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Abstract. We extend the Jost-Schroer theorem to zero-mass fields in one time- 
dimension and arbitrarily many space-dimensions. 

Recently, some work has been devoted to free zero-mass fields [1, 2]. 
I t  might be useful to have a simple criterion for a field to be a free zero- 
mass field. We shall give such a criterion for the sake of simplicity for 
a neutral scalar field, though similar criteria can readily be obtained in 
the more general ease of fields transforming according to a finite dimen- 
sional representation of the Lorentz group. 

Theorem ( J e s t  and SCHROZR [3]). I[ ¢ (X) is a hermitian scalar local 
field, relatively local to a set o/ fields /or which the unique vacuum ~ is 
cyclic, and i/ 

1 + 
(~, ¢ (x) ¢ (y) ~) = ~- ~(~)(x - y ,  o )  

then ¢ (x) is a/ree zero-mass field. 
F~s t ,  we shall prove this theorem for n space-dimensions with n ~ 2. 

The case n = 1 will be t reated separately. 

Proo/. We define ](x) = -ax02 ~-~'1 ~ )  ¢ (x). From the assumed 

structure of the 2 point function it follows ~hat ](x) annihilates the 
vacuum. We then apply the Johnson-Federbush theorem [4] and eonlude 
tha t  ] (x) = 0. 

I t  remains to be sho~'n tha t  [¢ (x), ¢ (y)] is a c-number. Again because 
of the Johr~son-Federbush theorem it is sufficient to prove 

1 - 0) / ~ = 0 [¢(x), ¢(y)] - --(A(~) (x y, 
2 

i.e. 
(Q, [¢(xl), ¢(x~)] [¢(~3), ¢(~)] ~) 

= (9, [¢(x~), ¢(x~)] ~) (~, [¢(~), ¢(x~)] ~).  
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Moreover, as a consequence of the  positive definiteness condition, 
integrat ion of 

I~ (Pl, P~, Pa) = Fourier- t ransform of 

{ ( x l + x ~  x 3 + x ,  ) 
W x 1 - x2, 2 2 ' x a -  xa 

= (~ ,  [¢(xl) ,  ¢(x~)] [¢(x~), ¢(x~)] ~9)} 

over Pl and P3 with test  functions C ~ will give a measure in p~. We 
have assumed t h a t  ~ is the  only eigenstate belonging to  the  eigenvalue 0 
of the energy m o m e n t u m  operator.  Therefore, it will suffice to prove 
t h a t  the  support  of l~ (Pl, Pc, Pa) is concentra ted  in p~ ----- O. F r o m  the  
spectrum condition we know t h a t  

SUpp ]ff~7 (Pl, P2, P3) < {Pl, P2, P3 / p22 ~ 0, P20 ~---- 0} 

i.e. I~ (Pl, P~, P3) = 0 unless p~ lies in or on the  forward cone. 

k .  l =  k o . l o -  ~ ]c i . lt , k 2 =  k .  ]c , k =  (k 1 . . . . .  Ion). 
i = l  

I n  the first step, we show tha t  

supp V~(pl, p~, P3)C {P ,  p2, pa/  p~ = O, P~o > 0},  

i.e. W (Pl, P~, P3) = 0 unless P2 lies on the  forward cone. 
F r o m  ](x) = 0 it follows tha t  

supp l~ (Pl, P2, P3) C {Pl, P2, Pa / Pl" P2 = 0, 

p2 ± P~ 
1 T - 4 -  = 0 ,p2"  pa = 0, 

p~ t - i - =  0 ,p~  > 0 ,p~  o > 0 . 

We now smear l?f (Pl, P2, Pa) in P2 with a test  funct ion ~5 E N t h a t  
has (compact) suppor t  in 

I?+ = {p, / P2o > 0, p~ > 0} to obtain  Wv(pl, P3). 

Then we notice t h a t  suppV~v(pl , Ps) is compact .  Consequently,  
W~ (x a --  x 2, x 3 --  x4) is an  analyt ic  funct ion of its variables, vanishing 
because of locality for (x a - x2) z < 0 or (x a - x4) z < 0. Therefore 

W~(xl - x~, x3 - x4) ~ 0 .  

This ident i ty  is t rue  for all test  funct ion v/6  ~e = ~ : suppv~(  1~+. 
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That  implies 

supp V~ (p .  p~, Ps) 

{ ~ ,  ~ ,  ~ / ~ = o,  p~o >-- o ,  p~.  p~ = p~ .  p~ = o o p~ = ~ = o} 

= { ~ ,  p~, p~ / p~ = o ,  p l  = p~ = o}  

kJ {~91, P i ,  P3 / ~ 92 = 0 ,  p0 > 0,  Pl  = ~P2, P3 = [M'P2, 

- o o < ~ < + o o , - o ~ < # < +  ~ } .  

In the second and final step of this proof we show that  indeed 

supp 15" (Pl, P~, Pa) C (Pl, P~, P3 / P~ = 0}. 

For  that,  we choose a test function ~ E 2 : supp ~ (p~) is concentrated 
around some arbitrary point P2 on the forward cone with p~ = 0, p0 > 0, 
(P2 = 0} ~ supp~ (p~). In addition, we take an arbitrary test function 
]1 ~ ~ (R1) and form 

t~'1,,v(Pl, Ps) ---- f dPlo f dp~ TI(Pl0) ~(P2) ~r(Pl, P2, P3)" 

ItzI~,v(Pl, Pa) is a tempered distribution which, because of locality, after 
integration over Pa with a test function ~ 5f gives a C°°-function in P r  
Therefore, the restriction to an arbitrary fixed vector ql :~ 0; Pl : ql 
exists [5] and defines a tempered distribution q~ Wl~,v(pa) in Pa. 

The Fourier-transform of W~,v(pa), i.e. W~v,(x a - x4), vanishes for 
(x a - x a ) ~ <  0. Again we choose an arbitrary test function /a ~ ~(R1) 
and form W q~ t ~ ~ = f d Pa o Ta (Pa o) VV~ ~, v (Pa), which is a Coo-func4ion in 
Pa. However, since the support of I?(~v,t,(pu) is concentrated on the line 
Pa = ~ql, we run into a contradiction (for n ~ 2 only) unless 

$~:~ , l . (P~)  ~ 0 .  

Apart from the constraint ql :~ 0, the vector ql is arbitrary. Thus we 
obtain 

17VI~.~,I,(Pl, P3) = f dPlo f dp~ f dpao [1 (P~o) (v (P2) [a (Pao) ~ (P~, P~, Pa) ~ 0 

in (Pl, Pa / P~ =~ 0}. 
From the continuity of l?V],v,]~(p~,pa ) in both variables (a conse- 

quence of locality) we infer 

I~t~,v,t.(Pl, Pa) ----- 0 for M1 p~, Pa ,  

and recalling that  ]1 and f~ were arbitrary test functions ~ df (R~), we 
conclude tha t  

I~'~(p~, i0s) ------ 0 for all ~ ~ with {p~ = 0} ~ suppv:)(p~) 
i.e. 

supp I?V (Pl, P~, Pa) ~ {P~, P,., Pa / P~ = 0, p~ = p~ = 0}. q.e.d. 
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I n  the second pa r t  of this contr ibut ion we shall prove the  theorem 
for one t ime and  one space dimension. This case is of some interest for 
field theoretic models. Many of those t h a t  are explicit ly soluable are 
models in one t ime and  one space dimension. I t  is well known [6] t ha t  
in two-dimensional  space-time no free scalar field of mass zero exists if 
one imposes on it the usual requirements of qua n tum field theory,  
especially the  positive definiteness condition. Thus care is needed here. 

To begin with, we shall prove the following lemma. 
Lemma.  I / ] ,  (x) is a hermitian local vector field in one time and one 

space dimension, relatively local to a set o] fields /or which the unique 
vacuum ~ is cyclic, and i[ 

(~?, j,,(x) ],(y) ~ )  = 1 ao 
~- ax~Oy" A(1)(x - y, O) 

then j,.(x) is a/ree zero-mass vector field with 

div](x) = O, curl] (x) = O. 

Pro@ F r o m  the assumed structure of the 2 point  funct ion we obtain 
at  once t h a t  

I ld iv i (x )  ~ll ~ = o and ][curlj(x) 9t1 ~ = 0 
i.e. 

div j (x) t9 = 0 and curl ] (x) ~2 = 0 . 

The Johnson-Federbush  theorem implies t h a t  

d iv  j(x) = 0 and  curl j(x) = O, 

and t h a t  gives immedia te ly  

( a  ~ a~) 
a~o~ ~ , ~  j~(x)  = o .  

We define 

i+ (x) = ]0(x) + Jl ( x ) ,  

i_  (x) = J0 (x) - h (x ) .  

The proof of the lemma will be established if we can show t h a t  the 
commuta tors  [j~,(x), j~,(y)] are c-numbers (al = ÷ or --, i = 1, 2). Once 
more, because of the Johnson-Federbush  theorem it suffices to prove tha t  

(~ ,  [L,(xl), j ,Jx~) ] [j,,(x3), ],,(x~)] ~ )  

= (~, b,,,(~), i~,,(=~.)] #) (9, [j,,,(x~), j,,,(x,,)] 9) 
We introduce new coordinates x+ and  x -  

x + = x  e - I - x  1 ,  x - =  x o - x  x .  

I n  these new coordinates div ] (x) = 0 and curl j (x) = 0 read 
a O 

ax- ?'+(x+, x-) = 0 and -0~-]_(x +, x-)  = 0 .  

15 Commun.math.Phys.,Vol. 12 
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Now we consider 

if?, [j~l(xl), joo(x2) ] t?) 
and  

(£2, [/oJxl), i~(x2)] [/~(x3), j~l(x~)] t?) .  
The differential equat ions imply  t h a t  these dis tr ibut ions depend only on 
x~', x~' and x~ ~, x~ ~, x~ ~, x~ 1 rsp., i.e. 

if2, [i~(xl), ~'~(x~)] ~2) = W ~ o ( x ~ ' ,  x~)  
and 

if2, [j~ (x~), j~&~)] [j~o (x~), j ~  (x~) ] 9 )  = t~ o~ oo ~o o~ ~'x~l , x~ ,  x°~ , x~)  . 

I t  follows f rom ~ranslation invar iance  t h a t  for  all real a% a ~ 

W~I ~ (xT', xg *) = W~ ~ (x7 ~ + a% ~ °  + a ~0) 
and 

W ~x ~ x ~ x ~, x~,) a~a~a~alk 1 ~ 2~ 3 ,  

= W /x~, xg~ xg' xg' a ~') ~o,~oo,~ 1 + a% + a% + a °', + . 
For  (r I 4= ~e this means  t h a t  

(t2, [j..(~,), jo.(x.)] t2) 
is a consSant and  

depends only upon  x~' - x~ ~ and xg ~ - xg'. The  locali ty condit ion then  
requires bo th  

(D, [j~(x~), ]~,(x~)] D) and  (t?, [io,(x~), ]~(x~)] []~(xs), j~(x4) ] D) 

to be identical  zero. Evident ly ,  we have  for ~1 4= ~2 

(~2, [/o~(~), j . , (~) ]  [j~(x~), j~ (~ ) ]  t2) 
= (~ ,  [j.,(x~), i ~ ( ~ ) ]  ~ )  (.O, [j~,(~:~), j~,(x~)] t2) .  

T h e  argumen~ t h a t  will lead us to  the  corresponding relat ion for  the 
remaining ease ~ x - - ~  = ~ is more  involved.  F r o m  the foregoing dis- 
cussion we know t h a t  (D, []o(Xl), ?'o(X2) ] £2) and  (D, [],(zl), ],(xa)] [j,(x~), 

xg + xg 
j~(x~)] t~) depend only upon  the variables  xg - xg and xg - xg, 2 

xg + x~ 
2 , xg - xg rsp. I t  follows f rom locali ty t h a t  the  suppor ts  of 

(D, [].(x~), j.(x~)] D) and  (D, []Ax~), j.(x~)] [/.(xa), jo(xa)] D) are concen- 
t r a t ed  in ~ -- xg = 0 and  x~ -- x~ -= 0 -= x~ -- x~ rsp. Thus,  b y  invoking 
the  ~emperedness condition, we obta in  the  following representa t ions :  

(£2, [j.(x~), j.(x~)] 9 )  = ~ c~ d¢)(x7 - xg) , 
A = 0  

Mo M~ 
(£2, [j~(x~),j°(x~)] [io(xa),j°(x~)] D)  = , ~  ~,  (~(.)(xg - xg) 

,u~O # ~ 0  ( ° °  °) 
eoa 2 2 " 
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Here, L~,, M~, and M" are some fixed positive integers, the c ~ are 

complex numbers and the w ~ " (  x g + ~  zg+x~)  a 2 2 are tempered 

distributions whose Fourier transforms rS"~'(~ ~ are polynomially 
bounded complex measures which vanish unless p~ > 0. This last 
assertion follows from the temperedness, positive definiteness and spec- 
trum conditions. 

Next, we make use of the Lorentz covarianee which yields 

,t=O 2 = 0  
M a .M~ a - l -  a ) 

~ = o / = 0  2 2 

~ 0  / z ' = O  

for all positive ~. These conditions imply tha t  

c~ ~(~)(x~ - ~ )  = ~ . c ~  ~ ( ~ ) ( ~ { x ~  - ~}) 
for all positive e, 0 N 2 < Lo and 

~ ,  (xg + xg x~ + xg.) 
~(~) (x~ - ~ )  % ~ 2 

\ ] 

for all positive ~, 0 < /~ < M~, 0 _< #' < M~, i.e. 

c ~ = 0  for 24=1 
and 

6¢ 2 

for all test functions ~ and for all positive ~, 0 < # <  M~, 
0 ~ / ~ '  < M;.  This homogeneity leads us to the relation 

(2 -- # - ¢') f dp  (o( -  p) (o~* (p) = f dp  ~t," ( - p )  prS~W (p) . 

In the ease:/~ + / z '  => 2, with the particular choice 

~(p) = p ,+ , ' -~  ~(p) 

where ~ (p) is an arbitrary gest funegion ~ ~9 ~, this relagion becomes 

f d p ( - p )  ~' + * - x  ~ ' ( - p )  rS2~" (p) = O . 

Now we exploit ~he fact that  the c52 n" (p) are complex measures with 
contributions only from the points p > 0 and conclude ~hat 

-~*#(p) c~ #6(p)  for / z+ /z '  > 2 .  G0 a 

15" 



210 K. PoHL~: 

Here the c~ s' are complex constants. I t  follows from the homogeneity that  

%uu'__O unless r e ÷ # ' = 2 .  

In the cases # ÷ # ' = 1  and / ~ = # ' = 0  we conclude that  the 
~52 "' (p)'s are constant and linearly increasing rsp., i.e. 

~ ' ( p )  = c~'ZO (p),  # ÷ re' = 1 
and 

~o0(p) = cOO_ 0 (p) 
a ~ 

However, (9,  [jo (xl), j~ (x,)] [j~(x3), j~ (x~)] 9 )  is antisymmetric under the 
interchange of x I and x2, or of x 3 and x 4. Thus, c ~ '  = 0 unless # = u' = 1, 
and we are left with 

(9, [j.(x~), jAx~)] 9 )  = ~ ~<~) (~  - x~) 
cg 

(9, [i.(x~), i~(x~)] [/o(x~),/~(x~)] 9 )  = ~ -  ~(~) (x~ - x~) a(~) (x~ - ~ )  

From the hermiticity and the positive definiteness condition, it follow that  
c~ is purely imaginary and that  c~ 1 is real and non-positive. From the assu- 

reed uniqueness of the vacuum we infer t h a ~ - ~  = (c~) 2 and we end up wi~h 

(9, [j~(x0,/~(x~)] [j~(x3),/~(xd)] £2) 

= (~, [j~(~), io(~)] ~9). (9,  [i~(~), ]~(x~)] 9 ) .  q.e.d. 

In one time and one space dimension we can no longer impose the 
positive definiteness condition upon the hermitian local scalar field ¢ (x) 
because 

1 
z13) (x - y, O) = , ~  f do~(p) e - ~  (~-v) 

with 
% 

dw(p)  = (po-:P0+ 5(P0+Pl) + (Po+PO+ 

is not a positive measure [6]. We rather impose the positive definiteness 
condition upon the derivatives of ¢ (x). In  order to prove the Jost-Schroer 
theorem also in this case we only need to make sure that  the commutator 
[¢ (x), ¢ (y) ] is a c-number. As we saw it is only at this point that  our general 
axgnmen~ fails to be conclusive for two dimensional space-time. 

We observe that  the vector field 0~¢ (x) satisfies the assumptions of 
the lemma from which then we conclude that  for all test functions 

/ ,g  E -- {h/h E ~ ,  f d x h ( x )  = 0} [¢(f), ¢(g)] is a c-number. We denote 

by ~ the set of all test functions ~ 5 ~ with compact support. 

Now we take test functions f ~ ~ and g ~ 5 ~. From the locality it 
follows that  [¢ (]), ¢ (g)] ---- [¢ (/), ¢ (~)] is a c-number, where 

~(x) = g(x) -- g](x) f dx g(x) ~ 5~ 
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wi th  g I E ~ ,  f dx ZS(x) = 1 and  s u p p g l  space- l ike  to  supp / .  W e  a p p l y  
tk is  a rgumen t  once more  and  infer  t h a t  [¢(]),  ¢(g)]  is a c -number  for  
all  t e s t  f u n c t i o n s / ,  g ~ ~ .  Fina l ly ,  b y  appea l ing  to  con t inu i ty  we find 
t h a t  [¢( / ) ,  ¢(g)]  is a c -number  for  al l  t e s t  f u n c t i o n s / ,  g E £P- q.e.d. 

I t  is qui te  r emarkab l e  t h a t  once a he rmi t i an  scalar  local field has  the  
2 po in t  funct ion  

1 + 
(9,  ¢(~) ¢(y) 9 )  = -v A(~)(x - v, ~)  

all  h igher  order  W i g h t m a n  funct ions  are f ixed for m > 0, n ~ 1 and  
m = 0, n > 2. (For  ra = 0, n = 1 al l  h igher  order  t r u n c a t e d  W i g h t m a n  
funct ions  are  t r iv i a l  in the  sense t h a t  t h e y  do no t  depend  on the i r  
a rguments .  The assert ions concerning the  case m = 0 are  consequences 
of our  t heo rem a n d  ]emma.)  I n  general ,  t h a t  need  no t  be so. There  are  
counter  examples  in the  class of W i c k  po lynomia l s  where no t  even the  
2 a n d  3 po in t  funct ions  fix all  the  remain ing  W i g h t m a n  funct ions.  
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