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Abstract

An existence theorem for good lattice points, which was so far only
available for prime moduli, is established for general moduli by using
a method based on exponential sums.

1. Introduction and Statement of Results

The need for good lattice points arises in a numerical integration
technique for periodic functions of several variables developed by
Hrawxra [2] and KoroBov [3]. We refer to [4, Ch. 2, Sec. 5] and
the survey articles [9], [10] for literature on, and a more detailed
discussion of such lattice points. The method of good lattice points
(or “optimal coefficients” in the terminology of KoroBov) has
gained added significance through recently established links with
the multidimensional distribution behavior of linear congruential
pseudo-random numbers (cf. [6], [7], [8]).

Let s>2 be a given dimension and let f be a function of s
variables which is periodic of period 1 in each variable. The s-
dimensional unit-cube I$==[0,1F is then a period interval for f.
The method of good lattice points is based on the approximation

[F®dt~ (tfm) ilf«n/m) 2, (1)

where m is a large integer, called the modulus, and the lattice point
geZ® is chosen so as to guarantee a small integration error, in
which case it is called a good lattice point modm. To make this
somewhat more precise, we introduce a quantity measuring the
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suitability of lattice points modm. For m > 2 we use the summation

symbol Y  to denote a sum over the complete residue system
h(modm)
modm consisting of the integers A with —m/2 <h <m/2, whereas

*  prefers to the same sum, but with A =0 deleted from the
k(modm)
range of summation. Similarly, the summation symbol )
h (mod m)
denotes a sum over the s-fold cartesian product of the above

complete residue system modm, i. e., over the set of lattice points

h=(h1,...,hs)€Z5 with —m/2 <h;<m/2 for 1<j<s, and Y *
. h(modm)
designates the same sum, but with the origin deleted from the

range of summation. As a distance function for lattice points
relative to the origin, we use

r(h)=7r")...r{hs),

where r(h)=max(1,|k|) for heZ. For a lattice point geZs, we
define then
Rgm)= »* rh)1, (2)

h(modm)
h-g=0(modm)

with h-g denoting the standard inner product of h and g. This
expression governs the integration error in (1) in the sense that
for an integrand f with Fourier coefficients cn satisfying cn=
= O (r (h)~*) for some k >1 we have

(tpm) § £ (wim) ) [ 1)t = O (R(gmP).

The “goodness” of lattice points gmodm can therefore be described
in terms of the size of B(g,m).

Theoretical results on the existence of lattice points g leading
to a small value of R(g,m) have so far only been available for
primes m (cf. [2], [10]). The sharpest result in this direction is
contained in [10, Proposition 5.4] and says that for every s>2
and every prime modulus m there exists a lattice point geZ*
such that

R(g,m) < (1m) (2 + 2logmy. (3)

The method of proving (3) breaks down for composite m. It is,
however, an empirical fact that certain composite moduli perform
better than prime moduli. This is particularly evident in the case
s =2, where it is known that optimal lattice points are obtained
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by taking a Fibonacci number as a modulus. Fibonacci numbers
are, of course, rarely primes. Numerical data for higher-dimensional
cases suggest that lattice points which are in a sense optimal are
usually obtained with a composite modulus (compare with Tables
9 and 10 in [5]).

There is an indirect way of getting information about the size
of R(g,m) for composite m, by using the number

¢ (g,m) =minr (h),
h

where the minimum is extended over all lattice points h=
=(h1,...,hs)€Z5 with h+£0, h-g=0 (modm), and —m/2 <<h; <m/2
for 1 <j<s. It was shown by ZaremBA [11] that for every suffi-
ciently large modulus m, no matter whether prime or composite,
there exists a lattice point geZs such that

s—1)!m

Q(g;m)>W-

Together with an estimate for R(g,m) of the form R(g,m)=
=0 (o(g,m) "t (logm)’) (cf. [7, Sec. 3]), it follows that there exists
a geZf with

R (g,m) =0 (m~1(logm)2s-1).

Via a direct approach, we prove in the present paper that for
any modulus m >2 there is a lattice point geZs for which R(g,m)
satisfies an estimate of the type (3). A careful treatment of con-
stants in our method actually leads to a bound that is better
than (3). The first crucial idea in our proof is to restrict the atten-
tion to lattice points whose coordinates are relatively prime to m.
Secondly, rather than using elementary considerations about con-
gruences as in the proof of (3), we employ a more powerful analytic
technique based on exponential sums. Our final result reads as
follows.

Theorem 1. For every infeger m >2 and every dimension s>2,
there exists a lattice point geZs with coordinates relatively prime to
m and

R(g,m)<(1/m) (1.4 4 2logm)s. 4)

In the special case of a prime power modulus, the method
simplifies somewhat and a slightly better result can be achieved
as a consequence.
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Theorem 2. If m is a prime or a prime power, then for every
dimension =2 there exists a lattice point geZs with coordinates
relatively prime to m and

R (g, m) < (1/m) (0.81 + 2logm)s. (5)
These results on R(g,m) yield information about the dis-

crepancy Dy, of sequences of the form (n/m)g, n=1,2,...,m, con-
sidered mod 1. In fact, by [10, Théoréme 6.6] we have
Dy, <sfm + % B (g, m)

for any geZs, and so Theorem 1 implies that for any m > 2 and every
dimension s >2 there exists a lattice point geZ* such that the dis-
crepancy Dy, of the above sequence satisfies Dy, = O (m~1(logm)s)
with an effective constant. By way of comparison, we note that the
smallest known discrepancy of a sequence of m points in I¢ is of
the order m~1(logm)s—1.

In Section 2 we collect some preparatory results. Section 3
contains a basic estimate for certain weighted exponential sums.
Theorems 1 and 2 are proved in Section 4.

2. Auxiliary Results
For an integer m >2 we set

Lim)= Y* r(hyt= }* |b|7,

h(modm) h(modm)

and we extend this definition by putting L(1)=0. We need a good
estimate for L(m), and for this purpose we distinguish between
m even and m odd.

Lemma 1. For any even infeger m > 2 we have
L(m)=2logm +2y—log4+em with —4/m2<emn<O0,
where y s the Euler- Mascheroni constant.

Proof. From [1, p. 347] we get for any x> 1,
Y hl=logz+y+0s (6)

1<hsz

fE . @
%:fﬁm—if’ (7)

with
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where {x} denotes the fractional part of x. For a positive integer

z we obtain
it} Zv {}

& "n=r n

Furthermore, we have

n+1{t} n+1t {
—dt = et =] 14—
7 f og( + ) P (9)
for every positive integer n. We note that
1 v 2 fi
141 120
0g(1+6)< 5 + or (10)

since the function f(f)=((¢24 2t)/(2t+ 2))—log(1+) satisfies
f(0)=0 and f'(¢) >0 for £ > 0. By combining (9) and (10) we get

n+1
f —{-gdts Zn4+1 1 _ 1 ’
£2 2n(n+1) n+1 2ann-+1)

n

and so from (8),

oo]

1 1
E m:ﬂ for integers z >1. {11)

n=x

The definition of L (m) and (6) imply

bz <

[T

mj2
L(m)=2 Y h1—2/m=2logm + 2y —logd + &y
h=1
with
Em = 2 6m/2—2/m .
The inequality en <0 follows now immediately from (11). To obtain

the lower bound for &5, we note that for a positive integer n we
have

n+1
iy t—n 1 1
Ly > mydt—
[T [ i
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by the second mean-value theorem. It follows from (8) that

1
0’”’2Z(n+ f(t 2@+ 1) (12)

for 1ntegers xz 21, and so
920 2 S 2 2 4 N 4
&m = —_—— —— e >
" T m-+2 m m(m 4+ 2) me

Lemma 2. For any odd integer m 21 we have

_ 3 1
L(m)=2logm + 2y —log4 + &n with —~7n—2<em< ot

Proof. The result is obvious for m =1, so that we may assume
m > 3. From the definition of L(m) and (6) we get
Lm)y=2 ) hl=2logm+ 2y—log4 -+ 20ms,
1<h<mi2

and together With (7) we obtain
+1)/2

t 2 2
m
w2 w2 (13)
Now
(m-+1)/2 # (m+1)/2 e 1)/2 . {
Y= L M g —log [ )
2 at 12 og( +m) m(m - 1)
mf2 mf2
and so (10) implies
(m+1)/2 ; 3
Bue 2
2 2m (m 4 1)
m2
An application of (11) yields

3 2 2 1 1

Smg ——— e

mm-+1) m+1 m  m(@m-+1)

For the lower bound, we observe that

(m+1)/2 {t} (m+1)/2 p ( 1)/2
— m—
) dt = f — dt >
m2 mf2

(m-+1)/2

22— (t-—— _l)dt: 3
(m -+ 1)2 2 2 (m + 1)2
mf2
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by the second mean-value theorem. Together with (12) and (13)
we obtain

3 2 2 3m? -+ 3m 4 6 3

(m+1)2+m+3_};— m(m + 3) (m + 1)2 m2’

&m =

The above results are applied to the estimation of a sum in-
volving the Moebius function u. The summation symbol 3,
denotes, as usual, a sum over the positive divisors d of m. aim

Lemma 3. Let m be o positive integer having at least two distinct
prime divisors. Then for every positive integer b we have

3 2.7
———<2,u(d)L(bd)<—bz-. (14)

dlm
Proof. By Lemmas 1 and 2 we have

Yud)Ldd)= ) p(d)(2logd + 2logh + 2y —log 4 + &4a) =

dlm dim
=2y u(d)logd + ¥ u(d)esa,
dim dim

where we used ) u(d)=0 for m >2. Under the given hypothesis
djm
on m, we also have

> u(d)logd =0
dim
by [1, Theorem 298]. Therefore,

dIZﬂ(d)L(bd) =d12ﬂ(d)8bd- (15)

If b is even, we get from Lemma 1,

BTy Z a2 <Z‘u(d)ebd< B2 P (16)

d\m a\m dlm
p@=1 wd)=-1
Now
E dz < E ——<1075
dim
wd)=1 #(d) 1
and
Zdz Zdz < b
(d)-——l (d)——-l

15 Monatshefte fiir Mathematik, Bd. 86/3
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and so the bounds in (14) follow from (15) and (16). If b is odd,
then by (15) we can write

2u(d)L Zﬂ(d )eva -+ Y p(d) eva- (17)
aim 2|d gyg

Using Lemmas 1 and 2, we get

Zy(d)L(bd)<

dim
PR 2
PR 7t @<
dim d|m
2ldy(d)—-—1 2)(d,,u(d) 1 21’du(d)~—1
Z FORT) —+_ Z &
2[d,u(E)——1 21’dtf4?d) 1 21’d;4(g)——-1
2 Z Z
T ET g’
Z{d,u(d) 1 2fd;4(d)-——1
Now
1
2 - <102 and E ——<022 (18)
21’du(d) 1 24‘d,u(7)=—1

and this leads to the upper bound in (14). Using (17) and Lemmas
1 and 2, we obtain

Z‘u(d)L(bd)>
>_7,42_ gdz Z Fr) Z_dl'z—>

dlm dlm
2|d, p(@)=1 21d, ,u(d)— -1 2rd,u(d)=1
1 3 1
Z dz z 4‘ / "dﬁz—ﬁ ﬁ =
d=1 =1
214, u(d) 1 21d, u(d)—-l 21d, u(d)=1
D Z
@ a’
2rd, )= -1 2 rd =1

and the lower bound in (14) holds because of (18).
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Lemma 4. Let m=p% p prime, a=1. Then for every positive
integer b we have

~210gp————< 2 u(d

alm
Proof. We obtain
Yud)Lpd)=Lb)—Lbp)<0
alm .
from the increasing behavior of L. Furthermore,
Yu@d Lbd)=L{p)—Lbp) =—2logp+er— vp
gim

because of Lemmas 1 and 2, and we get the lower bound by using
the information about ¢, and epp in those results and distinguishing
between the three cases (i) b even; (ii) & odd, p odd; (iii) b odd,

p=2.

3. An Inequality for Exponential Sums

We use the results of the preceding section to establish an
estimate for certain weighted exponential sums. We write ¢ for
Kuler’s totient function and e(t) = e27¢ for real ¢.

Lemma 5. For integers m >2 and j==0(modm) we have

2 Seliror

h(modm) y(modm)
(g, m)=1

2.
L <e(m) +T (19)

with b= (m,j). If m/b is a prime or a prime power, then we have

S finfe

A{modm) g(modm)
(g.m)=1

Proof. We note that

§i= D' Ze(—nj?kg)r(h)—l—

h(modm) g(modm)
(g,m)=1

e 3w e(2a) =

k(modm) g(modm)
{g,m)=1

<g(m). (20)

15%
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— g (m)+ Z*Ikl‘lze(%hg)Zu(d)=

k(modm) g(modm) di(g,m)
* J
m) -+ E 2 (d) E |-t E e(%kad).
dim h(modm) a{mod m/d)

The inner sum is equal to 0 if 4 == 0 (mod (m/d)) and equal to m/d
otherwise. Therefore,

—pomtm > LI 3T

djm h{modm)
(mfd)|5h

Now jh=0(mod (m/d)) iff h=0(mod (m/csd)), where cq= (m/d,j).
It follows that

* _ ® cdd cad
Z [h|=1= 2 vy _WL(Cdd)

h(modm) E(modead)
(mfd) |3}
and so
p(m)+ Y p(d)caL(cad). (21)
dlm

Let the notation for the canonical factorizations of m and b = (m,j)
be arranged in such a way that we can write

m=p...pf,
b=pf.. . plplns.. PP,

where ;=1 for 1<i<t and 0<f;<a;—1 for 1<¢<u. We have
u > 1 by the hypothesis on j, but we may have u =¢. Let

by =pf. .. pbe, by =p2ut. .. pl,

where bg=1 if w =1, so that b=>b1bs in all cases. Because of the
factor u(d) in the sum in (21), it suffices to consider squarefree
divisors d of m. Any such divisor can be uniquely represented in
the form d=d;ds with d1|p1...pu, d2|Pu+1...0¢, Where the latter
product is 1 if w=¢. We get then

c _(m ')—(Ml...pﬁ". b ')—'b ba . b
S VAL il S A A A A
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and so
E ( GdL(Cdd E E ﬂ d1d2 L(b dl)
dlm 311p1...0u d2lDuty...0t
d.
—b( > u(dl)ubdl)) ( 3 Z)) -
@1lp1...0u a2 Dutt...0e
_ @ (b2) E ’
=b b 7 (d1) L (bdy).
d1101... 04
Altogether, we have
S=<P(m)+bl¢(bz)d [ Y. w(d)L(bdi). (22)
1iP1...Du

If 4 > 2, we can use Lemma 3 to obtain

4.3 2.7
@ (m)—b1 ¢ (b2) T S <g(m)+ bl(P(bZ)'bT’
hence
4.3 2.1
¢(M)—T<S<¢(m) T

which implies (19). If u =1, i. e., if m/b is a prime or a prime power,
then

4
8 > @ (m)—b1g(be) (2logp1 + ﬁ)

follows from Lemma 4 and (22). To obtain § >-—¢(m), it suffices
then to show that

b1 (b2) (Ingl + ) <g@(m),

which, after multiplication by bas/p (b2), becomes

2 @(m)bs ( 1 )
blo — < =m{l——-]. 23
T S ot 1 (29
If bm > 14, then
2 1+ log2 1+1
2 <m(l_ﬂ)<m(l_if§&),
b 2 y 41
and since b <m/p1, (23) is established. In the finitely many remain-
ing cases with bm << 14, the inequality S >-—g¢(m) can be checked

by inspection. The estimate S < ¢(m) follows from Lemma 4
and (22).
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4. Proof of Theorems 1 and 2

Let & be the set of lattice points g=(q1,...,¢s)€Z® for which
each g;,1 <j <s, is relatively prime to m and satisfies —m/2 < g; <
<m(2. The cardinality of @ is ¢(m)s. To prove the two theorems,
it will suffice to show that

1 1

where O =1.4 for Theorem 1 and C =0.81 for Theorem 2. Now

*
r(h)-t =

gel h(mod m)
h- g =0(modm)

1 *
— o D Nwyrmy

h(modm) h(modm)

h)r(h)-1—1,

where N (h) is the number of lattice points ge G with h-g=0(modm).

oL 3 )

ge@@
we can write

ZN(h)T(h)*:%ZZZe(%h'g)r(h)ﬂ:

h(modm) j=0 h(modm) gcG

S5

i=0 Ry (modm) hs(mod m)

2 Z e ((jfm) bugy). . . e ((jm) hsgs) _
r{hi)...r(hs)

g1(mod m) gs(mod m)
(g1,m)=1 (gs,m)=1

L E(E S,

j=0 h(modm) g{(modm)
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and so

T R o e

h(modm) y(modm)
(g, m)=

The contribution from j=0 to the above sum is (14 L(m)), so
that

M= (1+Lomy+
m

Dl 2 oo

k(modm) g(modm)
(g, m)=

(25)

If m is a prime or a prime power, we can apply (20) to obtain

1
M < — (1+ Lm)y
m

+ L(m)y.

Furthermore, Lemmas 1 and 2 easily yield the inequality
L(m)<2logm—0.19 for m>2,

and so (24) is shown with ¢ = 0.81. Thus, Theorem 2 is established.

From now on, we may assume that m has at least two distinet
prime divisors, so that, in particular, m > 6. We apply (19) in (25)
and note that each proper divisor b of m appears exactly ¢ (m/b)
times among the greatest common divisors (m,j), 1<j<m—1.
This yields

1 1 m 2.7 \s
S +L(m))s+7n“2¢(”5') (“L rp(m)b) =

blm
b<m

1 1 m
Z“ﬂz(1+’3(m>)"+%29’(‘a“)“‘+

Since
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it follows that

v 3 e L SO Sl

k=1

By using a simple change of variable in the last sum and setting

1
F =— ko Af =1,
& (m) o () b;m p(B)b* for k>

we get

ey 2 Qs 3 famrim. o
P k=1

The treatment of F is based on the fact that it is a multiplicative
arithmetic function. For a prime p and a>1, a straightforward
calculation shows that

g 1P 1+pt 1
Fi(p¥)=1+ 1 <14 71 ~1+m:
and so
Fl(m<[]( 1)<]7(1+ )<2. @)
plm -
For k> 2 we set
Hy (m) = ¢ (m)k=1 Fg(m), (28)

and then another calculation yields

oy p—1 4 pl+hd-w _pl-a-ak
Hy(p*) =1+ A -
P P
1 <1
<1+ (pF1—1) (p—1) < +(P3—1)(p——1)
and
Hy (m) <
p D
e —ne— 14— )< 14,

Together with (28) we get

14
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and combining this with (26) and (27), we obtain

1 - 8 1
M<ﬁ2(k)“m)k+ m (“ 8+Z( ) qo(m)k 1)
E=1

s s (29)
1 Z’ ] 1 Z‘ sy 2.7 \k-1

We consider first the case s =2. We claim that

Lim)+L(m)2+10.8+ %1 < (1.6 + L{m)) for m > 46, (30)

or, equivalently, that
10.206
8.24 4+ —— < (1.2) L(m) for m >46.
@ (m)

Since ¢ (m) > 16 for m > 46, we have
10.206
@ (m

(1.2) L{m) > (1.2) L (46) > 8.91 > 8.24 - for m > 46,

and so (30) is shown. It follows then from (29) with s=2 that
1
M< — (1.6 L(m)2 for m>=46.
m

Since Lemmas 1 and 2 imply
L(m)<2logm—0.2 form=6, (31)

we have thus established (24) with C=1.4 for s=2 and m >46.
For the remaining moduli m in the case s=2, Theorem 1 can be
shown by explicit construction of a suitable lattice point. Thus,
we take g =(1,—1) for m=86, 10, 12, 14, 15; g=(1,3) for m = 20;
g=(1,4)form =21; g=(1,6)form =18, 22, 28,33, 34, 42; g= (1, 7)
for m =24, 26, 30, 36, 38, 39, 40, 44, 45; and g=(1,8) for m=35.

For s>3 it is clear from (29) and (31) that (24) with =14
will hold for m > 6 if we can show that

. s ’ 8 2.7 \¢1
L(m)e -4 (5.4 3.78 e
é(’c) MU )é(k) ()

< (1.6 + L{m)y for m>8.
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Since ¢ (m) =2 for m > 6, it suffices to prove that

Z (2) L (m)f -+ (5.4) s + (3.78) 2 (Z)(1.35)k—1 < (1.6+L(m)y,
k=1 k=2

or, equivalently,

8

(5.4)s -+ (2.8) 2 (Z) (1.35)F <

E=2
§-1 (32)
< (1.8)5 + ((16 kE—1)L(m)t for m>6.
k=1
We note that
(5.2)s =s5(1.56) L (6) <s((1.6)s~1—1)L(m) for m>6. (33)

Next we claim that for m > 6 we have

(0.2) s+ (2.8) (1.35) - (2.8) 5 (1.35)s—1 < (1.6)s - (0.6) s L (m)s~1. (34)
To verify (34), we observe that

(0.2)s 4+ (2.8) (1.85)s + (2.8) s (1.35) -1 =

-—1353( 02 8) 35
——(')(1.3)4‘ +1—353< (35)

135s( 02 2.8 208) (1.85) (2.8 + (2.17)5).
< (1.35) (135)8+ +( $(2.8+(2.17)s

Furthermore, we have
2.8 < (1.18)3 4 3 ((0.18) (2.45)3 — 2.17) < (1.18)s +

s ((0.18) (2.45)6——2.17),
and so
2.8+ (2.17)s < (1.18)s - (0.18) s (2.45)*.

Multiplication by (1.35)5 yields
(1.35)5 (2.8 + (2.17) 8) < (1.6) + (0.18) 5 (1) = (1.6)° + (0.6) s (12)s-1
<(1.8)° + (0.6)s L (m)~1

since 2 = L (6) < L(m). In combination with (35), we get then (34).
For 2<k<s—2 and m > 6 we have

(2.8) (1.35)F < (1.56) (A2)F < ((1.6)s— % —1) L (m)*,
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and so
(2.8) (‘” (1.35)k < (2} ((1.6)~F—1) L (m)t for 2<k<s—2, m>6.
k k 36

By adding up the inequalities (33), (34), and (36), we obtain (32),
and the proof of Theorem 1 is complete.
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