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ON THE SELECTION OF REGRESSION VARIABLES" 

AN HO~GZ~r~ ( ~ )  and Gu LA~ (~ ~) 

(l~ti~te o/A~o,~c~ Mathematics, Ar~&~a ~ak~a) 

A b s t r a c t  

The methods go minimize AIC o~ BIG criterion function for  selection of regression variable~ 
a~e considered. The main calculations of some of these methods are completed economically and 
recursively. The methods are shown to be of strong consistency or overconsistency to the true model. 

w 1. Introduction 

I n  regression problem one may consider the dependent  variables ~/(~) at t ime 
as a l inear  func t ion  of P possible independent  variables zl(~), ~ ( ~ ) ,  ---, ~p(~). So 
the model  can be wr i t t en  as 

~/(O,=~:[zz(~;)+~l~.(~)+-.o+~p~e(~)+~(~),  ~.=1, 2, --., T, (1 .1)  

where  s ( t )  is i.i.d, series with zero mean and var iance r ~. F r o m  (1.1)  we have 
the fol lowing model 

Y = X=+ e, (i. ~) 
where 

~(1) 1 

�9 1(2) ~.(2) --. 
X = -  

~(T) ~.(T)... 

~ 8 ) 

~ 8 ('T) 

�9 ~(I) 1 

Zp~T)J 
Here  z, is ~%h co lumn vector  of matr ix  X .  I f  the t rue  "model is such tha~ Io~-0 for  
~=~1, ~ ,  "", ~ bu t  o~=0 for  o ther  ~'s, then,  $o fit a regression model  means ~o choose 
regression variables f rom all  the possible variables  Zl(~), z~(f), .-., rap(f) i n  model  
(1 .1) ,  that  is, %o estimate ~ and gl, ~ ,  "", ~p based on  the observat ions  of Y and X ,  
and to estimate the  regression coefficients o~,, o~,, .-., ~,,. 

I f  ~1, $~, .... , St are given,  then  ( 1 . 1 ) c a n  be replaced by  

"a(0-,~,,| ~ I ,  2, ...T. ( i ,s)  
So we can w r i ~  it as 
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r =  x (I,).(I,) + ~, (1.4) 
where I~-~ {Q, ~, .-., ~} is the index set which corresponds r the variables in  
(1.3), and 

[~,,.(:t) ,,,,,Ct) ... ,~,/:t) ] 

x ( , , ) = t ' , : ( ' )  ",.(') ... -,.(.~>tffi(,,, 
�9 ,:(~') ,,:(T) ... ,,.;T)J 

a(I,) = (~,,,, ,,.,,, .--, o,,.)'. 
Suppose X ' ( / p ) X ( I ) )  is of full rank, then the least-squares esiimale of a ( I , )  is 
given by 

~, (I,) - { x '  (_~,) x (xO }-~x' (z,) r .  (I. 5) 
The residual sum of squares in  fitting model (1.4) by least-square is equal *o 

(I , )  =- { r -  X (.t,),~ (I ,)  y { r  - X (I,),~ (I ,)  

= IIr a ~ - r ' x  (I , )  { x '  (~,) x ( i , )  } - ~ x '  (G)  r (1 .6)  
where (and as well as in  what follows) IIYll ~ is 01o square norm Of vector Y. 

I n  fact we do not know the values of ~o, ~,  ~,  .-., ~), and we just want to 
esfdmar them. When we use index set dj-={j~, j~, ..., ju} instead 0 f / p  in(1.4) ,  
(1.5) and (1.6),we get the values ~(d~) and ~(3"~). The total number  of set J~ fox" 
k = l ,  2, .-., P and I ~ j l < j 2 < j s < ' " < j ~ P  is equal to 

C0e+G~+.-. +O~=2P- : t .  (1.7) 

Mos* of methods for selection of regression variables are concerned with the values 
(J~). Examples of such me,hods are given by the minimum FPE or AIC method 

(see [1], [2]), by the min imum BIC method (see [7]), by *he Up method (see [6]) 
and some other me*hods (see [5], [9]). 

When  we use XIC (or BIC) me*hod, we have to calculale *he whole values of 
Akaike Informafdon Cri*erion function, i.e. 

AIO(J~).=log S(J~)+2kT  -~, k---0, 1, ..., P; I < j x < j 2 < . . . < j , < P ,  (1.8) 

where T is the number  of sample size, Jo-=~ (empty set) and hlC(0)-- loglY~ ~, 
and we have to find out the minimum value of AIC(J~), say AIC(J ) ,  and then 
use d to estimaie I , .  For  BIC method, ins*cad of (1.8) we use 

BIC (J~) = log S (J~) + k (log T) T -:t. (1.9) 

From (1.7) we see that %he calcular involved in  k l C  and BIC methods are *oo 
much for practical use. This is the main disadvan~ge of these me*hods. 

Now we propose two seeps: 
Stop 1. For  each k from 1 to P find out index so* R,  satisfying 

s ( ~ )  ffi inf s ( J~) . ( I . , o )  

whe~e "inf" means to take *he min imum value of N(d~) over all  d~ having 
J~ 

elements belonging to the complete set J~-= {1, 2, .-., P}. 
Stop 2. Let ~ =~ O, ~(0) "log~Y~ 8 and 

BIO(~)-=logS(/~),)+/~(logT)T -:t, ) - 0 ,  1, ,.., P (1.11) 
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and find ou~ ~" such that 

BIC(r)= inf BIC(k) (1.12> 

and then %ake/~, as the estimate of I t. 
I~ is easy %o see that 

BIC(r) = BIC (i~r) = inf  BIC (J~), (1.13> 

where J~ runs  over all possible set showed in  (1.8). (1.13) shows that %o minimize 
BIC(k) in (1.11) and ~o minimize BIC(J~) in  (1.8) are equivalent. The same 
description can also be made for ~_IC method. 

Now we are going %o glve two methods %o replace R~ in  S~ep 1, one of which 
is called "Forward order", and the other "Backward order". 

'~Forward order": We call sequence M~ as forward order index sets, if Mo-=~ 
and define M~=~ { ~ ,  ~2, "-', ~ }  inductively by 

inf k=l ,  % --., P, (1.14> 
j e X|-, 

where ~]~~ is the complement set of M. 
"Backward order": We call sequence N~ as backward order index sets, i f  

2Vp-Jp and define 2V~= {n~, ~2, --', ~,} inductively by 

S(l%_~)- inf S(N,\{ j } ) ,  k=P, P - l ,  -.., S, 2 (1.15> 
J e ~  

with No-~O. 
When we use sequence M~ instead of i~  in Step 2 of BIC method, le~ BIC~(~) 

be the minimum value of 

mC~(k)=logS(M~)+kT-~Iog~, ~=0, I, ..., P, (1.16) 

then we get a new estimate, ~1~, of I~o We call this method as BIC~ method. 
Similarly when we use sequence N,  in  Step 2, let BIC~ (~) be the minimum value of 

BIO~(k):logg(N~)-FkT-~logT, k-=0, i ,  ..., P, (1.17> 

we get another  estimate, hr,, of I~. We call this method as BIC~ method. In  ( t .16) ,  
(1.17) and below we put BIC~(0)=log]]Y~ ~. The same arguments can be applied te  
AIC~ and AIG~ me~Jaods ~o.  

I t  is easy to see that the whole number  of S(J~), which is calculated i n  
BIO~ (or AIC~), is only P ( P + I ) / 2  which is extremely smaller than  (2~-1> 
especially for big P.  Moreover we can greatly reduce the calculations for BIO~ (or 
AIO~) methods again by using the stepwise regression procedure (see [10] ), i.e. the 
calculation to add a new regression variable %o model (1.3), or ~o remove an old 
regression variable from model (1.8) is always conducted i n  the same recursive 
form. To determine forward order sets M~ is equivalent to add a new variable in 
(1.8) one by one according %o restriction (1.14). To determine backward order set9 
~ is equivalen~ ~ remove an old variable from (1.1) one by one according 
restriction (1.15). Therefore we can apply  the same recursive form used in the 
s~epwise regression. 

In  w 2 we shall discuss the consistency of these methods. In  w 3 we give some 
simulation results. 
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w 2.  T h e  C o n s i s t e n c y  a b o u t  BIC a n d  A I C  M e t h o d s  

As we see in  w 1, I ,  is the t rue  index set by which a ~ 0 ,  s=-l, 2, .-., p, cq=-0 
for o~hers i ' s  in  model (1.2).  l~ow we call ~9 an estimate of I,, if  ~, is a random 
index se~ depending on the observations of Y and X.  For example, we take t~= R, 
when we use BIG method, take ~ ,=  Mm for BIG1 and ?~ke ~p= N.  for BIO~. Notice 
that  ~, and also Rr, Mm, N. depend on T. Sometimes we use ~,(T), Rr(T), p(T) and 
so on instead of ~ ,  R~, s and so on respectively to indicate ~he dependence of ~ ,  R,, 
port T. 

Let V~ be a sequence of index sees, and  V be a set of integers belonging to J'~. 
We say 

if  V ~ V  for all T>To where To is some positive integer, and say 

llm infV~___ P" 

if V~___ [7 for all T>To, and say 

1~m sup V~c_V 

if V~c_V for infinitely many T. 
Definition, If an estima%e ~,(T) satisfies 

n~ ~,(T)-I, a.s. (2.1) 
T-~ 

we say that  ~ , (T)  is consistenl estimate to Z~, or  consis~en~ for short,  and the method 
to obtain ~,(T)  is consistent r 

I f  ~ , (T)  satisfies 

lira in f  ] , ( T )  ~ I p  a.s. (2.2) 

we say that  ] , ( T )  and the method ~o obtain ] , ( T )  is overconsistent. 
I n  the following theorems we need some conditions on s ( 0  and ~ ( t )  (~-1 ,  

2, ..., P ) .  Suppose 

Hm A-~(X'X)A -~=R>O, (2.8) 

where A=diag(~xl~,  ~211, "", ~$P~) and R is a positive definite matrix,  

l~m (log ~.) -~ rain I/~,tl ~ = o o  (2 .4)  

log log max [I $, [] s = 0 (log T),  (2.5) 
I < t < P  

m~x ~,~ (0  = O{U~, ~" (log n~, U ") - '} 

for any p>0 ,  ~=1, 2, ..., P ,  

Es  4 (~) < co. 

Theorem 1. 
tha t  is 

Under  the conditions (2.3) r 

(2.6) 
(2.7) 

(2.7) BIG me~hod is  oonsistent, 

!~m ~,(T)=X, ~.s. (2.S) 
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Pq'OOfo Notice that  the order  of Q, ~,  ..., i~ in  (1.31 is not  essential, since on  
changing  the order  of Q, i~, ...... , i~ in  (1.3) we ge% equ iva len t  models. I~ow we 
put  J~_~={j~, j~, .... , j~_~} and  J~= {j~, j~, ..., j~_~, j~} ~I~ where ~ J ~ _ ~ ,  no  m a t e r  
whe ther  j~>j~_x or not, and pur 

.,r(.z,,) = @~,, ,~,,,, ..., ,~,,), 

A ( . G )  =d~ag([[,~,.ll, [['~,.ll, "", II'~,~ll), 
o :  {x '  ( ~ )  x (J~) } -~ = @,) 

and 

(J~) = { X  (J~)X(J~)} X (J~)Y, (2.9)  

~t(J~) =Y"Y-Y'X(J'~){X'(J'~)X(J'~)}-IX'(J'~)Y. (2.10) 

I t  is k n o w n  that  (see [10] ) 
A 2 ,s'(J,,_:0 - s( .z ,3  = {~(J,,)},,/c,,,, ,  ( 2 . 1 1 )  

where  (as well  as in  what  follows) we use {.}~ as kth e lement  of vector. 
Notice tha t  when  J ~ T ~  (1.3) can be replaced by 

:~= x (J~)~ (J~) + 8. (2.12) 

U n d e r  the conditions of the theorem with model (2.12) we can use the  resul t  
appear ing in  [4] which shows 

{~ (J~) - a (J~) }~ = o{ (c~ ] log log c~ I ) 112} a.s. (2.13) 

By the condit ion (2.3) 

.Ar(d7"~) {Xr (J~) X (J:~) }-IA (J~) ~ U (J',) =.[U,$(J'~)}.p (2.14) 

hence there  exL~ two positive numbers  ua and  u~ such that  

o<u~<u,,(J~) < ~ < ~ .  (2.15) 

I ~ o m  this inoqual i ty  and  (2.14) we have 

o < ~ <  . ~  o,,,, II,~,,P = u, , , , ( .z , , )<~<oo,  (2 .16)  

consequent ly  c~-->0, c~ 1 log log c~ ] --~0. Unde r  the same condit ions wi th  (2.12) we 
can use Che resul~ appearing in  [11] which shows 

|ira ~ '  (T) = lira S ( J ~ ) / T  = o "~ ' a.s. (2 .17)  
T - * ~  T-*r162 

I f  j~EI~, say j~=i,, Chen {a(J~)}~=a~@O, and  f r o m  (2,9) ,  (2.10),  ( 2 . 11 ) ,  
(2.13), (2.16) and (2.17) we have 

.s(.z,,_:0 - s ( G )  = {a( .r , , )  - , ~  ( .z , , )+ ,~(J, , ) }~  
~(J~) S(J~)c~ 

= T - '  ( {a  (.z,3 - ,~  (.z,0 },, + , ~ )  ~I1 ~,~J" 

> (T~) -~ ' { l+e (c~ l l og logc , , l ) l / ~ } '  
>~ (Tu,~)-~aIa'<l q--o (1) > a.s. (2. ! 8 )  

where  a~r =~ rain ~ ~ l l ' /= '  and  ~ '  = ~ ~,~., and t h e n  (2,18) holds u n i f o r m l y  for  

J ~ I ~ '  and  J~\J~_~ ~ I~. Consequent ly  
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S(J~_~)-S(J~) (2.19) ra in  ~> (T%),~a~a"{l+o (1) } a.s. 

If ]~ ~ I~, then {a (J~) },--- 0 and by the same deductions for getting (2.18) and 
(2.19) we have 

S(J~_~) - S ( J ~ )  
S(J~) 

ffi T-~({a(]~)--(]~) }~+ o)"[I~,.H �9 

ffi o (~-~c~ [loglog c~ [) ~| ~ 

=o(T-~logT) a.s. (by  (2 .5 ) )  (2.20) 
and %hen (2.20) holds uniformly for J~I~,  J~\J~_l~I~. Consequently 

max S(J~-~)-S(J~)=o(T-IlogT) a.s. (2.21) 

Secondly we want %o prove 

lira i n f R ~ I ~  a.s. (2.22) 

Now pu~ 

l~minfRr=G={gl, g~, ..., g~} a.s. (2.23) 

and I9\~={~1 , ~ ,  .-., ~,} for I~\G~@, and say ~=0 for I~\G=~. Because G is a 
random set, so 8 is a random variable taking values from J p - { 1 ,  2, --., P}. 
According ~o (2.28) there exists To such that 

/~,ffi~ for T:>To. 
Put J,=6~, J , + j = ~ U { ~ ,  ~ ,  "", ~}, jffil, 2, ..., a. 

By the definition of least-square method we know 

~(J ,+~)-S(J ,+,+x)~0,  j=O, 1, ..., 8 -1 .  (2.24) 

By %he definition of S(R~) (see (1.10)) we know 

S(R~+,) <S(J,+,). (2.25) 
By the definition of ~ (see (1.][2)) we have 

logS(R,) +rT -~ log T<log S (R.+,) + (s + r -~ logT 

for T>To and 8>0. (2.26) 

Consequently from the las~ three inequalities it follows ~hat 
S--1 

log S(J.+,_~) - log S (Y,+,) < ~ o  {log S (J,+j) - l o g  S(J,+j+~) } (by (2.24)) 

= log  S ( J , )  - l og  S ( J , + , )  

=logS(R , ) - l ogS( J ,+ , )  (by the definition of J , )  

<logS(R,)- logS(R~+,)  (by (2.25)) 

<~T-~logT (by (2.26)) 

which implies that for T~To and $>0 

T (log T) -~{logS (Y,+,,~) - log S (J,+,) }<s. (2.27) 

Using Taylor's expansion of log~l+~) and (2.19) we know that for ~>0 
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s>T (log T)-~{log S (J,+,_~) - log S (J~+,) } 
= T (log T) -~ Iog{l + (S (J.+,_~) - S (J.+,))S - ~  (J.+,) } 

>(u~logT)-~a=a~.{l+o(1)}~oo a.s. (by (2.4))  (2.28) 

(2.28) contradicts P ( s > 0 ) = 0 .  therefore 

s=0 a.s. 

which implies (2.22). 
F ina l ly  we are going %0 prove 

Jim sup/t,___I, a.s. (2.29) 
T-coo 

From (2:22) we see %ha% 

m ~ s u p R , = . F = { f ~ ,  f~, ..., f,,}~_I,, a.s. 

Pu t  F\I~= {s~, s~, ..,, s,} for F\I~O,  say e=0  for F\Ip=@. By the definit ion of  F 
there exists To such %hat 

for T >To, 
where T ,  is a subsequenco of T. If  e>0  we put  K=_m\{sl}. 

By an a rgument  s imilar  r that  in  gett ing (2.27) we have 

log S (~,) - log S (K)  < log  S (R') - log S (R,_~) 

.~-T-XlogT for T=T~>To. 
Consequently 

T~ 
(IogS(K).logb'(R,))~>l for T=T~>To. (2.30) 

By the same deduction for gett ing (2.28) we know that  for 6>0 and T=T~:>To 
T~ T~ 

1 < - l o g T ,  {logS(K)-logS(R,)}= {logS(K)-logS(.F)} log T~ 

logT, ~ (by 

----o(i) a.s. (2.31)  

(2.31) con%radic~ P ( e > 0 )  >0 .  Therefore 

r  a.S. 

which implies (2.29), (2.22) and (2.29) complete the proof. 
Theorem 2.  Under  the same conditions of Theorem 1, BIC~ method is 

consistent too. 
Proof. The ma in  technics i n  the proof of this theorem is similar %o those of 

last theorem. So we only  give an out l ine of the proof of this theorem. 
At  first we can prove %hat 

lira inf  Np_~_I~ a.s. (2.32) 

one by one for/~=0, 1, 2, ..-, P - 9  according %0 the simitaz procedure of get t ing 
(2.22). Secondly we can prove 

Jim in f  ~>i~ a.s. (2.33) 
T-4w 
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by  ~he same argument ,  and then prove 

lira sup n ~ p  a.s. (2.34) 
T-*c~ 

by  the same method in  proving  (2.29). Combin ing  (2.32),  (2.83) and (2.34) 
theorem 2 follows immediately.  

Theorem 8. Under  the condi t ions (2 .3) ,  (2.4) and (2.7)  AIC, AI01, AI0~ 
and BIC1 are all overconsistent .  

P~oof. The proof of this ~heorem is ~he same as the firs~ hal f  of proof  of 
Theorem 1, so we remove ~he restr ic t ions (2 .5) ,  (2 .6)  which were on ly  used in  
~he final par~ of the proof  of Theorem t .  

One can give some example to show AI0 ,  AIC1 and AI0~ are real overconsisten~. 
These happened in  t ime series analysis (see [8]) .  Now we are interested in  an 
example  to show BI01 is real  overconsis~ent ~oo. 

~xaml~le .  I n  model  (1.3)  we take P = 3 ,  p--2 ,  I~--{1, 2}, a ~ ( 1 ,  1, 0)' ,  and 

v ( t ) = ~ ( t ) + ~ ( t ) + s ( t ) ,  t= l ,  2, ..., P, (2.s5) 
where  e(t) is i.i.d, wi~h zero mean and finite four th  moment ,  $l(t), $~(t) and 
xa (t) are periodical series wi~h 

x:t == (1, 1, 1, 1, 1, 1, . . . ) ' ,  �9 

x~=(--l+sl, --l+e~, - -  l + ea, - -  l + e~, - -  l + e~, - -  l + e~, . . .) ' ,  
�9 ~=-(0, O, ~, O, O, ~, . . . ) ' .  

We will take s~, e~ and s~ small enough and c @ 0. 
I t  iS easy to check that  all  the condi t ions  of Theorem 1 are satisfied. Now we 

wan t  to show tha~ BIO~ method is no t  cousis~ent for some values of e~, e=, ea and o. 
A~ first we point  out  tha~ 

w h e r e  

8 l &=O, :t, 1)', ~=(--~+8~, - 1+8 , ,  - 1 +  D,  &=(o,  o, o)', 
and that  

T 

8 ~  E(~(t)+~(t)e , ~,(t))~(&+~,, ~,). ~ . ~ ,  

where  (~, ~) means i n n e r  product  of vector  ~: and ~.  I t  is obvious tha~ 

11&[?=3, [ I&H~=E(~-~,?, II&ll~=O, 
{=1 

( & + ~ ,  &)=~, 8,, (&+~, & ) = - N  e,0-8,), (&+&, ~)=os.. 

Secondly we use the resul~ appearing in  [3]-, we have 

T 

E e (t) x, (t) ---- o (I] $* II (log ~ $, IJ 2) (1+~)/~) = 0 (T 1/~(lOg T) (x+,)/,) a.s. 

for  ~-=1, 2, 3 and any  N>0.  Using (1.6)  and above equalities, we have 
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Thus 

T 

~'(.1:~]-) = I l r l? - I I .X ,  ll-~.l:ZE ~,(0,~, (0:} ~ 
1 

= ~:YII~- ~-< (~~+ ~~, ~,)II ~, I1-:' + o(T-a/~(logT) ('+;~ }= 

"" I1 r II = -  -~- (~'1 + ~'~, ~,) ~11 ~, Ii -={z + o (T -:~/= (log ~),1+,,,/=}= 

Now we ~ake 

sl  ffi 10 -1, s= = 10 -~, s3 ffi 1 /2 ,  o = 1. 

($~+& &)~ll$~ll-~---g ~ ~,<~-, 

1 (~':,+ & ~)~11~'~11 -= f f i  (cs,,)Vc ~= 8 ~ =  ~-. 

These inequalit ies show tha~ when T--->c~ 

S({3}) = I r inS({~})  a.s. 

which means 

llm M~ffi {3} a.s. 

F i n a l l y  using Theorem 8 we know 

!ira i n f M = ~ / ~ =  {1, 2]- a.e~ 
T . . e~  

Consequently 

lira i n f  ~n(T) ~ 2  a.s. 

By the defini t ion of M~ (see (1.14)) 

thus 

hence 

14m i n f M = ~ { 3 }  a.s. 

&.s, 

This means BIC~ is inconsistent,  
overcons is~nt  in  this case. 

l im M,.--- {1, 2, 8}§ 2}=I~ a.s. 
T--~oa 

but  i t  is overconsistent  so we call i t  real 

w 3 .  S o m e  F u r t h e r  D i s c u s s i o n s  a n d  S i m u l a t i o n s  

Although in  the last section we pointed out t ha t  AIC and  BIC~ methods are 
overconsistent,  but  some one prefer to use them in  practice some times. Because i n  
practice there is no Hue model for real  data, so in  some cases overconsistent  
selection of regression variables is no t  bad. However the following s imulat ion 
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resul ts  show %hal BIO2 is bef te r  t h a n  BID1 a n d  AIC ,  a n d  is close to BIC.  

Both  i n  pracr and  t h e o r y  i t  is i n t e r e s t i n g  ~o cons ider  the  case where  P 

increases w i t h  sample  size T.  I n  this  case we need some i m p r o v e d  resul t s  of [4] and  

[10J, bu t  b y  n o w  we have  no t  gof  t h e m  yer 

R e c e n t l y  we gor a new  resu l t  by  wh ich  the  condi r  (2 .6 )  can  be r emoved  
f r o m  theorems  i n  th is  p a p e r .  

F i n a l l y  we pu t  some s imu la f ion  resu l t s  of  the  exam fie of  w 2 i n  the  table.  

T= 100 

2 3 

11 

5 

20 

9 

BIC 

BIC~ 

BIC] 

AIC 

1 

9 10 

15 16 

4 4 

15 15 

4 5 

0 0 

0 0 

0 1 

4 3 

The table of numbers of ~ appearin I 

1 

18 

18 

200 

2 3 

18 2 

18 2 

5 1 

1 19 

1 19 

1 19 

5 20 

12 4 

20 18 

20 0 

3 4 

2 

17 

17 

11 

i6 
in 20 estimate s Ip for each method and each T. 

400 

3 4 5 

5 0 q 

5 0 0 

20 0 0 

5 2 2 
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R e f e r e n c e s  

Besides var iables  xl, x2 a n d  x8 of the  example  i n  w 2 we add two m o r e  var iables  
aga in  which  are  

�9 4 ( t )  ~ c o s  - -  4 t ,  = 2~ T, �9 ~ ( 0  s i n  - -4 -  ~" ~ = 1,  2 ,  . . . ,  

r  P = 5  ins%ead of  3, a n d  assume thar s(%) is n o r m a l  d i s t r ibu ted  i n  (2 .35) .  W e  

show r resu l t s  of o u r  s i m u l a t i o n s  of select ion var iab les  of  (2 .35)  mode l  b y  u s ing  

BIG,  BI01, BI02 and  A I C  m e t h o d  for  es t imat ing  I t =  ~!, 2}. F o r  each T ( =  100, 200, 

400) we repea ted  20 %lines of  the  same s imula t ion  i n d e p e n d e n t l y  a n d  t h e n  gave 20 

est imates  ~p for  e v e r y  me~hod. T h e  table lists the  n u m b e r s  o f  e a c h / ( = 1 ,  2, 3, 4, 5) 

a p p e a r i n g  a m o n g  ~he 20 est imates _~p for  each m e t h o d  a n d  each T.  

W e  t h a n k  Professor  W a n g  S h o u r e n  fo r  help i n  w r i t t i n g  this  paper .  


