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Abstract 

An existence theorem for good lattice points, which was so far only 
available for prime moduli, is established for general moduli by using 
a method based on exponential sums. 

1. Introduction and Statement of  Results 

The need for good lattice points arises in a numerical integration 
technique for periodic functions of several variables developed by  
HLAWKA [2] and KoRo]3ov [3]. We refer to [4, Ch. 2, Sec. 5] and 
the survey articles [9], [10] for literature on, and a more detailed 
discussion of such lattice points. The method of good lattice points 
(or "opbimal coefficients" in the terminology of Ko~oBov) has 
gained added significance through recently established links with 
the multidimensional distribution behavior of linear eongruential 
pseudo-random numbers (cf. [6], [7], [8]). 

Let  s/> 2 be a given dimension and let f be a function of s 
variables which is periodic of period 1 in each variable. The s- 
dimensional unit-cube P----[0,1] s is then a period interval for f. 
The method of good lattice points is based on the approximation 

Fib 

f f  (t) dt ~ (l/m) Z : ((n/m) g), (1) 
Is n=l 

where m is a large integer, called the modulus, and the lattice point 
g eZ 8 is chosen so as to guarantee a small integration error, in 
which case it is called a good lattice point modm. To make this 
somewhat more precise, we introduce a quanti ty measuring the 
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suitability of lattice points modm. For m/> 2 we use the summation 
symbol ~ to denote a sum over the complete residue system 

h(modm) 
modm consisting of the integers h with - - m / 2 < h  <<.m/2, whereas 

~ *  refers to the same sum, but  with h =--0 deleted from the 
h(modm)  
range of summation. Similarly, the summation symbol 

h (rood m) 

denotes a sum over the s-fold cartesian product of the above 
complete residue system modm, i. e., over the  set of lattice points 
h=(hl , . . . ,hs)eZ s with --m/2<hj<<.m/2 for l <<.j<~s, and ~ *  

h (rood m) 

designates the same sum, but  with the origin deleted from the 
range of summation. As a distance function for lattice points 
relative to the origin, we use 

r (h) = ~" ( h O . . .  r (h~), 

where r (h) = max (1, ] h ]) for h e 7/. For a lattice point g e Z ~, we 
define then 

_n(g , , , )  = ~:* r ( h ) - l ,  (2) 
h (rood m) 

h .  f: m 0 (rood m) 

with h .g  denoting the standard inner product of h and g. This 
expression governs the integration error in (1) in the sense that  
for an integrand f with Fourier coefficients ch satisfying c~ = 
= 0 (r (h)- ~) for some k > 1 we have 

(l/m) Z f ((n/m) g ) - -  f f (t) dt = 0 (R (g, m)~). 
n = l  I s 

The "goodness" of lattice points g modm can therefore be described 
in terms of the size of /~  (g, m). 

Theoretical results on the existence of lattice points g leading 
to a small value of /~(g,m) have so far only been available for 
primes m (cf. [2], [10]). The sharpest result in this direction is 
contained in [10, Proposition 5.4] and says that  for every s >12 
and every prime modulus m there exists a lattice point g e~  s 
such that  

R (g, m) < (1/~n)(2 + 21ogre) s . (3) 

The method of proving (3) breaks down for composite m. I t  is, 
however~ an empirical fact that  certain composite moduli perform 
better than prime moduli. This is particularly evident in the case 
s = 2, where it is known that  optimal lattice points are obtained 
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by taking a Fibonacci number as a modulus. Fibonacci numbers 
are, of course, rarely primes. Numerical data for higher-dimensional 
cases suggest that  lattice points which are in a sense optimal are 
usually obtained with a composite modulus (compare with Tables 
9 and 10 in [5]). 

There is an indirect way of getting information about the size 
of R(g,m) for composite m, by using the number 

(g, m) ~- rain r (h), 
h 

where the minimum is extended over all lattice points h----- 
= (hi, . . . ,  h=) e Z = with h e  0, h - g ~  0 (modm), and - - m / 2  ~ hj <<. m/2 
for 1 ~<j ,.<s. I t  was shown by ZA~MBA [11] that  for every suffi- 
ciently large modulus m, no matter whether prime or composite, 
there exists a lattice point g e Z= such that  

(s-- l)!m 
~o (g, m) > 

(2 log m)=-l" 

Together with an estimate for /~(g,m) of the form R ( g , m ) =  
=O(~(g ,m) - l ( l ogm)  =) (eft [7, Sec. 3]), it follows that  there exists 
a g e Z = with 

R (g, m) = 0 (m -1 (logm)2=-x). 

Via a direct approach, we prove in the present paper tha t  for 
any  modulus m/> 2 there is a lattice point g e ~= for which R (g,m) 
satisfies an estimate of the type (3). A careful treatment of con- 
stunts in our method actually leads to a bound tha t  is better 
than (3). The first crucial idea in our proof is to restrict the atten- 
tion to lattice points whose coordinates are relatively prime to m. 
Secondly, rather than using elementary considerations about con- 
gruenees as in the proof of (3), we employ a more powerful analytic 
technique based on exponential sums. Our final result reads as 
follows. 

Theorem 1. For every integer m >12 and every dimension s ) 2 ,  
there exists a lattice point g ~ F_ s with coordinates relatively prime to 
m and 

B (g,m) < (l/m)(1.4 + 21ogre)=. (4) 

In the special ease of a prime power modulus, the method 
simplifies somewhat and a slightly better result can be achieved 
as a consequence. 
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Theorem 2. I f  m is a prime or a prime power, then for every 
dimension s >1 2 there exists a lattice point  g e~_ 8 with coordinates 
relatively prime to m and 

R (g, m) < (l/m)(0.81 § 21ogre)8. (5) 

These results on R(g,m) yield information about the dis- 
crepancy Dm of sequences of the form (n/re)g, n :  1,2 . . . .  ,m, con- 
sidered modl .  In fact, by [10, Thdorbme 6.6] we have 

Dm<.s/m + �89 

for any g e Z s, and so Theorem 1 implies that  for any m ~> 2 and every 
dimension s/> 2 there exists a lattice point g e Z ~ such tha t  the dis- 
crepancy D~ of the above sequence satisfies Dm ~- 0 (m -1 (logm) 8) 
with an effective constant. By way of comparison, we note tha t  the 
smallest known discrepancy of a sequence of m points in 18 is of 
the order m -l(logm)s-1. 

In  Section 2 we collect some preparatory results. Section 3 
contains a basic estimate for certain weighted exponential sums. 
Theorems 1 and 2 are proved in Section 4. 

2. Auxil iary Results  

For an integer m t> 2 we set 

L ( m ) =  E* r(h) - 1 =  E* th1-1, 
h (mod m) h (mod m) 

and we extend this definition by putting L (1) ---- 0. We need a good 
estimate for L(m) ,  and for this purpose we distinguish between 
m even and m odd. 

Lemma 1. For any even integer m >I 2 we have 

L (m) = 2 log m + 2 r - - l o g  4 +em with - -  4/m 2 ~ e• <. O, 

where ~ is the Euler-Mascheroni constant. 

Proof. From [1, p. 347] we get for any x >/1, 

h-1 = l ogx  + r + 0r (6) 
l ~ h < x  

with 

Ox : dt {x) , (7) 
X 
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where {x} denotes the fractional part  of x. For a positive integer 
x we obtain 

r 2/ Ox= {t} dt-= {t} dt 
J t~ t~ " (s) 

Furthermore, we have 

n + l  n + l  

f f ,_.  ( : )  l { t } d t =  d t = l o g  1 +  
t 2 t 2 n + 1 

n 

for every positive integer n. We note that  

(9) 

t 2+  2t 
log(1 + t ) <  - -  for t~>0 (n0) 

2 t + 2  

since the function f(t) =((t  2 + 2 t ) / ( 2 t + 2 ) ) - - l o g ( 1  + t )  satisfies 
f (O)= 0 a n d f '  (t) i> 0 for t/> O. By combining (9) and (10) we get 

n + l  

f 2 n + l  1 
~d t<~  2n(n-J- 1) n-J-1 2 n ( n +  1) ' 

n 

and so from (8), 
oo 

0r<�89 n ( ~ +  1) - 2 z  

The definition of L(m) and (6) imply 

for integers x/> 1. (11) 

m]2 

L (m) = 2 ~ h - l - -  2/m ~- 21ogre + 2 v - - l o g 4 + e m  
h = l  

with 

Sm = 2 O r a l 2 -  2 / m  . 

The inequality em< 0 follows now immediately from (11). To obtain 
the lower bound for era, we note that  for a positive integer n we 
have 

n + l  n + l  n + l  

- ~  dt = t 2 -  dt >t (n + 1)~ 2 (n + 1) 2 
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b y  the second mean-value theorem. I t  follows from (8) tha t  
CO oO 

0~>�89 (n+ ~)2 >~�89 (t + 1 ) ~  2 ( x +  1) (12) 
n ~  x 

for integers x I> 1, and so 

2 2 2 4 4 
em ~ 2 0 m 1 2 - - - -  >/ . . . . .  

m m q - 2  m m ( m  q- 2) > m z" 

Lemma 2. For any odd integer m >, 1 we have 

3 1 
L (m) = 2 log m q- 2 y - -  log 4 q- era with - - - -  <em < - - .  

m 2 m 9~ 

Proof. The result  is obvious for m = 1, so tha t  we ma y  assume 
m I> 3. F rom the definition of  L(m) and (6) we get 

L ( m ) - - 2  ~, h - l=21ogmq-2?- - log4~-2Om/9 , ,  
l<h<m[2 

and together  with (7) we obta in  

? { t }  (,,/1)/~ 2 {t} _ 2 
Sm=2Om/~=2 d t - - - - - - - 2  - ~ d t q - 2 0 ( m + l ) / 2 - - - -  

J te m m (13) 
m/2 

H o w  
(m + 1 )/2 (m + 1 )/2 

m12 mtg 

and  so (10) implies 

t 2 dt = log 1 q- m (m -t- 1)' 

(m+1) /2  

f {t} - ~ d t  <~ 

m12 
An applicat ion of (11) yields 

3 2 2 
e~ ~< -~ 

m ( m - k  1) m - ~ l  m 

For  the  lower bound,  we observe tha t  
(m + 1)/2 (m + 1)/2 

= e t  >. 
t ~. tg. 

ml2 m12 
(m + 1)12 

2 r e ( m +  1) 

1 1 

q n ( m +  1) < m~' 

(m + iF 
m/2 

m - -  l )  dt - -  
t 2 

3 

2 (m + 1)2 
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by  the second mean-value theorem. Together with (12) and (13) 
we obtain 

3 2 2 3 m 2 + 3 m + 6  3 

(m + 1)2 m-4--3 m m ( m  + 3 ) (m  + l) 2 m 2 

The above results are applied to the estimation of a sum in- 
volving the Moebius function #. The summation symbol 
denotes, as usual, a sum over the positive divisors d of m�9 dim 

Lemma 3. Let m be a positive integer having at least two distinct 
Trime divisors. Then for every positive integer b we have 

4.3 Z 2.7 
- -  b--- ~- < ~ t ( d ) L ( b d ) <  b . - .  (14) 

d im  

_Proof�9 By Lemmas 1 and 2 we have 

# (d) L (b d) = ~ g (d) (2 log d 4- 2 log b § 2 7 - - l o g  4 + eba) = 
dim dim 

= 2 ~ ~ (d) log d + ~ /x  (d) e~a, 
dim dim 

where we used ~ /x  (d)----0 for m i> 2. Under the given hypothesis 
dim 

on m, we also have 
Y~ ~ (d) log d = 0 

d i m  

by [1, Theorem 298]. Therefore, 

dim dim 

I f  b is even, we get from Lemma 1, 

Now 

and 

15 

' Z ' Z  
dim dim d im  

Md) = i ~(d) = - 1 

cO 

Z '  Z '  < ~ < 1.075 
dfm d = l  

,~(,~)=i Md)=1 

GO 

Z '  Z 1 
dim d = l  

(d)  = - 1 ~ (d)  = - 1 

~ I o n a t s h e f t e  f i i r  M a t h e m a t i k ,  B d .  8 6 / 3  

(16) 
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and so the bounds in (14) follow from (15) and (16). I f  b is odd, 
then by (15) we can write 

~ (d) L (b d) = Y, ff (d) ~ + F, ff (d) ~ .  (1~) 
dim dim dim 

2 l d  2r  

Using Lemmas 1 and 2, we get 

Z */~ (d) L (b d) < 

d i m  

< b ~ d ~ + ~ -  N + b ~ 
dim dim dim 

2 [d,/~(d) = - 1  2 4"d,#(d) = 1  2 ~'d,/~(d)= - 1  

co ~ co 

< b~ d~ + ~ -  N + b - ~  d~ 
d = l  d = l  d = l  

2 [ d , ~ ( d ) =  - 1  2 ~ d , # ( d ) = l  2 ~ d , g ( d ) =  - 1  

c r  co 

- -  b2 ~ + b- ~- d ~ 
d = l  d = l  

2 ~'d,~(d) = 1  2 ~ 'd,g(d)= - 1 

Now 
CO o~ 

1 1 
Z ~ - < 1 . 0 2  and Z d 2 
d = l  d = l  

2 r  2r - 1 

1 

d 9 

Z ff(d)L(bd) > 
dim 

> _ _ r  

> - - - -  

and this leads to the upper bound in (14). Using (17) and Lemmas 
1 and 2, we obtain 

' Z '  ' Z '  
b 2 d 2 b 2 d ~ b 2 - ~  > 

dim dim dim 
2 [d , /~(d)=l  2,rd,,u(d)= - 1  2,rd,,u(d)=l 

o o  c o  oD ' Z '  
b 2 -d ~ b ~ -d 2 b ~ d ~ 

d = l  d = l  d = l  
2 l d , ~ ( d ) = l  2 r  - 1 2 cd , /~ (d )= l  

oO o0 

b 2 d ~. b 2 d 2 , 
d = l  d = l  

2~'d,/~(d)= - 1 2 4"d,#(d)=1 

and the lower bound in (14) holds because of (18). 

- -  < o .22 ,  ( t s )  
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Lemma 4. Let m -~p% p prime, ~ >1 1. Then for every positive 
integer b we have 

4 
- -  2 l o g p - -  - -  < 

b e 
• #(d)L(bd)  < O. 

d!m 

Proof. We obtain 

~ #  (d)L (b d) = L ( b ) - - L  (bp) < 0 
dim 

from the increasing behavior of L. Furthermore,  

/~ (d) L (b d) = L (b) - - L  (b p) = - -  2 log p + eb--  s by 
dim 

because of Lemmas  1 and  2, and we get the lower bound by  using 
the informat ion about  eb and ebv in those results and distinguishing 
between the three cases (i) b even;  (ii) b odd, p odd; (iii) b odd, 
p----2. 

3. A n  Inequa l i ty  for E x p o n e n t i a l  S u m s  

We use the results of the preceding section to establish an 
est imate for certain weighted exponential  sums. We write ~0 for 
Euler 's  to t ient  funct ion and  e (t)-~ e 2~i~ for real t. 

Lemma 5. For integers m >t 2 and j ~  0 (modm) we have 

Z e hg r(h) -1 < ~ ( m ) + T  
h(modm) g(modm) 

(g,m)=l 

with b =-(re,j). I f  m/b is a prime or a prime power, then we have 

h(modm) a(modm) 
O,m)=l 

Proof. We note t h a t  

h(modm) g(modm) 
(g,m)=l 

h(modm) ff(modm) 
(a,m)=l 

< ~ (m). (~o) 

15" 
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h(modm) g(modm) d l(g,m) 

d I m h (rood m) a (modm/d) 

The inner sum is equal to 0 i f jh  ~O(mod(m/d)) and equal to m/d 
otherwise. Therefore, 

S = ~ ( m ) - 4 - m Z  #(d) Z * t h l - i "  
d 

dim h(modm) 
(mid) lib 

Now j h ~  0 (mod (m/d)) iff h ~  0 (mod (re~cad)), where ca = (m/d,j). 
I t  follows that  

~ *  ~ *  cad _ cad 
Ih]-i---- mlk [ m 

h(modm) k(modc~d) 
(m/d) Ijh 

and so 

- -  L (ca d ) ,  

s = ~ (m) + Z g (d) ca L (ca d). (21) 
dim 

Let the notation for the canonical factorizations of m and b = (re,j) 
be arranged in such a way tha t  we can write 

�9 �9 ~ ~ 0  t 

b ~-- ~i I 'riga trtl(u+l Oft 
" "  " ~ u  / " u + l  " "  ".-~lg't ' 

where ~/>1 for l~<i< t  and O~<fl~<~-- i  for l~<i~<u. We have 
u t> 1 by the hypothesis on j ,  but  we may  have u = t. Let 

=p l .r .pg,, 
�9 �9 - - / ~ u + l  �9 �9 

where b2= 1 if u=t,  so tha t  b =6169 in all cases. Because of the 
factor ~t(d) in the sum in (21), it suffices to consider squarefree 
divisors d of m. Any such divisor can be uniquely represented in 
the form d = did2 with dl [pl...p,,, d2 [P,, + 1...pt, where the latter 
product is 1 ff u = t. We get then 

m p~ . . . p ,  b2 b 2 _  b 
ca----- ~ - , j  = ~  -d- " d~'  j = b i d 2  d z '  



:Existence of Good Lattice Points in the Sense of HIawka 2t 3 

and  so 

Z #  (d)caL (cad)= Z ~ #(dl d2)~L (b dl)= 
dim dll~l...Tu dM~u+l...~t 

--d2 /= 

=b q~(b2) Z,u(dl)L(bd~). 
b2 

al ii~l...iou 
Altogether,  we have 

S ----- ~ (m) -~ bl ~o (bg.) ~ ~ (dl) J5 (b gl).  
d~ [Pl...p~ 

I f  u t> 2, we can use L e m m a  3 to obtain 

4.3 
(m)--  b~ ~ (b2) - ~ -  < S < ~ (m) + 51 ~ ( b 2 ) - -  

hence 

(22) 

2.7 

b 2 ' 

4.3 2.7 
q~(m)-- b <S<q~(m) -[---~--, 

which implies (19). I f u  = 1, i. e., ifm/b is a prime or a prime power, 
then  

( ') S > ~0 (m) - - b l  ~0 (b2) 2 logpl  -t- 

follows from L e m m a  4 and (22). To obtain S > - - f ( m ) ,  it  suffices 
then  to show t h a t  

blqJ(b2) ogpl+~ <~(m), 

which, after  multiplication by  b2/cf (be), becomes 

_ _  (, ,) 2 
b logpl  + -b- < ~ (b2) -- m . (23) 

I f  bm >t 14, then  

and since b ~ m/p1, (23) is established. In  the finitely m a n y  remain- 
ing cases wi th  bin< 14, the inequal i ty  S >--~v(m) can be checked 
by  inspection. The est imate S<~(m) follows from L e m m a  4 
and  (22). 
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4. Proof  of  Theorems 1 and 2 

Let  G be the set of lattice points  g = (91 . . . . .  gs) e ~  s for which 
each gs, 1 ~<j 4 s ,  is relatively prime to m and satisfies - - m / 2  < g j  <~ 
4m/2 .  The cardinality of G is ~0 (m) s. To prove the  two  theorems, 
it will suffice to  show that  

' Z  M :  - -  R (g, m) < - -  (C + 2 log m) s (24) 
q~ (m) s m ' 

f~ z q  

where C =  1.4 for Theorem 1 and C - - 0 . 8 1  for Theorem 2. N o w  

M - -  I Z,(h, -1= 
I~G la(modm) 

h- g --=0(modm) 

' Z  ~ ' Z  
N (h) r (h) -1 ---- N (h) r (h) - i  - -  1 

h (rood m) h (rood m) 

where N (h) is the  number of lattice points  g ~ G with h .  g ~ 0 (mod m). 
Since 

N ( h )  = ~ -  e h . g  , 

g e 6  j = o  

we can write 

m - 1  

h(modm) j = 0  h(modm) ~ G  

m - 1  

' Z Z  
fib " ' "  ~ , /  

j=O hl(modm) h, (modm) 

Z 
gl(modm) gs(modm) 
(gl,m) = 1 (gs,m)=l 

~7b 
j = 0  h(modm) g(modm) 

(g,m)=l 

~ ((j/m) ]~1  ~ 1 )  �9 �9 �9 e ((j/m) hs ~8) 
" '  . ~  r - ~  ) : . r ( M 
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and so 
m - 1  

1 1 s 

1 = 0 h(modm) g(modm) 
( g , m ) = l  

The  contr ibut ion  f rom j = 0  to  the  above sum is ( t - t -L (m ) )  8, so 
t ha t  

1 
M ---- - -  (1 + L (m))~ d- 

in 

m - I  

I s I 
m (m) ~ ~ e ( J l w )  r(h)- l ) - l"  

j = l  h(modm) g(modm) 
( g , m ) = l  

(25) 

I f  m is a pr ime or a pr ime power, we can app ly  (20) to obta in  

1 m - - 1  1 
M < - -  (1 + L (m))8 + 1 < - -  (1 + L (m))~. 

m m m 

Fur the rmore ,  Lemmas  1 and 2 easily yield the inequal i ty  

L(m)<21ogm--O.19 for  m~>2, 

and so (24) is shown wi th  C = 0.81. Thus,  Theorem 2 is established. 
F r o m  now on, we m a y  assume tha t  m has at  least two dist inct  

pr ime divisors, so tha t ,  in part icular ,  m 1> 6. We apply  (19) in (25) 
and  note  t ha t  each proper  divisor b of  m appears  exac t ly  ~v (m/b) 
t imes among the  greatest  common divisors (re,j), 1 <~j <~m--1. 
This yields 

; u <  --~ (1 +L(~))8+ ~-  v T 1 + ~ )  --1 : 
him 

b < m  

m m ~o-~---ld- 
bIm 

b < m  
8 

+ 
m \~o(m) b] 

blm k = l  
b < m  

Since 

him 
b < m  
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i t  follows t h a t  
$ 

' E (;) M < - -  L (m) ~ + - -  
m 

k = l  

8 

2.7 ~ m 
- -  ~ - -  b - 5 .  

5 = 1  him 

By using a simple change of variable in the last  sum and sett ing 

we get 

F~(m)- -  ~o(b)b ~ f o r k > ~ l ,  
q~ (m)~ m~ 

blm 

8 $ 

'E(;) M < - -  L (m) 5 + - -  (2.7) 5 F~ (m). (26) 
m m 

5 = 1  5 = 1  

The t r ea tmen t  of F~ is based on the fact  t ha t  i t  is a multiplicative 
ar i thmetic  function.  For  a prime p and  ~ 1> 1, a s t raightforward 
calculation shows t h a t  

1 §  1 §  1 
F~ (p:,) = 1 + ~< 1 + - -  - 1 -~ 

p 2 - - 1  p 2 - - 1  p ( p - - 1 )  ' 

and so  

F i  (m) ~< -~ < 1 -~ < 2. (27) 
~t,~ p ( p - - 1 )  p ( p - - 1 )  

For  k/> 2 we set 
H~ (m) = ~ (m) ~-I F~ (m), 

and  then  another  calculation yields 

H~ (p~) = 1 § p - -  1 + p(~+x) a-:,) _ p ~ - ~ , -  ~ 
(p~+~-- 1) (p - -  1) 

< 

(2s) 

< 1 +  P 
( p ~ + l - - 1 ) ( p - - 1 )  

< 1 §  

and 

H~ (m) ~< 

< ~,,~ ( + ( p 3 - - 1 ) ( p - -  

T o g e t h e r  with (28) we get 
1.4 

F~ (m) < for k I> 2, 
99 (m) k- i  

P 
(p3-- l)(p-- i) 

) ( p a - -  1) ( p - -  1) < 1.4. 
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and combining this wi th  (26) and  (27), we obta in  

8 8 

M < - -  ]~ L (m) k -}- - -  (5.4) 8 -}- /~ (2.7) k = 
m m ~ (re)k- I 

k = l  /~=2 

= = ( 2 9 )  

_ 1 L (m) = + - -  (5.4) s ~- (3.78) 
I 

k = l  k = 2  

We consider first the  case s : 2. We claim t h a t  

2 L  (m) ~- L (m) 2 -}- 10.8 

or, equivalent ly ,  t h a t  

10.206 
8.24 -}- - -  < (1.2) L (m) fo rm ~>4 6 .  

(3.78)(2.7) <(1.6+L(m))~form~46, (30) 

10.206 

Since ~(m)/> 16 for m/>46, we have  

(1.2) L(m) >t (1.2) L (46) > 8.91 > 8.24 -~ for  m >1 46, 

and so (30) is shown. I t  follows then  f rom (29) with s =  2 t h a t  

1 
M < - - ( 1 . 6 + L ( m ) )  2 for  m>~46. 

m 

Since Lemmas  1 and  2 imply  

L(m) < 2 1 o g r e - - 0 . 2  for  m>~6, (31) 

we have  thus  established (24) wi th  C----1.4 for  s = 2 and  m t> 46. 
Fo r  the  remaining moduli  m in the  case s = 2, Theorem 1 can be 
shown by  explici t  const ruct ion of  a suitable lat t ice point .  Thus,  
we take  g ~ - ( 1 , - - 1 )  for  m - ~ 6 ,  10, 12, 14, 15; g = ( 1 , 3 )  for  m = 2 0 ;  
g =  (1,4)form---- 21; g :  ( 1 , 5 ) f o r m =  18, 22, 28, 33, 34, 42; g :  (1, 7) 
for  m = 2 4 ,  26, 30, 36, 38, 39, 40, 44, 45; and g =  (1,8) for m = 3 5 .  

For  s >~ 3 i t  is clear f rom (29) and (31) t ha t  (24) with C :  1.4 
will hold for m/> 6 i f  we can show t h a t  

8 $ 

= t27t 1 
k = l  k = 2  

< (1.6 +L(m))  = for  m t> 6. 



2 1 8  I-I. N I E D E R R E I T E R  

Since ~o (m) 1> 2 for m i> 6, it suffices to prove tha t  
8 8 

~(;)L(m)k+(5.4)s-}-(3.78)~, (;)(1.35)~-l<(1.6-[-L(m)) s, 
k=l  k = 2  

or, equivalent ly,  
8 

k = 2  
8-~ (32) 

k = l  

We note  tha t  

(5 .2)8=8(1.56)L(6)<~((1.6)8-~-- l )L(m)form>~6.  (33) 

Next  we claim tha t  for m/> 6 we have 

(0.2)s@ (2.8)(1.35)8+ (2.8)8 (1.35) 8-1 < (1.6)8+ (0.6)sL(m)s-L (34) 

To verify (34), we observe tha t  

(0.2)8 + (2.8)(1.35)8 + (2.8) 8 (1.35)8-~ = 
28 ) 

=(1 .35 )  8( 0.2 s + 2 . 8  s 
\(1.35)8 + ] ~  

(35) 

<(135/8 ( 0.2 8+2 .8+(2 .08 )8 )  <(1.3~)8(2.8+(2.1718). 
~(1.35)3 

Furthermore ,  we have 

2.8 < (1.18) 8 q- 3 ((0.18)(2.45)3--2.17)  ~< (1.18) 8 q- 

+ s ((0.18)(2.45)8-- 2.17), 
a n d  s o  

2.8 @ (2.17)8 < (1.18) 8 @ (0.18)8 (2.45) s . 

Multiplication b y  (1.35)8 yields 

(1.35) 8 (2.8 q- (2.17)8) <(1 .6)  8 q- (0.18)s (_~_)s = (1.6) s ~- (0.6) s (_~)8-1 

(1.6) 8 q- (0 .6)8L (m) 8-1 
since -~ = L(6) <.L(m). In  combinat ion wi th  (35), we get then (34). 
For  2 ~< k ~< s - -  2 and m >1 6 we have 

(2.8) (1.35)~ < (1.56) ,~o~ ~< ((1.6)8-k-- 1)L (m)~, 
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a n d  so 

(36) 

B y  a d d i n g  u p  t h e  i n e q u a l i t i e s  (33), (34), a n d  (36), w e  o b t a i n  (32), 

a n d  t h e  p r o o f  o f  T h e o r e m  1 is c o m p l e t e .  
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