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Cartesian Differential Invariants in Scale-Space 
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Abstract. We present a formalism for studying local image structure in a systematic, coordinate- 
independent, and robust way, based on scale-space theory, tensor calculus, and the theory of invariants. 
We concentrate on differential invariants. The formalism is of general applicability to the analysis of 
grey-tone images of various modalities, defined on a D-dimensional spatial domain. 

We propose a "diagrammar" of differential invariants and tensors, i.e., a diagrammatic representation 
of image derivatives in scale-space together with a set of simple rules for representing meaningful 
local image properties. All local image properties on a given level of inner scale can be represented in 
terms of such diagrams, and, vice versa, all diagrams represent coordinate-independent combinations 
of image derivatives, i.e., true image properties. 

We present complete and irreducible sets of (nonpolynomial) differential invariants appropriate for 
the description of local image structure up to any desired order. Any differential invariant can be 
expressed in terms of polynomial invariants, pictorially represented by closed diagrams. Here we 
consider a complete, irreducible set of polynomial invariants up to second order (inclusive). 

Examples of differential invariants up to fourth order (inclusive), calculated for synthetic, noise- 
perturbed, 2-dimensional test images, are included to illustrate the main theory. 
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scale-space, local image structure 

1 Introduction 

In image analysis a distinction can often be made 
between local and multilocal methods. The key 
idea in this dichotomy is inner scale: local image 
properties can be associated with a single base 
point at a given inner scale (i.e., inverse resolu- 
tion), comprising a local neighbourhood. Such 
properties can be defined in terms of spatial 
derivatives taken at a given base point, 1 and so 
in our context "local" does not mean "punctal." 
To extract a derivative one needs an integration 
filter defined on a full spatial neighbourhood 
of the base point of interest, with an effective 
extent proportional to the inner scale. Mul- 
tilocal properties are associated with multiple 
local neighbourhoods. 

The intrinsic scale degree of freedom accounts 
for ambiguities in this interpretation. For ex- 
ample, the average image intensity appears to 
be a multilocal property on a small scale, but 
it turns out to have a local interpretation on a 
sufficiently large scale. The principle of digital 

halfloning or dithering used for rendering the 
illusion of grey-tone pictures by using only black 
and white picture elements, clearly demonstrates 
the virtue of this ambiguity. 

Although many image properties do not have 
a local interpretation, a thorough understand- 
ing of local image properties is of fundamen- 
tal importance. A rigorous approach towards 
understanding local image issues also permits 
a connection between local image analysis and 
the well-established mathematical literature on 
differential methods. These methods can be 
applied to local image analysis in a straight- 
forward way. Without claiming that it is com- 
plete in any way, we list some references that 
are relevant in this context: [1]-[3] (differential 
geometry), [4]-[13] (algebraic invariants), [14]- 
[19] (discriminants and resultants), [20] (binary 
forms), [21] (irreducible invariants), [22], [23] 
(the theory of invariants in general). 

Our goal is to provide basic information 
needed for appreciation and operationalisation 
of the welPestablished differential methods, ap- 
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plied to front-end vision and local image anal- 
ysis. To this end we need to (i) operationalise 
differential methods according to some well-posed 
scheme and (ii) explain the principle of invariance 
underlying a coordinate-independent approach. It 
is crucial for any local image operation to be 
driven by operators that are well posed by 
construction and to operate in a geometrically 
meaningful way. 

At some higher level of description one typ- 
ically uses a priori assumptions about the grey- 
level image, e.g. the knowledge that the image 
is actually obtained through a projection or that 
lighting conditions affect the grey-level structure 
but not the essence of the underlying scene. In 
some cases one may want to disregard the in- 
fluence of monotonic grey-level transformations 
to reveal the image's structure independent of 
gamma corrections or at least to ignore the ef- 
fect of a constant rescaling and/or offset of grey 
values. These considerations generally lead to a 
more restrictive class of so-called invariants, i.e., 
image properties that are insensitive to varia- 
tions of the irrelevant parameters. 

The way in which this comes about in the anal- 
ysis is by postulating a group that transforms the 
parameters one would like to disregard as being 
irrelevant for the interpretation and by requir- 
ing invariance under the action of that group. 
Some examples are the (plane) affine and pro- 
jective groups often considered in contexts of 
projection data [24], the "stereo groups" GS (4) 
and SS (4) introduced in [25], and the group of 
general intensity transformations [26]. 

The introduction of such groups implies a re- 
dundancy of image data: not all of the image's 
grey-level structure is considered to be relevant. 
In this paper we disregard any such a priori in- 
formation about the image and instead look for a 
complete representation of its local grey-level struc- 
ture. Such a basic syntactical representation nat- 
urally precedes any semantic level of description. 
Consequently, we require invariance only under 
the group of Cartesian transformations, i.e., SO 
(D) x T(D), in which SO(D) denotes the special 
orthogonal group and T ( D )  the translation group 
in D spatial dimensions. 

Of course, we can always set up a Cartesian 
coordinate frame at each base point of the im- 

age in order to carry out any local calculations, 
but we have to make sure that the results of 
these calculations are actually independent of 
this particular frame (for only then do they cor- 
respond to intrinsic local image properties). Re- 
quiring invariance under the group of Cartesian 
coordinate transformations will guarantee this. 
This underlines the general importance of the 
Cartesian gauge group and its invariant objects 
(Cartesian tensors) in a front-end vision proces- 
sor. In particular, all local image descriptors in 
a grey-scale image, be it affine, projective, or 
whatever invariants, can be expressed in terms 
of Cartesian tensors. 

Spatial scale is rigorously defined by means 
of a construct known as scale-space, which is 
generated by a Gaussian kernel [27]-[30], the 
width of which corresponds to the inner scale. 
Using a normalised Gaussian as the scale-space 
generating kernel uniquely guarantees that no 
spurious detail is created in the fine-to-coarse 
direction. Alternatively, a normalised Gaussian 
is the unique smooth kernel that is self-similar 
along the resolution dimension, which accounts 
for the a priori equivalence of all scales. 

A complete family of local neighbourhood 
operators can be constructed by a local method 
known as the "prolongation" [31] of the basic 
scale-space kernel. In principle, prolongation 
can be carried out up to any order N and 
yields a set of Gaussian derivative filters that 
implement the notion of a local jet of order N 
[32]. In this local context the Gaussian appears 
merely as the (unique) zeroth-order member 
of a complete family of local neighbourhood 
operators or scaled differential operators known 
as the Gaussian family [33], [34]. The higher- 
order local neighbourhood operators are linear 
derivatives of this basic one. 

The organisation of the paper is as follows. 
We first review the Gaussian family and discuss 
the concept of a local jet in section 2. Here, 
we also discuss the matters of well-posedness 
and completeness. Then, in section 3 we in- 
troduce the notions of Cartesian tensors and 
invariants, as well as a convenient diagrammatic 
representation of these. The main goal here is 
to illustrate the role of the tensor formalism in 
local image analysis. A more formal treatment 
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of tensor calculus is given in appendix A. Special 
attention is paid to irreducible invariants. The 
proof of one proposition on this is somewhat 
more involved and is postponed to appendix B. 
Finally, section 4 contains some examples of 
invariants applied to synthetic images. 

2 Basic Concepts 

2.1 The Gaussian Family and Its Cartesian 
Representation 

We need a more precise definition of what we 
mean by a "local image property" or, equiv- 
alently, what we mean by a "local neighbour- 
hood operator," used to ex t rac t -and  thereby 
d e f i n e - a  local image property. To capture all 
local image properties we need a complete family 
of such local neighbourhood operators. 

In this paper we use the following Carte- 
sian representation of the Gaussian family 
(see [33] for some other useful coordinate 
representations): 

DEFINITION 1 (Cartesian family). A Complete, 
hierarchically ordered family of multiplicative 
scale-space kernels in D dimensions is given in 
the Fourier representation by the set 

{~I...~A~; 0,) = i~ i< . ,  i~%~(~o; ~) I (w; ~) 
a ~ x R +, n ~ Z~ }, 

in which the zeroth-order member is given by 

~(w; o r ) = e x p ( - ~ a 2 w z ) .  

Alternatively, in the spatial representation it is 
given by the following set of convolution filters: 

{a~,...~ (x; ~) 
= o~,...~° a (x;  0,) l(x; 0,) e ~ × R +, ~ e z ~  }, 

with 

1 
x/2-~-gg D exp \ 2 0,2 ] "  

In this definition and henceforth we use 
the following notation for the spatial coor- 
dinates and frequencies, respectively: x = 

(xl,  . . . ,  xD),w = (wl, . . . ,  wZ)). Also, we use 
Latin indices from the middle of the alpha- 
bet, each of which can take values in the range 
1, . . . ,  D, to label a corresponding Cartesian co- 
ordinate. For this reason we speak of Cartesian 
indices. Inner scale is parametrised by the Gaus- 
sian width parameter 0,. By 0~v..i" we mean the 
linear partial derivative operator On/Oxil . . .  Oxi,, 
etc. Throughout the paper we make use of the 
Einstein summation convention with respect to 
these indices: if an index occurs twice in a given 
term, a summation over all possible index values 

_ d e f ~  D 
is tacitly assumed, so that Qii = )-:i=~ Qii. 

The index n imposes a (representation- 
independent) hierarchy on the Gaussian family 
and corresponds to the order of differentiation 
in the spatial domain. However, there is no 
natural hierarchy among the kernels within a 
fixed order n, and the multiplicity of this degen- 
eracy, i.e., the number of independent, so.-called 
essential components among the fixed order ker- 
nels Gil...i ., depends on the order and on the 
dimension of space and is given by the follow- 
ing theorem. 

THEOREM 1 (essential components of nth-order 
kernel). The number of essential components of 
the nth-order kernel Gil...i. in D spatial dimen- 
sions and on a given level of scale is given by 

(D) (n+D-1) 
r a n =  D - 1  " 

This follows from the fact that the kernels are 
symmetric with respect to the interchange of any 
pair of indices. Theorem 1 gives the number of 
kernels minimally required (and also sufficient) 
for a full nth-order description of local image 
structure on a given level of scale. 

The Gaussian derivative filters functionally 
correspond to "blown-up" or scaled differential 
operators in a precise sense, viz., they are ob- 
tained by an (isotropic) diffusion of the con- 
ventional differential operators, the evolution 
parameter s of which corresponds to the inner 
scale 0, according to 2s = 0 '2. 

The conventional operators can thus be 
thought of as the hypothetical zero-scale initial 
conditions to the scale-space generating diffu- 
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sion equation 

(za - o8)¢ = 0, 

= 0)  o ,1 . . . , j (x ) ,  
(1) 

in which 6(x) is the well-known Dirac distribu- 
tion. The solution to this initial-value problem 
precisely corresponds to the Cartesian family of 
Definition 1: ¢(x; s) = Gix..4.(x; a = x/~).  

2.2 The Local Jet and its Cartesian 
Representation 

A local jet of order N of a given function f e C N 
(Dom f) ,  denoted by jN[ f] ,  is defined as the 
equivalence class of functions that have the same 
local structure up to order N (N inclusive). In 
other words, all images in a given local N-jet 
(and on a given level of scale) are locally in- 
distinguishable when we have only the Gaussian 
derivatives of orders 0 , . . . ,  N at our disposal 
for the extraction of local information. The op- 
erational definition of a local jet for images is 
given by the following. 

DEFINITION 2 (local jet of order N). Let 
~b : R D --, R) be a given image, and let a be 
a physically sensible inner scale for ¢. Then 
the local jet of ¢ of order N at base point 
x and inner scale a, denoted by JN[¢](x;a), 
can be represented with respect to an arbitrary 
Cartesian coordinate system by the set 

j2v [¢1 (x; a) 

= {Liv..i,(x;o')[(x;a) e R D × R+,n = 0, . . . ,  g} ,  

in which Lir..i, is given by the convolution of ¢ 
with the Gaussian derivative Gir..i,(.; a): 

L,,  . , . (x; = ( a , ,  • ¢ ) ( x ;  

Alternatively, the local jet of order N can be 
represented in Fourier space by the set 

YY[~l(w; a) = {~i,...i,(w; cr)l(w; a) e R D × R +, 

n = 0, . . . ,  N}, 

in which ~ix...i, is given by the product of ~, 
i.e., the Fourier transform of ¢, with the Gaus- 
sian derivative in Fourier space, Oii...i,(.;~r) = 

i~% . . . i~oi, ~(.; a): 

= (e,,...,o¢-) 

Definition 2 seems somewhat sloppy since it 
seems to rely on the choice of Cartesian co- 
ordinates. The local jet is really a coordinate- 
independent object, however, and we show in 
section 3 how to promote the index notation 
to a symbolic, coordinate-independent status by 
associating a Cartesian transformation with each 
index, so that there is no need for a modifica- 
tion. For the moment, however, we ignore this 
and discuss a number of aspects that readily 
follow from this definition. 

The meaning of a "physically sensible" in- 
ner scale in Definition 2 is that cr should be 
fairly within the physical limits set by the imag- 
ing modality's resolving power (the grid or pixel 
size or noise correlation width e) and the typical 
size R of its field of view. Although we formally 
have lim~,0L(x; o-) = ¢(x), the accuracy of any 
physical representation of L(x; a) is limited to 
O(e/~r) at the very best, and so this zero-scale 
limit never makes any real sense in practice (but, 
of course, it is the only sensible a priori require- 
ment if we do not want to rely on device depen- 
dencies). In all that follows we implicitly assume 
that cr satisfies max(e/a, cr/R) << 1 and ignore all 
device-specific effects of these orders (cf. [29] for 
the small-scale boundary layer). Also, since we 
are primarily interested in invariance principles, 
we leave open the question of how to constrain 
N in Definition 2 when we are given spatial 
and intensity resolution limitations. Again, any 
value is conceivable under appropriate imaging 
conditions. High-order derivatives are generally 
feasible and robust, provided that they can be 
calculated on a sufficiently high scale (relative 
to pixel scale and noise correlation width) and 
provided that we have a sufficient resolution 
of intensity values (dynamic resolution, noise). 
We refer to [35] for a detailed discussion of 
these trade-offs. 

From Theorem 1 it follows that the total num- 
ber of local degrees of freedom per scale in the 

(D) X._~N (D) 
N-jet equals /z g = Z.,n=0 m,~. Note that we 
could have written L~l...i . as Oil..4.{G * ¢} or as 
G .  eq...i,, i.e., as the derivative of the blurred 
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image L = G .  ¢ and as the blurred derivative 
image, respectively. This reveals notational con- 
sistency and clearly shows the functionality of 
the Gaussian family as an apparatus of differ- 
ential calculus for physical signals in the exact 
sense [36]. 

2.3 Well-Posed Differentiation 

It is well-known that differentiation in the con- 
ventional sense, by its very definition, is ill posed 
in the sense of Hadamard. This means that an 
insignificant perturbation of input data may have 
an arbitrarily large effect on the output. As 
an example, consider two, almost equal smooth 
functions (with respect to a suitable norm) 
f l(x)  = f (x )  and f2(x) = f (x )  + 5f(x), where 
5f(x) is a small, additive, high-frequency pertur- 
bation, say, 6f(x) = eg(x/ea+1), with 0 < e << 1 
and 0 < max (Ig(x)l, Ig'(x)l) < M for all x. 
So 6f(x) can be made insignificantly small by 
taking a suitably Small e and can even be made 
to vanish completely by taking the limit e J. 0. 
However, if a > 0, then 6if(x) = g'(x/ea+l)/e ~ 
can become arbitrarily large and generally does 
not even exist for e .L 0. This shows that classical 
differentiation does not have the slightest flexi- 
bility with respect to small variations of the input 
data, which makes it useless for image analysis. 
Given the intrinsically finite resolution of any 
physical observation, it clearly makes no sense 
to use ill-posed operators that are extremely 
sensitive to infinitesimal input variations. 

It is not commonly appreciated that the re- 
striction to smooth functions does not help be- 
cause ill-posedness has nothing to do with the 
choice of a function space (i.e., the operands); 
it is an artefact of the operations. Therefore 
we need a modification of the differential op- 
erators and not a smoothing or regularisation of 
the image. In our opinion, there is no justi- 
fication for modifying the image data before 
the analysis (we will not question the image 
acquisition and reconstruction stages). When 
operationalised in the sense of Definition 2, the 
process of differentiation clearly becomes well 
posed. The inevitable price we have to pay for 
this is the extra scale degree of freedom. But 
this freedom truly makes sense if we recall the 

example of a spatially dithered halftone image, 
which appears smooth provided that we keep 
sufficient distance so as to be unable to resolve 
the binary picture elements. From the appar- 
ent smoothness of such an image when viewed 
from a distance, one should be inclined to take 
derivatives. The procedure for doing this is 
thus in some sense opposite to the usual one in 
mathematics. We have to resort to a sufficiently 
large inner scale instead of zooming in on an 
infinitesimal or zero-scale neighbourhood: local 
image structure is defined by virtue of a finite 
aperture of intrinsically variable extent. 

This physical solution to the ill-posedness 
problem is functionally the same as in a math- 
ematical construct, based on so-called tempered 
distributions, which are defined as functionals 
on a space S of smooth test functions (so-called 
Schwartz functions [37]). One could say that 
physical considerations severely constrain the ad- 
missible Schwartz functions to a two-parameter 
family G(., y; c 0 obtained by shifting (to base 
point y) and dilating (by scale factor or) a 
unique, smooth scaling function, the isotropic 

Gaussian [381: F(x) = (1/v/~D)e-X2/2 
~r-DF(rr-l(x -- y)) = G(x, y; a). The shifts and 
dilations account for a translation and scale- 
invariant distribution of local operators over the 
entire image domain. 

2.4 Completeness 

Completeness of the Gaussian family is reflected 
in the fact that, at least in principle, the for- 
mal limit limg_,~JN[¢](x; cr) for a given local 
neighbourhood (x; a) contains all the informa- 
tion needed for a reconstruction of the image in 
a full neighbourhood of (x; ~z) (by convergence 
of the local Taylor expansion). The attribute 
completeness thus relates to a single base point 
and a fixed inner scale. 

Completeness in this formal sense is not a 
physically relevant issue for any particular image 
(there is no image for which the entire Gaussian 
family makes sense) but is again a necessary a 
priori requirement since there is no a priori re- 
striction on the highest physically sensible order 
N (given any N, we can always think of an image 
for which the local N-jet makes accurate sense). 
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A physically meaningful relaxation of complete- 
ness in the strict sense is obtained by truncating 
at some small enough, physically sensible jet 
order N. Then, by definition, the N-truncated 
Gaussian family is complete on the equivalence 
class defined by the local N-jet. The necessity 
of truncation, induced by resolution limitations, 
implies that various local results ultimately have 
to be patched together into a global framework. 
This, however, is beyond the scope of the present 
paper. We refer to [36] for a qualitative insight 
into the complex problems that arise in the op- 
erationalisation of a global scheme. 

3 Cartesian Invariance 

3.1 Cartesian Tensors 

Recall that the indices we used in Definitions 1 
and 2 refer to some Cartesian coordinate sys- 
tem. However, both the Gaussian family and 
the local jet bundle should really be regarded as 
being coordinate-independent objects. It turns 
out that there is no need to modify these defini- 
tions if we interpret all indexed quantities Qia...i. 
as tensor components, i.e., components with re- 
spect to some Cartesian coordinate system of a 
truly Cartesian-invariant quantity Q. It is then 
silently assumed that an index does not relate 
to a specific realisation of Cartesian axes, but 
rather to a representation of the transformation 
group connecting all possible realisations, i.e., 
the Cartesian group. This group index conven- 
tion is quite common in physics and can easily 
be generalised to other (non-Cartesian) coor- 
dinate transformations. If the transformation 
group is not a subgroup of the Cartesian group, 
however, then this generalisation forces us to 
distinguish between so-called covariant and con- 
travariant tensors, the components of which are 
conventionally labeled by lower (covariant) and 
upper (contravariant) indices, respectively. 

The reason that we do not need to make the 
distinction between covariant and contravariant 
objects for the Cartesian group is the orthog- 
onality property [see appendix A, formula (5)]. 
To appreciate this co- versus contra-parlance, 
consider what happens to the image gradient 

Li on a linear transformation of a displacement 
vector ~'i = aijxj (SO a3 i = a:~l '~j) .  By the chain 

rule we have ~ L  = a~lL3. For a general group, 
this shows that x~ and L~ transform differently: 
xl is said to be a contravariant vector or con- 
travector (or simply vector), whereas Li is called 
a covariant vector or covector. To avoid con- 
fusion one then introduces covariant or lower 
and contravariant or upper indices, and so, e.g., 
xi becomes x i. As explained in section 1, there 
is no strict need for considering frames other 
than Cartesian frames if we restrict ourselves 
to a description of local features. Indeed, we 
observe that, by virtue of the orthogonality re- 
lation aj] 1 = a~j, covariance and contravariance 
boil down to the same thing in the Cartesian 
case (note that the subgroup of translations has 
no effect on tensor indices). Henceforth we 
will therefore use lower indices only. For read- 
ers who are not familiar with Cartesian tensor 
calculus or with our notational conventions, we 
have added an appendix in which we have sum- 
marised the basic definitions and results of this 
formalism; see appendix A. 

The purpose of tensor calculus is the coordi- 
nate independence of identities in group-index 
notation (see Claim 6 of appendix A). This is 
the reason that we speak of manifest invariance 
when using tensor identities. The indices used 
to denote the tensor components with respect 
to some Cartesian coordinate frame are usually 
symbolic in facilitating notational matters con- 
cerning tensor operations, such as contractions 
and multiplications. Although in principle we 
could manage perfectly well without the use of 
these indices (at the expense of having to raise 
the level of abstraction), the index notation has 
the additional benefit that it can be easily trans- 
ferred into any particular coordinate system. 
The advantage of this is twofold. Firstly, it 
is of practical convenience if we want to perform 
actual calculations on images, in which case we 
will have to single out a particular coordinate 
system (e.g., one aligned with the grid in the case 
of a rastered image). Secondly, it is of theoreti- 
cal convenience to be able to impose admissible 
constraints (i.e., constraints realisable through a 
Cartesian transformation) on the choice of axes 
in a manifest invariant way, without actually hav- 
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ing to go through cumbersome transformations 
for establishing that particular coordinate system 
explicitly, starting from a given one; only the ad- 
missibility must be checked. Such an admissible 
local coordinate choice is called a gauge choice, 
and the resulting coordinates are called gauge 
coordinates. We will see later on how this gauge 
fixing works and how it can greatly simplify the 
derivation of various geometric identities. 

3.2 Cartesian lnvariants 

We now turn to the question of how to construct 
(Cartesian) invariants. These are scalar quan- 
tities (0-tensors), associated with a single base 
point in the image and a given inner scale, that 
have coordinate-independent values. Because 
they are purely image induced, they constitute 
true local image descriptors. 

The elementary building blocks for construct- 
ing these invariants for a given image are pro- 
vided by the local N-jet. Assuming we have 
obtained the N-jet components Lir..i, for all 
p = 0 , . . . ,  N with respect to some Cartesian 
basis, we now discuss the rules for joining these 
building blocks so as to obtain invariants. 

Within the group-index formalism this is actu- 
ally very easy. Simply form any tensor product 
by multiplying tensor members of the N-jet, sup- 
plemented with the two constant tensors 5~ and 
e~r..iD, the Kronecker and the L~vi-Civita tensor, 
respectively (see Appendix A). Then perform 
a full contraction on its free indices (this, of 
course, requires an even number of free indices). 
The result is a polynomial invariant (or pseudo 
invariant, 2 if the product contains an odd num- 
ber of L6vi-Civita tensors). The proof of this is 
straightforward: if T~r.42, represents a 2n-tensor 
obtained in the above way (possibly after a rear- 
rangement of indices), then rilir..i~in transforms 

as 7"hh...~,~, = (z~)afi j lai lkl  " "  ai,j,~ ai.k,,TJlkr"J~k~ 
(in which the factor A, representing the de- 
terminant of a~j, i.e., 4-1, shows up when deal- 
ing with a pseudo tensor). But each product 
aim jr ~ aimk~ ( m  = 1, . . . ,  n) in this expression is just 
5j,~a~ by the orthogonality property of aij, and 
so the right-hand side simplifies to (A)Ti~ir..i,i~. 

This recipe may give us all polynomial 
(pseudo) invariants. Arbitrary invariants can 

now be obtained as functions of these polyno- 
mial ones. Of course, the number of polyno- 
mial N-jet invariants is (countably) infinite, even 
though we started out with only a finite number 
of degrees of freedom. Hence it is obvious that 
almost all of them are functions of a finite num- 
ber of basic invariants. This explains why the 
index notation for a given invariant is generally 
not unique. 

As an example of this, consider the determi- 
nant A = leij~klLikLjl of the Hessian matrix Li j  
in two dimensions. It is well known from the 
calculus of matrices that we can express this in 
terms of the traces of Lij and its square LikLkj. 
This is a result of the fact that a product of two 
e-tensors can be written in terms of 6-tensors 
only: eljekl = 6 i k @ -  6it6jk (similar relations 
hold in higher dimensions; see appendix A). 
So we have eljekz£,ikLjl = L i i L j j -  LijLji. The 
dependence between the e-tensor and the 5- 
tensor is a clear cause of the notational plu- 
rality. A less obvious example is the follow- 
ing one, also in two dimensions: LijLjkLki = 
3LiiLjkLkj - ½LiiLjjLkk (we will return to this 
reducibility property below). 

At this point an interesting question presents 
itself: can we single out a finite (preferably 
minimal) number of invariants that completely 
characterise the N-jet and in terms of which we 
can express all other invariants? The answer is 
affirmative; we will give a constructive proof of 
such a complete set later on. 

Less obvious is the existence, proved by 
Hilbert [21], of a finite set of polynomial, so- 
called irreducible invariants, which can be com- 
bined in a polynomial way to express all other 
polynomial invariants (see also [6], [71, [9]. Be- 
cause of the restriction to polynomials only, one 
has to take into account the existence of so- 
called syzygies, i.e., polynomial invariants that 
need to be supplemented to a minimal set but 
that are not independent of this. A detailed 
treatment of this is beyond the scope of this 
paper. However, as an illustration of Hilbert's 
theorem, we will give a set of irreducible poly- 
nomial invariants for the 2-jet, which holds in 
arbitrary dimensions. But first we will introduce 
a diagrammatic representation of our polynomial 
invariants, in the spirit of the Feynman diagrams 
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Z 

Lil...i~ 

in ~2 

il j l  

Sil...i,~ I Tjl...j,~ 

i2 j2 

Fig. 1. Diagrammatic representation of the local jet tensor 
Lil...in a s  a n  n-vertex. 

(~ij 

J i 

Fig. 2. Diagrammatic representation of the Kronecker ten- 
sor 61j. 

used in particle physics. This is a symbolic repre- 
sentation that allows one to quickly disentangle 
the various contractions and free indices in an 
N-jet tensor; it is especially beneficial for more 
complicated formulas. 

Let us now turn to the definition of a dia- 
gram. Consider the symmetric n-tensor Lir..i,. 
Diagrammatically, this tensor is represented by 
an n-vertex, i.e., a dot (representing the image 
L at a given base point and inner scale) with n 
external branches attached to it, one for each 
free index; see figure 1. The Kronecker ten- 
sor 6ij is represented by a line segment, the 
ends of which correspond to its two indices; 
see figure 2. The index symmetry of the tensors 
Lir..i, and 6i~ is manifest in these diagrams. The 
e-diagram, finally, must reflect the antisymmetric 
nature of the L6vi-Civita tensor, and its number 
of branches must equal the dimension of space. 
In the two dimensional 2-D case you could use 
a diagram similar to that for the Kronecker ten- 
sor (figure 2) with an extra internal arrow to 
reflect its orientation, say, pointing from index 
i to index j in e~. By convention, a reversal of 
internal flow then induces a relative minus sign. 
We will henceforth restrict ourselves to diagrams 
corresponding to absolute tensors only. 

Having defined these elementary pieces, we 
can formulate a "diagrammar" on the basis of 
the theorems of Cartesian tensor calculus. For 

Fig. 3. Tensor product S/r..imTjr..j,. The black disks rep- 
resent the objects S and T and may consist of arbitrary 
combinations of basic diagrams with m and n external 
branches, respectively. 

i••i1...jn-l i 

1 . . . im- l i  

i 1 m - 1  t i n - 1  

Fig. 4. Tensor contraction Tjr..jn_liSq...i,~_li 

example, we can form arbitrary tensor products 
by simply concatenating the individual diagrams, 
as in figure 3, or we can contract two indices 
of a tensor by joining the endpoints of two ex- 
ternal lines in the diagram, as in figure 4. In 
this way we can systematically form homoge- 
neous, polynomial N-jet invariants of degree H 
by forming closed combinations (i.e., without ex- 
ternal lines) of H image vertices, each of which 
has N external lines at the most. Some sim- 
ple examples taken from the 2-jet are given in 
figure 5, whereas figure 6 shows some higher- 
order diagrams. Note that 6ii = D is a con- 
stant (image-independent) invariant, diagram- 
matically denoted by a single, closed loop. 

The reader may verify the following relation- 
ship among the numbers of n-vertices, internal 
and external lines, and closed loops. 

PROPOSITION 1 (constraints on tensorial dia- 
grams). Let there be given a homogeneous 
polynomial (not necessarily connected) diagram 
with H = ~,~ Vn vertices, where V,~ is the num- 
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Fig. 5. Some basic polynomial 2-jet invariants: L, LiLi, 
LiLijLj, Lii, and LijLji, respectively. 

@ 
Fig. 6. Some higher-order invariants: LijkLijk, LiijLjkk, 
and LiijkLjuLkmLm. Note that for these more complicated 
invariants it becomes a cumbersome job to keep track of 
terms (let alone invariance!) if the Einstein convention is not 
used, even in the 2-D case: LiijkLfllLkmLm = (((((L . . . .  + 
Lx:~yu)(L~z + Lzyy)) + ((Lz~zy + L~yyy)(L~xy + Lyyy)))Lx~:) + 
( ( ( ( z ~  + z ~ y ) ( z ~  + z~yy)) + ((L~yy + Z~y~y)(L~y + 
L~y~)))L~y))L~ + (((((L . . . .  + L ~ ) ( Z ~  + Z~y))+ ( (Zx~  + 
n.~uuu)(L.~zy + nyyy)))L~y) + ((((Lxx~y + Lxyyy)(L~ + Lxyu)) + 
((L~yy+Lyyyy)(Lxxy+Lyyy)))Lyy))Ly. But even the number 
of indices in the condensed Einstein summation may be hard 
to keep track of in more cumbersome expressions. The 
diagrammatic representation is particularly convenient here: 
manifest invariance is a plain consequence of the fact that 
we have a closed diagram. 

ber of n-vertices, with E external and I internal 
lines and with C closed loops. Then for a 
tensorial diagram of rank E the following con- 
straints hold: 

{ C = 1 + I - H ,  

n nVn = E + 2I.  

In particular, we have E = 0 for an invariant 
diagram. 

The proof of the existence of a finite set 
of irreducible polynomial invariants, in terms of 
which all polynomial invariants can be expressed 
through multiplication and addition, is a nontriv- 
ial result due to Hilbert. Irreducibility means 
that none of the invariants in the set can be 
written as a polynomial of the other ones, but it 
does not  imply that they are independent, since 

there generally exist syzygies. A constructive 
proof is extremely difficult for the general case. 
If we restrict ourselves to the case of a 2-jet, 
however, we can state the following proposition. 

PROPOSITION 2 (complete set of irreducible 
polynomial 2-jet invariants). A complete and 
irreducible system of (absolute) polynomial 2- 
jet invariants in D dimensions without syzygies 
is given by all connected diagrams built out of 
0-, 1- and 2-vertices with at most D internal 
lines and no external lines. 

Note that figure 5 is just this irreducible set 
for the 2-D case. One recognises the familiar 
Laplacian Lii and Canny's "edge detector" LiLi  
[39], but these are put into a context of a com-  

plete local 2-jet description; together with the 
other three they unambiguously determine the 
image's local structure up to second order (in- 
clusive), modulo an arbitrary rotation. Figure 7 
shows an example of reducibility. A proof of 
Proposition 2 can be found in Appendix B. 

Finding irreducible sets of polynomial invari- 
ants is generally a difficult problem. However, 
there is a much simpler way to construct com- 
plete sets of invariants, albeit nonpolynomial, 
that at the same time captures all pseudo in- 
variants, viz, by using a system of gauge coor- 
dinates. We will demonstrate the idea by some 
explicit examples. 

Consider the 2-D case for the sake of simplic- 
ity. For a given base point we may introduce 
local Cartesian coordinates v and w, say, in 
such a way that Lv = 0. This gauge choice is 
always realisable through a suitable Cartesian 
transformation of an arbitrary Cartesian frame, 
and hence it is admissible. It establishes a frame 
in which the w-axis is tangent to the image gra- 
dient at the origin, and in which the v-axis is 
tangent to the isophote (i.e., a level curve in two 
dimensions and a level surface in three dimen- 
sions) at the origin. 3 We will agree on taking 
L~, = ~ and using a positively oriented, or- 
thonormal basis. Of course, the (v, w)-gauge is 
ill defined in points with vanishing gradient, but 
these points form a countable set, at least in a 
generic image. 

Now we can use the following (pseudo) in- 
variant differential operators (the notation is 
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Fig Z An example of reducibility that holds in two dimensions: Li jLjkL~i  = ~L~iLjkLkj  - 1L i iL j jLkk .  

self-explanatory). 

DEFINITION 3 ((pseudo) invariant differential 
operators in two dimensions). 

1 
O. - . - - - = e i j L j O ~ ,  

~/LkLk 
1 

O~- Lv/L-~kSijLjOi. 

It is understood that all derivatives L{ in this ex- 
pression are to be evaluated at the base point of 
interest, and hence they are considered constant. 

Note that v is a pseudo invariant and w an 
absolute invariant. Consequently, applying the 
first operator of Definition 3 an odd number of 
times will yield a pseudo invariant. 

Applying these directional differential opera- 
tors to an image will yield manifest invariants. It 
is then straightforward to write down a complete 
set of (pseudo) invariants. 

PROPOSITION 3 (complete set of (pseudo) in- 
variants in two dimensions). A complete set of 
(pseudo) invariants in two dimensions is given 
in (v, w)-gauge coordinates by the set 

{ O'~+nL } 
= O v m O w n  (m, n)~-(1, 0) 

in which the indices (m, n) run over all possible 
orders up to a desired jet order. 

For many lowest-order geometrical issues the 
vanishing of L~ may greatly facilitate theoretical 
manipulations without any loss of generality (for 
we can always use Definition 3 to recast expres- 
sions in (v, w)-gauge back to arbitrary coordi- 

nates). To illustrate this, we consider the Lapla- 
cian Lii .  We may decompose this Laplacian as 
Lii = L~v + L~w, showing that its zero cross- 
ings deviate from gradient extrema (edges and 
phantom edges corresponding to Lww = 0) by an 
amount determined by the invariant L~v. To give 
this a geometrical interpretation, consider the 
image's isophote passing through the base point 
of interest, (v, w) = (0, 0), i.e., the curve defined 
implicitly by L = Lo. Taking the (total) first- and 
second-order derivatives of this with respect to v 
yields Lww' + L~ = 0 (a prime denotes a deriva- 
tive d/dv) and L~, + 2L~,~w' + L~w'2 + L~,w " = O, 
from which we may solve for the intrinsic 
isophote properties w' = 0 and w" = -Lv~/L~, 
in the point of reference. But w" is just the 
isophote curvature r,, so that we have obtained 
the result that the Laplacian zero-crossings may 
correspond to edges (or phantom edges) only 
if the isophotes are locally sufficiently straight 
(relative to the inner scale): i i i  = L~w-  nL~. 
This well-known result merely serves as an il- 
lustration of the use of gauge coordinates tuned 
to a particular geometrical problem (see also 
[40]-[42]). 

Of course, other gauges are possible. If some- 
how second-order structure is emphasised, it 
may be beneficial to impose a gauge condition 
in which the mixed second-order derivative van- 
ishes, Lpq = 0, say. This gauge is admissible 
since it is always possible to diagonalise the 
symmetric Hessian Lij by a suitable rotation. 
We can then replace the set ~ in Proposition 3 
by the following set. 

PROPOSITION 4 (complete set of (pseudo) in- 
variants in two dimensions). A complete set of 
(pseudo) invariants in two dimensions is given 
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in (p, q)-gauge coordinates by the set 

7-[= OP mOqn (re, n)#(1, D 

in which the indices (m, n) run over all possible 
orders up to a desired jet order. 

Similar gauges apply to higher-dimensional 
cases, e.g., in three dimensions we may in- 
troduce gauge coordinates (u, v, w) by the 
gauge conditions L~ = L~ = L~v = 0 (L~ = 
~ ,  (u, v, w) positively oriented) or gauge 
coordinates (p, q, r) associated with a pure 
second-order gauge Lpq = Lp~ = Lq~ = 0. More 
generally, in a D-dimensional image we may 
introduce gauge coordinates (us . . . .  , up-l ,  w) 
by the D -  1 gauge conditions L,, = 0(a = 
1, . . . ,  D - 1) and the ½(D - 1)(D - 2) gauge 
conditions Luo,~ = 0(a # b = 1 , . . . , D - 1 ) ,  
making up a total of ½D(D - 1) equations, i.e., 
the same as for a system of gauge coordinates 
(Pl, . . . ,  PD) associated with a pure second-order 
gauge Lp~pi = O(i ¢ j = 1 , . . . ,  D). 

To illustrate the theoretical convenience of 
gauge coordinates once more, let us derive an 
expression for the isophote curvatures in the 
three-dimensional (3-D) case. In a 3-D image 
a generic isophote is a (closed) surface. The 
lowest-order deviation from its tangent plane at 
a given point can be expressed by two indepen- 
dent invariants, viz., the principal curvatures or, 
alternatively, the mean and the Gaussian curva- 
ture. Recall the 2-D case, for which the (single) 
isophote curvature ~ was given by ~ = - L ~ / L ~  
in the analogous (v, w)-gauge. For the 3-D case 
we can obtain a curve by taking a normal section 
of the isophote surface. Using the rotational 
degree of freedom around the surface normal 
(i.e., the gradient direction), we can measure its 
curvature as a function of the rotation angle, 
yielding the so-called Dupin's indicatrix. This is 
a cone representing the surface's normal curva- 
ture (or rather, the reciprocal of the square root 
of its absolute value) as a function of angle. The 
two axes of the indicatrix correspond to the prin- 
cipal directions, in which the normal curvatures 
reach extremal values: the principal curvatures. 
One can show that the u and v axes are tan- 
gent to the principal directions. If the surface 

is locally umbilical (i.e., if the two principal cur- 
vatures are equal) or if the gradient vanishes, 
the (u, v, w)-gauge is ill defined, but again for 
a generic image, this happens only at isolated 
points. Now it is clear from the 2-D case that 
in the (u, v, w)-gauge the principal curvatures 
are given by ~1 = -L~u/L~ and n2 = -Lvv/L,o, 
whereas the mean curvature h and Gaussian cur- 
vature k are given by their average and product, 
respectively: h = ½(~ + ~2), k = eq~;2. To ar- 
rive at the expression in a general Cartesian 
frame, simply write down a rational manifest 
invariant with the appropriate degrees of homo- 
geneity for its first- and second-order derivatives. 
One can make a guess-wi th  a modest amount 
of foresight-among the few simplest second- 
order invariants one can imagine that meet the 
appropriate homogeneity constraints 

1 LiLijLj - LILiLjj 
h = ( r k L k ) 3 / 2  , (2) 
k = -1 eijketmnLiLtLj~.Lkn (3) 

2 (LvLp) 2 

Indeed, evaluating the expressions in gauge co- 
ordinates significantly reduces the number of 
effective terms and precisely yields the expres- 
sions that hold in the (u, v, w)-gauge. By virtue 
of invariance, (2) and (3) apparently do repre- 
sent the mean and Gaussian curvatures in an 
arbitrary frame. Note that we did not even need 
to calculate the principal directions as such (this 
requires a more involved calculation; see [43]). 
The importance of isophote properties is under- 
lined by their invariance under a more general 
transformation group, viz., the product group of 
the Cartesian (spatial) group and the group of  
general intensity transformations [44], the latter 
one of which consists of all one-to-one image 
grey-value maps L ~ A(L) (gamma corrections, 
contrast and brightness adjustments, etc.). 

The reason for casting simple expressions, de- 
rived in a specific gauge, back to more complex 
ones that hold in arbitrary coordinate systems is 
a practical one: to be able to perform computer 
calculations on rastered images with respect to 
any user-defined Cartesian frame. We have 
already encountered many examples of differ- 
ential invariants that illustrate our main theory. 
In section 4 we present the results of applying 
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some of these, as well as some new ones, on 
test images. 

4 More Examples 

On the basis of our theory on differential invari- 
ants we have built a software implementation for 
calculating invariants. The main program is de- 
signed to parse an expression entered either in 
index notation, as in " L i j  * Lij",  or in gauge 
coordinates, as in "Lvv * L~f'2", and then to cal- 
culate these for a specified range of scales and 
a given input image. The result of the pars- 
ing stage is an executable invariant, which can 
be called with the given image as its operand. 
It manipulates (points to) the derivative images 
required for the invariant. These derivatives 
reside either in memory or on disk. They are 
obtained in Fourier space in the straightforward 
way, viz., by Fourier inversion of the product 
of the Fourier-transformed image and the ap- 
propriate Gaussian kernel, the latter of which is 
calculated directly in Fourier space (see Defini- 
tion 2). The advantage of this is the fact that dif- 
ferentiation becomes diagonal in Fourier space. 

The boundary problem may effectively be 
dealt with by a proper downsampling scheme, 
which establishes a grid for a a-scaled image 
with a voxel volume proportional to a D. The 
grid points may be taken to be the centers of 
a collection of compact a-neighbourhoods with 
a fixed relative overlap. We leave open the 
question of how to choose the proportional- 
ity constant k that defines the effective radius 
R = ka of these compact neighbourhoods (to 
constrain this scale-independent unknown is what 
the boundary problem actually boils down to). 
If such a grid is imposed, the boundary grid 
points are located a distance R away from the 
image outline. 

For the sake of presentation, we have not 
downsampled the images according to their in- 
ner scales. Accordingly, one must ignore the 
information in a boundary strip proportional 
to the inner scale of each image. With our 
Fourier-space technique this information is un- 
reliable because of the well-known wrap-around 
effect, but it should be appreciated that it is un- 

reliable with any other technique as well; there 
is no hope for extracting reliable spatial infor- 
mation at inner scale a in such a boundary strip 
(without the use of a priori knowledge). 

The 2-D test images are shown in figure 8, 
and some examples of first, second, third, and 
fourth order generated in this way are shown 
in figures 9-13, respectively. The input im- 
ages for figures 9-12 were created artificially as 
binary-valued grey-level images (see figure 8) 
and were distorted by a fair amount of ad- 
ditive, pixel-uncorrelated Gaussian noise before 
the evaluation of the invariants. Figure 13 shows 
an example of an invariant for a typical 2-D slice 
(for the sake of presentation) taken from a 3-D 
medical data set, i.e. an MRI image. 

The figure captions contain all case-specific 
details. 

5. Conclusion and Discussion 

We have proposed a theory for the systematic 
study of local image structure based on tensor 
calculus and differential invariants. We have 
defined a simple diagrammar for a pictorial 
representation of tensors and invariants. This 
allows one to immediately grasp the manifest 
invariant structure of such objects without the 
need for dummy indices or an explicit choice of 
gauge. A significant part of the well-established 
mathematical results on differential-algebraic 
or geometric-invariants has been made oper- 
ational by the introduction of well-posed scale- 
space differential operators. High-order differ- 
ential structure of an image can be revealed 
despite noise or discretisation artefacts, the cri- 
teria of practical interest being the ratio of pixel 
scale or noise correlation width to the inner scale 
of differentiation, the ratio of inner scale to the 
scale of the image's field of view, and the rela- 
tive grey-level resolution or noise characteristics. 
All of these factors contribute to the quality of 
image derivatives. A quantification of this no- 
tion of quality that takes into account all of 
these trade-offs is still missing, although a par- 
tial solution has been given by Blom [41], who 
studied the behaviour of the scale-space differen- 
tial operators in the presence of additive (both 
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I 
Fig. 8. The 2-D test images used in the examples, before noise perturbation. From Ieft to right: a straight step edge, a filled 
polygon with 16 corners, an inflected step edge, and a checkerboard pattern. Image dimensions: 256 by 256 pixels. 

Fig. 9. A first-order differential invariant calculated for an artificially created 2-D test image showing a binary step edge of 
199 arbitrary units, perturbed by additive, pixel-uncorrelated Gaussian noise with a standard deviation of 309 units. The left 
image is the input image used. The other images show the invariant L,~ = ~ for a triple of scales In e = 1, 2, 3,. As 
can be seen, with this kind of noise the edge is well represented only at sufficiently !~ ge scales. 

Fig. 10. The invariant -LvvL~ = LiLI jLj -  LiLILjj calculated for a polygon with 16 corners. The input image shown 
on the left was created as a binary test image with an intensity difference of 109 units, which was then perturbed by 
adding pixel-uncorrelated Gaussian noise with a standard deviation of 199 units. This invariant expresses a shear-invariant 
trade-off between edge-strength (the factor L 3) and isophote curvature (the factor -L~v/Lw) and therefore could be called 
"corner-strength." For an in-depth discussion of this invariant the reader is referred to [41]. Scales: lna  = ½, ~, ~. A 
further increase of scale (not shown here) would make the 16 corners merge together along the disk boundal)', creating a 
circumference of more or less uniform corner strength, corresponding to the uniform isophote curvature and edge strength 
at the boundary of the approximating disk that survives at those levels of scales. This phenomenon, by the way, i.e., the 
small-scale existence of the individual corners in this example, qualitatively accounts for the fact that a further increase of 
noise would make the corners inaccessible at any scale. 
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Fig. 11. The invariant L ~ , L ~  - 3L ,~L ,~L  4, or 3(LyyL 2 - 2LyL~Lxu + L~L~)(LuLuyL~ - L~L~y + L;L~y - LyL~Lxx)  - (L2u + 

L~)(LyyyL~2 3 _ 3LyL~L~y2 + 3 L 2 L x L ~ y  - L 3 L ~ ) ,  calculated for a noise-perturbed, inflected step edge. The input image shown 
on the left was created as a binary test image with an intensity difference of 100 units, which was then perturbed by adding 
pixel uncorrelated Gaussian noise with a standard deviation of 150 units. This third-order invariant measures a trade-off 
between edge strength (the factor L 6) and rate of change of isophote curvature along the isophote (the remainder) and 
therefore could be called "inflexion strength." Scales: In a = 3, 5, 7. 

pixel-correlated and pixel-uncorrelated) Gaus- 
sian noise as a function of scale. 

Many of the classical operators used in com- 
puter vision, such as Canny's "edge detector" 
and the familiar Laplacian zero-crossings, are 
nicely embedded into the theory, being based on 
the few simplest differential invariants of lowest 
orders. Note that these kinds of operators de- 
fine structures (such as edges and zero crossings) 
i.e., these structures can be identified only by 
virtue of their defining operators. A complete 
description of local image structure (up to some 
order), e.g., given in terms of a complete set of 
invariants, is the preferred w a y - n o t  ad hoc by 
virtue of completeness- to  extract input data for 
further processing in high-level image routines. 

Appendix A: Cartesian Tensors 

In this appendix we review some basic defini- 
tions and results from Cartesian tensor calculus 
(for an easy introduction, also [47], [48]). A 
Cartesian transformation in a (real) Cartesian 
D-dimensional space V D is defined by a trans- 
lation and an orthogonal transformation of the 
Cartesian coordinates of vD: 

"~ = aijxj + bi, (4) 

with alj satisfying the orthogonality constraint. 

a k l a k j  = a l k a j k  = 6i j .  (5) 

Here, and in all that follows, all Latin indices 
run from 1 to D and the Einstein summation 
convention is in effect, i.e., repeated indices in 
a tensor product imply a summation over all 

_ de f - -  D 
possible values: :/~i = ).Si=l Ti~. Furthermore, 
6ij is the Kronecker symbol defined as usual: 
61~ = 1 if i = j and 61s = 0 otherwise. Inversion 
of (4), by using (5), yields 

xi = aji('~j - hi), (6) 

and so we have 

O'~i Ozi 
Oxj aij, O'~j aji. (7) 

A Cartesian p-tensor can be defined with re- 
spect to some arbitrary Cartesian coordinate sys- 
tem as a DP-tuple of real numbers C~1...~ p with a 
particular transformation property, given in the 
following definition. 

DEFINITION 4. A DP-tuple of real numbers 
Ci~...ip is called a (Cartesian) tensor of rank p 
(or p-tensor) if a Cartesian coordinate trans- 
formation • ~ = aijxj + bi induces the following 
transformation of its components: 

~,...i~ = % J l " "  %J~Cjl...J~" (8) 

In particular, we distinguish a 0-tensor, or 
scalar, and a 1-tensor, or vector (since we 
are only interested in Cartesian tensors, we 
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1 Fig. 12. The  pure four th-order  invariant. D = - I  3 + 27J  2 with I = ½LiijjLkklz -- LiljkLjktt  + 1LijklLi jkl  and J = gLii£~ 
1 1 1 LkkllLmmnn -- g LiljjLklmnLkZrnn -- "~ Liij jLkklmLlmn n + "~ LiijkLjklmLhnnn , or D = - l ( L ~ L ~ y ~ y  -4L~x~yL~yyy + 3Lx~yyL~zyy) 3 

+27(L . . . .  (L~xyyLyyyy - L~yyyLxyyy) - Lxzxy(Lx~:zyLyyyy - LxxyyL~yyy) + L~xyy(LxzzyLxyyu - LzxyyL~yy) )  2, calculated for a 
checkerboard pattern.  The  input image shown on the left was created as a binary test image with an intensity difference 
of 100 units, which was then per turbed  by adding pixel-uncorrelated Gaussian noise with a s tandard deviation of 300 units. 
Scales: In a = ~, ~, ~. This invariant expresses an algebraic property of a fourth-order  binary form f ( x ) =  .~L i j k tX ,X jxkx t  and 
is called the (fourth-order)  discriminant. It is a well-known invariant in the mathematical  l i terature on algebraic invariants, 
usually expressed in a bracket  formalism in terms of  so-called transvectants. For a more  detailed description of this the 
reader  is referred to [15]. Note  that  despite the high amount  of noise this fourth-order  property is well represented at an 
appropr ia te  scale. 

will henceforth omit the adjective "Cartesian"). 
If the Cil...i, are functions of the coordinates 
x = (Xl, . . . ,  xD), then we call Ch...i,(x ) a tensor 
field (and, in particular, a scalar field if p = 0 
and a vector field if p = 1). 

A tensor Aij is called symmetric with respect to 
i and j if Aij = A~i, and it is called antisymmetric 
to / and j if Aij = -A j i .  The generalisation to 
arbitrary p-tensors is obvious. 

Readers may convince themselves that the 
Kronecker symbol defined above defines an in- 
variant tensor with constant components, justi- 
fying the following suggestive index notation. 

CLAIM 1 (Kronecker tensor). The Kronecker 
symbol 6# is an invariant, symmetric tensor. 

The Kronecker tensor is also often referred to 
as the fundamental tensor. 

DEFINITION 5 (contraction). A contraction is 
an operation that reduces a p-tensor (p _> 2) to a 
(p-2)-tensor by equating (and hence, by conven- 
tion, summing over) a pair of free indices. So if 
Aia..% is a p-tensor, then a contraction o n  i j  and 
ik(1 <_ j < k <_ p) yields Aiw.ij_llij+v..ik_liik+w.ip. 

By transforming a contracted tensor according 

to (8) and using the orthogonality constraint (5) 
it is shown that a contracted tensor is indeed 
a tensor. 

An important observation is the following. 

CLAIM 2. The nth order partial differential 
operator O~/OXil . . .  Ozi, formally transforms as 
an n-tensor. 

This property is unique to the Cartesian group 
and is easily proved by performing a Cartesian 
coordinate transformation in which the chain 
rule and the orthogonality property are used (5). 

Of course, the nth-order partial differential 
operator in Claim 2 is the formal product of n 
first-order (gradient) operators. In general we 
have the following claim. 

CLAIM 3. If Air..ip and Bil...iq are Cartesian 
p- and q-tensors, respectively, then the tensor 
product, defined by 

Piv..i,+~ = Ail...i, Bi,+,...i~+q, 

is a (p + q)-tensor. 

The proof is again based on straightforward 
transformation. In a similar way we may prove 
the following tensor properties. 
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Fig. 13. The second-order invariant -Lo~ (right image) calculated for the 256 x 256 MRI image shown on the left at scale 
In tr = 2 (with ~r given in pixel units). This invariant is a measure of the rate of change of the image gradient direction along 
the isophote (to see this, just note that isophote curvature equals n = -L,~/Lw, as explained in the text, so that -Lvv = ~Lw 
is the isophote curvature weighted by the gradient magnitude). For this reason it can be used to find ridgelike structures in 
the image. This invariant and a 3-D generalisation of it have been applied successfully for matching CT and MRI data; see 
[451, [461. 

CLAIM 4. If Air-i, and B~I...~ ' are Cartesian 
p-tensors, then so is any linear combination 
Cir.% = AAfi..% + #Bfi...ip in which A and /z 
are scalars. 

CLAIM 5. Symmetry (antisymmetry) is pre- 
served under Cartesian coordinate transforma- 

A..de=fA . . . . . . . .  tions, i.e., if ~;- ~,...~i_~j÷r..~k_~j~k+r..~, then 

Aid = (-)Aj~ implies that also Xij = ( - )Xj i .  

CLAIM 6. The validity of a tensor equation 
in all Cartesian coordinate systems follows from 
the following lemma: if Air..i, = 0, then also 

74i,...i, = O. 

Put differently: if Aq...i~ = Bfi...i;, then also 

A~l...i, = ~i,...i~. 
A useful generalisation of tensor calculus also 

comprises so-called pseudo tensors (sometimes 
called tensor densities or relative tensors). 

DEFINITION 6. A DP-tuple of real num- 
bers Uir% is called a pseudo tensor of rank 

p if a Cartesian coordinate transformation ~'i = 
aijzj + b~ induces the following transformation 
of its components: 

Uir.'i, = aa i l j l " ' "  aipj, Ujr..jp, (9) 

in which A = 4-1 is the determinant of the 
orthogonal matrix aij. 

An important invariant pseudo tensor is given 
by the L~vi-Civita tensor (the attribute "pseudo" 
is often omitted). It is defined by normalising 

def 
one of its components to unity, el...D = 1, and 
fixing the other D D - 1 components by requiring 
it to be completely antisymmetric with respect 
to any pair of indices. In other words, eir..i o 
equals the sign of the permutation of the indices 
(i1""iD).  The following claim shows that this 
is indeed a good definition. 

CLAIM 7 (L4vi-Civita pseudo tensor). The com- 
pletely antisymmetric L6vi-Civita symbol elr..iD, 

def_ 
defined uniquely by the normalisation el...o = 1, 
is an invariant pseudo tensor. 



The proof of this is perhaps somewhat less 
obvious than those of all previous claims, 
and so we will present it here: transform 
the single independent component gl...D = 
A a l i  1 ' ' ' ao iDe l r . . iD  = A 2 = 1 (by definition 
of the determinant of a¢j). Since antisym- 
metry is preserved, this means that we have 
gil...io = eiw.io, which completes the proof. Note 
that the L6vi-Civita symbol is well defined as 
a true tensor if we consider the Cartesian sub- 
group connected to the identity, for which we 
always have A = 1. Apparently a pseudo tensor 
describes an object that has an intrinsic orien- 
tation (like a left or right hand). 

The following are some useful and easily ver- 
ifiable results relating to pseudo tensors. 

CLAIM 8. Let A denote a true tensor, and 
let U and V denote pseudo tensors. Then the 
following results hold: 

Cartesian Differential Invariants in Scale-Space 343 

This determinant is an n!-sum of n-products 
of the fundamental Kronecker tensor, and so it 
indeed defines a tensor of rank 2n. By defini- 
tion, this tensor is antisymmetric with respect to 
its first n indices, as well as with respect to its 
last n indices. For n = 0 we define 6 = A = 1, 
and for n = 1 we indeed regain the familiar 
Kronecker tensor. 

Particularly useful pseudo tensors are obtained 
by forming products of a true tensor and the 
L6vi-Civita pseudo tensor. A full contraction 
of a D-tensor onto the ~-tensor is also called 
an alternation. A full contraction of all indices 
in a tensor yields an invariant (which is pseudo 
if and only if the number of e-tensors involved 
is odd). 

According to Claim 8 the product of two 
pseudo tensors is a true tensor, and so the prod- 
uct of two constant e-tensors apparently yields a 
constant true tensor. It can be shown that any 
constant true tensor can be written as a lin- 
ear combination of products of the fundamental 
6-tensor. Indeed, we have the following result. 

D E F I N I T I O N  7. The generalised Kronecker ten- 
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permutations of (1, . . . ,  D) survive, and we 
may reorder them in such a way that the 
first n indices address the actual matrix ele- 
ments of  A,r..u.;vr.., ~. To this end we con- 
sider all permutations (kl, . . . ,  kD) of (1, . . . ,  D) 
such that the n-tuple (c%, . . . ,  a~.) and the 
( D -  n)-tuple (ak~+l, . . . ,  a~v) are permuta- 
tions of  ( 1 , . . . ,  n) and (n + 1 , . . . ,  D), re- 
spectively. If we take into account a com- 
binatorial factor, counting the various possi- 
bilities to choose this index separation (all of 
which give equal contributions), we may assume 
that the indices a ~ , , . . . ,  ak~ and / ~ k l , ' " ,  /~k. 
index the actual matrix elements of  the 
block Au~ ..... ~.;,~ ..... ,., whereas c%÷,, . . . ,  ak.  and 
3k.+1, . . . ,  3k, index the identity block. In other 

D] = 
w o r d s ,  (~l~l.. .t~n;i/1..,vn)Otki~kl = (A~r..~,.:~,...~.)~,/~,, 
5~%,a, ,, for the first n subindices i = 1 , . . . ,  n, 

D] 
a n d  ( ~J~l...iZn;Vl...vn)Otkiflki = 60tkiflki, for the last D - n  
indices i = n + 1, . . . ,  D. This leads to the fol- 
lowing expression: 

d /'; [DI 
e t-/-I-/t I .../Zn;b, 1 ...k' n - - ' •  ~Otkl • ..OtkD 

× ~ f l h  ""3kD tS#.k 1VZ~l " " " 

x 6, vo 6ak ~k " ' "  
t~kn PI~ n+l ~ n+l 

X 6aeD 3kD ' 

or, on a relabeling of dummy contraction indices, 

d .~[D] el m...p,;v~...v, - 
1 

nl(D - n)! ~Otkl'''~kn)q'''/~D-n 

X ~flkl...flkn "~I'""~D-n ~tQXkl Vflk 1 " " " 

X ~l~,~k, ~ vok, ' . 

For a given n-tuple ( k l ,  . . . ,  k n )  there are n! 
equally contributing terms in this expression 
(corresponding to all permutations of this n- 
tuple), and so we may finally rewrite this ex- 
pression as 

d.  ~[D] etAm"t~.;vr"v. - - -  
1 

(D - n)f e ' ' ' ' ' "xr ' '~-"  

X ~VI.,.VnAI...)~D_n. 

Since det  A~,r..u.;vr..v , = det ~[D] m...~;vr..vn, we 
have completed the proof  of  Claim 9. 

Appendix B: Proof  of  Irreducibility 

In this appendix we give a proof  of the ir- 
reducibility of the system of polynomial in- 
variants given in Proposition 2, i.e., the 
set {L, S o , . . . ,  SD_I, / 1 , . . . ,  I D } ,  with S~ = 
LitLhi2Li2i3"'L~i,+iLi~+~ and I,~ = Lili2Li2is... 
Lij~ (both Sn and In contain n 2-vertices). Note  
that all connected polynomial diagrams are of 
the form L, Sn, or In for some n = 0, 1, 2, . . . .  

We will first consider a system with 2-vertices 
only and show that all In for n > D are re- 
ducible. Then we will turn to the general case, 
first by including the Sn and showing their re- 
ducibility for n > D - 1, and then by extending 
it with the trivial zeroth-order member  L. 

B.I Irreducible System for {Lij} 

We concentrate on the second-order system 
{Li;}. Consider the following definitions (see 
also Definition 7). 

DEFINITION 9. 

L I ; ]  d e f r  / - . .  
= Oi l ' " i k i ; j l " . j k j " -~ i l J  1 " " ' Likjk, 

xlk] def ~ ,. 
= Oi l . . . i k ;J l " . j k l~ i l J l  " " " i i k J k "  

By developing the (k + 1) x (k + 1) determinant 
underlying the generalised Kronecker  tensor of 
rank k + 1 in the first definition (see Definition 7) 
with respect to the last column into k × k deter- 
minants, one may derive the following identity: 

= ~ r [ k - l ]  r LI; l 6ij xtkl - '~'i,~ ~,J" (10) 

By induction we then have 

k 

(11) L!k.] _-- --7, 3 

i = 1  

and since, by construction, the generalised Kro- 
necker tensor of rank D + 1 vanishes identically, 
we have found the Hamilton-Cayley identity: 

] = 0 ( 1 2 )  

The left-hand side of (12) is a polynomial of or- 
der D in the Hessian Lij. This so-called "char- 
acteristic polynomial" has D (generally distinct) 
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roots An, n = 1, . . . ,  D, the eigenvalues of the 
Hessian, which are functions of the invariants 
XN. These D invariants correspond to the D 
independent degrees of freedom of L~j. Instead 
of X[,d (or ~,) we may use the traces I,, which 
completes the proof of the irreducibility of the 
se t  { I I ,  " - ,  ID}. 

B.2 Irreducible System for {L, Li, Lij} 

The irreducibility of the set {So, . . . ,  SD-1, 
I1 . . . .  , ID} associated with the first- and second- 
order tensors {Li, Lij} could be proved in a way 
similar to that the for the second-order case. 
However, it is more economical to proceed dif- 
ferently, by using previous results. 

We introduce two independent parameters 
A and # and consider the following symmetric 
2-tensor. 

DEFINITION 10. 

Hij(A, #) ae~ AL~Lj + I.Liij. 

We can use Hij(A, #) to form polynomial in- 
variants similar to those for the Hessian L~j. 

DEFINITION 11. 

On expanding this product we find 

n-1 

k=0 
(13) 

Since {~(A, #), ...,/ 'D(A, #)} is an irreducible 
system for the system {H/j(,~, #)} involving only 
the sets {So, . . . ,  SD-1} and {/1, . . . ,  ID), we 
conclude that these two sets are sufficient for 
constructing any mixed first- and second-order 
polynomial invariant. That they are also nec- 
essary follows by a simple counting argument: 
there are exactly 2D independent invariant de- 
grees of freedom in {Li, Lij} (which is obvious 
in a coordinate system in which the Hessian 
is diagonal). 

By including the independent, zeroth-order 
image value L we have finally proved the ir- 
reducibility of {L, So , . . . ,  SD-1, I1 . . . .  , ID} for 

the case of the 2-jet tensors {L, Li, Lij}, which 
completes the proof of Proposition 2. 
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Notes 

1, 

2. 

3. 

We always include the zeroth-order derivative. 

We sometimes omit the attribute "pseudo" and loosely 
speak of "invariants" and "tensors." If necessary, the 
attribute "absolute" is used to exclude pseudo invariants 
and tensors explicitly. 

So the (v, w) coordinates serve as Cartesian coordinates 
of a tangent space attached to the given base point, 
which is defined as the product space of the isophote 
and gradient tangent spaces at that point. Since we are 
interested only in local properties defined at the origin 
of this tangent space, the construction of this Cartesian 
frame does not serve to derive approximate results but 
really yields exact results. The price we have to pay for 
its simplicity is that we are bound to a given base point 
(the origin of the local frame). If one is interested in 
multilocal properties, it is inevitable that one either relate 
the Cartesian frames attached to neighbouring points 
(by Cartan's method of moving frame fields) or introduce 
curvilinear coordinates that parameterise a full spatial 
neighbourhood instead of our local frame coordinates. 
Both methods establish a so-called connection, i.e., an 
orthogonal and a metrical connection, respectively. We 
will not elaborate on this but will just point out a potential 
cause of confusion that may arise from the fact that 
similar notations are encountered in the literature for 
these totally different kinds of coordinatisations. 
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