
PRETABULAR EXTENSIONS OF LEWIS$# 
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In this article further results related to the lattice ~ of all normal modal 

logics containing Lewis S~ are found. The study of the ~ lattice was begun in 

[i], where it was established that there exists a close relation between M and a 

lattice $ of superintuitionistic logics. So-called tabular logics were investi- 

gated in one of the sections of this article, and the finite approximability of 

pretabular logics was also established. We will use previous results [i, 2] to 

describe all pretabular modal logics which are extensions of S~. It has been 

proved that there are, in all, five such logics, including $6, whose pretabular 

property has been previously established [8]. Pretabular logics will be denoted 

in this article by PMI-PMS. All these logics are finitely axiomatizable, so that 

there exists an effective criterion for the tabular property of modal logics. The 

natural extensions of each of PMI-PM8 form an infinitely decreasing chain. 

Because of the dual automorphism between M and the lattice of manifolds of 

topological Boolean algebras, the results obtained are carried over to this lat- 

tice of manifolds. In particular, there exist precisely five pretabular mani- 

folds of topological Boolean algebras. 

In this work, notation and results from a previous article [I], familiarity 

with which is presupposed, are used. The methods of proof are similar to those 

of [2], in which all pretabular extensions of intuitionistic logic were described. 

I .  DEFINITION OF PMI-PMB LOGICS 

We recall [i] that a logic is tabular if it can be represented as a set of 

formulas true in a finite algebra. A logic is called pretabular if it is tabular 

and if all its natural extensions are tabular. 

It has been previously proved [2] that there exist exactly three pretabular 

superintuitionistic logics, namely, LC , ~2 ' and ~ . A mapping 6 has been con- 

structed ([i], Sec. 3 (7)) from the lattice Z of superintuitionistic logics into 

M. Let us now introduce the notation 

P~a ~(LC), PM2 = ~(~), PM3 - o(~). 
We define two families of finite topological Boolean algebras (TBA). 

For n~l we denote by 
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the algebra, such that <L/~,£,V,-+,~,I> is a finite Boolean algebra with ~ atomic 

formulas a,, ..., ~n" 

We denote by 

S~ 

/ , if ~= 1, 

~, if d=- <~< f, 

0, if 

= < --.- ,  > 

the TBA, such that <V a, ~,v---.-,'~.f>is a finite Boolean algebra with ~ atomic for- 

mulas. 

! , if x-l, 
mx= 0 , if ~I. 

We denote by PM4 the set of formulas that are true in all TBA~ (n={,2 .... ) 

and let PMs be the set of formulas true in all TBAV~ (n=l,2, .). We note that 

PMs coincides with Lewis ${ (cf., for example, [8]). 

We will also obtain an algebraic characterization Of PMI,PM2, and PM3. We 

recall [2] that the superintuitionistic logic LC can be defined as the set of 

formulas of intuitionistic logic true in all pseudo-Boolean algebras (PBA) La 

(a-£.3 .... ), where ~n is a linearly ordered PBA containing a elements. The super- 

intuitionistic logic ~z coincides with the set Of formulas true in all PBA B~ 

(~-0,<2 .... ), where ~o is a two-element :Boolean algebra and ~n+, % ~; ~ %. ~ 
. . . . . . .  ; ' n 

coincides with the set of formulas true in all PBA~ (~-~2,...), where 6 a = ~0 + ~0" 

It was previously proved ([i], Sec. 3) that using any PBA ~it is possible 

to construct a TBA $~)which would be the least TBA containing ~ as a sublattice. 

We find that PMI - d~C) is the set of formulas true in all TBA S~a) (~-g3 .... ), by 

using Theorem 6b and the corollary of Theorem 5 from [i]. Similarly, PM2- ~(~) 

is the set of formulas true in the TBA $ !~a) (a=$<2 .... ), and PMS-~(~) is the set 

of formulas true in all TBA $(~) 6a-$g2,...). 

2. REPRESENTING QUASIORDERED SETS 

In this section we will study the relation between topological Boolean al- 

gebras and quasiordered sets. 

Suppose ~ is a nonempty set, and let R be a quasiordering, i.e., a reflexive 

and transitive ordering on ~. It is known that ~ is a topological space if the 

interiority operator D is defined by the equality 

for X ~. We may then define on the set of all subsets p(~) of the space ~ the 

TBA 

£(Q) = < i ,  v, - -  , u ,  >, 

where ~,V and~ denote set-theoretic intersection, union, and complementation, 

respectively, X--~ Y - ~XV Y, I-~o 

We now note lemmas similar to those from Sec. 2 of [2]. 
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LEMMA i. Suppose ~ is quasiordered by the relation R, and let ~'be an open 

subset of ~. Then there exists a homomorphism ~ from J(~)onto ~(~i) 

The desired homomorphism is given by ~(X)-X0~ I for XE-~ (cf., [3], Chap. 
3.1). 

LEMMA 2. Suppose the mapping ~ of a set ~ with quasiordering ~ onto the 

set ~lquasiordered by the relation R I satisfies the conditions 

(1) 8c ,) R'8(l/), 

Then the algebra ,.~'(Q/} is isomorphically embedded in ~(~I. 

It can be easily verified that ~ (Y)= 8"I(Y) for yc_~lis an isomorphism of 
into £(~/]and~[~) . 

We now correlate to every TBA ~=<~;&.V,-~,~,D ~> its representing set, 

i.e., the space ~Z of all simple filters of the algebra ~ quasiordered by the 

relation 

where ~,~ E ~ The following assertion is well known. 

LEMMA 3. The mapping @: ~-+ ~ (~), determined by the condition ~)-~/~e ~ 

&xe~}, is an isomorphism from the algebra ~ into the algebra ~(~). In particu- 

lar, if ,~ is a finite TBA, ~ is an isomorphism of ~ into J(~) • 

Remark. If ~ is a finite quasiordered set, ~ f(~) is isomorphic to ~. 

The relation between operations over TBA and operations over the represent- 

ing sets is characterized by the next lemmas. 

LEMMA 4. a) Suppose ~ is a TBA, and let ~ be a homomorphism from ~onto the 

TBA ~7" Then ~i is isomorphic to an open subset of ~. 

b) Suppose ~ is a capital TBA,~6 ~, and let ~-{~/~e~ & ~}. Then 

there exists a TBA ~, such that the set ~M~ is isomorphic to ~, and ~I is the 

homomorphism of the TBA~. 

Proof. a) Suppose ~-<~,~,v,-~,~,£],~>, and let ~1=<~,,~,V,-~,~,~ 4>. 

Since ~ and ~ are pseudo-Boolean algebras in ~,V,-~,~, /, the mapping ~ (~O)- 

~-'(~) for ~ ,  constructed in Lermma 4 [2] is a one-to-one correspondence be- 

tween the sets ~, and ~-{ qb'~ ~6 I qbl ~ ~-¢(~)~. 

It is easy to verify that for any ~, ~z £~, : 

(%). 
It remains for us to n'ote that ~lis an open subset of ~Z. In fact, we have 

from ~)?~zanddP,;m/z"(,) fo r  9~.,~zF.~:6. 

i.e., ~:)Z ~--/~-' (~)' QED. 
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b) We define on ~ the relation 

It is easy to verify that ~o is a congruence on ~. We note that 

Now suppose  t h a t  ~ i s  a homomorphism f rom 2g o n t o  ~, ~ ~g/~q,. By a ) o f  Lemma 4 t h e  

mapping ~ : ~g --~ ~& , where ~ @)=~"(~) for q~ e ~,, is an isomorphism between ~, 

and the set 

It remains for us to prove that d~. Suppose ~&~. Then 

The lemma is proved. 

LEMMA 5. Suppose ~=<~,&,v> is a distributive lattice, and let~= <~,&,V> 

be a sublattice of ~. Then any simple filter ~ on ~ can be extended to a sim- 

ple filter ~ one, such that~n~-~ 

Proof. Suppose 99~ is a simple filter on ~. We set ~- ~, x~ and examine 

the set: E ={~/~b is a filter on ~, ~ and ~nqO = ~. 

The set ~ is nonempty, since it contains the filter ~={~I~6Z and(3~e~) 

(~)~. Further, the union of any chain of filters in ~again belongs to~. By 

Zorn's lemma, ~ contains a maximal element ~0" It is easy to verify that ~ is a 

simple filter on~. Since ~, we have~O~=~. 

The lemma is proved. 

LEMMA 6. Suppose ~ and ~ are TBA, 

there exists a mapping @ from ~# onto ~, 

of Lemma 2. 

and let ~ be a subalgebra of ~. Then 

that satisfies conditions (i) and (2) 

Proof. By Lemma 5, the mapping 8(<b)-qbn~, where ~0 e Q~, is a mapping from 

~onto~1 . Evidently, for any~7 ~ e~ ~R~ z implies ~(~)R@(~). 

Now suppose ~(991) ~(qDz) , where ~,~z~. This means that~ O ~tO~(~7) c- 

~gzO~n~), where ~(~,)is the set of all open elements of the algebra ~, i.e., 

~(,~,)={XI~e:,~, and~ -- ~ ~}. Hence, 

n = (*) 

We set ~z=~\~zand consider the set 

={~/*is a filter on $ and (~nG(~))U~qOz~)c_ ~ and ~N ~ = ~}. 

The set ~,is nonempty, since it contains the element ~o = ~xlme~and 

N 

In fact, let us assume thatCP#oqO 2 ~,xe~boo~ z. 

that 

Then ~ and Z can be found such 

n n 
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Hence,~%--~ and ~- o~(z-~), so that O(~-~)e~ . Moreover, ~e~, and 

~c~ = ~I' so thatO(z-*Z)eG(~1 )" Consequently, by (*) we haveo(~-~x) E ~O 2, that 

is,(z--~)e~. But we also havened2 , so that ae~ contradicts~¢~. Thus, 

~0 ~ ~- ~" Evidently, ~o is a filter on ~ and 

Further, the union of any chain of elements in ~ again occurs in~, so that, 

by Zorn's lemma, ~ has a maximal element in ~ It is verified in a standard 
! 2" 

fashion that ~/ is a simple filter, i.e.,~ie ~. 
z 

It follows from the definition of E that~2rn~=~° 2n~t • In fact,~Ozn~ I 

~i. On the other hand, if x~ztn~ we have ,re ~7 and ~O, i.e., XE~. Thus, 

i , i.e. , ~i Rqb~ Thus we have Moreover ' .  , 

The lemma is proved. 

We recall [2] that as the representing set of a pseudo-Boolean algebra ~ is 

understood as the space $~ of simple filters on ~ partially ordered by inclusion. 

The PBA $(~), consisting of all open elements of~, corresponds to any TBA~. The 

relation between ~and $$(~&)is established by the following assertion. 

LEMMA 7. Suppose ~ is a TBA, and let $['7G) be the PBA of all open elements 

of~. Then ~$t~l is isomorphic to the quotient set of ~by means of the equiva- 

lence 
= ~ R ~ O  z and ~R~. 

Proof. Suppose c~e~a$. We set ~(~/~)=C/On$C~). Then, evidently, ~(~) is a sim- 

ple filter on $~). Further, by the definition of the relation R on~, we have 

The following assertions are therefore true. 

By Lemma 5, @ is a mapping of ~ onto ~6~)" 

The len~ma is proved. 

It is possible to construct a TBA ~- $(~)by means of any PBA ~ (cf., [i], 

Sec. 3 (4)). We have the following assertion. 

LEMMA 8. Suppose ~ is a PBA, and let $~)be the TBA corresponding to it. 

Then the set ~$~) is partially ordered by the relation ~ and isomorphic to the 

set ~. 

Proof. The relation ~ is a quasiordering on ~8[~). We will prove that ~ is 

antisymmetric. Suppose ~,~E~f~) and let~ ~. Then there exists an £E~, such 

that ~ .  The TBA $(~) is generated by the set ~[$(L~)), by Lemma 3.2 from [i], 

and by definition of the algebra $ (~. Therefore, ~ can be represented in the 

form 
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where Q,,.: . ,a:,  ~, . . . . .  ~ 6 #(S(~)). We have ( ~ . v ~ ) ~  ~ for given y ¢/~]~n). Then 

tCZ' # ¢ 
is, ~.¢qg/or ~.eCz. Hence, 

t h a t  i s ,  we cannot have s imul taneously  ~, ~ and ~ ~ ,  . Thus, e is  a p a r t i a l  

order on ~$~l$)' and the relation ~-~ defined in Lemma 7 coincides with equality. 

By Lemma 7, $&{$~)) is isomorphic to ~$(~) Therefore, the assertion follows from 

the isomorphism between 0~ and $(~(~)) (of., [i], See. 3 (5)). 

We will use Lemma 8 to describe the representing sets of the TBA S ILa), S[23a) 

and S(C~}(cf. Sec. i) . By Lemma 8, Q~{L~) ' ~5(~) , and ~S(~n) are partially ordered 

and isomorphic toSL, ~, and ~, respectively. Thus, the set ~I~) for ~=2,~ .... 

is a linearly ordered set containing (~-I) elements. The set ~$(~) for ~ = ~/,Z .... 

consists of (a+¢) elements, including a greatest and a least element, the remain- 

ing elements being pairwise incomparable. 

In conclusion, we note that for n>/ the representing set ~U~ of the algebra 

L/~ constructed in Sec. i is isomorphic to Yn' where ~ is the set {4, .... ~} with the 

quasiorder ~ : ~R~ ~--~ s~n-/ or ~=~. 

The algebras ~/= that represent the set ~ are isomorphic to ~n' where X~ is 

the set 14, .... n} with a quasiorder ~ such that (~u~)uRff. 

3. SPECIAL PROPERTIES OF TBA THAT CAN BE DETERMINED FROM 

THEIR REPRESENTING SETS 

We recall that a TBA is called completely bound if it satisfies the condi- 

tion ~zv ~=/ ==~ DX = ! or O~=/. 

The PBA is called completely bound if we have in it xv~-/ ~ m=! or ~-4, 

LEMMA 9. The following conditions are equivalent for any TBA ~: 

(a) ~ is a completely bound TBA; 

(b) G (~) is a completely bound TBA; 

(c) the representing set ~satisfies the condition ~uV~uR~. 

Proof. Equivalence between (a) and (b) is evident. 

Suppose we have (b). Then there exists in ~G(~) a least element since 

~0= I ¢} is a simple filter in G(~). By Lemma 7, there exists a homomorphism 

from ~ onto SG($) such that for ~, ~ ~ ~we have 

Let us take any ~eQ~ such that ~(~]=~. Then for any c~ 6 ~ we have 

~R~, i.e., condition (c). 

On the other hand, if (c), by Lemma 7, SG[~)has a least element~. Since 
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~0is contained in any simple filter in ~), we have ~={4~, that is, ~(~) is 

completely bound. Thus, conditions (b) and (c) are equivalent, and the lemma is 

prove d. 

ASSERTION i. For any TBA ~rthe following conditions are equivalent: 

a) D(~O~)v O(Z.-~OZ) = /for allx~; 

b) the representing set ~S of ~ satisfies the condition 

(~u~a/)(~R~ and ERUl  ~ L/ =U" or ~-U/). 

Proof. We assume that (b) does not hold. Then there exist simple filters 

, ~ , and ~ in2~such that'1R~ ,~R~, and ~\~/, ~E~ z \~ forgiven 

~and~ in~. Suppose that z-~. We have %e~ ,~,, andz~. We obtain 

~ and ~ from conditions ~ = ~~ze e and ~ ] ~ .  Therefore, (z--Oz)~ qb 
and O(Z--oZ)~C. Consequently, O[z--OS)~ q)~ , and o (z-- ~)~, that is, o(%**O~) 

Conversely, suppose condition (b). We take an arbitrary subset X ~M, where 

aa ~. We assume that //~ o(X ~-~ OX). Then there exists a [6~&, such that NR~and 

lf~(X--~]X) Hence, ~eX and ~r~oX . There exists a u/e~ Z such that ~Pa/and 

u/~X, consequently,ar~. Condition (b) implies ~-~ and a eX. We take an arbi- 

trary ~ such that ~. Then we have from ~e <>X that there exists a ~/~such 

that ~'~' and ~/~X We obtain ~ or J-~ from the condition on ~t_u/in both 

cases~%X. That is,Je(X--<>X). Hence,~o(X~--<>X). Thus,Ue~(X'~X) 

v0(X*-*¢X) for any ~6 and X~-~ " Since ~ is isomorphically embedded in the 

TBA $r(@ M) of all subsets of OM' we have O(~c--¢I)vo(x~om)-4 for alla¢~. 

The assertion is proved. 

ASSERTION 2. For any TBA ~ the following conditions are equivalent: 

(a) OQZ~<>OZ for all /e~Z~; 

(b) the representative set ~M satisfies the condition 

VU3~ ~u~ andFur (~ar -~ • - at)). 

Proof. Suppose the TBA M satisfies condition (a) and let ~ be a simple 

filter in ~. Then ~-~ ~ (~) is a filter on the PBA &~M). It can be expanded 

to a maximal filter ~ in the PBA $ (~). We note that ~ satisfies the condition 

(cf. [3], I, 13.10) 

or, equivalently, 

( V Z ~ ) ( O % E ~  or g}~f3S6~, ). (*) 

By Le ma 5 ,  t h e r e  e x i s t s  a s i m p l e  f i l t e r  on s u c h  t h a t  @ n G = Now 

suppose q~ i s  an a r b i t r a r y  s'imple f i l t e r  on ~ such t h a t  ~OIR~. Then 

T h e r e f o r e ,  ~b n 6: ( ~ ) =  F1, 

Let us assume that~. Then ze~ and~xe~for some X ~ .  Hence, 
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~¢~and ~¢~1, since ~-~ q0o ~ . That is, by condition (*), ~,-,~We~ and 
~ N ~ .  However, by condition (a),a~~u~N~-DO~&~O~=0 which con- 

tradicts ~e SF(~)" That is,~-~ , i.e., condition (b). 

Conversely, suppose (b) and let% ~. We assume that ~eUO~. Let us take 

a ~ ,  such that ~ andF~ (~'~f ~£-~7) . Then £~<>X, i.e., there exists a 

~such that £~ and~feX . We find ~=~ and~eX. From the properties of ~ it 

follows that ~e~ and~<>~X. Thus,E<>~ ~ O~X . By Lemma 3 we haveU<>~ 

O~ for~e~. The assertion is proved. 

4. CLASSIFICATION OF QUASIORDERED SETS AND PMI-PM5 LOGICS 

Suppose the set ~ is quasiordered by the relation ~. We call the quotient 

set ~/-R with respect to the equivalence a =~ ~ UR~ the skeleton~ (~)of the 

set~, and let JRu be partially ordered by the relation [~] ~ E~] ~ U£~ , where 

[~] ={~/U-~g}is the residue class. The residue class ~/] is called exterior if 

V~(uR~ =~F~PU), i.e., [U] is a maximal element in$(~) . A residue class is cal- 

led interior if it is not exterior. We use the following notation: 

/~t(~)- ~up{[~]/~]is an exterior class in ~}, 

/d z (~) =~/p{~]/~is an interior class in ~}, 

(Here [~] is the cardinality of [~].) We denote by u~for v(U) the number of 

classes in ~f] such that [U] ~ IF]. We set 

v =  .up { v (u) l 

For example, if ~ is partially ordered, /y~ (~)-I and /iz(Q}~l. If a partially 
ordered set ~ has a least element, then 9(~7)= ~. 

For the set X~ and ~n (where ~/) constructed at the end of Sec. 2, we have 

( X . )  = , (Xa) - O, 

F,(Y, )-I ,  (V,)--- 

, ~ i f  ~ > t .  

We recall that if ~ is a TBA, ~denotes the set of all formulas for modal 

logic true in ~. 

THEOREM i. Suppose I~6~ Z~Z is a family of TBA, and let there exist a natur- 

al number K such that V~ )~,K ,7~(~)~.K, and~z(~)~K for every ~Z. Then 

the logic M--A M~ is tabular. 
• ~eI 

Proof~ Suppose [~} i¢ J is a class of all subdirectly nonfactorable TBA 

which are homomorphisms of algebras of the family {~g} geZ" Then by the Birkhoff 

theorem [4] every algebra ~g (gel) can be represented as a subdirect product of 

given algebra ~/. Therefore, M -~ M~j . 

By Lemma 4a, V(~.) ~K , //I(~)~K, and/~(~)~ K for every ~~f. Moreover, 

by Lemma 9, for every jet the set ~. is such tha~ 
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3u V~a Re, 

since any subdirect nonfactorable TBA is completely bound [4]. Therefore, Q:~j 

contains less than ~(~. }, ma.~{/j1(~),/~ ~ (~i)l -.~ K2elements. Consequently, .~j, is 
K z 

finite, and its cardinality is less than 2 Therefore, there exists in the 

family {~Jj~jonly a finite number of pairwise nonfactorable TBA and M =/~, 

where ~ is the direct product of all such ~j. 

The theorem is proved. 

We now need the following simple lemma from the theory of Boolean algebras. 

LEMMA i0. Suppose ~ is a Boolean algebra, and let ~ be a set of simple 

filters on 2~ that contains at least ~ elements. Then ~ contains a finite Boolean 

algebra with ~ atomic formulas as its subalgebras. 

LEMMA ii. Suppose ~ is a TBA, and let/Y/ ~) >~. Then all formulas in M~ 

are true in the TBA U n. 

Proof. Suppose ~o e ~ is such that the residue class [qO0] is exterior and 

~ By Le=~na 4b there exists a TBA ~ such that ~I is isomorphic to [qO~ 

and ~ is a homomorphism of the TBA~. The set ~ will then satisfy (?~ c~ z) 

Rq) z Therefore, for every ~e~ we have 

Since .S.,, conta ins ,  by lO, a f i n i t e  Boolean subalgebra w i th  

/g atomic formulas. By definition of the operation 1:1 on ~ we have that the TBA 

I/~ is isomorphic to the subalgebra ~. Therefore M~ c M~ ~ MP~. 

The lemma is proved. 

LEMMA 12. Suppose ~ is a finite TBA, and let ~z(~) >~ ~ > 0. Then all formulas 

in M~ are ~ true in the TBA [7~+~ 

Proof. By virtue of Lemma 3, ~is isomorphic to ~(~). We will find a 

q9 e~ such that ~ is an exterior class and [q°-~ ~/z. Suppose[~] = {~ ..... 99 m}, 

m>~. We select ~7 ~= ~ 99e ~ I ~ ~ ~O~. By Lemma I, ff[~) is a homomorphism of the 

algebra ~#. Let us now construct a mapping @ from ~onto Y~+~ in the following 

manner: ~(~)=/..; for g-I ..... ~; ~(~.)-~ for ~ r n  ; ~(cp) = ~+/ifg~[~b]. 

It is easy to verify that ~ satisfies conditions (i) and (2) of Lemma 2, so 

that ~+~ _~ ~( ~+~} is isomorphically embedded in .~[~). Consequently, M~ 

/~fn+~ ' QED. 

THEOREM 2. Suppose M is a modal logic which is not tabular. Then f4 is con- 

tained in at least one of PMI-PM5. 

Proof. Suppose M is not tabular. We will consider the superintuitionistic 

logic~(~4]-(of. [i], Sec. 3 (6)). 

Two cases are possible. 

i. p(M) is not tabular. Then according to the fundamental theorem [2],7o(M) 
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is contained in one of LC, ~z, and ~. We now use relations from [i], Sec. 3. 

(PT) ,vl ~ ~2 (M), 

(P3) L ~ L ~  ~ ~ (L , )  ~(L z). 

We find M~6 (LC) :PM/, orM=~(~z)=PM2 , or H C__d(~ 3) = PM~. 

2. p(M)is tabular. According to Lemma 4.9 [i] M is finitely approximable, 

i.e., M=AzMYz ~, where ~ are finite TBA. We may assume (cf. [I], Lemma 4.3) 

that all ,~ are pairwise nonfactorable and, consequently, completely bound. By 

virtue of Lemma 3.5 and Theorem 6a from [i], 

p(M) = zfI ~ ( ~ ) ~IL ~ (~),where ~G (J~) 

is the superintuitionistic logic consisting of all formulas true in the PBA G(~). 

Since 2(M) is tabular, there exists a K~>Zsuch that the formula A(K) ~V 
I,~i;</,~ K 

(Pi ~Pj)occurs in ~(M) (of. for example, [7]), that is, is true in all#(~). 

Since, according to Lemma 9, the ~ (~).are completely bound, ~(~i~<K for all 

~eI. That is, (~) < K By virtue of Lemma 7 we find that ) ~ ~G(~i) < K. 

Let us recall that /~ is not tabular and now use Theorem I. We conclude that 

find an L~/ such that ~z(~)~N and, by Lamina Ii, ~6 c--M~F n Therefore, 

M -  A MZ,  A M % -  p 5. 
ze.2 

If a:~ 

then by Lemma 12 
/,EZ 

M:A M~ cAM~,,, =A MG:pM4. 
The theorem is proved. 

Remark. Whenever p(M) is not tubular we may use Theorems 2 and 3 from [2] 

and Lemma 7 in order to determine which of ;PMI-PMa contain a given logic M. 

5.  A X I O M A T I Z A T I O N  

In this section, we will prove that all the PMI-PM4 logics are finitely axio- 

matizable. The PMS logic coincides with 85 and, consequently, is also finitely 

axiomatizable. 

We recall [I] that if P is a set of formulas, [4 denotes the set of formulas 

derivable from Fand the axioms of S#by means of rules of substitution, modus 

ponens, and ~-~-. 

We have as a direct corollary from Lemma 4.2 of [I] the following assertion. 

COMPLETENESS LEMMA. Suppose • is a set of formulas, and let og be a formula. 

Then ~e[/"]if and only if otis true in any completely bound TBA in which all for- 

mulas of /" are true. If [/"] is finitely approximable, ~eEF] if and only if ~ is 

true in any completely bound finite TBA in which all formulas of T are true. 
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We denote by T as was done in [i], Sec. 2, the translation of the formulas 

of intuitionistic logic into formulas of modal logic. 

PROPOSITION i. Suppose {~ezis a family of all finite completely bound 

nondegenerate TBA in which the formulas ~ and T(Z) are true, where 

Then 
a) for every ~¢_7 an ~>2 can be found such that ~L is isomorphic to ~(Ln) , 

where L~ is a linearly ordered ~-element PBA; 

b) if ~ ~., ~ is isomorphically embedded in ~. 

Proof. a) Suppose ~ is a finite completely bound nondegenerate TBA. Then 

~is nonempty and, by virtue of Lemma 9, contains an element U 0 such that uoRir 
for any gE~. It is easy to verify that if ~ F(Z), the set ~@ is such that 

Rv" v R u ) .  

Further, ~ is isomorphic to ~(0~) according to Lemma 3. If ~ is true in ~, 

by Theorem i of [6], ~$ is partially ordered. Therefore, ~ is a linear order- 

ing on ~$. Let us assume that ~ contains ~ elements. Then ~ is isomorphic to 

a representing partially ordered set $L~+I of the linearly ordered PBA L~+i" We 

note that by virtue of Lemma 8 the representing set ~S~n+~] of the TBA $ (Ln+y)is 

also isomorphic to SLn+1 " Therefore, ~ and ~$ ~'Ln~y)are isomorphic, that is, by 

Lemma 3, ~ is isomorphic to$(Ln+~). 

b) In view of a), it is sufficient to prove that for any a)2 the algebra S(L~) 

is isomorphically embedded in ~{Ln÷ j) . However, since ~(~) and ~S(LnH) are 

linearly ordered and contain (n-i) and n elements, respectively, it is easy to con- 

struct a mapping ~ from ~[Ln+~) onto' ~S(L~) that satisfies conditions (i) and (2) 

of Lemma 2. Then S(Ln) which is isomorphic to ~{~S(~n)) is embedded in $(Ln+~),QED. 

THEOREM 3. P /41 coincides with the set [E, TIZ)]. 

Proof. We have PMI= ~ M$ (L~) (Sec. i) . 
~z 

Since the formula ~.= (p=~.)v(9= P) is true in all PBA Ln, the formula [(~) - 

B(Op--~D~)vl]IZI~--'-flp) is true in all TBA$ (Ln), by virtue of relation (8) from [i], 

Sec. 3. Therefore, T (~)• P~l Since the sets ~S(~,) are finite and linearly 

ordered, ~, according to Theorem i of Ref. [6], is true in~{~$(L=)) ~ $ (L~): There- 

fore, ;[E, T (~)] ~_ PMI. 

We now note that the [E,T(Z~ logic is an extension of$~.5- [T(~)]. It was 

Previously proved [5] that all extensions of ~.$ are finitely approximable. Sup- 

pose now the formula ~ does not occur in[E, T(~)]. Then using the Completeness 

Lemma, a finite completely bound TBA ~ can be found such that ~ and T(~) are 

true in ~r and such that oc is not true in ~. In accordance with Proposition la, 
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otis contradicted in $(/;n)for given n. Consequently, it does not occur in PMI. 

The theorem is proved. 

THEOREM 4. P M 2 coincides with the set [T(Az),~z] , where 

~c z - u ( p ~- (0 ~ ~ ~" 0 (o p ~ ~,?))) v ,-i (p ~ ( u?vo (o~p~?)~. 

Proof. We will first prove that P/~2 ~-C--[T(/{2),~'Z]. For this purpose it is 

sufficient to prove that all formulas in PM2 are true in any completely bound TBA 

in which T(Aa) and =¢i are true. We recall (cf. [I], No. 3 (7)), that PM2 = 6(d~9. ) - 

Suppose the TBA ~ is completely bound and that the formula oc z is true in it. 

Then the algebra ~ is generated by the set ~--&:d~). In fact, suppose x¢~. Then 

since ~ is completely bound, we have D(X*-~(OX~:,,O(O~,~)))=/ or ~ {'X"-~ (FI~CVO(O 

~)~ . In the first case, x =~&~(O~&~)and n~,~(O~&~)~(~). 

In the second case, ~ =~v~D~ (O~&x) and ~, ~(Q~&z) e &~). By Lemma 

3.4 from [i], the TBA ~ and $(£~)are isomorphic. 

Now suppose the formula [(~2)is true in~. Then A 2 is true in~=~(~)so 

that all the formulas of the pretabular superintuitionistic logic ~z are true in 

/~(cf. [2]) and therefore, in $(~)also, that is, all formulas of o(~z) -- PM2 are 
true in ~. 

It therefore follows that PM2 =- [T(~z),~z] • 

We now prove that the formulas T(A z) and ~z belong to PM2. It is sufficient 

to prove that these formulas are true in all algebras ~), since PM~ ~ ~ MS (~n) 

(cf. See. i). Since ~z is true in all ~n' r(~z) is true in all $ (B~)(cf. [I], 

See. 3 (8)). Let us prove that ~z "is true in any TBA ~ such that the represent- 

ing set ~is partially ordered, has a least element 0, and a greatest element~, 

the remaining elements being pairwise noncomparable. According to Lemma 8, all 

~(~=) satisfy these conditions. Thus, suppose ~ satisfies these conditions, and 

let X be an arbitrary subset of ~. We consider two cases. 

l. 

If X=~, OX---¢, andOX&'vO('O.X~,'vX) =X. 

I f  X ~ a n d  0¢X, OX=Xu{O}, ¢X,~'X-10]. and O(OX~,"- 'X)={O} , OXN, "O 

(OX ~ . ~ X )  = x .  

If0eX, we have OX-X, QX&~X-#, andQX~O(OX&~X) - X~ ~ #-X. 

Therefore,~(X~OX~c~O(<>K~X))= / , and e~ zis true forp-~ . 

2. ~oeX. 

Then ~ ~ ~X ; we may substitute ~-X for X in the equality obtained in case i. 

We will have 

u(,,,X--; O~,Xa,,,,O(o,,,x&x))-:, 
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i.e., D(X ~-~ rIXvQ(O,,JX&X))=I, and ~z is true forp=~. We have found that 

~2is true in the TBA ~(~), that is, in~. Consequently, ~z is true in all $[B~) , 

that is, it occurs in PM~, 

The theorem is proved. 

PROPOSITION 2. Suppose {J~l~f is a family of all finite completely bound 

nondegenerate TBA in which the formulas T(As)and ~z are true. Then 

(a) for any ~ef an ~ ~0 can be found such that the algebra ~ is isomorphic 

to$(J~A), where ~0 is a two-element PBA and 

g,, - Bo ÷B7 
(b) if ~'~, ~ is isomorphically embedded in ~.. 

Proof. Suppose a nondegenerate TBA ~ is finite and completely bound, and 

let [(A z) and ~ be true in it. We will establish, as in the first part of the 

proof of Theorem 2, that ~ is isomorphic to S[~), where £~=G C~), and that ~z is 

true in $(.~}. The formula ~ is the conjunction of the formulas Ipv~Ip and 

The set ~G[~) is nonempty and, by Propositions i and 2 of [2], satisfies the con- 

dition 

( ~I gz)[~ (9"~ ~and 9:"~ U z )=> -~Uf ~ ~! ~ ~fandU z ~ Uf~, 

Since ~ ~,,,~.) is completely bound, ~6/,~; contains a least element 0 . Then SG[~) 

also contains, under these conditions, a greatest element ~, all the remaining 

elements being pairwise noncomparable. The set SG~ is finite, so that the TBA 

is finite. Suppose S$ (~) contains ~ elements. Then the PBA ~ (~) is isomorphic 

to ~o for ~-~ and isomorphic to 4+ 2~;-~+ 4for u>/. Assertion (a) is proved. 

Assertion (b) follows from (a), since, according to Lemma 8, ~$~) is iso- 

morphic to $£ , and it is easy to construct a mapping from ~#~ onto ~B, that 

satisfies conditions (i) and (2) of Lemma 2. 

The proposition is proved. 

THEOREM 5. P M a coincides with the set [~s], where 

% - s(p v 
Proof. We will first prove that all formulas of PM~ are deducible from ~, 

using the Completeness Lemma. Suppose the TBA ~ is completely bound, and let 

be true in~. Then ~is generated by the set~= $(~) . In fact, let us take 

the element ~ from~. Then ~f~--~)vm~z--O~}-/ in J#. Since J$ is completely 

bound, n(~---D~)-/ or ~(~g~O~)=/. In the first case, ~- D~e~), while in 

the second case,~-~~~~. By Lemma 3.4 of [i], the TBA ~is isomorphic to 

Moreover, by virtue of Assertion i, ~ satisfies the condition that ~R~and 

28 



£R~r ----# ~-~ v ~-~r. Therefore, the length of the R chains is less than 2, and 

Q~ is partially ordered. By Lemma 8, SG(@) is isomorphic to~. According to 

Proposition I of [2], the formula 

is true in ~=G(.~} so that all formulas of the pretabular superintuitionistic logic 
~5 are true in ~ (cf. [2]). Let us take an arbitrary formula =c of PM3 - 6(~). 

By definition of ~(~8)we find that ~ is true in ~(£~), that is, in ~. Consequently, 

PM8 ~ [~] according to the Completeness Lemma. 

Let us prove that ~se PM3. We have PM3 = ~ /FS (C R } . By Ler~na 8, the represent- 
R-O 

ing set ~S(Cn ) is isomorphic to ~C~' that is, it satisfies the condition 

u~and~Rar ==> u-K v ~r-uf. 

By Assertion 1,8(~)is true in ~j • 

The theorem is proved. 

PROPOSITION 3. Suppose I~b]~ef is a family of all finite completely bound 

nondegenerate TBA in which =¢~ is true. Then 

(a) for any ~elan~Ocan be found such that ~ is isomorphic toS{Oa), 

whereC~ -- ~; +~o; 

(b) if ~ ,  .~g is isomorphically embedded in ~. 

Proof. Suppose a finite nondegenerate TBA ~ is completely bound and that ~5 

is true in it. It was noted in the first part of the proof of Theorem 5 that .~ 

is isomorphic to ~(LZ), where ~-~}, and that the length of chains in the set 

$6{~) is less than two. Moreover, $&(~) has a least element and is finite. There- 

fore, the PBA &~)is isomorphic to 2~;-'+~ o - -  En-, ' where ~ is the number of ele- 

ments in SG(~)" Assertion (a) is proved. 

By Lemma 8, ~$(£=) is isomorphic to 2~ . It is easy to construct a mapping 

from SE,+, into $C,' that satisfies conditions (i) and (2) of Lemma 2. Therefore, 

assertion (b) follows from (a). The proposition is proved. 

PROPOSITION 4. Suppose {~}ge2 is a family of all completely bound nonde- 

generate TBA in which the formulas T(Z} , r ~2Pz) , and ~4 are true, where 

Z - (pm~)v{~mp), 

Then for any ~,ie~r (a) ~ is locally finite; (b) if ~ and ~ are finite and 

~b ~; ~-, ~b is isomorphically embedded in ~; (c) if ~b is finite, ~b is iso- 

morphic to ~= for some ~. 

Proof. Suppose the nondegenerate TBA ~ris completely bound and that F(Z) 

and T(Y~ 2) are true in it. Then the formulas Z and D 2 are true in the PBA$(~) . 

Since $(~) is completely bound, it is linearly ordered. The representing set 

SG(,~) is also linearly ordered. By virtue of Proposition I of [2], the length of 
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chains in qu6{.~ ) is less than 2. Therefore, G(~) is isomorphic to the linearly 

ordered PBA L2- 4 or to L~- {O, a1,~ }. 

We therefore find, in particular, the following assertion. Suppose A is any 

subset of ~, and let ~ be a subalgebra of ~ generated by m. Then ~ is contained 

in the set ~i obtained by the closure 4 UG(~) relative to the Boolean operations. 

Therefore, if m is finite, then ~ is also finite, and assertion (a) is proved. 

We now assume that the formula ~ is also true in ~. Then, by virtue of As- 

sertion 2, the set ~ satisfies the condition 

VU ~-vzr ' (uRtrand Flzr {ER/zr ..~ ~r-/.,zr)). 

It follows from the conditions of ~&(~) and Lemma 7 that if the TBA ~ is finite, 

then ~is isomorphic to ~, where ~-~, that is, .~ is isomorphic to Ua, and as- 

sertion (c) is proved. 

Assertion (b) follows from (a) and Lemma 2. The required mapping of Ya+1 on- 

to ~ is constructed in the following fashion: 

~{~) - m~ (~,n-~) for i ~  ; ~(/~+I)=I~. 

THEOREM 6. PM4 coincides with the set IT(Z), T(~z),~]. 

Proof. We first prove that all formulas of PM4 are deducible from { T(Z), 

Let us assume that there exists a formula ~ in PM4, such that ~ does not oc- 

cur in [T(Z), T(Dz), ~4]. According to the Completeness Lemma, there exists a com- 

pletely bound TBA ~ such that ~ is not true in ~, while the formulas 7"~Z), 7"( 4 ) , 
and ~ are true in~. Suppose p~,..., p~ are all the variables of ~. There exists 

a limit ~:I~, .... p~}-~such that ~(~f(p,),...,v(pa))~ in~. We take the subalgebra 

~, of .~ generated by the set {~/p~),..., ~{p,)}. Evidently, ~ is also completely 

bound; by Proposition 4a, ~ is finite. We have from Proposition 4c that ~ is 

isomorphic to Z/a for given ~. By definition of PM4, all formulas of PM4 are true 

in ~ . However, ~-(p~) .... , Lf(pa)e.~, and ~(6r(p,), .... ~I[/~))~./. We have obtained a 
contradiction. 

It remains for us to prove that the formulas T(Z),T(~), and ~ occur in PM4. 

We consider the algebra ~/~ for given ~ ~>{. The algebra $~Z/n) is isomorphic to the 

two-element Boolean algebra L z if ~z=/, and to the three-element PBA L~ if a>i. 

Evidently, the formula Z= (p=9)v (~mp)is true in L z and in Lj. The formula D~ 

is true in L z and ~ by Proposition i of [2]. Therefore, T(Z) and T(~) are true 

in Z/~ • The formula oc# is true in Z/= by virtue of Assertion 2, since ~U~ is iso- 

morphic to Y~ . Thus, all three formulas are true in all U~, that is, occur in 

PM4 - A ~U~ • 
n=i 

6. PRETABULAR LOGICS AND THEIR EXTENSIONS 

FUNDAMENTAL THEOREM. There exist exactly five pretabular modal logics con- 

taining 3# : 

I) P M ; with the axioms T(Z# and E, where 
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z=- (p=,¢) v 

2) P M 2with the axioms oc2 and T(Az), where 

3) e M ,q with the axiom 

% = (p --.- r p) v (p -.--.- 
i 

4.) P ~ 4 with the axioms Ti'Z).T(~), and ~, where 

5) P M 5, which is equivalent to .S,~. with the axiom 

~s=Op --~¢p.  
Proof. We first note that none of these logics is contained in any of the 

other logics. In fact, all formulas of S(L s) are true in PMI except for T(~ 2) , w~, 

T(Dz), and a s, according to Proposition I of [2], the relationship ~(S(L~)~=Ls, and 

Assertion i. In S(B$)all formulas of PM2 are true except for T(F.), ~, and ~s. 

In ~(~z) T(~), 7-(A~), and ~ are not true, but MB{C 2) ~ P~. In U a the formulas ~, 

~,~s' and ~5 are not true, but MU~m PM4. Finally, pMscM~ , but ~,=~2,=~, and 

~ are not true in fJ~. 

Now suppose M is any of PMI-PM5 . Then M does not contain the formula 

~(~) ~ V El (pz~-~) for any ~. By Lemma 4.5 of [i], M is not tabular. M is 

contained in some pretabular logic /~o according to Lemma 4.6 of [i], and in ac- 

cordance with Theorem 2, M 0 is contained in one of the PMI-PMB . Since no two 

PMI-PM5 are comparable, we find thatM_cf~0~M, i.e., M=f~0 ' and M is pretab-uiar.-- 

suppose /~o is any pretabular logic. According to Theorem 2, MoGM, where/dis 

one of PMI-PMS. Since M is not tabular, we have M~- ~. 

The theorem is proved. 

As a corollary, we obtain the following assertion. 

TABULAR TEST. There exists an algorithm that allows us to determine whether 

any logic [~3 is tabular for any formula ~. 

In fact, the logic [m] is tabular if and only if ~ does not occur in any 

of PMI-PM~ and all these logics are finitely axiomatizable and finitely approx- 

imab le. 

THEOREM 7. There exists a P M ifor any consistent logic ~ which is a natural 

extension of n ~2 such that /~= M 3  (Z,~) and such that /~ can be axiomatized by means 

of the axioms of P M I with the additional formula ~fK) for arbitrary K (2n-~K 

<2~), where 
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(K) ~ V (pz ) /~L<j~x+~ ~-'P~" " 

Proof. We use the Fundamental Theorem and Proposition i. Suppose M is con- 

sistent, and let M D PMI, M4 PMI. Since PMI is pretabular, M is tabular; there 

exists a nondegenerate finite TBA ~ such that M-M J6. According to Lemma 4.3 of 

[I],M~A/M~, where all the ~ are subdirectly nonfactorable and~. Then there 

exists ~¢I such that ~ for all ~el . By virtue of Proposition ib, all the ~i 

are isomorphically embedded in ~ . Therefore, M~. ~-- M~o for all ~el and M= M~o - 

We find by using Proposition la that ~0 is isomorphic to S(L a) for given ~, that 

is, ~- MS[~.). 

Evidently, the formula ~(K) for ~-~K<2 n is true in/~$(L~). On the other 

hand, if ~[K) for given ~ (2 ~K< ) is true in the subdirectly nonfactorable 

algebra.Z ~, we have ~2". If ~-= PMI, by Proposition i, ~r is isomorphic to S(L i) 

for some~n, that is, M~ ~ ~4$[La)- Therefore, 

n - t  /I 
where 2 ~ K 4 2  

The theorem is proved. 

THEOREM 8. There exists a P M 2for any consistent logic M which is a natur- 

al extension of n~>O such that M-~ A4~YB~) and#4- [PM2 u {~(K)3] for arbitrary K (Z ~I 

,~< Z "~'" ).  

THEOREM 9. There exists a P MS for any consistent logic M which is a natur- 

al extension of n>O, such that M-~$(B n) and M - [PM8 u ~(K)~for arbitrary K 

~2 "+' ~ K < 2 n+z ). 

THEOREM i0. Suppose a consistent logic M is a natural extension of P M 4. 

Then there exists an ~ ~{ such that M- ~4U~ and/@-[PM4 U [~ [K)}] for arbitrary K 
(2 ,z~ ,c < Z"+9. 

The proofs of Theorems 8, 9, and i0 are similar to the proof of Theorem 7. 

We must now use in place of Proposition I, Propositions 2, 3, and 4, respectively. 

A similar theorem for PMs- 35 was proved in [8]. 

COROLLARY. A normal modal logic containing S# is pretabular if and only if 

the set of all its natural extensions has a linear ordering of the type--z@*. 

Proof. If the logic Ne~ is pretabular, it coincides with one of PMI-PMS . 

It immediately follows from Theorems 7-10 that the extensions of each of PMI-PM4 

have ordering of type ~. A similar assertion for PMS-~S was proved in [8]. 

To prove the converse assertion, we recall that tabular logics have only a 

finite number of extensions (Theorem 7 of [i]) and that any nontabular logic is 

contained in a pretabular logic (Lemma 4.6 of [i]), so that the set of its exten- 

sions contains a subset of type 4+~* 
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Note Added in Proof. The assertion that there exist exactly five pretabular 

modal logics was alSo published in the note of V. Yu. Meskhi and L. L. Esakia, 

"Five 'critical' modal systems," in: Theory of Logical Inference (Summaries of 

Reports of the All-Union Symposium, Moscow, 1974), Part i. 
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