
SCHREIER THEOREM FOR ANALYTIC MOUFANG LOOPS 

F. S. Kerdman UDC 512.55:512.81 

The study of Lie groups in the large is based to a significant extent on the Schreier 

theorem on the extension of local homomorphisms of a simply connected topological group to 

a homomorphism in the large. Appropriate analogs of this theorem for Moufang loops in dif- 

ferent particular cases have been used in [5] for the construction of a simply connected 

analytic Moufang loop with a preassigned tangent Mal'tsev algebra. The analog of the Schreier 

theorem for analytic Moufang loops with solvable tangent Mal'tsev algebra, obtained in the 

same article, had enabled us to give a classification of these loops. In the present article 

the restrictions on the tangent Mal'tsev algebra are removed. As a consequence, we obtain 

a classification of connected analytic Moufang loops with an arbitrary preassigned tangent 

Mal'tsev algebra. 

i. Let G be an analytic Moufang loop and ~e~ As usual, ~~ and ~« are the 

operators of the right and the left multiplication by the element ~ , 

A homomorphism ~:~--~~ is called a pseudoautomorphism if there exists an element C£~ 

such that for arbitrary £,~6~ 

(i) 

We know [6] that The element g is called the companion of the pseudoautomorphism ~ . 

the operators ~=L~ z and Æ~ =~z~ ~z are pseudoautomorphisms of the Moufang loop ~ with 

the companions ~~ and [~,zJ'=~ ~ ~;~ , respectively. 

If A is the tangent Mal'tsev algebra of the loop ~ , then to each subalgebra ~0 of 

the algebra A there corresponds a subloop ~0 of the local analytic Moufang Loop U, where 

0 is a sufficiently small neighborhood of the identity of the loop 6. Let us consider ~o 

of finite products of elements of ~o with arbitrary arrangement of parentheses and equip 

it with the intrinsic topology: A subset V of ~o is open if and only if for each £~V 

there exists a neighborhood V z of the identity of the local loop ~o such that ~~ e-V . 

Let us verify that the space ~o forma an arcwise-connected topological Moufang loop with 

respect to the multiplication in G. 

Let ~, .... ~« be I-words in ~~,..,~~E~o (see [5]). If O~={~I~V~...~~W~~ is a word 

with a certain arrangement of parentheses, then 0~= ~I.~~.,.~~~~>=£~~~z~L...~z~~~, where ~g 

are also [-words in I~ .... ,2~~&O o . We carry out induction on K Len O~={~~~V~...~~~ù.}=6g, 

where b and c are words of length less than n. Then 6=~~~~4..o~~~~>, C = <ZL~~~~~,..~~> , 

and it is sufficient to consider the case fg >K+~ . If 6g=<~~+~~+~...~~_~~~_~>, ~=~~ , 
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then ~=~~S,~~'~" Since ~~i~ is a T -word in ~,..,£~ (see [5, Lemma 6]), 

i t  follows that ~~~'=4~,--~(!..»~~/~> , where ~/,..,~~ are T-words ±n ~«,..,m«~Uo (see 

[5, Lemma 5]) The word ~ ~-~ • g,«~ has length ~- f and the induction hypothesis is applic- 

able to it. The induction is carried out. In particular, each element ~~~ can be rep- 

resented in the form ~=<~~~...£~~>, where ~/~,.,W~ are T-words in ~~,..,~.~~ Uo. 

Let ~ and ~ be arbitrary elements of Go and ~ be a neighborhood of the identity 

of the local loop Uo For the continuity of the multiplication in ~o it is sufficient 

that there exists a neighborhood Vz, ~ of the identity of the local loop ~o such that 

~V~,~'~~~~ ~~i.v By what we have proved above, ~=~~~W~...~~~~> and ~ :~£~~I~/~+~...~~~/~>, 

where ~/f,...,~/~ are T-words in ~~, .... £KE 0o • For arbitrary elements ~~~ ~~o we will have 

£~-~~ =~-(~~'$~)~ where ~, ~V~, and ~z are T-words in ~~ .... ,~~eUo (see [5, Lemma 

ii]). It is easily seen that for an arbitrary T-word ~V in £~,.,~«@U~ and an arbitrary 

neighborhood V of the identity of the local loop Uo there exists a neighborhood V o of 

the identity of the local loop Uo such that ~~V =V Consequently, there exists a 

neighborhood Vz~~Uo of the identity such that ~,~~ ~z~ for (~~.~~IW=~ 

semisimple and C is a solvable Lie algebra. Then the subloop Go, corresponding to the 

subalgebra Ao , is an arcwise connected group. 

Proof. Let us consider a neighborhood U of the identity of the loop ~ such that 

a canonical coordinate system of the first kind [i] can be introduced in it. If V is the 

Lie subgroup in U that corresponds to the subalgebra A o , then we can assume that for 

arbitrary £,$~%~V the elements E~,~], £y.Z,~-i£dU. As shown above, each ~E~ has the 

form ~ =~~...~~> , where ~~ .... ,~~~V . Moreover, if ~,i,~~~ , then ~.%=~'~~ or 

~~~,~=~ We show that ~~~,~=~ for arbitrary ~~~o and ~,%~V. 

Let ~=4m~...~~>, where ~~,..,~~~V, and suppose that the above statement is valid for 

words of length less than n. Since C=[Y~~~] is the companion of the pseudoautomorphism 

~~»~ it follows by the induction hypothesis and (i) that 

where £=~~i...~~_«>. The element £ =[%,~]eU , and, consequently, there exists a ~e ~ such 

that g =C for a certain natural number ~ By the induction hypothesis, we have 

~~e=,~~ =~ . By virtue of the Moufang theorem, the set {~,~,~~} generates a subgroup in G 

(see [6]). Finally, we ger ~~$,~=£~£~-~~) =~£~= £ . 

This ia what was required to be proved. 

Thus, ~ is a topologicai Moufang loop. Now the arcwise connectedness of the space 

follows from the fact that ~ is generated by neighborhood U 0 of the identity in it. 

We will call ~ the subloop of ~ corresponding to the subalgebra &. 

LEMMA i. Let G be an analytic Moufang loop, A be the tangent Mal'tsev algebra G, 

be a Lie subalgebra of A that is a direct sum of subalgebras: A~ =~@C , where B is a 
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NOW let ~,6 ~ ~0 

what we have proved 

and x and y be arbitrary elements of V and set 6=[-~»~3 . Then, by 

whence it follows that C é ~(~) , where N(G0~ is the associative center of the Moufang loop 

¢ 

Let us consider the decomposition V =~~ of thelocal Lie groupV into a direct product 

of local normal divisors ~ and V~ , corresponding to the deeomposition of the algebra 

A o =~~G Since B is a semisimple algebra, the inclusion [V,~] ~ ~(~o~ implies that 

~~~(~o~ Let us denote the subloops of the Moufang loop ~o that are generated by the 

sets ~ and ~L by VI and Vz , respectively. Then ~~~(~0 ) If gz is a simple 

Lie group with tangent algebra C, then a local homomorphism ~: G~--+ ~ corresponds to the 

embedding ~:~--*~0 =~@GcA " Since the algebra C is solvable, it follows by [5] that 

- csu be extended to a homomorphism ~ in the large. It is clear that #~~ =~~ . Consequent- 

ly, ~z is a group. It follows from the eqnation [~,Vz~=£ , where e is the identity of the 

loop G, and the inclusion ~I~~(~o ~ that [~t,~~ =£ . Hence ~o = ~«~~ is a group. It has 

already beet observed that ~o is arcwise connected. 

The lemma is proved. 

We know [8] that only two nonisomorphic Cayley--Dickson algebras exist over the field 

of real numbers. These are the division algebra of Cayley numbers and the splittable Cayley-- 

Dickson algebra. There exists only one (up to isomorphism) (splittable) Cayley--Dickson 

algebra over the field ~ of complex numbers. Let ~ denote either ~ or ~ and ~ be 

a Cayley--Dickson algebra over ~ Then the commutator algebra K ~-~ is decomposed into 

the direct sum of the one-dimensional center and a seven-dimensional simple Mal'tsev sub- 

algebra: K (-~=Æ@ V , where V =~~,~] is the linear space that is spanned by all the com- 

We define functions ~: K--+~ and g:~-~F on K such that for mutators of the algebra K. 

arbitrary ~,~~ K 

where the quadratic form n(x) on K is nondegenerate. 

If Z»~6V , then we will denote their product in the Mal'tsev algebra ~,~ by V 

We know [2] that a nondegenerate symmetric bilinear form (Z,~) is defined on V such that 

for ~,~,Z~ V 

, Z,~)*~ = -(~J,y)a3 + (Z,g)y, (2) 

~~d,z~ = (e , / jz ) ,  (3) 

( ~ ,  Z/~ } = (~, 0~)(y, g)-(~,lJX~,r-.). (4) 

Moreover ,  fo r  &= /~o+ z « F @  Vi%oeF  ~ me- V) we have 

(5) 

Let us set 
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Then G forms an analytic Moufang loop with respect to the multiplication in the algebra K 

with the tangent algebra isomorphic to V; moreover, for F=~ the space G is analytically 

isomorphic to ~~ or ~~'~* , and for ~ =~ the algebra K may be considered as a 16-dimen- 

sional simple algebra over ~ , and the space G is analytically isomorphic to ~~~~ (see 

[51) .  

We denote the subalgebra of K over the field F that is generated by arbitrary elements 

B~~E~ by ~(&,~) . Let us set ~(&~~) = {£EK(~,~)I~(~)=17 Sinee ~(~, ~) is an 

associative algebra, it follows that ~(~,~) is a snbgroup of the loop G; moreover ~~~ E 

~(~~~). In the sequel we will be interested in the topological structure of the group 

B(~~~) For brevity we set ~ = ~(~~~) and K0=~(~,~) . 

We know that each subalgebra of a Cayley--Dickson algebra that is generated by two ele- 

(-) is decomposed ments has dimension at most four. Consequently, the commutator algebra ~o 

into the direct sum of the one-dimensional center and a Lie subalgebra: ~(~-~=/=@~ , where 

C~r~F~-~~ Len us analyze the cases g~r~F~:O,I,Z,3 one by one. The expression ~o=~oU(-l)~o 

means that ~o has two connected components ~0 and (-l) Go , where I~4 and, consequently, 

G0 is a subgroup. The omitted computations can be easily restored: 

a) O~2FZ =0, ~o : ({ ,- I ] ' ,  

b) dä~FZ=f  , % =(et)#, (e~,8~)=W~, and fo r  ~ = £ o  +Z18« a F ~ ~  , by v i r t u e  of (5) ,  we 

get /Z(~)=4+~~~. The following cases are possible: 

l )  ~=«; 

2) o~ =0 ,  - i  ; 

F=£: 

5f Co is homeomorphic to 

~o-GoU(-~)~o ; ~oo is homeomorphic to 

3) ~=0, ~ o = ~ U ( - ~ ) G o ;  ~ i s  homeomorphic to ~z ; 

4) d-{; ~0 is homeomorphic to S~~ . 

c) ~~mF%= Z, Z =(~«,e2~. 

i) ~ is an Abelian Lie algebra, i.e., ~I~£~=0 . Then, by virtue of (2), we get 

o = ~e., e 2 , e ~  = - «e~, e 2 e , *  te , ,  ~»)e~, 

whence ( e , , g z ) = ( e z ,  ~ )  = 0 ,  and a n a l o g o u s l y  ( e « , £ « ) = O .  Thus,  by v i r t u e  of  ( 5 ) ,  t he  norm 

n(&l = 2  o f o r  each  a=£o+£@F~Z C o n s e q u e n t l y ,  ~ = ~ O @ f ) ~ ,  and i f  F = ~  , t h e n  

G~ i s  homomorphic to  R z , and i f  F=~,  t hen  ~ i s  homeomorphic  to  ~~ 

2) ~ i s  a s o l v a b l e  n o n - A b e l i a n  L i e a l g e b r a .  Then we can choose  a b a s i s  such  t h a t  

B x~ = 6 Using (2), we get 

e, = ( e , , e ~ ) %  - - (e2, e ~ ) e  , 4- ( 4 , ~ ) e « ,  
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whence (ez, e z) =-/ and (6,e2) = 0 . I n  the same manner, from the equation 

o =  i~ ,e , )~e ,  = -  ( 4 ,e , )e~  + ( e , , 6 ) e ,  

we get (e,,£,) =O Consequently, the norm /Z(:2)= .lló -- ~z for «-«e*~,#+6& ~ Fez . if 

F=~ , then ~=~oU(-{)Œ and the spaee Go is homeomorphie to ~z But if F=~ , chen 

the group ~o is conneeted and is homeomorphic to $4×~3 

d) ~F~=g, ~ = ('~,~z,e3)F Since the Lie algebra Z is generated by two elements, 

the basis ~,Fz, 83 can be chosen in such a way that #i*e2 --- 6 " Moreover, without loss of 

generality, we can assume that (~1,~2)=0 Further, by virtue of (3), we have (ez,6)= 

(6,6)=0 If /~l,e~)=~~ and (6,6)=«2 , then by (4) we get (£3, e~)=~~~ , and the 
3 

norm t t ( _ m ) = ~ ~ - F ~ ~ " + % Æ '  4- Œ,«2 z I;=~ ~ Ca for Z=~#+ ~@~ ¢ F4~Z. The following cases are 

possible : 

F=Æ: 
- j~3 

I) ~I=0,¢~~=0,--~; ~o=~oU(-/)~ and ~ is homeomorphic to ; 

2) ~/=/, &z=0,-/; ~o is homeomorphic to Slx~ z • 

3) C! "= &2 = /~ ~0 is homeomorphic to $3 

F--= C : 

l) ~,=«,=o; ~ = ~ o u ( - « )  ~ ür« ; and 0o is homeomorphic to 

2) ~'I=0, ~2 = /; ~o is homeomorphic to S/x~ 5 " 

= S J /7 ~ 3) 04 t °(2 = /; ~0 is homeomorphic to 

In the case F=~ the topological structure of the group G o 

manner as that of the whole group G in [5]. 

6 

R ; 

is elucidated in the same 

The following remarks will also be useful to us. 

Remark i.. Let ~ E ~  o be such that ~~ ± / Then either x or --x belongs to a one- 

parameter subgroup of C 0 

Indeed, if ~~ is the subalgebra in K generated by the element x, then ~C~ o and 
(-) 

~~ =F~z~ , where ~rrLFZ~= /. The subgroup ~~--{a 6~~[~la) = /} of ~o is Abelian and 

contains x: Moreover, either ~ is connected or ~~=GzU~)~ z, and the subgroup ~ is 

connected. In the latter case either • or --@ belongs to ~ , and it is sufficient 

to use the following well-known proposition: Each element of a connected Abelian Lie group 

belongs to a one-parameter subgroup of this group. 

Remark 2. Let ~o be one of the connected subgroups, enumerated in the paragraphs b)- 

d). Then the element / E ~  o belongs to a certain one-parameter subgroup ~o" 

~~-~ F~ ~ From the classification given above it is obvious Indeed, as usual, let 

that C o is connected if and only if there exists an ~eZ such that ~(~) = /. Consider- 

ing the subalgebra ~2 , generated by this element in the algebra K, and the subgroup G x 

connected with it, we see that G x is a connected Abelian group that contains --i. The proof 

is completed in the same way as in the preceding remark. 
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Remark 3. Let ~0 be one of the connected, but not simply connected, subgroups, 

enumerated in the paragraphs b)-d). The space ~o has the form $1x~J¢, K=0,/,Z~,3, Æ , and 

contains a one-parameter subgroup ~7--$¢x~ , where O is the origin of coordinates in 
BK " 

the Euclidean space Then there exists a subgroup ~0 of the loop G such that the 

4 space is homeomorphic to the sphere $3 and ~0 c ~ . 

Indeed, it is easily seen that ~~ is contained in a subalgebra /<7 of the form 

(4, e)]~ , where ~£,g)=/ The subalgebra /(o can be embedded in the subfield of quatern- 

ions /(0 of the algebra K. We take the subgroup ~o={@EK0 l~I~)=/} as the desired sub- 

group. 

Remark 4. G contains an element b such that the subgroup 

each ~[o,~) . 

It suffices to take an element ~EV such that ~~~)=/ . 

Oe ~ is connected for 

Let us now consider the problem of extension of local homomorphisms of simply connected 

Momfang loops, solved earlier for loops with a solvable tangent Mal'tsev algebra, in another 

important particular case, where the tangent algebra is semisimple. 

Let A be a semisimple Mal'tsev algebra over ~ Then ~ ~~ ~~.~~ where ~0 is 

a semisimple Lie subalgebra and ~ are non-Lie simple Mal'tsev algebras. The analytic 

Moufang loop 

where ~ is a simply connected Lie group with the tauscht algebra ~ and Œ=iß £~ 

I~[O)= (~ ~~ being a Cayley--Dickson algebra over F=Æ or ~ such that ~~-)= Æ@~~, 

has a tangent algebra that is isomorphic to A. If ~E~ , then we will denote the projec- 

tion of ~~ in ~ by $~ .G E~. Let Q,~E ~, ~~ (~,f) be the subalgebra of ~~ that 

is generated by the elements ~~ and ~~ ; ~~~~,~#=IXE~~~Q~~PI~~~)=f} , and ~~~o,~) be the 

connected component of the group ~~ ~Q, ~) that contains the identity, and G~O~$# = 

If G' is a connected analytic Moufang Loop and ~ is a local homomorphism of Loop G 

into G', then the following lemma is valid. 

LEMMA 2. Let ~ and b be arbitrary elements of G and let ~a,~ be the restriction of 

the local homomorphism ~ to the subgroup ~(~,~) Then ~a,~ can be uniquely extended 

to a homomorphism ~~,f of the group $CO,~) into the loop G'. 

Proof. Since the tangent algebra of the Lie group ~C~,~> is either simple or is a 

solvable Lie algebra, it follows that the tangent algebra A(~,~) of the group G~~~) has 

the form ~(Æ,~ =~~ ~ , where B is a semisimple and C is a solvable Lie algebra. Let us 

consider the homomorphism ~ of the algebra ~($~ into the tangent Mal'tsev algebra A' 

of the loop G' that is induced by the local homomorphism ~Q,~ If A I~,~) = [A(o,~~ ~ , 

then ~r(~,~) =~t~ ~~ , where ~r=~~ is a semisimple and ~I= Æ~ is a solvable Lie algebra. 
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g# Let (~,~I be the subloop of the loop G' that corresponds to the subalgebra A'(a,~) 
$, By Lemma i, (a,~) is an arcwise connected subgroup. It is obvious that ~a,~ is a 

local homomorphism of $(a,~) onto $/(O, S) 

For its extension to J(O,~) we use a modification of the method set forth in [7]. Let 

~~Æ(£g,~) and let i(~) be a path in ~(~,~) such Ehat i(0) =e , where Æ is the identity 

of the loop G, and lid) = ~ As shown in [7], to the path p(~) corresponds a path iI(~) 
in $«(a,~) that satisfies the following conditions: 

~) pi0) El where is the identity of the group Æ1(a,~) 

~ß) If U is that neighborhood of the identity of the Loop G in which the local 

homomorphism ~ is defined, then there exists an ~~0 such that 

~or 16,-6~l~g • Path f'(T) is determined uniquely by these conditions. 

Let us set £~a.~ =BI(f) and show that the so-defined element £~~,~ ~ (a~~) does not 

depend on the choice of the path f(t) that joins the elements e and x (notwithstanding the 

possibility that G(O.,6) may not be arcwise connected). The idea of the proof consists in 

the replacement of the path f(t) by a path that is homotopic to it and passes through certain 

simply connected subspaces, lying in subgroups. We need the following lemma. 

LEMMA 3. Let f be a path in a direct product of topological spaces X x Y such that 

B(0)=(~0,~0) and ~(4) = (~,~I) Then f is homotopic to the prodnct of paths h'k (f~w~.~~ , 

where h is a path in the subspace (~i~0) that joins the points (~0,~0) and (~l,~io) and 
k is a path in the subspace (~, Y) that joins the points (@i,~0) and (~i,fi). 

Proof. Let us represent the path f in the form of a pair ~, f2 ] and set for 0~$~ I 

f(z» [t,,(l«+s~~),P~((«-s~~)l,o~t -<~,=,+~, 

r °: f'-- /'~ It is obvious that f, ~'~ and is a homotopy that connects these two mappings. 

Let us return to the proof of Lemma 2. Let g(t) be another path in G(a, b) such that 

B(O) = g and g(f)=£ , and let $'{~) be the path in GJ(~~6) that corresponds to it. We 

show that ~(f) =~'(4) . For this let us consider the set [~= ~d~~II$,z~Ug,~) is a subgroup in 

~~ that is not simply connected. If ~~ f~ , then the space G~(~~ß) csu be represented 

in the form ~~~ ~~, ~ = 0»~,~,3,ó In addition, the path f~(~) has the origin at the 
1 . ~ , f )  (/,.~ 

point A(0) =laS<xO=~,(&,~) and the end at the point f~(«)=~«= (£x ,~~ ) " By Lemma 3 the 

path f~(~) is homotopic in G~(~,6) to the product ~-kz , where 

k . , ¢ ~ e < < c ~ , ~ ~ , i ~ ~ r « ) - « , ~  - .~ , e ) ,  i~«(~) ~(~,.<,<" ~~) 
for 0~~-~«. If ~~ 4 , then we set ~~(~)=Æ(Z) and kd~):£(f) for 0_~f-~f Then f(t) is 

homotopic in $(~,g) to the product ~.~ , where 4(~) and ~(~) are paths in $(ggj~J whose 
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projections on $~ are equal to ~X(~) and k~(t.) , respectively, ~&fL] {0) Under a con- 

tinuous deformation of the path f(£) in ~~,~) without change of the end points, the image 

B~~) will also be continuously deformed in C'(O~~~) without change of the end point [7]. 

Therefore the end points of the path f' and (~-~)' coincide. The path [~-~)~ is the product 

of paths ~~-~' , where ~' is the path in $~(~,~) that corresponds to the path h and k', by 

construction, depends only on the element /<'(0) =K(f) and the path k. Analogously, the path 

g(t) is homotopic in ~(~,~) to a product r~.t~ , where f~~(~) ~~(~,$) and f~«(~)e _m 

O~~»i, for Xe L and h(«)=/'n,(Y) and ~ ' -~ ' . ~ '  . 
it is sufficient to show that ~(Y)~~'(Y]. 

As a preliminary we prove that ~(¢) :I72'(4) 
subspaces ~f(~,~) in simply eonnected subgroups 

Now, to prove the equality f'(«)-'-t'«Y) 

For this, using Remark 3, we embed the 

~(gL,~) of the loop ~,~, ~'~4 For 

g~ .[, we set ~~.(a.,~)=~(&,~) and consider the subgroup 

As in the subgroup 6(~,~) , in the loop G' there corresponds to it an arcwise connected sub- 

group ~(a,~) such that the restriction of the local homomorphism ~ to ~fgb~~) is a local 

homomorphism of this subgroup onto ~(~~~) . The paths h(t) and m(t) Lie in ~(&,~) Defin- 

ing the corresponds paths in ~(~,~) that satisfy the conditions ~) and ~), we obviosuly 

get the already considered paths h'(t) and m'(t). The group G(~,~) is, by constructi'on, 

simply connected. Consequently, ~~~ in ~~(a,~) ; whence ~'-r~' in ~~~~~). In particulal 

h'~«) = m~«) .  

To complete the proof of the lemma, it is now sufficient to observe that the paths k(t) 

and n(t) lie in a simply connected subspace of the space of the group ~(~,~) . Since these 

paths have a common origin and a common end, it follows that ~~~ in ~~~6) . Moreover, by 

what we have already proved, ~~)=J~l)=f~{4)=~'(O) ; whence ~~{) =~~f) . 

" p Thus, we have shown that the element £~e,~ = i) does not depend on the choice of the 

path f in the group ~~~~) that satisfies the eonditions ~0)=£ and f(1)= £ It is proved, 

verbatim as in [7], that the so-defined mapping ~; ~(~,~)--~~(~~~) is a homomorphism that 

extends the local homomorphism ~~,6 and also that it is unique. 

This is what was required to be proved. 

We pass to the construction of the homomorphism 

the local homomorphism ~ Let us consider the set 

where 

of the loop G into G' that extends 

is the identity of the group ~o For J~~-E we find ~.,~~~ such that 

Let us set £~ =~g~~,~ and show that the so-defined element B~ does not 

depend on the choice of ~,6eß . Indeed, let £~~EG be such that ~e 6(O,d) • If J-eI 

for a certain ~~=-{ , then ~CO.,~) contains--i, and therefore the group Ga(LI»~) is con- 

nected. By Remark 2 the element x belongs to a certain one-parameter subgroup h(t) of the 

group ~(O~~~) Analogously ~~~(~) , where g(t) is a one-parameter subgroup of the group 
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G(£.6~) It is obvious from the proof of Remark 2 that the subgroups ~(~) and ~«(() are 

contained in two-dimensional subalgebras of the algebra ~~ . Consequently, there exist 

(g,O'~~ such that /2{~),~(~)~~(~»0) If U is a neighborhood of the identity of the 

loop G in which the local homomorphism ~ is defined and y and z are elements of U such 

that ~:~(~) and Z=~({z) and ~ :ym Z~ for certain natural numbers m and n, then 

Let a ,  b, c, and d be arbitrary elements of G and let ~zE$ccJ)n6ce, cL). Then ~~~g = 
A ~?~,$ Indeed, ~=LLoß , where ~oöGO and ~ ~ eo ~.~~f/'] G~ By Remarks i and 2 there exists 

an ~a~/~ß(~~~)[]~(C,~) such that ~~ belongs to the one-parameter subgroups h(t) and g(t) 

' of the groups ~CC~,~) and ~(C,(~) , respectively. As in the preceding case let us consider 

the subgroup ~(p,s) that contains the subgroups h(t) and g(t). Then we get 

(3~ü.)~~~ = ( mõ.)~,  s = ( ;~~ )~~~ , 

whence u6~&,~ = (£~~) ~ = ~~.(£~)~~,~ =~~.{~~)~~,~ß = (££C&)~~,~ : gg~~,G6 • It is obvious that 

the mappings ~,~ and ~,£ coincide on Co , 2o that 

= = ,~ fl.. 

It is now natural to set U~e~(6g,~) for an arbitrary ~~ = &~~~,~. By what we have proved 

above, this definition does not depend on the choice of suitable &Lo~~~ . By virtue of 

Remark 4, there exists an element ~£ ~ such that the group D~d ~ is connected for each 

B(~~~). Consequently, db~~{~,~) =$(D»~), and the mapping ~ is defined on the whole space 

G. It remains to prove that ~ is a homomorphism. 

LEMMA 4. For arbitrary £6~ and ~d~ 

~~ ~)~ = ~~.~~ : ~~. ~~. 

Proof. By Remark 4 there exists %æ~ such that Ga(~,Z) is connected for eaeh ~~I 

Then ~(~,Z) =6(~,%), ~c~(~,%) and the statement of the lemma follows from the equation 

~~=~£ and the faet that the mapping ~ coincides with the homomorphism ~,X on ~(~,Z) . 

The lemma is proved. 

LEMMA 5. Let C~ and b be arbitrary elements of G. Then the mapping ~ is a homo- 

morphism on ~(0~,~) . 

Proof. Each element &&6 ~(~-;6) can be represented in the form LL=OB&g o , where m£~ 

and &&o~G(O.~~) . Moreover, ~c6(0-~~) , so that Æ(~o~) = ~-'G(O-:~) . The mapping ~û.~~) 

acts as a homomorphism on the group = ~a.,~ Let x be an arbitrary element of E and ~0 

and ~ be arbitrary elements of G(O.,~~ . Let us consider the pseudoautomorphism T~~ 

the Loop G' with the companion (~ß~)3 = jg~~ = £~ . Setting, for brevity, 

and using Lemma 4, we get 

I I I 
{ » u . o T « > o . o T  ~ ,  , , , • ~ o « o  = a ~ ' . ( ~ ~ ) '  = a » ( ~ o ¢  o ) '  ' F~, = ' ' ' = a~ ~ o ' O ' o ,  

of 

~~'=2,' for Z6 GCgg,~) 

(7) 

; ; I i.e., the triple "~»ggo» ~'o is associative. If ~~E , then 
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~ I I I I t I I I  I I 

Here we have again used Lemma 4 and Eq. (7). Let u and v be arbitrary elements of 6(m,6) 
such that ~=~&~o and 0~=~{ , where ~~~&Æ , and ~o,~o 6 ~((g~~] 
~~ for ~ in (7), which is possibly by virtue of (8), we get 

(8) 

Then, substituting 

I I I I 

The lemma is proved. 

The followin Z lemma is now easily obtained. 

LEMMA 6. Let G be a semisimple analytic Moufan Z loop of form (6), G' be a connected 

analytic Moufan Z loop, and ~ be a local homomorphism of G into G'. Then ~ can be unique- 

ly extended to a homomorphism ~ of the loop G into G'. 

Indeed, the above-construeted mapping ~ extends the loeal homomorphism ~ If ~» 

~£~ , then C&~~£~((g;ß} and, by Lemma 5, we have (0~~)~=0~~'~~ . The uniqueness of the 

homomorphism ~ is obvious. The lemma is proved. 

We now formulate the main theorem. 

THEOREM i. Let G and G' be connected analytic Moufang loops, G be simply connected, 

and ~ be a local homomorphism of the loop G into G'. Then ~ can be uniquely extended to 

a homomorphism ~ of the loop G into G' into the large. If ~ is a local isomorphism and 

the loop G' is simply connected, then ~ is an isomorphism of the loop G onto G'. 

Proof. We start the proof with the last statement. In this case, without loss of 

generality we can consider the simply connected analytic Moufang loop, constructed in [5], 

as G. Then ~=P-~ , where P is a semisimple subloop of the form (6), N is a simply connected 

solvable normal divisor of the loop G. Let ~ and ~N denote the restrictions of the local 

homomorphism ~ to P and N, respectively. By Lemma 6, ~p can be extended to a homo- 

morphism ~ of the loop P into G' In its turn, ~~ can also be extended to a homo- 

morphism ~~ of the loop N into G' by virtue of [5]. If u is an arbitrary element of G 

and u = pa, whereß6~,~6N,then we set 

C/,~7 = tO~p" £L(BÆ. (9) 

It is easily seen that ~ is a properly defined mapping of the loop G into G' that extends 

the local homomorphism ~ We prove that ~ is a homomorphism of the loop G into G'. For 

this let us consider an infinitesimally generated element ~£P and an arbitrary ~6N . 

As in [5], we can show that 

(io) 

If p and 5 are arbitrary elements of Æ=<B,..,Æn> , and 5 = «S,...~m> , where p«,'-',Pn, 

S c .... j Sm are infinitesimally generated elements of the loop P, and 6L,~~N, then by [5] 
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where W,~A]I, and W~ are T-words p/,..,p~,s,,..,s~ An analogous equality holds G' also 
; 

' 6' , , , i ' $~> if ~ and infinitesimally [or arbitrary 5, and Æ =<P,..-P~>,~ =~$i"'" ~ ste 

generated elements of the loop G'. Using (9)-(11), we get 

, p ~  s 6 » 9  = c p s ) ~  c ~ W , , & p W ~  = ~ ~ - ' ~ ' ' 

1 I 
where W, ~l, and W~ a r e  T-words of  the  loop  G' t h a t  a r e  o b t a i n e d  / rom W, Wl, and 

by r e p l a c i n g  the  e l e m e n t s  ~, . . ,~~,~, . . ,  Sm by ~~~,..,D~~,3,~,..,Sm~ , r e s p e c t i v e l y .  Here 

the homomor ph i e i t y  o f  the  mapping ~ on P and N has  a l s o  been used .  

Thus, ~ i s  a homomorphism o f  G i n t o  G' t h a t  g e n e r a t e s  the  t o c a l  homomorphism 

' S i n c e  ~ i s  a l o c a l  i somorph i sm and G' i s  g e n e r a t e d  by each  of  i t s  n e i g h b o r h o o d s  of  the  

i d e n t i t y ,  i t  f o l l o w s  t h a t  ~ i s  a c o v e r i n g  of  G on to  G ' .  S ince  G' i s  s imp ly  c o n n e c t e d ,  i t  

now f o l l o w s  t h a t  @ i s  an i somorph i sm of  the  loop  G on to  the  loop  G ' ,  which was r e q u i r e d  

to  be p r oved .  

Le t  us cons±der  the  g e n e r a l  case  of  a l o c a l  homomorphism ~ of  a s i m p l y  c o n n e e t e d  loop 

G i n t o  a e o n n e c t e d  a n a l y t i c  Moufang l o o p  G ' .  By v i r t u e  of  what we have p roved  above ,  we can 

c o n s i d e r  the  s imp ly  e o n n e c t e d  a n a l y t i c  Moufang l o o p ,  c o n s t r u c t e d  in  [ 5 ] ,  as  G, and the  

e x t e n d i n g  homomorphism ~ can be d e f i n e d  by Eq. (9 ) .  

The theorem i s  p roved .  

2. We f o r m u l a t e  some c o n s e q u e n e e s  o f  Theorem 1. 

THEOREM 2. Let  G be a c o n n e c t e d  a n a l y t i c  Moufang l o o p ,  ~ be the  t a n g e n t  M a l ' t s e v  

a l g e b r a  o f  the  loop  G, and ~0 be a L ie  s u b a l g e b r a  o f  A. Then the  loop  ~o , c o r r e s p o n d i n g  

to the subalgebra A o , is a Lie group. In partieular, if A is a Lie algebra, then G is a 

Lie group. 

Proof. Let us consider the simply connected Lie group g0 with the tangent algebra 

B0 The local homomorphism ~;~--~~ , induced by the inclusion ~0c-~ , can be extended 

to a homomorphism in the large by Theorem I. The image of the Lie group ~ under this 

homomorphism is the subloop ~o ; whence the statement of the theorem follows. 

Remark. It should be observed that the subgroup 6o , corresponding to the subalgebra 

Ao , is understood in the sense of the definition given at the beginning of this article, 

i.e., as a group equipped with the intrinsic topology. But if ~o is equipped with the 

subspace topology of the space G, then ~o may turn out to a nonclosed subspace and may not 

be a Lie group. 

The following theorem gives a classification of the connected analytic Moufang loops 

that are locally isomorphic to a given loop. 
\ 

THEOREM 3. Let 6gbe the class of all connected analytic Moufang loops that are locally 

isomorphic to a given loop. Then the classOß contains a unique (up to isomorphism) simply 

connected loop G. An arbitrary loop G from the class (,g is a homomorphic image of the 

loop ~ such that the kernel of the covering homomorphism ~: G--->~ is a discrete central 
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normal subgroup of the loop 

This theorem follows easily from [3, 5] and Theorem i. 

In conclusion, we formulate two theorems that are analogs of theorems of Pontryagin 

[7] and Mal'tsev [4] and characterize normal subloops of simply connected analytic Moufang 

loops. 

THEOREM 4. Let G be a simply connected analytic Moufang loop and N' be a local normal 

subloop of it. Then a certain neighborhood of the identity of the loop N' can be embedded 

as a neighborhood of the identity in a normal subgroup N of the loop G in the large. 

THEOREM 5. Every connected normal subloop N of a simply connected analytic Moufang 

loop G is simply connected. 

With regard for [5] and Theorem i, the proof of Theorem 4 is carried out verbatim as 

in [7]. To prove Theorem 5 we can use the plan of arguments from [4], applying, where neces- 

sary, the results of [5] and Theorem i. 

The author is deeply grateful to E. N. Kuz'min, under whose guidance this article 

has been written. 
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