PRETABULAR EXTENSIONS OF LEWIS $4
L. L. Maksimova UDc 517.11

In this article further results related to the lattice M of all normal modal
logics containing Lewis $4 are found. The study of the M lattice was begun in
[1], where it was established that there exists a close relation between M and a
lattice £ of superintuitionistic logics. So-called tabulér logics were investi-
gated in one of the sections of this article, and the finite approximability of
pretabular logics was also established. We will use previous results [1, 2] to
describe all pretabular modal logics which are extensions of §4. It has been
proved that there are, in all, five such logics, including §5, whose pretabular
property has been previously established [8]. Pretabular logics will be denoted
in this article by PMi1-PM5. All these logics are finitely axiomatizable, so that
there exists an effective criterion for the tabular property of modal logics. The
natural extensions of each of PMi-PMs form an infinitely decreasing chain.

Because of the dual automorphism between M and the lattice of manifolds of
topological Boolean algebras, the results obtained are carried over to this lat-
tice of manifolds. 1In particular, there exist precisely five pretabular mani-
folds of topological Boolean algebras.

In this work, notation and results from a previous article [1], familiarity

with which is presupposed, are used. The methods of proof are similar to those
of [2], in which all pretabular extensions of intuitionistic logic were described.

1. DEFINITION OF PmM1-PMB LOGICS

We recall [1] that a logic is tabular if it can be represented as a set of
formulas true in a finite algebra. A logic is called pretabular if it is tabular

and if all its natural extensions are tabular.

It has been previously proved [2] that there exist exactly three pretabular
superintuitionistic logics, namely, /(, £, , and £;. A mapping 6 has been con-
structed ([1], Sec. 3 (7)) from the lattice £ of superintuitionistic logics into
M. Let us now introduce the notation

PMl = 0(LC), PM2=0(%,), PM3=oc(L).

We define two families of finite topological Boolean algebras (TBA).

For nz{ we denote by
62.=-< Y,&, VvV, ,~,0 , 1>
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the algebra, such that <Z/”,&,v,—>,'v,/> is a finite Boolean algebra with 7 atomic

formulas a,,..., ;-

/., if =1,
D\Z' d a,,, if dﬂ$T</,
0, if a,4 <.
We denote by
vﬂg<vfl’&/’v'——*lw9ni/>

the TBA, such that < Vﬂ, &,V,—,~,1>is a finite Boolean algebra with in. atomic for-
mulas.

Dx‘—'—— /9 if -Z‘-/,
0., if T +71.

We denote by PM4 the set of formulas that are true in all TBAZ[” (n=12,...)
and let PM5 be the set of formulas true in all TBAVH (n=12,...). We note that
PMB coincides with Lewis §4§ (cf., for example, [8]).

We will also obtain an algebraic characterization of PM1, PM2 , and PM3. We
recall [2] that the superintuitionistic logic Z{ can be defined as the set of
formulas of intuitionistic logic true in all pseudo-Boolean algebras (PBA) 4,
(n=2.3,...), where 4, is a linearly ordered PBA containing n elements. The super-
intuitionistic logic £, coincides with the set of formulas true in all PBA B,
(n=0,1,2,...), where ﬁa is a two-element Boolean algebra and B, 'Ba 4-5”” + Eo-. £,

VVVVV n
+3B,.

coincides with the set of formulas true in ali PBAL, (n=01,2,..), where [ B,

n
It was previously proved ([1], Sec. 3) that using any PBA & it is possible
to construct a TBA § () which would be the least TBA containing {f as a sublattice.
We find that PM1=6(/() is the set of formulas true in all TBA S([.n) (n=2.3,...), by
using Theorem 6b and the corollary of Theorem 5 from [1]. Similarly, PMz-d(J’Z)
is the set of formulas true in the TBA S(8,) (n=042,..), and PM3-g(f,) is the set

of formulas true in all TBA 3(6’,,) (/2-0,/,2.;--).
2. REPRESENTING QUASIQRDERED SETS

In this section we will study the relation between topological Boolean al-
gebras and quasiordered sets.

Suppose g is a nonempty set, and let K be a quasiordering, i.e., a reflexive
and transitive ordering on &. It is known that { is a topological space if the
interiority operator O is defined by the equality

oX = {z/ Yy (zRy ->y€X)}
for X&§. We may then define on the set of all subsets P({) of the space { the
TBA
J(Q)=<P(@),8,v,~,~,0,1>,
where §&,v and v denote set-theoretic intersection, union, and complementation,
respectively, X — Y = ~XVY, /=4,

We now note lemmas similar to those from Sec. 2 of [2].
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LEMMA 1. Suppose Q is quasiordered by the relation R, and let d'be an open
subset of §. Then there exists a homomorphism A from J(&) onto 7(Q')

The desired homomorphism is given by £(X)=XnQ for X<4 (cf., [3], Chap.
3.1).

LEMMA 2. Suppose the mapping # of a set { with quasiordering R onto the
7
set { quasiordered by the relation R’ satisfies the conditions
(1) 2Ry = @R 8.
(2) 0(&)?’9(5} = :75/'(::: K’y' and §(y) = 6’(5/"):
Then the algebra J(@')is isomorphically embedded in J(4).
It can be easily verified that £ (Y)=8"(Y) for yc& is an isomorphism of
into J(g)and 7(Q) .

We now correlate to every TBA 4=<%B;&.V,— ,~,0,/> its representing set,
i.e., the space Q$ of all simple filters of the algebra . quasiordered by the
relation

B R, = (VzeB)(Ozed = Ozed,),
where qb,,‘%ﬁé?j . The following assertion is well known.
LEMMA 3. The mapping ¢: .ﬂ—’f{@_ﬁ) , determined by the condition (/z(@)-{cb/qbe Qb

&xre@), isan isomorphism from the algebra 4 into the algebra .7(03) . In particu-
lar, if J is a finite TBA, ¢ is an isomorphism of 4 into f/'(Q:{,) .

Remark. If 4 is a finite quasiordered set, QV(Q) is isomorphic to §.

The relation between operations over TBA and operations over the represent-
ing sets is characterized by the next lemmas.

LEMMA 4. a) Suppose & is a TBA, and let 4 be a homomorphism from & onto the
TBA &,. Then er is isomorphic to an open subset of Qxy.
1

b) Suppose % is a capital TBA,qbae ng , and let Q={¢/¢EQ$ & ¢;/?¢}. Then
there exists a TBA & such that the set €4 is isomorphic to &, and & is the
A ,
homomorphism of the TBA &.

Proof. a) Suppose 4 =<4,&,V, =,v,0,7>, and let $=<48,&,V,~,v0,1>.
Since & and &, are pseudo-Boolean algebras in &,V,-,~, 7/, the mapping oc_(9b)-
A7 (P) for ¢ely constructed in Lemma &4 [2] is a one-to-one correspondence be-

1
tween the sets 05’ and @'- {vqb'e 4y | @' Qﬁ-'(f)}..

It is easy to verify that for any ¢ , & € 0$ :

- iy
PR, &1 (BIRET ().

It remains for us to note that ' is an open subset of é?”. In fact, we have

from @ R‘;‘gand 45,:2/[1(/) for cp,,cf; € 0-‘&,
zeh’ (1) = h(D =1 = £(02) =0h(D=/=>0zeP, = 0zeP, = zeP,,
i.e., 247, QED.
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b) We define on £ the relation
P . - .
xgq%“ = g(z g)eqba
Tt is easy to verify that Vg 1is a congruence on #. We note that

T ¢!4—->cme¢

Now suppose that A is a homomorphlsm from 4 onto &, = /~ By a) of Lemma 4 the

¢0'
mapping e: Q& — 0_% , where o« (P)=47(¢) for P e Qx,,, ig an isomorphism between -Q$1

and the set
g'={2'ca, |F'247(1).
It remains for us to prove that 2-aq. Suppose Pe Qé& Then
Ped'es 247 () S Ve [ho) =1 > zeP] &
= V-T[Ela:eqb = 26 P] e Vz (oze, = Dxe Pl b RP = Ped.

The lemma is proved.

LEMMA 5. Suppose % =<8,&,vV> is a distributive lattice, and let &, =<3 &, v>
be a sublattice of &. Then any simple filter cp’ on ,,Z; can be extended to a sim-
ple filter q'?o onJy, such that qgnfb;sqf’?

Proof. Suppose ¥, is a simple filter on 4 . We set qb 3 V¢ and examine
the set: 3 ={® /¢ is a filter on &, P and éne = ¢}

The set 2 is nonempty, since it contains the filter ¢={:z;l:1:€«$ and (_ﬂ'y_e‘i?)
(gsa:)} . Further, the union of any chain of filters in 2, again belongs to Y. By
Zorn's lemma, > contains a maximal element ¢0 . It is easy to verify that c}% is a
simple filter on 4. Since e, we have @, N B ~9.

The lemma is proved.
LEMMA 6. Suppose & and 4 are TBA, and let & be a subalgebra of 4. Then

there exists a mapping # from 0$ onto »Qﬁ that satisfies conditions (1) and (2)
1
of Lemma 2.

Proof. By Lemma 5, the mapping #(@)-Png, where qbeQz’ , 1s a mapping from
@y onto 4y . Evidently, for any P Beqy ¢RP, implies 4 ()R8 (F,).
7.

Now euppose 8 (®) R&(qb) where @, ¢ € Qgr This means that & n &,N G (%)<
¢n$ ng (4, ), where G(nc"r)ls the set of all open elements of the algebra &, i.e.,
5(%)‘{:1:[1’&.,‘6 andr =0Z). Hence,

B nG($) =B nG(L), (*)
We set $==$\¢ and consider the set
{¢/¢1S a filter on fé and (P, n(;(x)u(cpns)cqb and ¢7n cp ¢}

The set Z‘, is nonempty, since it contalns the element SD = {x | ze Brand

(Fye nG($) (Fze ¥, n.ﬁ)(y&z a:)}

In fact, let us assume that ¢ n qb <0, ,z:ec;b n ¢ Then y and Z can be found such
that

yePnb($), zeqbn!randy&z‘x
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Hence,y< z—~z and y = 04<0(z—+2), so that a(g~z)ed . Moreover, z€ £, and

.1365 < &, so that O (¢—~z)e 6 (5,). Consequently, by (¥) we haven (z—ux) ¢ @, that
is, (Z —-.'IJ)ECP But we also have ze€ ¢’2 , so that zetg contradicts e (’?; Thus,

®, nqb @. Evidently, @, is a filter on & and

(P n6L)u(P,nL)SP,.
Further, the union of any chain of elements in 2 again occurs in ¥, so that,

by Zorn's lemma, 2 has a maximal element 1n (P It is verified in a standard
fashion that ¢ is a simple filter, i.e. ,qb € Q

It follows from the deflm.tlon of X that¢’ ng, = ‘P ng, In fact, Qb n <
q‘)z’. On the other hand, if a:ef.‘bﬂa‘fr we have "e.ﬁ and x;{f;b, i.e. ,reqb Thus,
9(¢2’)=€(¢’2). Moreover, Cb ﬂG(Jr)C Gb nNE(B), ie.,®, Rd) Thus, we have

9(B)RE () —TF, (BRP,and §(%) =9(¢;».

The lemma is proved.

We recall [2] that as the representing set of a pseudo-Boolean algebra (J is
understood as the space Sd/ of simple filters on (} partially ordered by inclusion.
The PBA £ (%), consisting of all open elements ofd, correspondsto any TBA 4. The
relation between @x, and 55(“5) is established by the following assertion.

LEMMA 7. Suppose Jris a TBA, and let ((%) be the PBA of all open elements
of &. Then § is isomorphic to the quotient set of £, by means of the equiva-

lence

F&5)

G =, 2 =PRP, and BRE,

Proof. Suppose ¥€f,. We set ¢ (P)=PnG(8). Then, evidently, ¢ () is a sim-
ple filter on (&(%). Further, by the definition of the relation Ron-@x, we have
P RP, < &b nG(5) s ¥ nED).

The following assertions are therefore true.

BRE = §(8) = 9(),
B =G = YD) = $(2,).

By Lemma 5, ¢ is a mapping of 05 onto SG(.‘&)'
The lemma is proved.

It is possible to construct a TBA &= §() by means of any PBA (b (ef., [11,
Sec. 3 (4)). We have the following assertion.

LEMMA 8. Suppose (f is ‘a PBA, and let §(f¥) be the TBA corresponding to it.
Then the set QS(CZ) is partially ordered by the relation R and isomorphic to the
set SM

Proof. The relation R is a quasiordering on stb) We will prove that R is
antisymmetric¢. Suppose cht’e s 204 1et¢ 4:175 Then there exists an £e @, such
that x{@ . The TBA §(0f) is generated by the set G(S(tt), by Lemma 3.2 from [1],
and by definition of the algebra S{(Ct). Therefore, ¥ can be represented in the

form
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xr =(~a,v{;) &...% (~a, VKH),

where @,,..., 2, , é1 yeres Zga € G(8§(%). We have (“’ajvé)¢¢z for given j ({é/’éﬂ) . Then
«/g"{.g’cz,and 651"/—72, i.e., 65-6“252‘, and zggz’cpz . On the other hand, (~(ZJ- V5;-)€¢,, that
is, a;g[ cpf-or é}e¢7- Hence,

CP,nG(S(UL))# &, nG(S§(0r),

that is, we cannot have simultaneously (,b,RCDZ and 472 Re® . Thus, R is a partial
order on quz)' and the relation =, defined in Lemma 7 coincides with equality.
By Lemma 7, §

is isomorphic to ¢ Therefore, the assertion follows from

G(Swx) sy
the isomorphism between & and & (S(&4) (cf., [11, Sec. 3 (5)).

We will use Lemma 8 to describe the representing sets of the TBA §(L,), §(B),)
and §((,)(cf. Sec. 1). By Lemma 8, QS(L,,) , QS(B,,) , and QS{C,,) are partially ordered

and isomorphic toS, ,S,, and S, , respectively. Thus, the set § for n=23,...
Ly’ “B, A 8Ly)
is a linearly ordered set containing (2-/) elements. The set & forn=2012,...

5(8,)
consists of (n+/) elements, including a greatest and a least element, the remain-

ing elements being pairwise incomparable.
In conclusion, we note that for s>/ the representing set Qu of the algebra

n
U, constructed in Sec. 1 is isomorphic to Y, , where Y/z is the set {/,...,/z} with the

quasiorder R : uRy = u<n-{ or v=n.
The algebras Q‘U that represent the set 7};1 are isomorphic .to Xn, where sz is
n
the set {4...,n} with a quasiorder X such that (Yur)uRvu .

3. SPECIAL PROPERTIES OF TBA THAT CAN BE DETERMINED FROM
THEIR REPRESENTING SETS

We recall that a TBA is called completely bound if it satisfies the condi-
tion D2vOy=/ = Ox =/ orDy=/{, '

The PBA is called completely bound if we have in it xvy=/ = 1=/ or y=1,
LEMMA 9. The following conditions are equivalent for any TBA %:

(a) &4 is a completely bound TBA;

(b) &(&) is a completely bound TBA;

(c) the representing set er satisfies the condition FuVYru Ry,

M Equivalence between (a) and (b) is evident.

Suppose we have (b). Then there exists in 55(3) a least element since
¢”= {f}is a simple filter in ((#). By Lemma 7, there exists a homomorphism ¢
from Q$ onto § . such that for ¢ qb’ € ,we have

6(%)
g (P) e ¢(Pp) = PRP,.
Let us take any qbeQ!r such that ¢(¢)=q§y. Then for any C/J: € Qb}we have
qb,?dg , i.e., condition (c).

On the other hand, if (¢), by Lemma 7, SG(-‘M has a least element%. Since
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¢0 is contained in any simple filter in £($), we have ¢%={l}, that is, G (%) is
completely bound. Thus, conditions (b) and (c) are equivalent, and the lemma.is
proved.

ASSERTION 1. For any TBA £ the following conditions are equivalent:
a) O(x~¢z)v0O(z-~0z) = {for all red;
b) the representing set 425 of & satisfies the condition

(Vutru)‘)(uA’()' and Rw = U =0 or r=w).
Proof. We assume that (b) does not hold. Then there exist simple filters
g/? ,qg andqb in % such thatCPl?CP Cb/?‘?", and .Z‘e¢\¢7, yeqbz\q? for given
x and ¢ in 4. Suppose that z= .z‘&y We have Z€¢’ z¢ andzﬂ‘?b We obtain
#J,?qb and ¢P¢’ from conditions ¢% =~0~%e®, and uz¢¢7 Therefore (Z“Oz)¢ Cf’
and D (z »DZ)¢¢' Consequently, 0(z+-02)¢ ¥, and 0 (2 « 03)¢ &, that is, O(£+02)
vo(z-02)¢ & and.u(z«OZ)vn(z«nz)+/.

Conversely, suppose condition (b). We take an arbitrary subset X SQ.W where
uedy. We assume that ¢ o(X < 0X). Then there exists a V€ &gy, such that ¢Roand
r¢ (X—0oX) . Hence, reX and r¢0X. There exists a wed, such that ¢Rw and
wg X, consequently,w#¢. Condition (b) implies ¢=¢ and ¢eX. We take an arbi-
trary ¢’ such that ¢Pu’. Then we have from u’e ¢X that there exists a «'such v
that «’RPu’ and wéX . We obtain 0$ or ¢'=¢ from the condition on «’=«win both
cases «eX. That is, q'e (X «<~<0X). Hence,ueD(X+=0X). Thus,yed (X« 0X)

VDO (X<« 0X)for any ve 05 and X‘;er . Since .4 is isomorphically embedded in the
TBA .7’(Q$) of all subsets of Q&, we have O (x« 9x)Vva (x~02)= for all xed.

The assertion is proved.

ASSERTION 2. For any TBA & the following conditions are equivalent:

(a) 00z <02 for all red;

(b) the representative set 45 satisfies the condition
Vuds (uRy andVuwr (rRw = v = w)).

Proof. Suppose the TBA % satisfies condition (a) and let 4’0 be a simple
filter in%. Then F = ¢a NG (%) is a filter on the PBA ((4). It can be expanded
to a maximal filter F, in the PBA £($). We note that F, satisfies the condition

(ef. [31, 1, 13.10)
(Vze G(£) (ze% or 13€F)),

or, equivalently,

(Vze $)(0zeF, or O~D3z€F,). (*)

By Lemma 5, there exists a simple filter q/? on & such that d; nG (%) = F,. Now
suppose ¢ is an arbitrary simple filter on % such that qb,?qb. Then

Fi=#n6(8) & Pn6($IeS, y,, -
Therefore, P né (%)=

Let us assume that ¢ # Qe Then e @ and~ xecﬁ,for some re&4. Hence,
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0 x¢ F,and D~xzdF,, since £, S PnP . That is, by condition (*), O~ Ozef and
O~0O~zeF. However, by condition (a),d~ O~z &0~ 0z = poxré~O0x=0 which con-

tradicts 7",'6 SG(-”) .  That is,¢-=q? , 1.e., condition (b).

Conversely, suppose (b) and let X CQ‘*. We assume that « € 00X. Let us take
auUe€ Q_%, such that «Rv andVw (vRw = v =w) . Then redX, i.e., there exists a
w such that vRw andweX . We find w=0anduveX. From the properties of [ it
follows that reoXand # €e0dX. Thus,O0d0X = ¢00X. By Lemma 3 we have 0{Z <
o0z forxedr. The assertion is proved.

4. CLASSIFICATION OF QUASIORDERED SETS AND PMI-PM5 { 0GICS

Suppose the set § is quasiordered by the relation K. We call the quotient
set Q/_A,' with respect to the equivalence u =, == yRy the skeleton 0 (§) of the
set' §, and let U Ru be partially ordered by the relation [l < W] = R0, where
Wl ~{ofu =.U}is the residue class. The residue class [4]'is called exterior if
_VU (uRU =3 sRU), i.e., [U] 1is a maximal element in0(d) . A residue class is cal-
led interior if it is not exterior. We use the following notation:

H, (@) -f)u,D{[d]/ﬂl]ls an exterior class in g},
H, (4) = wp{ﬂﬂ/ﬂﬂls an interior class in g}

(Here [d]is the cardinality of [«].) We denote by uelfor v(u) the number of
classes in [y] such that [yl < [U]. We set
v(Q) = sup {vw|ued).
For example, if { is partially ordered, 4, (&)=/ and /12(0)4/. If a partially
ordered set § has a least element, then y(&)= 4.

For the set X, and Y, (wheresz{) constructed at the end of Sec. 2, we have
/‘(/(X ) ’ ,uz(xﬂ)"oy ‘)‘(Xﬂ)=li

/'17(y)_/’ ~/uz (Y‘t) = r-{,
(Y) . 1f n=f,
Z o G1E o>,

We recall that if % is a TBA, MS denotes the set of all formulas for modal
logic true in J.

THEOREM 1. Suppose {.‘b’}bez is a family of TBA, and let there exist a natur-
al number x such thatV(Q ) <K, /1,(@&)‘/(, and,u (Q_% )éK for every ;€. Then
the logic M= /\ M&b; is tabular

Proof. Suppose '%j}je.f is a class of all subdirectly nonfactorable TBA
which are homomorphisms of algebras of the family {'%L}L‘F.I' Then by the Birkhoff

theorem [4] every algebra %, (tel) can be represented as a subdirect product of
given algebra ,‘Z}. . Therefore, M = ‘/\ M:&. .

By Lemma 4a, v(Qj_ )<k, /‘{1(‘2.3,)"/( and//z(ﬂ!,)‘K for every jeJ. Moreover,
by Lemma 9, for every JeJ the set Qﬁ is such thatJ:
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JuYruRy,

since any subdirect nonfactorable TBA is completely bound [4]. Therefore, er
' J
contains less thanv(Q‘&) ma{y,@ )/uz (@, )} < ktelements. Consequently, .‘lrJ is
l
finite, and its cardlnallty is less than2 . Therefore, there exists in the
family {"ij}je.f only a finite number of pairwise nonfactorable TBA and M = M.% ,

where % is the direct product of all such a‘ﬁ'j.
The theorem is proved.
We now need the following simple lemma from the theory of Boolean algebras.

LEMMA 10. Suppose £ is a Boolean algebra, and let 620% be a set of simple
filters on 4 that contains at least # elements. Then % contains a finite Boolean
algebra with 2 atomic formulas as its subalgebras.

LEMMA 11. Suppose & is a TBA, and let y, (45) > 2. Then all formulas in M&
are true in the TBA U,.

Proof. Suppose qbea is such that the residue class [¢?] is exterior and
l¢0]>ﬂ . By Lemma 4b there exists a TBA % such that Qﬂ is isomorphic to [@,]

and %, is a homomorphism of the TBAZ. The set 4 will then satisfy (VY& d’z)
; , e
¢,(7qb Therefore, for every red, we have
ox>0 = (IPed, )(Dxe¢’)=§ (Vf;beg J(ozeP) = 0xr -1 e 1=

Since sz?v/z, 2, contalns, by Lemma 10, a flnlte Boolean subalgebra -?5‘ with

1
n atomic formulas. By definition of the operation O on .Zr, we have that the TBA

U, is isomorphic to the subalgebra ;. Therefore M% S M3, < MU, .
The lemma is proved.

LEMMA 12. Suppose % is a finite TBA, and let y,(&,)=n>0. Then all formulas
in MY% are true in the TBA U,

Proof. By virtue of Lemma 3, £ is isomorphic to ‘T(Q.Yr We will find a
@ €4, such that @ is an exterior class and [ ¥, ] 2. Suppose [¥] = {F,,.... %, ],
m>p. We select éZ’ {#ed, |4 RP}). By Lemma 1, 7(4') is a homomorphism of the
algebra %. Let us now construct a mapping # from Q' onto y“/ in the following

manner: & (B,)=( for (=1 .., n; §(B)=n for nsism ;: B(P) = n+/if PELP].

It is easy to verify that & satisfies conditions (l) and (2) of Lemma 2, so
that 4/, == T Y,,) is isomorphically embedded in 7(4’). Consequently, M% <

My, » QED.

THEOREM 2. Suppose M is a modal logic which is not tabular. Then M is con-
tained in at least one of PM1-PM5.

Proof. Suppose M is not tabular. We will consider the superintuitionistic
logic /(M} (cf. [1]1, Sec. 3 (6)).

Two cases are possible.

1. p(M) is not tabular. Then according to the fundamental theorem [2], p(M)
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is contained in one of L(, £,, and £,. We now use relations from [1], Sec. 3.

(P1) M cop (M),
8y L,cL, = (L) ss(L,).
We find Mo (LC)=PM!, or M co(8,)=PM2, or M co(Ly)=PMS.

2, ‘,o(M) is tabular. According to Lemma 4.9 [1] M is finitely approximable,
i.e., M=b_é\f M&L., where &, are finite TBA. We may assume (cf. [1], Lemma 4.3)
that all .Zrb are pairwise nonfactorable and, consequently, completely bound. By
virtue of Lemma 3.5 and Theorem 6a from [1], _

M) = A p(M%)=ALG(S) ;
pM) = A pHS)=ALE(S)wnere 16 (4))
is the superintuitionistic logic consisting of all formulas true in the PBA G’(.‘!)'L)-
Since jo(M) is tabular, there exists a k22 such that the formula A (k) ‘——.\/
7$b<j6l(

(P; =Pj)occurs in pM) (cf. for example, [7]), that is, is true in all G (%)
Since, according to Lemma 9, the 5-(,%(-/),.are completely bound, &(%,}< K for all

<K . By virtue of Lemma 7 we find that V(Q:&L_)é SG(.%L,) < K.

ieI'. That is, 30(17)

Let us recall that M is not tabular and now use Theorem 1. We conclude that
:,ng {y, (Q.Zv‘-)} = co OT féll}_j {qu (er&)} = oo, If bset}p {4, (Q$L)}= oo , for any n we can
find an (e such that g, (le.)z/z and, by Lemma 11, M%;, SMU, . Therefore,

(4

M=AMS <k MT, - PHS.
If (el =y

Su (g, = co,
ié.ZE {/lz % }
then by Lemma 12

M-AMS < Amy, =Z\jMﬂa=PM4,

194 b =1
The theorem is proved.

Remark. Whenever p(M) is not tubular we may use Theorems 2 and 3 from [2]
and Lemma 7 in order to determine which of PMi1-PM3 contain a given logic M.

5. AXIOMATIZATION

In this section, we will prove that all the PMi-PM logics are finitely axio-
matizable. The PM5 logic coincides with §5 and, consequently, is also finitely
axiomatizable.

We recall [1] that if ' is a set of formulas, [/] denotes the set of formulas
derivable from [ and the axioms of S§#% by means of rules of substitution, modus

nd —
ponens, a He

We have as a direct corollary from Lemma 4.2 of [1] the following assertion.

COMPLETENESS LEMMA. Suppose ["is a set of formulas, and let «< be a formula.
Then «€l/7]if and only if « is true in any completely bound TBA in which all for-
mulas of /7 are true. If [/] is finitely approximable, oce[/’] if and only if «is
true in any completely bound finite TBA in which all formulas of / are true.
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We denote by 7 as was done in [1], Sec. 2, the translation of the formulas
of intuitionistic logic into formulas of modal logic.

PROPOSITION 1. Suppose {aﬁéhezis a family of all finite completely bound
nondegenerate TBA in which the formulas £ and 7(Z)are true, where

E = DpVO[(D(gvﬂp)&~Dp)V(D (~¢VD,0)&~D,D)].

Z=(p>g)vigop).
Then
a) for every (€l an 7122 can be found such that 175 is isomorphic to S(Ln) ,
where L,z is a linearly ordered n-element PBA;

b) if Z{. sz;- , .‘0L is isomorphically embedded in .ﬁ'j .

Proof. a) Suppose & is a finite completely bound nondegenerate TBA. Then
Qﬂ is nonempty and, by virtue of Lemma 9, contains an element U, such that ¢, R
for anyved,. It is easy to verify that if $ b= 7(2), the set {4 is such that
(Vuo)(uRv v v Ru). '

Further, 4 is isomorphic to f(ag') according to Lemma 3. If £ is true ind%,
by Theorem 1 of [61], er is partially ordered. Therefore, R is a linear order-
ing ondy. Let us assume that Q$ contains n elements. Then &, is isomorphic to
a representing partially ordered set szm of the linearly ordered PBA [,,,. We

note that by virtue of Lemma 8 the representing set QS{L y of the TBA § (L“{)is
't/

also isomorphic to SL,,.H' Therefore, QI, and Qs (L ngs) 2T isomorphic, that is, by

Lemma 3, & is isomorphic toS(L,,,).

b) In view of a), it is sufficient to prove that for any «>2 the algebra §(/,)
is isomorphically embedded in §{L,,) . However, since QS(L , and 05(1. ) &t
n n

linearly ordered and contain (z-7) and 7 elements, respectively, it is easy to con-
struct a mapping @ from ¢ onto " &  that satisfies conditions (1) and (2)
§(4n+1) S(L,,)

of Lemma 2. Then S(.,) which is isomorphic to f(gs{b )) is embedded in §(.,,,/), QED.
n
THEOREM 3. P M 1 coincides with the set [£, 7(Z]].

Proof. We have PMl= }TMS([,”) (Sec. 1).
’ n=2

Since the formula Z = (p>¢) v (gop) is true in all PBA L,, the formula7(Z) -
,D(Dp—'-ﬂg)VD(Dg——EIp) is true in all TBAS (L,), by virtue of relation (8) from [11,
Sec. 3. Therefore, 7 (Z)e PM1 . Since the sets Q'S(L ) are finite and linearly

n

ordered, £, according to Theorem 1 of Ref. [6], is true inf{aS(L,)) =~ §(,,) There-
fore,.‘_[E, 7 (Z) < pMi.

We now note that the [£,7(z] logic is an extension of84.3 = [T(z)]. It was
previously proved [5] that all extensions of 84.3 are finitely approximable. Sup-
pose now the formula « does not occur in[£, 7(2)). Then using the Completeness
Lemma, a finite completely bound TBA % can be found such that £ and 7(Z) are
true in & and such that « is not true in&. 1In accordance with Proposition la,
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o« 1is contradicted in 5([;”) for given n. Consequently, it does not occur in PMI.
The theorem is proved.

THEOREM 4. P M 2 coincides with the set [7'(/12),0:2], where
A= (pv1p)af(11pa (g =p o (229D 8 ((eagrsn) 5],
L, =O(p = (0p&~0Qpa~p))VO(p~(0pvo(O~p&p.

Proof. We will first prove that PMZ Q[T(Az),etz:l. For this purpose it is
sufficient to prove that all formulas in PM2 are true in any completely bound TBA
in which T(Az) and o, are true. We recall (ef. [1], No. 3 (7)), that PM2 = 6(L,) =
{x |V (is a TBA and L& 2 £, = S(W) =) }.

Suppose the TBA % is completely bound and that the formula oc, is true in it.
Then the algebra & is generated by the set & =6 (4). In fact, suppose xed. Then
since 4 is completely bound, we have Q= (Qx&~vO(Qzr& ~x W=7 or O (zx < (QxZVOK
~z&a) . In the first case, x = ~O~vzx&O~((Ox&~2)and o~z2,O0~(Qz & ~2) e G (L) .
In the second case, f =gaxv~O~ (O ~x&r) and Ox, O~ (Q~x& x) e G(&). By Lemma

3.4 from [1], the TBA 4 and S(Q) are isomorphic.

Now suppose the formula 7(4,) is true ind4. Then A, is true in &=&($) so
that all the formulas of the pretabular superintuitionistic logic 2, are true in
A(cf. [2]) and therefore, in §{a) also, that is, all formulas of o(f,) — PM2 are
true in 4.

It therefore follows that pm2 = L7 (A),~, J.

We now prove that the formulas 7(A)) and «, belong to pm2. It is sufficient
to prove that these formulas are true in all algebras S(B), since Pm /\ MS (B,)
(cf. Sec. 1). Since A, is true in all B,, 7'(/1) is true in all §(B,) (cf (11,
Sec. 3 (8)). Let us prove that o,
ing set eris partially ordered, has a least element ¢, and a greatest elementeco,

is true in any TBA & such that the represent-

the remaining elements being pairwise noncomparable. According to Lemma 8, all

255
let X be an arbitrary subset of Q&' We consider two cases.

1. =¢d X
If X=¢, 0X=¢, and 0X &~ O (OX&~X)= X,

If X£A@and 0¢X, OX = Xufo}, 0X&~X={0} and O (OX s ~vX) =10}, OX&~O
(OX&~X)=X

If DeX, we have O X=X, 0X&~X=¢g, and 0X &~ (OX&~X)= X& ~ #-X.
Therefore,O (X O X&~ O (OX &~ X)=1, and o« is true for p=X .

satisfy these conditions. Thus, suppose Q_”_ satisfies these conditions, and

2. coe X.

Then o § ~ X; we may substitute ~X for X in the equality obtained in case 1.

We will have

O(~vX «=QOnX&~O(O~X&X) =7,
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i.e., 0(X « O0XVO(O ~X&X)=/, and «, is true for p=X. We have found that
«,is true in the TBA J({,), that is, in 4. Consequently, «, is true in all §(3,),
that is, it occurs in PM2,

The theorem is proved.

PROPOSITION 2. Suppose {-ﬁ&'}éq is a family of all finite completely bound
nondegenerate TBA in which the formulas 7‘(Az) and «, are true. Then

(a) for any jel an n=0 can be found such that the algebra %, is isomorphic

to§(B,), where B, is a two-element PBA and
n

(b) if Zb‘.?}} , & 1is isomorphically embedded in .T)} .
, Proof. Suppose a nondegenerate TBA % is finite and completely bound, and
let 7(A,) and «, be true in it. We will establish, as in the first part of the
proof of Theorem 2, that % is isomorphic to §((t), where ¢{ =G (%), and that Az is
true in £(#). The formula Az is the conjunction of the formulas 1pv1Ip and

_D(3 - (71/,&({9/:/0):(z:g»&((z:g):z»: %.
The set 80(.9&) is nonempty and, by Propositions 1 and 2 of [2], satisfies the con-
dition
(Y4, 4) [T (r-< 4and r < 4= Fur (4« wandu, < w)),
(Yo, uyu,u,) 7 (<< ug<u,).

Since & (%) is completely bound, 56‘(.&)- contains a least element § . Then SG(-‘G)
also contains, under these conditions, a greatest elementco, all the remaining
elements being pairwise noncomparable. The set SG(&) is finite, so that the TBA
& is finite. Suppose SG contains 2 elements. Then the PBA & (%) is isomorphic

(i’r) n-2
to B, for n=7 and isomorphic to Bo+ B, +B,for n>/. Assertion (a) is proved.

Assertion (b) follows from (a), since, according to Lemma 8, st) is iso-
n

morphic to SB , and it is easy to construct a mapping from Sz , onto Jz that
n t n

satisfies conditions (1) and (2) of Lemma 2.
The proposition is proved.
THEOREM 5. P M 8 coincides with the set [«,;], where
o« =DO(p-=Dp)vO(p-—=90p).

Proof. We will first prove that all formulas of PmM3 are deducible from «, ,
using the Completeness Lemma. Suppose the TBA 4 is completely bound, and let
% be true in«,. Then 4 is generated by the set &4 = £(4). In fact, let us take
the element & from.$. Then O(z—0x)vax—90x)=/ inb. Since &4 is completely
bound, Q(£ <~ 0Oz)= 1 or O(x-90z)=7s. In the first case, z = Oz el (&), while in
the second case, £ =~0O~x. By Lemma 3.4 of [1], the TBA 4 is isomorphic to
S = S8(G(o).

Moreover, by virtue of Assertion 1, Qé} satisfies the condition that « Ry and
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vRuy = u=v v y=w. Therefore, the length of the K chains is less than 2, and

éZ_” is partially ordered. By Lemma 8, § is isomorphic to éZ&. According to

(%)
Proposition 1 of [2], the formula

_Dz = (T1p& ((Z:w/o) 29) o¢g
is true in &=6(%) so that all formulas of the pretabular superintuitionistic logiec
£, are true in (b (cf. [2]). Let us take an arbitrary formula « of PM3 = 6(L,) .
By definition of 6(£,) we find that « is true in §(0), that is, in %. Consequently,
PM3 C [«,] according ‘to the Completeness Lemma.

Let us prove that «,€ PM3. We have PM3 = A NS(C,). By Lemma 8, the represent-

ing set & is 1somorph1c to 56' , that is, 1t satlsfles the condition

3(c,)
uRpandov R == u=0 V vo=u.

By Assertion 1,5(6;) is true in % -
The theorem is proved.

PROPOSITION 3. Suppose {&5}551 is a family of all finite completely bound
nondegenerate TBA in which x4 is true. Then

(a) for any ¢{el an 730 can be found such that & is isomorphic to §((,),
where =B” +B5 ;_

(b) if &e 4, is isomorphically embedded in .‘lr]

%
Proof. Suppose a finite nondegenerate TBA J% is completely bound and that o
is true in it. It was noted in the first part of the proof of Theorem 5 that &
is isomorphic to §(&), where &= ¢ (&), and that the length of chains in the set
35{_.&) is less than two. Moreover, SG(JH has a least element and is finite. There-
fore, the PBA £ (%) is isomorphic to 5 = (,_,, where 2 is the number of ele-

ments in § Assertion (a) is proved.

G5}
By Lemma 8, QS(L’) ig isomorphie to ‘SC . It is easy to construct a mapping
n R

from § into 5‘. , that satisfies conditions (1) and (2) of Lemma 2. Therefore,
(4

Cras
assertion (b) follows from (a). The proposition is proved.

PROPOSITION 4. Suppose {,‘05}“1 is a family of all completely bound nonde-
generate TBA in which the formulas 7(Z) ,7'(171) , and o, are true, where

Z - (Mpalg=prag)>9,
x, = 0Qp—90p.
Then for anyé,jel (a) &, is locally finite; (b) if .;",L and %, are finite and

,‘{y ‘.‘6} ,Zr is 1somorph1cally embedded in .% (c) if .‘5"-, is finite, .[rb is iso-
morphlc to ‘Zl for some n.

Proof. Suppose the nondegenerate TBA ¢ is completely bound and that 7(Z)
and T(DZ) are true in it. Then the formulas Z and 7, are true in the PBAG (%) .
Since (%) is completely bound, it is linearly ordered. The representing set

§

6(%) is also linearly ordered. By virtue of Proposition 1 of [2], the length of
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chains in 86(.5) is less than 2. Therefore, {(%) is isomorphic to the linearly
ordered PBA L,=B or to Ly ~{0,q,,1}.

We therefore find, in particular, the following assertion. Suppose A is any
subset of 4, and let ¥, be a subalgebra of ¥ generated by A. Then 4 is contained
in the set A obtained by the closure AuG (%) relative to the Boolean operations.
Therefore, if A is finite, then &, is also finite, and assertion (a) is proved.

We now assume that the formula x, is also true in &. Then, by virtue of As-
sertion 2, the set 0$ satisfies the condition

Yudr (uRoandVYu (gRu = 0= w)),
It follows from the conditions of 86(&) and Lemma 7 that if the TBA % is finite,

then Q$is isomorphic to Xz , where /z-@, that is, % is isomorphic to Uﬂ , and as-
sertion (¢) is proved.

Assertion (b) follows from (a) and Lemma 2. The required mapping of le+/ on-
to yn is constructed in the following fashion:

@) = min (i,n-1) fori1<isn;: G(n+i)=z.
THEOREM 6. PM4 coincides with the set [7(2), 7(7,),%,].

Proof. We first prove that all formulas of PM4 are deducible from {T(Z),

T(.Dz ), ec,,}.

Let us assume that there exists a formula « in PM4, such that o does not oc-
cur in [7(2), T(-Dz)r“/,] . According to the Completeness Lemma, there exists a com-
pletely bound TBA % such that o« is not true in %, while the formulas 7(Z), 7(_Dz) ,

and «, are true ind. Suppose p,,..., P, are all the variables of «. There exists
a limit J: {/o,,....,p”}-o,.ﬁvsuch that « (7 (p),... Urip,)#/ in%. We take the subalgebra
2, of % generated by the set {(}'{p,),. B U’{pn)}, Evidently, 4, is also completely

bound; by Proposition 4a, &4 is finite. We have from Proposition 4c that g, is
isomorphic to ¥, for given n. By definition of Pm4, all formulas of PM4 are true
in %, . However, U(p),..., 0 (p)€%,, and (U (p,),....U(p,)4/. We have obtained a
contradiction.

It remains for us to prove that the formulas 7(Z),7(7), and «, occur in Pms.
We consider the algebra U, for givenn>/. The algebra £(J,) is isomorphic to the
two-element Boolean algebra LZ if 7=/, and to the three-element PBA L, if n>71.
Evidently, the formula Z = (pog)v{(g>p)is true in Lz and in ;. The formula D,
is true in Z, and 4; by Proposition 1 of [2]. Therefore, 7(Z) and 7(D,) are true

in Z/ﬂ . The formula o, is true in %/, by virtue of Assertion 2, since Qu is iso-

(2
morphic to Y, . Thus, all three formulas are true in all U,, that is, occur in
pMa = A MU, .

n=1

6. PRETABULAR LOGICS AND THEIR EXTENSIONS

FUNDAMENTAL THEOREM. There exist exactly five pretabular modal logics con-
taining §4 :

1) PM 1 with the axioms 7(Z) and £, where
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Z= (/’32)\/(9:’/7);
E=apvo[(o(gvap&~ap)v(O(~vgvap)&~op);

2) PM2with the axioms o, and /[4,), where

<= [p~(0p&~0(0p8~pllva[pe (0pvO(0~28P)),

A2= (“JPV“I‘I/D)&"(‘I“I/D&(‘(zD/D):(z :)g))&,((z:yg)jz)):)z—f;
3) Pm 3 with the axiom
G = 0(p -~ ap)va(p-—+0p);
4) P M4 with the axioms 7(Z), T(Dz), and «,, where

D, = (1p&((g o p ) o 9)) > 9,
«, = DOp—=>00pP;
5) P M 5, which is equivalent to §5, with the axiom
s, =90p —O0p.

Proof. We first note that none of these logics is contained in any of the
other logics. 1In fact, all formulas of S(L5) are true in pmi except for 7'(,42) . G,
T(_Dz), and «,, according to Proposition 1 of [2], the relationship G(S(L;)):Z,s, and
Assertion 1. 1In S(Bs)all formulas of PM2 are true except for 7(Z), <, and ;.
In S () 7(2), T(A,), and <, are not true, but MS(C,) D PM3, 1In !, the formulas £,
«, and «, are not true, but M¥,> PM4. Finally, pms cMf , but f,ofz,oc3, and
o), are not true in Zfz .

Now suppose M is any of PM1-PM5. Then M does not contain the formula
«(n) = V 0 (,DL-'—’,D/.) for any 2. By Lemma 4.5 of [1], M is not tabular. M is

i‘(}<jé/ﬂ-/
contained in some pretabular logic Mo according to Lemma 4.6 of [1], and in ac-
cordance with Theorem 2, Mo is contained in one of the pmi-PM5 . Since no two
PM1-PM5 are comparable, we find thatMc M,cM, i.e., M =Mo , and M is pretabular.

Suppose M, is any pretabular logic. According to Theorem 2, M”QM, whereMis
one of PM1-PMs. Since M is not tabular, we have M= M.

The theorem is proved.
As a corollary, we obtain the following assertion.

TABULAR TEST. There exists an algorithm that allows us to determine whether
any logic [«J is tabular for any formula .

In fact, the logic [«] is tabular if and only if « does not occur in any
of PMI-PM5 and all these logics are finitely axiomatizable and finitely approx-
imable.

THEOREM 7. There exists a P M 1for any consistent logic M which is a natural
extension of 722 such that M= MS (4,) and such that M can be axiomatized by means
of the axioms of P M1with the additional formula «(«) for arbitrary K (2"ek

<2"), where
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< (k) = V (p.«-p.).
1$i<jSKH Pi /Z/)

Proof. We use the Fundamental Theorem and Proposition 1. Suppose M is con-
sistent, and let M o> PMI, M+# PM1. Since PM1 is pretabular, M is tabular; there
exists a nondegenerate finite TBA % such that M=MH. According to Lemma 4.3 of
[l]’M‘ié\IM"ZZ’ where all the ‘Yi are subdirectly nonfactorable and Zﬁz . Then there

exists jeZ such that Z‘;ézﬂ for all iel . By virtue of Proposition 1b, all the :Zvl;
are isomorphically embedded in & . Therefore, M,#‘. 2 MJ?&-” for all ie] and M= ML .
n 0

We find by using Proposition la that 4, is isomorphic to §(Z,) for given , that
0
is,M=MS(L,).

Evidently, the formula «(x) for 2" <x< 2" is true in MS(L). On the other
hand, if (&) for given « (2" «x< 2")is true in the subdirectly nonfactorable
algebra &, we have B<2". 1f M$= pM1, by Proposition 1, % is isomorphic to S(L)
for somej<n, that is, ML 2 MS([,”). Therefore,

[ em1 u{ecuo}] = A MG = NS(L,)

2t . M2 PMA U o (0}
where 2 <« k<2,

The theorem is proved.

THEOREM 8. There exists a.pP M 2for any consistent logic M which is a natur-
al extension of #7>0 such that M= M§{Z,) and M = [ PM2 U {« ()}] for arbitrary « (2™
< k< 2™).

THEOREM 9. There exists a P M8 for any consistent logic M which is a natur-
al extension of #>0, such that M= MS(B) and M = [PMs U {« (] for arbitrary «

(2™ 2 k< 2m2),

THEOREM 10. Suppose a consistent logic M is a natural extension of P M 4.
Then there exists an n>{ such that M= MU, and M=[pMma U |« (K)ﬂ for arbitrary X
(2%« k< 2™).

The proofs.of Theorems 8, 9, and 10 are similar to the proof of Theorem 7.
We must now use in place of Proposition 1, Propositions 2, 3, and 4, respectively.

A similar theorem for PMs5 = §5 was proved in [8].

COROLLARY. A normal modal logic containing §4 is pretabular if and only if
the set of all its natural extensions has a linear ordering of the type w*.

Proof. If the logic Me ! is pretabular, it coincides with one of PMiI-PM5 .
It immediately follows from Theorems 7-10 that the extensions of each of PMI1-PMt
have ordering of type w*. A similar assertion for PM5=§5 was proved in [8].

To prove the converse assertion, we recall that tabular logics have only a
finite number of extensions (Theorem 7 of [1]) and that any nontabular logic is
contained in a pretabular logic (Lemma 4.6 of [1]), so that the set of its exten-

sions contains a subset of type I+u”
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Note Added in Proof. The assertion that there exist exactly five pretabular
modal logics was also published in the note of V. Yu. Meskhi and L. L. Esakia,

"Five 'critical' modal systems," in: Theory of Logical Inference (Summaries of

Reports of the All-Union Symposium, Moscow, 1974), Part 1.
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