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Abstrae¢. A globalized version of the following is proved. Let ~ be a factor 
acting on a Hilbert space ~f, G a group of unitary operators on ~z inducing auto- 
morphisms of ~, x ~ vector separating and cyclic for ~2 which is up to a scalar 
multiple the unique vector invariant under the unitaries in G. Then either ~ is of 
type I I I  or w~ is a trace of ~. The theorem is then applied to study the representa- 
tions due to invariant factor states of asymptotically abelian C*-algebras, and to 
show that in quantum field theory certain regions in the Minkowski space give 
type III  factors. 

1. Introduction 

In the operator algebra setting for quantum field theory and quan- 
tum statistical mechanics there have been given several examples of 
von Neumann algebras of types I I I  and I I  1, see e.g. [1, 3, 8]. Then one 
has a yon Neumann algebra, a group of unitary operators inducing 
automorphisms of it, and a unique invariant vector, and one shows the 
von Neumann algebra is of type I I  x if the invariant vector is a trace 
vector and type I I I  otherwise. In  the present paper we shall prove 
general theorems roughly to the same effect, and apply them to obtain 
generalizations of results in the quoted papers and also to describe the 
representations due to extremat invariant states of asymptotically 
abelian C*.algebras, 

2. Automorphisms of von Neumann Algebras 

Our main results are proved in this section. The proof will be based 
on the ideas of HCG~OLTZ [8] together with those of Kow[cs and 
Szffcs [10]. We first recall terminology and results from. [10], Let N be a 
yon Neumann algebra and G a group of .-automorphisms of ~ .  A state 
@ of ~ (or more generally, a positive linear map of ~ into another 
yon Neumann algebra) is G.invariant if @ o g =@ for all g ~ G. :~ is 
G.finite if for each non zero positive operator A in ~ there exists a normal 
G-invariant state ~ of ~ such that  0 (/1) ~ 0. Denote by cony (g (A) : g C G)- 
the weakly closed convex hull of the orbit of A under G. Let 2~ denote the 
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fixed point algebra in N, so ~ = {A C ~ : g (A) = A for all g ~ G}. I f  
is G-finite then ~ ~ conv(g (A) : g ~ G)- consists of exactly one operator 
~(A) [I0, Theorem 1]. Tile map ¢ : ~ -+ ~ is the unique fMthful normal 
G-invariant positive linear projection map  (expectation) of N onto ~ ,  
and N is G-fmite ff and only if such a map exists [10, Theorem 2]. 
KovXcs and Sz~cs have pointed out to the author tha t  their results also 
yield a shorter proof of [13, Theorem 3.1]. We first modify a well kno~a  
result about strong convergence of operators. 

Lemma 2.1. Let ~ be a yon N e u m a n n  algebra and co a ]aith/ul normal 
semifinite trace o] ~ .  Let {En}n= 1,2 .... be a sequence o/project ions in 
such that co (E~) -> O. Then En -+ 0 strongly. 

Pro@ Let F be a finite projection. Then 0 < co (FETE) = co (E~F) < 
< co (E,) -~ 0, and co (FE~F)  ~ O. Since the functional o) (. F) = ~o (F • F) 
is normal and finite, E n F  ~ 0 strongly by  [6, p. 62]. Let  s > 0 be given. 
Let  9 f  denote the underlying t I i lber t  space, and let x 1 . . . .  , x k be a 
finite set of vectors in ~%~. Choose a finite projection F in .~ such tha t  
ilFx~ - x~! I < e/2, ] = 1 , . . . ,  ]c, which is possible since the ideal generated 
by  positive operators finite under co, is strongly dense in N. Thus 

llE~x~II <= l]E~(lZxj - xj)il + itE~Fx~lI _-< 42  + e/2 = 

for n sufficiently large, and E~ -~ 0 strongly. 
Our key result is 
Theorem 2.2. Let ~ be a v o n  Neumann  algebra with no type I I I  portion 

(so ~ is semifinite) acting on a Hilbert space ~ .  Let ~ denote the center o/ 
~ ,  and let G be a group o / , . au tomorph i sms  o / ~ .  Let ~ denote the fixed 
point algebra in ~ under G. Assume ~ = ~ and that :~ is G-finite. Let 

denote the un ique /a i th /u l  normal G-invariant positive linear projection 
o / ~  onto ~ .Then ~ is finite, and i / v  2 denotes the canonical center trace 
o / ~  [6, p. 267] then ¢ = ~o. 

Pro@ L e t  ~o be a faithful normal center trace of N [6, p. 266]. A 
straightforward computation shows ~o o g = g-~ o ~o o g is a faithful 
normal center trace of N for all g in G. Let  ~ be a normal Gdnvariant  
s tate of ~ .  Then R = support~ is invariant  under G, so lies in ~ ,  hence 
in ~.  l%estricting attention to R ~  we may  assume R =- I and ~ faithful. 
Ident i fy (d with L ~  (Z, v) for some locally compact Hausdorff space Z, 

and denote by @+ the positive v-measurable functions on Z, cf. [6, p. 260]. 
Since ~ is faithful on ~ in particular, ~ extends uniquely to a faithful 

normal trace of @+, ef. [6, p. 262]. By [6, p. 266] there exists a unique 

Qg in @+ with 0 < Q.q (¢) < + ~ locally almost everywhere on Z such 
tha t  for all A in N +, ~f o g(A)  = Q~o(A) .  I f  g, h ~ G then 

Q ~ o ( A )  = ~p(gh(A)) = Q ~ f ( h ( A ) )  

= Q~Qhy~(A), 
14" 
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so by uniqueness of Qg, Qgl~ = QgQt~ locally almost everywhere. Now 
Qg = I for all g. For if not then there exists g in G and a measurable non 
zero se~ Y in Z such that, Q~ ($) < 1 on Y. Let  P be the projection in 
corresponding to the characteristic function of Y. Choose a finite pro- 
jection E in ~ such that  0 < ~0 (E) (~) < oc on Y (cut down. Y if necessary). 
Let s > 0 be given, and choose a positive integer n so large tha t  

0 < Q~(~)~f(E) (~) < s 

on Y, hence 0 < Q~,~ ~0 (E) P < ~ P. Thus 

0 < ~(Qonv(EP)) = ~@(g"(EP)))< e, 

and 0 ~v (g~ (E P)) -+ O. Since 0 o ~v is a normal and faithful trace of .~ and 
g~(EP) is a projection for each n, gn(Ep) ~ 0 strongly by Lemma 2.1. 
[['aus ~(EP)= ~(gn(E P))-+ O, and E P  = 0 contrary to assumption. 
Thus Q~ = I for all g in G, hence ~0 = y~ o g for all g in G. 

Let now A @ 0 be a positive operator in N for which ~0(A) is finite. 
Choose by [10], a net {~Y~ 2~g~(A)}~j in eonv(g(A):g ~ G) which con- 

K 
verges strongly to 4(A). Let E be any finite projection in ~ .  Then 

o ~0(E .) is ultra-weakly continuous [6, p. 80], hence weakly con- 
tinuous on bounded sets. Since ~ 2~:gK(A ) - 4(A) weakly, 

K 

e (4 (A) ~ (E)) = ~o (W (4 (A) E)) 

= lira 0 o !P ( 2 ) . ~ g ~ ( A ) E )  
K 

- h m ~  ) . ~  o ~f(g~(A (gz})-~(E))) 
K 

= l i r a s  ~ o ~(A (g~)-~(E)) 
K 

t im,~ ~ ) o ~  o ~o(A) 
K 

= ~o o ~0(A), 

using that  ~ o~0 is a trace, hence ~ o ~ ( A F ) ~  ~ o~(A) for all pro- 
jections F. Let Q be a central projection in N for which y~(I)Q = + ~ Q. 
I f  Q ~= 0 we can choose a non zero positive operator A in ~ such tha t  
¢(A) Q @ 0 and 0 g ~0(A) < Q. In  fact, if this cannot be done, then for 
every positive operator B in N Q for which v 2 (B) is bounded, ¢ (B) Q = 0. 
Hence ¢ (Q) Q = 0. Therefore, if g ~ G then 0 = g (¢ (Q) Q) = ¢ (Q) g (Q), 

so that  4(Q) (~Y~ 2KgK(Q)) = 0 for every element- ~ )~KgK(Q) in 
K K 

cony (g (Q) : g ~ G). By [10] 4 (Q)~ = 0, and Q = 0 since 4 is faithful, 
contradicting the assumption tha t  Q + 0. Choose A as above. Let  
n > ~ (4 (A) Q)-I. Choose a finite projection E in ~ for which Q ~0 (E) > n Q. 
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Then by the inequality obtained above, 
1 > ~(Q) >_- ~(~(A)) > ~@(A) ~o(E)) 

> ~(~(A)~(E)Q)  > n e ( 5 ( A ) Q  ) > l, 
a contradiction. Thus ~ (I) is finite, and ~ is finite. If ~, is the normalized 
center trace then since ~ o g = ~0, and since ~ =: %0, ,~0 = ¢ by uniqueness 
of ¢. The proof is complete. 

Corollary 2.3. Let ~ be a yon Neumann algebra with no type I I I  
portion. Let G be a group o/*-automorphisms o] :~ such that the fixed point 
algebra o] ~2 equals the center o / ~ .  Then ~2 is finite i / a n d  only i / ~  is 
G-finite. Moreover, a normal state is a trace i /and  only i / i t  is G-invariant. 

Pro@ If ~ is G-finite then ~ is finite by Theorem 2.2. Conversely, if 
is finite let ~ denote the eanonicM center trace of ~ .  Then ~ o g is a 

center trace of ~ for each g in G, so by  uniqueness of ¢, ~ is G-invariant. 
By [10, Theorem 2] ,~ is G-finite. The last statement follows from 
[10, Corollary 1]. 

In our applications the automorphisms will be implemented by a 
group of uni tary operators, and there will be a unique cyclic vector 
invariant under all the unitaries. The key situation occurs when the 
invariant vector is also separating for the yon Neumann algebra. The 
following result describes this situation and is a direct generalization of 
HVGv.N~mL~Z'S theorem [8]. 

Theorem 2.4. Let 3~ be a ]actor acting on a Hilbert space ~t% Let G be a 
group and g-+ U(g) a unitary representation o/ G on Jr' such that 
U (g) ~ U(g)-I = N /or all g in G. Assume there exists a unit vector x 
which is cyclic and separating/or ~ such that U (g)x = x /or  all g in G, and 
that up to a scalar multiple x is the unique vector invariant under all U (g). 
Then either ~ is o] type I I I  or o~ is a trace o] ~ ,  in which case ~ is either 
o] type I I  1 or o/type I~, n < c~. 

Furthermore, i / ~  is not assumed to be a ]actor, and i / G  is a connected 
topological group and the representation g-~ U (g) is strongly continuous, 
then either #2 is a ]actor or the center o / ~  has no minimal projections. 

Proo]. (~o~ is a faithful normal G'-invariant state of ~ ,  where G' 
denotes the group of ,-automorphisms U(g) • U(g) -1 of ~ .  Thus ~ is 
G'-finite. Let  ~ denote the fixed point algebra in N. Then ~ = CI.  In 
fact, if [x] denotes the projection on the subspace generated by x then by 
the Ergodic Theorem [12, §146], [x]~conv(U(g):g~G)-. Thus 
[x] ~ ~ ' ,  and the state c% is a homomorphism of ~ .  Since x is separating 
for ~ ,  ~ ~ C as asserted. Assume ~ is not of type III .  By Theorem 2.2 

is finite so either of type I I  1 or I.~, n < c~. Let  ~ denote the unique 
faithful normal G.invariant positive map of ~ onto ~ .  Since ~ = CI,  
~(A) -- a)~(A)I for all A in ~ .  Let  ~o denote the normalized trace of ,~. 
By Theorem 2.2 co~(A) = oo~(cox(A)I) = ~%@(A)) = c%@(A)), hence 
co~ is the trace of ~ ,  and the first part of the theorem is proved. 
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Assume G is a connected topological group and tha t  the representa- 
tion g ~ U(g) is s t rongly continuous. Suppose ~ is not necessarily a 
factor. Let  ~ denote the center of ~ .  Consider the projection [~x] 
in ~ ' .  I f  A ~%¢ then U(g) A x =  U(g) A U ( g ) - l x ~  [~x],  since 
U(g) ~U(g)  -1 = ~¢ for all g in G. Thus U(g) [gx]  U(g) -1 = [~x]~ and 
U(g).  U(g) -1 restricts to a , -automorphism of the maximal abelian 
von Neumann algebra ~ [gx], which is isomorphic to ~¢. Assume there 
is a minimal non zero projection E in ~.  Then E ' =  E [~dx] is one 
dimensional in ~ [~x]. Say z is a unit vector in E' .  I f  g C G then 
F ' =  U(g)E'  U(g) -1 is a non zero projection in ¢d [gx] ,  so F ' E ' =  0 or 
o r F ' E '  = E' .  Thus either (U (g)z, z) = (F' U (g)z, z) = O, or U(g)z --- eiOz, 
in which case I(U (g) z, z)l = 1. Since the map g -+ I(U (g)z, z) I is continuous 
on G, and G is connected, its image is connected, and I(U(g)z, z)l = 1 for 
all g in G. Thus U (g) E '  U (g)-i = E '  for a l lgin G, hence U (g) E U (g)-1 = E 
for all g, and E E ~ ,  E = I ,  since in this case ~ = C I  too. The proof is 
complete. 

We have been unable to conclude whether there exist a factor ~ and 
an abelian yon Nenmann algebra :g e ~ ~ such tha t  ~ ~ ~ ® ~f,  

In  order to s tudy the group of automorphisms information may  be 
obtained from the s tudy of its action on the center ~ of ~ .  Such a result 
will be obtained later (Theorem 3,3). For  the present we draw some 
immediate conclusions from the proof of the above theorem. 

Corollary 2.5. Let the assumptions and notation be as in Theorem 2~4. 
I] ~ is not a ]actor and ~ denotes the center o / ~  then ~ '  is a homogeneous 
yon Neumann algebra o/type I. The projection [(d x] belongs to { U (g) : g C G}' 
and is an abdian projection with central carrier I in ~' .  In  particular, 
[~x] ~ [~¢x] = <¢ [~x]  ~ (d. 

In  some applications the invariant  vector x will not be separating for 
~ .  As in Corollary 2.5 it  is immediate tha t  the support  [ ~ ' x ]  of vgx is 
invariant under the unitaries, hence Theorem 2.4 can be applied to the 
yon Neumann algebra ~ z  = [ ~ ' x ]  ~ [~ 'x ] .  

Corollary 2.6. Let ~ be a ]actor acting on a Hilbert space J/l ~. Let G be a 
group and g-> U (g) a unitary representation o/ G on ~ f  such that 
U (g) ~ U (g) -1 = ~ ]or all g in G. Suppose there exists a unit vector x in 
J~ cyclic under ~ such that up to a scalar multiple x is the unique vector in 
~ f  invariant under all U (g), g ~ G. Then ~ is o/ type I I I  i / a n d  only i/ 
~ '  is not finite. 

Proo/. Let ~ be as above and apply Theorem 2.4 to it. If  ~ is of 
type H I  then so is ~2~ = [ ~ ' x ]  ~ ' ,  which is isomorphic to ~ '  since x is 
separating for .~', hence ~ '  is of type I I I  and therefore ~ by [6, p. 102]. 
Otherwise wzis  a faithful trace of ~z,  so by  [6, p. 235] ~ is standard 
and finite. Thus N '  ~ N£ is finite, contrary to assumption. The converse 
is immediate [6, p. 102]. 
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3. Asymptotically Abelian C*-Algebras 

In the different generalizations of asymptotically abelian C*-algebras 
[7, 11, 13] the extremal invariant states give rise to von Neumann 
algebras satisfying the assumptions of Corollary 2.6, and by Theorem 2.4 
the center will with the added assumptions in the theorem either have 
no minimal projections or the von Neumann Mgebra is a factor. At least 
in the situations described in [11] and [13] the invariant factor states 
will Mways be extreme. Since we shall need this result and later the more 
restricted results in [13] we shall study the situation in that  paper. If 
is a C*-Mgebra and G a group for which there is a representation g -~ ~ 
as .-automorphisms of s~, we say G is represented as a large group o/ 
automorphisms if for all G-invariant states ~ of d and A in d ,  

conv(Jzo(wgA) : g ~ G)- ~ ~e (d ) '  4= O, 

= o 7~ o is the canonical decomposition of ~ as a composition where ~ c~% 

of a vector state (~xo due to a cyclic vector, and ~e is a ,-representation of 
~ '  on a Itilbert space ~ e .  For such an invariant state there is a unitary 
representation g ~  Ue(g ) of G on 5f~ such that  Ue(g ) 7~Q(A)Uo(g)-1 
= 7%(TgA) and Ue(g)% = % for all g in G. Then ~ is an extremal G- 
invariant state if and only if x 0 is up to a scalar multiple the unique 
vector invariant under the Ue(g ) [13, Theorem 3.7]. I t  is immediate 
from Theorem 2.4 that  if ~ is extremal and x o is separating for 7~ (~¢)- 
(el. [7, Theorem 3] for equivalent conditions) then if it is a factor, 
~ (sJ)- is finite if and only if Q is a trace of ~ ,  and ~e ( d ) -  is of type I I I  
otherwise. More generally we have 

Theorem 3.1. Let d be a C*.algebra and G a group represented as a 
large group o] ,-automorphisms o] ~/  . Let ~ be a G.invariant state o / x ]  
/or which ~ == zo(x])- is a ]actor. Then the ]ollowing conditions may 
Occur .  

1) ~ is o] type I I I  i /and  only i] ~ '  is not finite. 
2) ~ is finite ij  and only i] Q is a trace, in which case ~ has coupling 1. 
3) ~ is o/type I~  or II~o i /and  only i] ~ '  is finite and ~ is not a trace. 
Proof. From the preceding remarks ~ satisfies the conditions of 

Corollary2.6, hence 1) is immediate. Let E = [N'xe]. Then E C~,  
E ~ E  is a factor, and % is separating and cyclic for E ~ E  as acting on E. 
As pointed out in the proof of Corollary 2.6 E Uq(g) = Uq(g)E for all g 
in G, and Theorem 2.4 is applicable to E~2E. We may assume N is not  
of type I I I  (so N '  is finite by 1)). By Theorem 2.4 E N E  is either of 
type II~ or I ,  with n finite and of coupling 1, and cox o is a trace of E N E .  

Suppose N is finite. Let  t r  denote the normalized trace. Then since 
each Ue(g) • Ue(g) -~ is an automorphism of N, tr  composed with it is a 
trace, hence by the uniqueness of the trace [6, p. 90], 

tr (A) = tr (U~ (g) A 5% (g)-') 
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for all A in N, g in G. Thus t r o  zq is a G-invariant state of ~4. Moreover, 
t r  is weakly continuous on bounded sets and if tr  = m r o 7~, z is normal. 
Denote by  ~ S A  and N s x  the set of self-adjoint operators in ~ and 
respectively. Since 7%(dSA)l -- the uni t  ball in Ze(~SA) -- iS weakly  
dense in (NSA)I by  the Kap lansky  Densi ty  Theorem [6, p. 46], so is 
z ( ~ ( d s ~ ) l )  = ~ ( ~ ( d s ~ ) ) l  in ~ (~s~ ) l .  Thus ~ ( ~ ( d ) ) -  = ,~(~) is a 
factor, and tro ~e = (% o ,~ o ze is a G-invariant factor trace, hence is 

extreme [13, Theorem 3.7]. Now co w restricted to E~E is a trace, so by 
the uniqueness of the trace, ooxe I E~E = ~ tr ! E~E. Thus, for A ~ 0 
in ~, 

coxq(A) = coxe(EAE ) = a t r ( E A E )  = ~ t r ( E A )  < ~ t r ( A ) ,  

and  ~ < )~ t r o  ~r~. Since t r  o 7% is extremal,  ~ = t r o  ~zo, and (9~ = tr. 
Thus E = I ,  N has coupling 1, and ~ is a trace. Conversely, if o is a 
trace then ¢oxo is the unique trace of N,  hence ~ is finite. This completes 
the proof of 2), and hence of 3). 

We shall see below t h a t  under  some stricter conditions if N is a 
factor  then [x~] - -  the projection on z o - -  is the only finite dimensional 
projection in ~(d~o) - -  the bounded operators on o~f~q - -  commuting 
with all the U e ((/), viz. p is an EI-state. Our next  r e s e t  states a similar 
p roper ty  for [N'xo] as a projection in ~ .  

Corollary 3.2. Let the assumptions and notation be a8 in Theorem 3.1. 
Suppose ~ is either o] type I~  or I I~.  Then E = [~" x~] is the unique non 
zero finite projection in ~ invariant under the Ue (g), g in G. 

Pro@ From the proof of the theorem E ~ E  is finite of coupling 1 and 
with o~ 0 as the trace. Suppose F is a finite projection in N invariant  under  
the U~(g). I f / z  _>_ E then the a rgument  in the proof of the theorem 
applied to  F~2F yields _~ = E.  I n  the general case let G = E V F.  Then 
G is finite [6, p. 243]. I f  y ~E ,  z ~ F  then Uo(g ) (y + z) = Uq(g) y + 
÷ U o (g) z ~ E V F = G, so G is invariant  under  the Uo(g). F r o m  the 
first par t  of the  proof G = E, and F g E.  Now x e is separating and 
cyclic for E N E .  From the proof of Theorem 2.4 the fixed point  algebra 
for the automorphisms in E N E  is CE.  Thus F = 0 or E. T h e  proof is 
complete. 

The remaining par t  of this section consists of results which are more 
or less known [4, 9], bu t  which show useful characterizations of strongly 
clustering states in our setting, a si tuation which occurs for invariant  
factor  states. I f  ~ / i s  a C*-algebra, G a group, and g -+ ~r a representat ion 
of G as , -au tomorphisms of ~u¢ we say ~ is asymptotically abelian with 
respect to G if for all self-adjoint operators A in s / t h e r e  exists a sequence 
{g~(A)}~ = ~,~ . . . .  in G such tha t  

lim II [~e,~(A)(A), B]Ii = 0 
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for all B in d .  A G-invariant state 9 is strongly clustering if 
lira 0(~e,~(A)(A)B) = 9(A) 0(B) 

whenever A and B are self-adjoint in d .  @ is an El.state if [xo] is the 
unique finite dimensional projection in ~ (~s )  commuting with all the 
Us(g ). Our first result points out the relevance of the center of 7~s(~¢ )- in 
order to s tudy the group of the unitaries U s (g). 

Theorem 3.3. Let d be a C*-algebra asymptotically abdian with respect 
to the abelian group G. Then every strongly clustering state o/ d is an 
Ei-state. In  particular, every invariant /actor state is an Erstate. 

For  the proof of this we shall need the argument  given in 
Lemma 3.4. Let d be a C*-algebra asymptotically abelian with respect 

to the group G. I/@ is a strongly clustering state o/.~/then [xs] is the only one 
dimensional projection in ~ ( ~fs) commuting with all the U s (g). 

Pro@ Let E be a one dimensional projection different from [Xs], 
and suppose E commutes with all the Us(g ). Then a = IIExsI I < I. Let  
y be a unit  vector in E. Then Ue (g)y := Z (g)Y with Z a character of G, 
hence Us(g)- iE = ~/(g)E. By [13, Theorem 5.¢] if A C~/  then, with 
g~ = g~(A), 

c°~o (=5 (A))I  = weak lira U s (g~) =s (A) U s (gn) -~ . 

Thus, as n ~ ~, 

I ~ s @ e ( A )  E~s(B))] = Iz(g)oJ~e(Us(g~, )~(A)Uo(g~)-~  Ez%(B))I-~ 
--> [coxo(cozo(:zs(A)) E:zo(B))i 

= iCOxe(zs(A))l Ico~s(E~(B))l < 
al[~s(A)*x~li I I = s ( B ) x o l i  • 

Since xe is cyclic, if z, w are vectors in ~ o  then I(Ez, w)i ~ aiizll ]twil. 
Applying this to z = w -  y we obtain a contradiction. The proof is 
complete. 

Pros/o] Theorem 3.3. I f  the theorem is false we can find a minimal 
finite dimensional projection E in {Uo(g):g ~G}' orthogonal to [xs]. 
Since G is abelian, the minimMity of E implies Us(g ) E = z (g )E  with Z 
a character of G. A contradiction is now obtained in exactly the same 
way as in the proof of Lemma 3.4 (with a = 0). I f  ~e (-g)-  is a factor then 
@ is strongly clustering by [13, Corollary 5.5], hence @ is an E~-state. 

KASTL~ and ROBINSON [9] have shown that  if ~ is asymptotically 
abe.[ian (in the stricter sense that  G =  R% and l imtl[~A,  B][[ = 0 
whenever g-+ ~ in 1R~) then @ is strongly clustering if and only if 
U o (g )~  [x~] weakly whenever g-÷  ~ ,  a result shown by  B o ~ c ~ a s  in 
quantum field theory [4]. As we shall need this result in our applications 
to quantum field theory for translations of space-like vectors, we include 
a more general proof. 

Theorem 3.5. Let d be a C*-algebra asymptotically abelian with re~peet 
to the group a. Suppose the sequence {g~(A)} = {g~,} is independent o / A  
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/or each sel/.adjoint A in z¢. Then a G-invariant state @ o / o / i s  .strongly 
clustering i/ and only i/Uq(gn) -> [xe] weakly. 

Proo]. Suppose @ is strongly clustering. Since the map U-~ U* is 
weakly continuous and [xq] is self-adjoint we may as well show Up (gn)-i _- 
-~ [xe] weakly. Let  x 1 . . . . .  xl~, Y l , . . . ,  Y~ be vectors in Y~Q. We may 
assume that  there exist Aj, B~ in zq (~ )  such that  x~ = B~xe, y~ = Ajxe. 
Let s > 0 be given. Choose n so large that  

I(Ue(g~) A* Ue(g~) "~ Bjx~, xo.) - ~Oxo(A*) (~zq(BJ[ < s 

for ] = 1 . . . . .  k. Then 

i((G(g.) - ix0]) Bj 0, A z )l 

: l ( U e ( g n ) A ?  Ue(gn) - IB jxQ,  xq) - co~(A*) o~e(BJt 

and Uq(gn)-l-+ [x~] weakly. Conversely, if Ue(gn)-~ [xe] weakly, let 
A, B ~ ~q (~) .  Then, as n -+ c% 

(Ue(g~) A Ue(g~) -~ Bxe, xo) = (Bxe, Uq(g~)A*xe) 

-+ (Bxo, [x~]A*x) = co~q(B) ¢oxo(A) , 

and @ is strongly clustering. 

4. Quantum Field Theory 

We assume we have assigned to every bounded region (9 in the four 
dimensional Minkowsld space ~ / a  C*-algebra d ((9) of operators on an 
infinite dimensional Hilbert space ~ .  We denote by ~ ((9) its weak 
closure and assume ~ ((9) contains the identity operator I on ~ .  More- 
over, we assume there is a strongly continuous unitary representation 
a-> U (a) of the four dimensionaltranslation group, which we shallidentify 
with J / ,  such that  the following properties are satisfied. 

1) The spec~um of U (a) is contained in the closed forward light- 
cone ~ + .  

2) ~z¢((9) and d ( O  + a) are related by the equation 

d (O + a) = U (a) d (d)) U (a) -1 . 

3) If two regions (9 and (9' are space-hke to one another then 
d ((9) C ~ ( ¢ %  

4) If (9< (9' then ~'((9) < ~'((9'). 
5) If {G} is any covering of the unbounded region (9 C ~ of bounded 

regions (9~ < (9, then the yon Ncumann algebra generated by the family 
{~¢((9~)} is independent of the covering, and is denoted by ~((9), 

6) There exists up to a scalar multiple a unique vacuum vector x 
cyclic under ~(~¢) ,  i.e. U(a)x = x for all a in ~/ .  
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I t  is clear tha t  the relations 2), 3) and 4) hold for the ~((9) as welt. 
Under the above assumptions AniKI [2, Corollary 1] has shown 

( ~ )  = ~ ( ~ ) .  Furthermore, he has shown [1 ] that  if (9 is the region 
of points (P0, Pl, PP, Ps) in ~ / s u c h  that  Pl > 0, IP0] < IPl], then ~((9) is 
a factor not of type I. We shall generalize this and prove a general 
result which implies ~ ((9) is of type III .  

Theorem 4.1. Suppose we have a Iocal /ield theory satis/yivxj az:iom81 ) - 6). 
Let (:9 be an open unbounded region in the Minkowski space J / s u c h  that 
there exists a non zero space-like vector a in d [ / o r  which (9 = ~) + Ra,  
and such that there exists an open non void region space-like to (9. Then 
3~ ((9) is a/actor o] type I I I .  

Proof. By the Reeh-Schlieder Theorem [5, Lemma 5], since ~ (°~) is 
ati bounded operators, x is separating and cyclic for ~ ((9). By hypo- 
thesis U(~a)~((9)  U ( ~ a ) - i =  ~((9) for all real ~. Let  ~ denote the 
fixed point algebra in ~((9) of this one-parameter group of auto- 
morphisms. Since x is the unique vacuum vector [x] = E(O), where by 
Stone's Theorem 

U(b)  = f e i~'O dE(p) 

for b ~ J / .  Let  ~ / d e n o t e  the C*-algebra generated by all ~((P') with @' 
bounded regions in ~/ .  Then ~ is asymptotically abelian with respect 
to the translation group ~//, where the sequences {gn(A))= {gn} are 
chosen to be translates of space-like vectors. Since 5 / -  = ~ ( ~ )  = 2 (iF), 
(oz is strongly clustering on ~¢ [13, Corollary 5.5], see also [2, Proposi- 
tion 4]. By Theorem 3.5, or by [4, Lemma 4], U(na)-+E(O) weakly as 
n-> co, hence E(0) ~ {U()~a) :), E R}".  In particular, if E is a non zero 
projection in ~ then E E ( O ) = E ( O ) E # O  as Ex@O. Since E(0) is one 
dimensional E > E(0). Hence ( I -  E)x  = O, and E = I since x is 
separating. Thus ~ = CI.  

In  order to show ~ ((9) is a factor we modify the argument in the proof 
of [2, Proposition 2]. Let  ~ be a neighborhood of the origin in ~ and 
(9' a bounded subregion of @ such that  0 '  ÷ ~ C  (9. Let  A be a self-adjoint 
operator in the center of ~(@). Let  B ~ ~(@'), and let 

W(u) = (U (u)Ax, Bx) 

G(u) = ( U ( - u ) B * x ,  A x ) .  

From the spectrum condition F and G are boundary values of analytic 
functions holomorphic in the forward and backward tubes respectively. 
If  u~JV" then, since U ( - u ) B U ( u ) C ~ ( @ ) ,  F ( u ) =  G(u). From the 
edge-of-the-wedge theorem, see [14] the functions are analytic con- 
tinuations of one another. In particular, /v (u) = G (u) for all u in ~/ .  
Thus, using the spectrum condition once more, 27(u) is the Fourier 
transform of a (complex) measure, whose support lies in the intersection 
of the forward cone with the backward cone, hence is 0. Thus F (u) is a 
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constant.  I n  particular, 

(U(u)Ax ,  Bx)  = (U(O)Ax, Bx)  = (Ax, Bx)  . 

Since by  the Reeh-Schlieder Theorem x is cyclic under  N((9'), 
U(u) A U(u) - lx  = A x  for all u ~ ~ .  I n  part icular  this holds for u = 2a, 
2 ~ R .  Since x is separating for N((9), U(),a)A U()~a)-l= A for all 

~ R ,  and A C N, which is the scalars by  the preceding paragraph.  Thus 
((9) is a factor. 

I f  N ( 0 )  is not  of type  I I I  an  application of Theorem 2.2 shows 
~ ( 0 )  is finite and with o)~ as the trace. Let  (9' be a bounded non void 
subregion of (9. Then o)~ is a trace of ~(&' ) ,  and by  the Reeh=Schlieder 
Theorem x is separating and cyclic for .~ ((9'). I n  part icular  ~o~ is a faithful 
trace of N(&') '  [6, p. 89]. Let  (9" be a bounded non void region in de'. 
Then there is a vector  b in . #  such t h a t  (9" + b is space-like to  (9', hence 
U(b) N((9") U(b)-~<N((9 ' )  '. Since U(b)x = U(b)- lx  = x, o~ is a t race 
of N ((9"). A straightforward a rgument  now shows o)~ is a t race of ~ ( J / ) ,  
contradicting the fact  t ha t  N (tit) = ~ (J~). The proof is complete. 
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