subspace (:P,, Y) that joins the points (.z‘l,ya) and (a;,%)_

Proof. Let us represent the path f in the form of a pair [7[',,71,2] and set for (< S§</

y Blr+98), £ (1-98], 0et < b=,
(t)=
f Dfm, fl(u+5)t) - 2st)], Lt b,

o 1 s
It is obvious that f= f {"—-bx/( and f is a homotopy that connects these two mappings.

Let us return to the proof of Lemma 2. Let g(t) be another path in E(a, b) such that
9(0)= ¢ and g({) =2 , and let g'{f) be the path in G'm,é) that corresponds to it. We

show that 7[”(4) =5'(1) . For this let us consider the set [’ ={« e[lé‘(a,ﬁ) is a subgroup in
6‘{} that is not simply connected. If «€ [, , then the space @(Q,é) can be represented
in the form Sl" Rf k=0,1,2,3,5 . In addition, the path /;({,) has the origin at the

[42] (L))

point TQ{O) =I£S{*0=G:(a,6) and the end at the point f‘(1)=x‘= (¢, , 2, By Lemma 3 the

path ﬂ(ﬁ) is homotopic in 6;(@,5) to the product /le , where
hBEE @,b), han= 0), ke, RY)

for g<tef. If °<¢Z1 , then we set /Z_((é)=,l;(é) and k[f)=£4(1) for Oéééf . Then f(t) is
homotopic in 6(Q,8) to the product A-k4 , where A(f) and k(f) are paths in 6—(&, 4) whose

2
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projections on @, are equal to ht) and  k(t) , respectively, L€/U {0} . Under a con-
tinuous deformation of the path f(ﬁ) in 6_(a,6) without change‘of the end points, the image
;[”(Zf) will also be continuously deformed in E'(&,é) without change of the end point [7].
Therefore the end points of the path f' and (#-k) coincide. The path (/ZA)I is the product
of paths Ak’ , where /LI is the path in ?'(a,é) that corresponds to the path h and k', by
construction, depends only on the element /<'/0) :—/LI(1) and the path k. Analogously, the path
g(t) is homotopic in 5(a,6) to a product m-ft , where m’((é)éé':(a,é) and /Z,((ﬁ)e(.z:g), RK),
gs<tsf, for .7(6], and /z(1)=m(1) and g'~m'-n'. Now, to prove the equality z['1(1)—“-91(1)

it is sufficient to show that A()=n'tn.

As a preliminary we prove that /2’(1)=m'(1) . For this, using Remark 3, we embed the
subspaces 6:(0,,5) in simply connected subgroups @(a,,é) of the loop @,,,Léf, . For
L ¢ 1_, we set *(a,5)=6:(a,5) and consider the subgroup

bia,by = 6, xdgé(a,é).

As in the subgroup G—(a,é) , in the loop G' there corresponds to it an arcwise connected sub-
group é'(a,é) such that the restriction of the local homomorphism ¥ to é{a,,s) is a local
homomorphism of this subgroup onto 6/\'(0,,6) . The paths h(t) and m(t) Lie in 6/\(0',6) . Defin-
ing the corresponds paths in @'(a.,é) that satisfy the conditions «) and _8), we obviosuly
get the already considered paths h'(t) and m'(t). The group @(a,é) is, by construction,
simply connected. Consequently, /L~m in fm,é) ; whence /L'~m' in é?a,é) . In particular
Aty =mi) .

To complete the proof of the lemma, it is now sufficient to observe that the paths k(t)
and n(t) lie in a simply connected subspace of the space of the group g(a,é) . Since these
paths have a common origin and a common end, it follows that A~2 in 67&,6) . Moreover, by

what we have already proved, £10Y=HA't1)=m1) = n%0) ; whence KAU) =nt1) .

Thus, we have shown that the element ‘T’%.é =/'I(I) does not depend on the choice of the
path f in the group g—(&,é) that satisfies th;z conditions f(O)'-‘é’, and f(1)=.1‘, . It is proved,
verbatim as in [7], that the so-defined mapping (Fa”é;g(a,’é)——» g'(a,é) is a homomorphism that
extends the local homomorphism %,,6 and also that it is unique.

This is what was required to be proved.

We pass to the construction of the homomorphism § of the loop G into G' that extends
p

the local homomorphism Y . ZLet us consider the set

E={.ceea»f:116,(lz_‘=ff,o<c[},

where g, is the identity of the group 60 . For reE we find a,,gcg such that
2 66(&,6) . Let us set .zzxf 2‘1"“7’@5 and show that the so-defined element .1;@ does not

depend on the choice of a,ééé . Indeed, let c,dé_@ be such that xpe€ g(c,d) . If €]
for a certain &, =-1 , then @;m,é) contains —1, and therefore the group @(a, 6) is con-
nected. By Remark 2 the element x belongs to a certain one-parameter subgroup h(t) of the

group E(a,é) . Analogously xeg(é) , where g(t) is a one-parameter subgroup of the group
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g(c,cé.) . Tt is obvious from the proof of Remark 2 that the subgroups /I,A(t) and gd(t) are
contained in two-dimensional subalgebras of the algebra /(.,( . Consequently, there exist
wo el such that A(E), g(t)cg(u,o) . If [/ 1is a neighborhood of the identity of the
loop G in which the local homomorphism ¥ is defined and y and z are elements of [J such
that g=/&(@) and Z———g(@_) and =z =y’"= 2% for certain natural numbers m and n, then
2§, 4 =(y(f)m = 2G,, = g =2 4.

Let ¢, b, ¢, and d be arbitrary elements of G and let aeé_(a,ém g(C’,d) .  Then (,L%/’g =
u’(?c,d, . Endeed,_{,c:a,o(j, , where d,aé@o and I =€, "JQI 6& . By Remarks 1 and 2 there exists
an L& En&m,,émé(c,d) such that 2z belongs to the one-parameter subgroups h(t) and g(t)
“of the groups 6_(&,5) and G(C,d) , respectively. As in the preceding case let us consider

the subgroup 5(/),5) that contains the subgroups h(t) and g(t). Then we get

@D,y = (2DG,  =(XLY, 4,

whence L@ ;, = (22§ , = 2P (XY, =JL~-(I(I)~ = (LCIH,—L)@I g = a({?, . It is obvious that
_ 2.6 Y26 2.6 e i e,d

the mappings %,,6 and %,d, coincide on (5

. » SO that

“l‘[;a,,é = uotiﬂa,,g'a%«,é = ub%,d,'[z%,d = (’('(/)c,d,-

It is now natural to set ueé(_a,é) for an arbitrary 4,1,97= J,(?a’,g. By what we have proved
above, this definition does not depend on the choice of suitable &,6/c5 . By virtue of
Remark 4, there exists an element 56 6 such that the group (€6 is comnected for each
6(&,}5). Consequently, Q&€ 6(&15) =6_(0/,5), and the mapping L7 is defined on the whole space

G. It remains to prove that Y 1is a homomorphism.

LEMMA 4. TFor arbitrary &x€E and ye@

«Acy)&f? = J‘—S"'y‘f = g(/-z:l/.
Proof. By Remark 4 there exists % €6 such that 6”‘(3’1) is connected for each «€]
Then G(g,l) =6(g,7~); Ecé(é/,l) and the statement of the lemma follows from the equation

~

2325’1: and the fact that the mapping { coincides with the homomorphism (fg,l on G(y,z) .

The lemma is proved.

~

LEMMA 5. Let @ and b be arbitrary elements of G. Then the mapping Y 1is a homo-
morphism on 6@, 6) .

Proof. Each element €& 6(&,5) can be represented in the form W« =2u, , where zeFl
and uoeg(a,g) .  Moreover, ECG(&,é) » SO that €(a)é)=E'g(&,5) . The mapping g(a,é)
acts as a homomorphism on the group ‘7;: %,,6 . Let x be an arbitrary element of E and y,
and (, be arbitrary elements of G(a.,b) . Let us consider the pseudoautomorphism 7;‘7 of
the Loop G' with the companion (1‘,?)3 =.2‘,3(7 = JC(77 . Setting, for brevity, :u?'=z’ for Xe G(Q,g)

and using Lemma 4, we get
1 U 1 1
Zh U, =L (U =By Ty = (2 [0 T = 2y 0, (D

i.e., the triple .X',',u,;, 0’0' is associative. If yeE , then
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(uayoé):_—_(y.uo%)l 251_(47%' = u’;‘gb&l = u’;.(g%)" (8)

Here we have again used Lemma 4 and Eq. (7). Let u and v be arbitrary elements of 5(@,5)
such that w=2uw, and (/=g£f; , where a:,#eE , and W, 0, € 6(@,5) . Then, substituting
yq, for ¢, 1in (7), which is possibly by virtue of (8), we get

' I ‘o
(wn' = m’-(ua-gg)' = x’w;-(é,/(;b) = (Zw) (y(/a)’ =u
The lemma is proved.

The following lemma is now easily obtained.

LEMMA 6. Let G be a semisimple analytic Moufang loop of form (6), G' be a connected
analytic Moufang loop, and Y be a local homomorphism of G into G'. Then Y can be unique~

ly extended to a homomorphism ¥ of the loop G into G'.

Indeed, the above-constructed mapping ? extends the local homomorphism ¥ . If a,
566 , then Cb,&é G(o.,5> and, by Lemma 5, we have (&6)¢=CLL’{\5'6(~? . The uniqueness of the

homomorphism { is obvious. The lemma is proved.
We now formulate the main theorem.

THEOREM 1. Let G and G' be connected analytic Moufang loops, G be simply connected,
and ¥ be a local homomorphism of the loop G into G'. Then Y can be uniquely extended to
a homomorphism (,7 of the loop G into G' into the large. If Y is a local isomorphism and

the loop G' is simply connected, then (; is an isomorphism of the loop G onto G'.

Proof. We start the proof with the last statement. 1In this case, without loss of
generality we can consider the simply connected analytic Moufang loop, constructed in [5],
as G. Then 6=PN , where P is a semisimple subloop of the form (6), N is a simply connected
solvable normal divisor of the loop G. Let % and % denote the restrictions of the local
homomorphism Y to P and N, respectively. By Lemma 6, (/)P can be extended to a homo-
morphism S’l; of the loop P into G'. 1In its turn, "PN can also be extended to a homo-
morphism Yy of the loop N into G' by virtue of [5]. If u is an arbitrary element of G

and u = pa, wherepeDaeN,then we set
3

wyg = pg,-agy. (9)
It is easily seen that (:t; is a properly defined mapping of the loop G into G' that extends
the local homomorphism Y . we prove that é; is a homomorphism of the loop G into G'. For
this let us consider an infinitesimally generated element 2€P and an arbitrary aeN
As in [5], we can show that

al.§ = af s (10)
If p and § are arbitrary elements of p=4p,..0,> , and § = <8,...87,> , where Prrs Pas

S$,...,8 are infinitesimally generated elements of the loop P, and a,,ﬁe/v, then by [5]

pa-sé =p5-(aW,-5M) W, (11)
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where VV,Vﬁ, and \N& are T-words f%y,”/zz,s,r_:,sm, . An apalogous equality holds G' also
for arbitrary @, 6 and /)'= </J,/.../D,ll>,3'=<5,'... Sp> if P: and SJ are infinitesimally
generated elements of the loop G'. Using (9)-(11), we get

pa-sbF = (pF AW EWIWG = (p-spy@fW,-bFW)W' = (p§-a XS F-bp) = (payy-(sbxp,

TEN I
where VL V%’ and Vﬁl are T-words of the loop G' that are obtained from VV,Vﬂ, and Vé
by replacing the elements p“.”,fh,s,r.,,Sm by P#?r”nf%ga3#h~u$m¢ , respectively. Here

the homomorphicity of the mapping Y on P and N has also been used.

Thus, @ is a homomorphism of G into G' that generates the local homomorphism 4
Since ¥ is a local isomorphism and G' is generated by each of its neighborhoods of the
identity, it follows that @ is a covering of G onto G'. Since G' is simply connected, it
now follows that (f is an isomorphism of the loop G onto the loop G', which was required

to be proved.

Let us consider the general case of a local homomorphism ¥ of a simply connected loop
G into a connected analytic Moufang loop G'. By virtue of what we have proved above, we can
consider the simply connected analytic Moufang loop, constructed in [5], as G, and the

extending homomorphism ¢ can be defined by Eq. (9).
The theorem is proved.
2. We formulate some consequences of Theorem 1.

THEOREM 2. Let G be a connected analytic Moufang loop, A be the tangent Mal'tsev
algebra of the loop G, and Ao be a Lie subalgebra of A. Then the loop Q, , corresponding
to the subalgebra Ao , 1s a Lie group. In particular, if A is a Lie algebra, then G is a

Lie group.

Proof. Let us consider the simply connected Lie group é% with the tangent algebra
/% . The local homomorphism @:Q{*’@ , induced by the inclusion AOC:A , can be extended
to a homomorphism in the large by Theorem 1. The image of the Lie group é% under this

homomorphism is the subloop é% 5 whence the statement of the theorem follows.

Remark. It should be observed that the subgroup Q, , corresponding to the subalgebra
AD , 1s understood in the sense of the definition given at the beginning of this article,
i.e., as a group equipped with the intrinsic topology. But if é% is equipped with the
subspace topology of the space G, then é% may turn out to a nonclosed subspace and may not

be a Lie group.

The following theorem gives a classification of the connected analytic Moufang loops

that are locally isomorphic to a given loop.

THEOREM 3. Let (X be the class of all connected analytic Moufang loops that are locally
isomorphic to a given loop. Then the class ( contains a unique (up to isomorphism) simply
connected loop éi An arbitrary loop G from the class (L is a homomorphic image of the

loop (G such that the kernel of the covering homomorphism (p: 6 — 6 is a discrete central
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normal subgroup of the loop 6
This theorem follows easily from [3, 5] and Theorem 1.

In conclusion, we formulate two theorems that are analogs of theorems of Pontryagin
[7] and Mal'tsev [4] and characterize normal subloops of simply connected analytic Moufang

loops.

THEOREM 4. Let G be a simply connected analytic Moufang loop and N' be a local normal
subloop of it. Then a certain neighborhood of the identity of the loop N' can be embedded

as a neighborhood of the identity in a normal subgroup N of the loop G in the large.

THEOREM 5. Every connected normal subloop N of a simply connected analytic Moufang

loop G is simply connected.

With regard for [5] and Theorem 1, the proof of Theorem 4 is carried out verbatim as
in [7]. To prove Theorem 5 we can use the plan of arguments from [4], applying, where neces-—

sary, the results of [5] and Theorem 1.

The author is deeply grateful to E. N. Kuz'min, under whose guidance this article

has been written.
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