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ON THE SELECTION OF REGRESSION VARIABLES*

AN HoNezEI (% # %) and Gu LaN (B K)
(Institute of Applied Mathematics, Academia Sinica)

Abstract

The methods to minimize AIC ox BIC criterion function for selection of regression variables
are considered. The main calculations of some of these methods are completed economically and
recursively. The methods are shown to be of strong consistency or overconsistency to the true model.

§ 1. Introduction

In regression problem one may consider the dependent variables y(¢) at time #
a8 a linear function of P possible independent variables »,(t), @a(t), -+, 2(%). So
the model can be written as

y(t) =a1m1(t)+a1w2(t)+--'+apwp(t)+s(t), t=1, 2, e, T, (1.1)

where g(t) is i.i.d. series with zero mean and variance ¢? From (1.1) we have
the following model

» Y=Xoa+ts, ‘ 1.2)
where
y(1) oy s(1)
Ve y(2) ’ o= 0‘.2 ,‘ - 3(2) ,
y(T)) op &(T)

21(1) 23(1) - 2p(1)

X w1§2) ws(?) mP(.z)

; =<w1: La, °°*, wP)'

21 (T) o, (T) e+ wp(T)
Here  is ith column vector of mairix X. If the true ‘model is such that Jo;#0 for
$=44, 43, **+, 4, but ;=0 for other ¢’s, then, to fit a regression model means to choose
regression variables from all the possible variables z1(¢), za(), ++-, #p(¢) in model
(1.1), that is, to estimate p and 4y, 43, *-+, 4, based on the observations of ¥ and X,
and to estimate the regression eoefficients a;,, a,, -+, &;,.
. If 44, 4a, +-, 4, are given, then (1.1) can be replaced by

y(t) =a¢,w4,(t) +a¢,w¢,(t) e L +a;,w‘,(t) +& (t), t== 1, 2, 7, (1 .3)

So we can write it as
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Y =X (Ia(l,) +s, 1.9
where I,= {41, 43, *--, ¢,} is the index set which corresponds to the variables in

(1.8), and
2, (1) z,A) - “’4,(1)

X (Ip) o (2) m;.:(2) B (2) = (@, Tipy *+*, Wi;):

mi;(T) 2,(T) -+ ,(T)

a(Iﬂ)= (ah: Oty °°° “‘9),°
Suppose X’ (I,) X (I,) is of full rank, then the least-squares estimate of a(l,) is
given by
aI,) ={X'(I) X (1)} X' (I)Y. 1.5)
The residual sum of squares in fitting model (1.4) by least-square is equal to
S(Ip) ={Y - X (1p)a(I)}{¥Y — X (Ip)a(I,)}

=Y [*~Y'X (I){X' (1) X (1)} X" (I,)Y 1.6)
where (and as well as in what follows) |¥ |2 is the square norm of vector Y.

In fact we do not know the values of p, 41, 43, -, %, and We just want to
estimate them. When we use index set Jy={4ji, js, ---, ju} instead of I, in(1.4),
(1.5) and (1.6),we get the values &4(J;) and S(J). The total number of set J; for
k=1, 2, ---, P and 1<j1<fa<fs<:-*<f<<P is equal to

O3 +0% 4+ +05=27 1. ' 1.7
Most of methods for selection of regression variables are concerned with the values
8(J+). Examples of such methods are given by the minimum FPE or AIC method

(see [1], [2]), by the minimum BIC method (see [7]), by the O, method (see [6])
and some other methods (see [5], [9]).

‘When we use AIC (or BIC) method, we have to calculate the whole values of
Akaike Information Oriterion function, i.e.

AIC(Jy) =log S(Jx)+2kT"%, k=0, 1, -, P; 1<jy<fa<ls+<fp<P, (1.8)
where 7T is the number of sample size, Jo=@ (empty set) and AIC(P)=loglY |3,
and we have to find out the minimum value of AIC(J}), say AIO(J), and then
use J to estimate I,. For BIC method, instead of (1.8) we use

BIC(Jy) =1log S (J3) + k(log T) T 1.9)
From (1.7) we see that the calculations involved in AIC and BIQ methods are too
much for practical use. This is the main disadvantage of these methods.
Now we propose two steps:
Step 1. For each 4 from 1 to P find out index set R, satisfying

8(B)~int §(73), (1.10)
where “.ilslf” means to take the minimum value of S(J;) over all J, having %

elements belonging to the complete set Jp={1, 2, +-., P}.
Step 2. Let Ro=0, S(@) =log]Y | and

BIO(E) =log S(R,) +k(log T)T?, k=0, 1, P (.11)
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and find out r such that
BIC(r) = oi?fp BIC(k) (1.12)

and then take R, as the estimate of I,.
It is easy to see that
BICO(r) =BIC(R,) =inf BIC(J}), (1.138)
where J; runs over all possible set showed in (1.8). (1.18) shows that to minimize
BIC(k) in (1.11) and to minimize BIC(J,) in (1.8) are equivalent. The same
description can also be made for ATIQ method.
Now we are going fo give two methods to replace B, in Step 1, one of which
is called “Forward order”, and the other “Backward order”.
“Forward order”: We call sequence M, as forward order index sets, if Mo=@
and define My={my, mg, ---, m;} inductively by
S(Mk)gjégg S(ME—IU{j}): k*l, 2} % 'P) (1'14)

where M°=Jp\M is the complement set of M.
“Backward order”: We call sequence N, as backward order index sets, if
Np=Jp and define N,={ny, ns, ---, n;} inductively by

S(Wus)= inf SN\ {j}), b=P, P~1, -, 8, 2 (1.15)

with No=0@. .
When we use sequence M, instead of By in Step 2 of BIC method, let BIC;(m)
be the minimum value of

BIO, (k) =log S (M,) +kT-*10g T, k=0, 1, +-, P, (1.16)

then we get a new estimate, M,, of Ip. We call this method as BIQO; method.
Similarly when we use sequence N in Step 2, let BICa(n) be the minimum value of

BIOa() =log S(,) +kT-10g T, ¥=0, 1, -, P, (1.17)

we get another estimate, N,, of I,. We call this method as BIC; method. In (1.16),
(1.17) and below we put BIC,(0) =log|Y |2. The same arguments can be applied to.
AIQ; and AIC,; methods too.

It is easy to see that the whole mumber of S(J3), which is calculated in
BIO; (or AIQ;), is only P(P+1)/2 which is extremely smaller than (27—1)
especially for big P. Moreover we can greatly reduce the calculations for BIC; (or
AIQ,) methods again by using the stepwise regression procedure (see [10]), i.e. the
calculation t0 add a new regression variable to model (1.8), or to remove an old
regression variable from model (1.8) is always conducted in the same recursive
form. To determine forward order sets My is equivalent to add a new variable in
(1.8) one by one according to restriction (1.14). To determine backward order sets
N, is equivalent t0 Temove an old variable from (1.1) one by one according to
restriction (1.15). Therefore we can apply the same recursive form used in the
stepwise regression.

In § 2 we shall discuss the consistency of these methods. In § 3 we give some
simulation results.
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§ 2. The Consistency about BIC and AIC Methods

Ag we see in § 1, I, ig the frue index set by which o;, %0, 8=1, 2, -, p, ox=0
for others ¢’s in model (1.2). Now we call T, an estimate of I,, if 1, is a random
index set depending on the observations of ¥ and X. For example, we take 1 =By
when we use BIC method, take f,,=M,,, for BIC, and take f,=N,, for BIO;. Notice
that f, and also R,, M,,, N, depend on T'. Sometimes we use 1,(T), R,(T), p(T) and
g0 on instead of f,, R,, p and so on respectively to indicate the dependence of 7,, R,,
pon T,

Let Vr be a sequence of index sets, and V be a set of integers belonging to Jp.
We say

llmV1v==V

Toee
if V=V for all 7>T, where T\ is some positive integer, and say
minfVs2V

Lo

if Vo2V for all T>T,, and say
ling sup V.V

if Vo<V for infinitely many 7'.
Definition. If an estimate f,(T) satisfies

lTjEf,(T)=-I, a.8. (2.1)

we say that 1,(T") is consistent estimate to I,, or consistent for short, and the method
to obtain f,(T") is consistent t00.
1 1 o(T") satisfies
lim inf T, ()21, as. (2.2)

we say that 1,(T') and the method $o obtain 1,(T) is overconsistent.
In the following theorems we need some conditions on &(t) and z(3) (i=1,

2, ---, P). Suppose

lim 4~*(X'X) 4-*=R>0, (2.3)
where A=diag(|z], |2a], +-:, |2»[) and R is a positive definite matrix,
i 1 min |z,]2=
lim (log 7)™ min |a,[?=co, (2.9
log log max [, [*=0(log T), (2.5)
<
max 27 (¢) = O{| o[ (log[z:|*) =}
1<t<T
for any p>0, ¢=1, 2, -+, P, (2.6)
Eet(t) <oo. @.7

Theorem 1. Under the conditions (2.8) to (2.7) BIC method is consistent,
that is
ng,(T)'wI, a.8, 2.8)
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Proof. Notice that the order of ¢y, 43, **, ¢y in (1.3) is not essential, since on
changing the order of i;, ¢s, -+ , %y in (1.8) we get equivalent models. Now we
put Jy-1={J1, Js, **, Ju-1} and Jy={jy, s, =+, Ju-1, Ju} 21y Where ji, & J;—1, no matter
whether j,>j,-1 or not, and put

X(Jk) = (wiu Ty % w!k):
A(Jk)=dia’g("mh”) "wh") °% ”wik”)i
C={X"(Ji) X (J)} "= (cy)

and
&) ={X'(J) X (J} X' (JW)Y, | (2.9)
8(J) =YY -Y' X (T){X'(J) X (T} X' (J)Y. (2.10)
It is known that (see [10])
S x-1) =8 (Jr) ={&(J ) }o/ Cxas (2.11)

where (as well as in. what follows) we use {+}; as kth element of vector.
Notice that when J;, 21, (1.8) can be replaced by

Y=X(J;,)a(.fk)+8. : (2.12)
Under the conditions of the theorem with model (2.12) we can use the result
appearing in [4] which shows

{&(Jw) —a(Ix) u=0{(cux|loglog cuu| )%} a.8. (2.13)
By the condition (2.8)
AWT{X' (T X (T} AT 772 U () ={us(JD)}, (2.14)
hence there exist two positive numibers u; and u, such that \
O<us<wy; (J3) <ug<oo, (2.15)
From this inequality and (2.14) we have ‘
0<wy< }}_{2 O 21, = e (T3) Stta< oo, (2.16)

congequently ¢yu—>0, ¢|loglog ¢iz| 0. Under the same conditions with (2.12) we
can use the result appearing in {11] which shows

limo*(7) = lim §(J,)/T'=0* " a.5. (2.17)

If j,€1,, say ju=1i, then {a(Jy)}r=a, %0, and from (2.9), (2.10), (2.11),
(2.13), (2.16) and (2.17) we have
S (J-1) =8(Jy) _{&(J3) —a(Ji) +a(Jn)}s
S(Jw) S(J ) eun

= T{&(Jw)~ a(J»)}k+aL,)’Hw;,l|’
' T8 (I 1) on| @4,

= (T'ug) ~*a30?{1-+0(cwx|log log ey | ) /7}2
= (Tug) *azo®{1+o(1)} a.s. (2.18)
where af= min lz:]2/o® and o= min o}, and then (2.18) holds uniformly for
<{<P ' <8<p )

Jy 21, and Jy\Jy-1 € I,. Consequently
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i S(Jk—i)'—S(Jk) ~1,2 3
o IEM) = (Tus) ‘aia{1+o0(1)} a.s. (2.19)

If jx ¢ I,, then {a(J3)}5=0 and by the same deductions for getting (2.18) and
(2.19) we have ‘

8(Je-1) =8(w)  _ T*({&(Tw) — a(Jw) but 0)? |2y, [

S(Jx) , T8 () e[ 23]
=0(T 0| log log ey | ) f 5, |
=0(T*log?) a.s. (by (2.5)) (2.20)
and then (2.20) holds uniformly for J32I,, J3\J4-16 I,. Consequently
SWy2) =8 _ o ep-
jmax €M) o(T*110gT) a.s. @ .21).
Secondly we want to prove
l:'uTn inf Ry 21, a.s. (2.22)
Now put
Hlﬁ)inf Rf=G={gl; gs, °°*y gq} &.8. (2'23)

and I\G'= {7y, 7q, +--, 7.} for I,\G+#0, and say s=0 for I,\G=@. Because @ is a
random set, so s is a random variable taking values from Jp={1, 2, .-, P}.
According to (2.23) there exists Ty such that

R, =G for T>T,. ,
Put . Jf=Ga Jf+I=GU{71: Ta, °*° 11}1 j=1: 2} Tty e

By the definition of least-square method we know
S(Jr45) =8 (T 4541) 20, §=0, 1, -, s—1, (2.24)
By the definition of S(R;) (see (1.10)) we know ; ;
S(Bysr) <S (T s4r)- (2.25)

By the definition of » (see (1.12)) we have
log S(B,) +rT*1log T<log 8 (Resr) +(s+r)T110g T
for T>1T, and s>>0. (2.26)
Consequently from the last three inequalities it follows that

s—1
1og 8 (S esr-1) —10g 8 (S osr) <2, (10g8(Jr+)) —10g 8(Jrsss)} (by (2.24))
=log 8(J;) —1og 8 (Jesr)
=log S(R,) ~1log 8(Js4r) (by the definition of J,)
<log S(R,)—log8(R.,) (by (2.25))
<sT*log? (by (2.26))
which implies that for 7>T, and $>0 '
T (log T)~*{log 8 (T s4r-1) —log 8 (Jsss) }<s. (2.27)
Using Taylor’s expansion of log(1+2) and (2.19) we know that for s>0
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=T QogT)*{log S (Jesr-1) —10g S (J o3}
=T (logT)*1log{1+ (8 (Jssr-1) =8 (Jetr) IS (Josr)}
>(uglogT)‘1a aT{1+o(1)}———)oo as. (by (2.4)) (2.28)

. 28) contradicts P(s>0) =0. therefore
s=0 a.s.
which implies (2.22).
Finally we are going to prove
limsup R, C:I, a.s. , (2.29)

P00

From (2.22) we Seo that
hmsupR =F= {fi, fa, <+, fa}32I, a.s.
Put F\I,= {31, 85, -+, 8} for F\I,#@, say ¢=0 for F\I,=@. By the deﬁmtlon of F
there exists T such that
Rr(Tk) =F for T;;>To,

where T, is a subsequence of 7'. If ¢>0 we put K =F\{s;}.
By an argument similar to that in getting (2.27) we have

log S (Rr) —log §(K)<log S(R,) ~1log S (R,-1)
<-— T‘llog’_l’ for T=T,>T,.
Consequently

V=1 for T=T,>T,. (2.30)
By the same deduction for getting (2.28) we know that for >0 and T=T,>T,
e {log §(K)—log S(R,)

~log T,
Ty S(K)—-S(F)

-~k (10 {1+ T }) long (T logTy) (by (2.21))
=0{1) a.s. ' (2.81)
(2.81) contradicts P(¢>0)>0. Therefore
e=0 a.s.

which implies (2.29), (2.22) and (2.29) complete the proof.

Theorem 2. TUnder ‘the. same conditions of Theorem 1, BIC, method is
consistent too.

Proof. The main technics in the proof of this theorem is similar to those of
last theorem. 8o we only give an outline of the proof of thls theorem.

At first we can prove that :

lim mpr_,,:JI a.8. (2.32)

T—ro0

1<

one by one for k=0, 1, 2, .-, P—p according 1o the similar procedure of getting
(2.22). Secondly we can prove

H;;l_ihf n=p  a.s. \ (2.83)
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by the same argument, and then prove

limsupn<p a.s. (2.84)

T—rc0

by the same method in proving (2.29). Oombmmg (2 82), (2.83) and (2 34)
theorem 2 follows immediately.

Theorem 8. Under the conditions (2.3), (2. 4) and 2. 7) AIC, AIOi, AIC,
and BIC; are all overconsistent.

Proof. The proof of this theorem is the same as the first half of proof of
Theorem 1, so we remove the restrictions (2.5), (2.6) which were only used in
the final part of the proof of Theorem 1.

One can give some example to show AIC, AIC; and AIC, are real overconsistent.
These happened in time series analysis (see [8]). Now we are interested in an
example to show BIC; is real overconsistent too.

Example. In model (1.3) we take P=38, p=2, I,={1, 2}, a=(1, 1, 0)’, and

y(t) =21 (t) +2a(t) +8(t), #=1,2, -, T, (2.85)

where ¢(¢) is i.d.d. with zero mean and finite fourth moment, #,(¢), v2(¢) and
@3(t) are periodical series with

@=(1,1,1,1, 1,1, ),
@g=(—1+8s, —1+48gy, —1+83, —1+48y, —146y, —1+eg ),
w3"'_; (0; 0, c, O} 0; ¢ "'j,'
We will take &;, &5 and ¢; small enough and ¢+#0.
It is easy to check that all the conditions of Theorem 1 are satisfied. Now we

want to show that BIC; method is not consistent for some values of &, g3, 83 and ¢.
At first we point out that

2 Sa@-lal, T,

I\Ioo

where
§1=(1, 1, 1),, £2=(‘-1+81, —1+82, “'1+83),, 535(0, 0, c),,’
and that

D@ @) +oa(8), H(B)>Extés, £, T->00,

‘where (§, ) means inner product of vector £ and . It is obvious that

602 =3, lalP=20-e, &=,

B co

1+, &) '—‘231] &, (§1+&, €a)= —é a(1—s);, - (§1+E&a, &s) =cage

Secondly we use the result appearing in [3], we have
>t e (e () =o(l] (logla]?) +9/2) = o (T2 (log TYH1)  as.
i=

for i=1, 2, 8 and any A>0. Using (1.6) and above equalities, we have
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SN =17 - X |2 Zy e () |
— 7= | X2 () + 2 (D12 () + S e Dz (1)}
— Y P = {(Eat €, EDIEN+0(T-42(log TYH+/2)}2

=[Y|*~ %— (€&, EDNE 'é{l +o(T-22(log T)@+¥/%}3  g.s,

Now we take .
81=10"1 g2=10"2, g3=1/2, ¢=1,

Thus
G DUAREES P
(1+&s, §2>2|152f|—2=[§ 8;(1-—8,)]2[2:] (1-—3,)2]-1<_1_’
1

€1+ s, £°1€al 2= Coa)*/e == 7.
These inequalities show that when T—>co ‘

S({8})=ninS({i}) as.

which means
lim M q == {3} a.8.

T—00
Finally using Theorem 3 we know
iminf M,21,={1, 2} a.s.

Teore0
Consequently
liminf m(T)>2 a.s.

T—oo

By the definition of M, (see (1.14))
M, M,,
thus
lirqg inf M,2{3} a.s.

hence
}FimMm={1, 2, 8y#{1, 2}=1I, as.

This means BIC, is inconsistent, but it is overconsistent so we call it real
overconsistent in this case. :

§ 3. Some Further Discussions and Simulations

Although in the last section we pointed out that AIC and BIC; methods are
overconsistent, but some one prefer to use them in practice some times. Because in
practice there is no true model for real data, so in some cases overconsistent
selection of regression variables is mot bad. However the following simulation
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results show that BIC, is better than BIC; and AIC, and is close to BIC.

Both in practice and theory it is inieresting 10 consider the case where P
increases with sample size 7'. In this case we need some improved results of [4] and
[10], but by now we have not got them yet.

Recenily we got a new result by which the condition (2.6) can be removed
from theorems in this paper.

Finally we put some simulation results of the example of § 2 in the table.

T 100 200 400
i= . | 1] 2|l slals]| 2| 2| 3] ¢« 5 1] 2] s8] 4| s
BIC olwo|l1a{ojo| 1 | 18| 2| 0| 1 |1w|1r]| 5] o] o
BIC, (16| 5/0flo] 18 18| 2| 0| 1 |ww|w| s]| ol o
BIC, 4l a{20fof1|12] 2|2 | o 1|1 |12|2]|0]lo0
AIC 15(15| 9]a 3|20 | 18| 3| 4« | 5 |20|[16] 5| 2| 2

The table of numbers of 4 appea,ring in 20 estimates I p for each method and each T'.

Besides variables #;, 3 and @3 of the example in § 2 we add two more variables
again which are

o4 (t) = s—iﬁt w5(t)=sin—t t=1 2 .. T,

then P =5 instead of 8, and assume that e(¢) is normal distributed in (2.85). We
show the results of our simulations of selection variables of (2.85) model by using
BIC, BIC;, BIC; and AIC method for estimating I,={1, 2}. For each 7'(=100, 200,
400) we repeated 20 times of the same simulation independently and then gave 20
estimates [, for every method. The table lists the numbers of each i(=1, 2, 8, 4, 5)
appearing among the 20 estimates I, for each method and each T'.

‘We thank Professor Wang Shouren for help in writting this paper.
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