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Abstract. The algebra of SU(3) is developed on the basis of the matrices 2~ of 
GE~L-MAN~-, and identities involving the tensors d~j~ and f~#~ oceurr'mg in their 
multiplication law are derived. Octets and the tensor analysis of the adjoint group 
S U (3)/Z (3) of S U (3) are discussed. Various explicit parametrizations of S U (3) are 
presented as generalizations of ~amiliar S U(2) results. 

1. Introduction 

The aim of this paper is to discuss the algebraic properties of 
(I) The Gell-Mann matrices ~i, (i = 1, 2 . . . . .  8), [1], which play the 

role for S U(3) that  the Pauli matrices play for S U(2), 
(II) The GeI1-Marm tensors ]tj~ and dij~, [1], which enter the 

multiplication law 
2 

l~l~ = -3- ~ij + (d~ + ifis~) I~ (I.I) 

of the 1~, 
(III) Octets or real octet vectors ai(i = I, 2 . . . . .  8) which transform 

according to the adjoint or octet representation of SU(3), 
(IV) Special unitary 3 × 3 matrices, i.e. elements of SU(3).  
The motivation for the paper stems for the need, [2], of results such 

as are derived, in theories of elementary particles, including current al- 
gebra, in which SU(3)  or chiral SU(3)  × SU(3)  is present as an under- 
lying symmetry group. The paper itself is in part  a review of existing 
knowledge, particularly under h e a ~ s  (I) and (II), and in par t  an 
exposition of new results. 

I t  seems that  TARJA~NNE [3] was the first to give identities amongst 
Gell-Mann d and / tensors. Also KAPLAN and RESNIEOFF [2] have con- 
sidered such matters and the generalization to SU (n). Our discussion of 
the As, and of d and [ tensors is given in section two, and its claimed 
merits, apart  from various new identities, axe as follows. Firstly, all 
results axe presented in as symmetric a way as possible with a view to 
making manifest their entire content, how previous treatments fail to do 
this being explicitly indicated. Secondly, S U(3) results are shown to 
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separate into two classes: identities in one class being those with exact 
SU(n)  analogues, for all n, identities in the other being peculiar to 
S U (3). ~¥e discuss the former, to some extent following K A P ~  and 
R~S~rKO~F [2], at the S U(n) level, so that  S U (3) results arise by putting 
n = 3. KAPL~ and R~s~n~o~ [2] did not  consider the second class of 
identities at all. When we consider such identities, we follow a general 
procedure which could indeed be applied to S U (n) for any n, although 
results would no doubt be different in form for other n. This procedure 
involves the use of the characteristic equation of an arbitrary element 
A = ae2~ of the self representation of the algebra of SU(3) ;  the im- 
portant result (2.22) stems directly from use of this equation. 

Our discussion under heading (III) is given in section three. I t  can 
alternatively be described as an introduction to the analysis of tensors 
which can be built out of octet vectors and which transform according 
to representations of the adjoint group S U (3)/Z (3). This tensor analysis, 
in contrast to tha t  used by OxuBo [4] in his discussion of SU(3),  is 
hardly discussed at  all in the literature. Out" discussion emphasizes such 
tensors, including invariants, as can be formed out of a single octet 
vector. Some aspects of our discussion reflect facts tha t  are quite well- 
known in other formulations of S U(3) theory. For example it  is very 
familiar that ,  given a single octet vector, % say, one can build from it 
one and only one octet vector, b~--. di¢~ a~a¢ say, linearly independent 
of it. What  is less familiar but  useful information is the explicit expression 
of other octet vectors as linear combinations of a~ and b~. 

In  section four, we use the results of sections two and three to s tudy 
the explicit parametrization of elements of S U(3), i.e. special or uni- 
modular unitary 3 × 3 matrices U. In  other words we a t tempt  to write 
such U exphcitly in the form 

U = u 0 + i u~2~ 

where u~ = ea~ + ~d~¢~asa ~ for some real octet vector a~, and %, e, 
and ~ are explicitly given functions of the invariants which can be built 
out of the vector a~. Using the exponential and Cayley representations 
of unitary matrices we obtain two such explicit forms. In  the light of 
experience with the corresponding problems for S U (2) our results may 
well seem complicated. I t  is very probable that  the nature of our results 
simply reflect the inherent complexity of the S U (3) situation, but  the 
possibility of finding a parametrization of more appealing appearance is 
not ruled out. A recent paper by CHAgG and GURSEY [5] displays various 
parametrizations of U E S U (2) featuring Pauli in place of Gell-Mann 
matrices. Our discussion has been motivated in part  by a desire to extend 
the work of these authors on chiral S U (2) × S U (2) to chirM S U (3) 
x S U(3). 
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2. Basic Results on d and/~ Tcnsors 

We are here principally concerned with deriving identities involving 
the G ] ~ L L - ~  [1 ] S U (3) tensors di~. ~ mad ]t J ~, which arise in the multi- 
plieation law (1.1) of the GelI-Mann matrices 2~. The identities in question 
are of two distinct types, those which are special (n = 3) cases of results 
valid ~or SU(n), and those which are specific to the SU(3)  situation. 
We discuss the former class of identities first at  the S U  (n) level, in such 
a way that  the required S U(3) results can be read off directly. 

We consider the algebra of SU(n), which consists of all n × n 
traceless hermitian matrices, and choose as a basis a set of N = n s - 1 
matrices V,, i = 1 , . . . ,  N, such that  

(V,, V~) = Tr(V, Vs) = 2~,¢. (2.1) 

The normalizaVion fixed by  (2.1) means that  for SU(2)  the V~ are the 
Pauli matrices z~, and for S U (3) the V~ are the Gell-Mann 2~. 

Since V,, i V,, I and i I  together span the space of all complex n × n 
matricesL it  follows that  we have a multiplication law of the type 

2~ 
VtV~ = -~ t¢ + (dt~ + i ]i¢~) V~ (2.2) 

where (2.1) has been used to fix the coefficient of the identity. From (2.2) 
we obtain 

[Vi, V#] = 2i/i+~ Vz: , (2.3) 
4 

( V,, V¢} = n ~ ¢  + 2d ,~  V~, (2.4) 

and 
4 i / . ,  = Tr[V,, V~] V~, (2.5) 

4d.~ = T~{V,, Vj} V,. (2.6) 

I t  follows easily tha t  [,5, and d, ~. ~ are respectively totally antisymmetric 
and totally symmetric in i, ] and k, and, since Tr V~ = 0 and Vi V, is 
a multiple of the identity, that  

dii ~ = 0 .  (2.7) 

The associative property ( Vi Vj) V~ = V~ (Vj V~) of matrix multiplication 
gives rise to various d, ] identities. To obtain economically a minimal 
independent set of such identities, we use 

[IV,, vj], v~] + [[Vj, v~], V,] + [[vk, v~], vA = o, 

[{v.  v~), v,]  + [{v~, v~), v~] + [{v,, v,), v~] = 0,  

Ivy, ivy, v~]] = (v~, (v~, v~))- {v~, (v~, v~)), 

This fact can be expressed by the useful identity 



80 A.J. ~ L ~ c ~ - ~ .  e~ aL: 

and obtain 

t~,,, 1.,,. ~ + I ~  h . - ,  + 1.~ I.,,, = o,  (2.8) 

f~z,, d ~  + f ~  di ,~ + /~z,~ d ~ =  O, (2.9) 

2 ~ )  + ( d i ~  d ~  - d~m diem). (2.10) 

Of these, the last is the generalization of the familiar S U(2) result 

s~j~ s ~  = ~i~ ~jz -- ~tt ~ -  (2.11) 

An alternative derivation of (2.8) and (2.9) is illuminating. Since (2.2) 
to (2.6) arc invariant under the change 

V~-~ UV, U -~ U ESU(3) 

of basis, it  follows that  d~#~ and ]f#~ are isotropic tcnsors. However, in 
the case of U = 1 + ia i V~ for real infinitesimal as, this invarianee of (2.3) 
and (2.4) gives rise directly to (2.8) and (2.9), which are thus expressions 
of the isotropy of the ] and d tensors. 

From (2.3), it  can be seen that  the f / ~  are the s~rueture constants 
of S U(n), and (2.8) is, of course, a well-known general property of struc- 
ture constants. Also, since S U(n) is compact, a further general property 
of structure constants of compact semi-simple Lie groups ~ yields the 
result 

f i ~ / ~  = n ~z' (2.12) 

NOW, from (2.10), we obtain 
n ~ - 4 

dij k d ~  - n ~iz, (2.13) 

and along with these las~ results, we have the obvious result 

dtjk fz~ : 0 .  (2.14) 

From here, we can proceed systematically to results involving threefold 
products of d and / ~ensors, and beyond. We shall however be eonten~ 
to record the following easily verifiable identities 

/~ f~. I,~ = - ~ / . ~ ,  (2.15) 
?b 

d~iq /q~. ]r~ = -- "~ diJl: , (2.16) 

/ n  2 - -  1 2  ', 

* See, for example, G. R ~ e ~  [6]. The ~ctual multiple of the Kroneeker delta 
involved in (2.18) depends on the normalization (2.1) of ~he V~. 
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We  now- specialise to  n = 3 to  obtain two impor tan t  relations t h a t  
are peculiar to this ease. The method  to be used, however, is of con- 
siderable generali ty and can be applied to S U(n), for any  n, to  yield 
results which will correspond to those below but  whose form will be 
specific to  the value of n under  consideration. 

The method  is based on the characteristic equat ion of a general 
element of the  algebra of S U (3). Writ ing such an  element in the form 

A = ai~ i , 
we obta in  its de terminant  as 

1 
det  A = ~.  ~ r  ~.~,,. (ai).i)o:~. (aJ.i)~t , (az)~k)r~ 

1 

--  3! Tr(~i~j)~ -~ ~ i ~ )  ctiaja ~ (2.19) 

2 
- -  3 d i ~  aictja~ 

using a well-known expansion of s ~  7 e~,~. Similarly we obtain its charac- 
teristic equat ion as 

2 
A 3 - a ia iA  - y d t ~  ~ aiaja~ == 0 .  (2.20) 

Since the a~ are arbi t rary  we can equate to zero the coefficients of atajak, 
symmetr ized  with respect to  i, j, k, to  obtain 3 

1 2 
16 (2i2j2~ + five perms) : ~- (~ij2~ + ¢}~'~i + c3~i2~) + ~-d,~j~ . (2.21) 

We now use (2.2) and (2.8) to  grind Eq.  (2.21) into the form Ki j~2~  = O, 
where K i j ~  is an S U(3) tensor. The linear independence of the 2i now 
implies t ha t  K ~  = 0; the real par t  of this equation is 

1 
di~mdmj~ + d~mdim~ + d ~ m d i s m =  -3-(0i~(9~ + (~(~i~ + (~i~(~); (2.22) 

the imagLu~ry par t  just  reproduces (2.9). 
Note  t h a t  the distr ibution of indices on the left-hand side of (2.22) 

is identical to t ha t  on the left-hand sides of (2.8) and (2.9). I t  is to  be 
stressed tha t  the  remaining quan t i ty  of this nature,  

di~mtm~k + d~mh~n~ + dk~m/i]m, 

is one for which no simple result  exists. Tha t  the quant i ty  is non- 
vanishing can be checked explicitly; its s y m m e t r y  properties under  per- 

Results equivalent to (2.21) in other formulations of S U(3) theory, but of 
less appealing appearance, have occurred in various important contexts. In  con- 
nection with the mass formula, see OKVBO [4] ; in connection with the non leptonic 
decays of baryons, and Lee-Sugaw~ra triangle relationship, see OKv~o [7] and 
D~.~TZ [8]; in connection with the Ademollo-G~tto theorem and related matter, 
see AD~OLLO and GXTTO [9], and Z~d~_H~ov and Ko~z~mv.v [10]. 
6 Commun. math.  Phys.,  VoL I1 
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mutations of i ,  ], k ,  1 prevent it from having an expansion ha terms of 
Kronecker deltas. 

Equation (2.22) can now be used, ha conjunction with (2.10), to 
obtain the relation 

an expression for the product of two d-teusors analogous to (2.10) for 
the product of two/-tensors. 

I t  seems fairly clear that no further identities for d and / tensors 
exist that are independent of those given above. We could obtain further 
results by considering more complex products; but we leave the matter 
here, having obta'med results sufficient for our own immediate purposes 
and hopefully most others. 

T~.~N~E [3] and K~2L~ and R]~S~IKO)~]~ [2] have expressed 
results in matrix notation with F~ and D~ defined by 

( F j ) l k  -~ i ] i j k  , (D j ) i~  = d~j~ . (2.24) 

Accordingly (2.12) to (2.14) translate into 

TrEiF~ = n ~i ~, (2.25 a) 

TrF~D~ = O, (2.25b) 
~ ~ 4 

T r D i D ~  n 5~ ~ (2.25c) 

while (2.15) to (2.18) become 

T r D ~ F ~ F ~  = y d i ~  , (2.26b) 

frb2 - -  ~ . 

T r D i D ~ F ~  --- i ~ ] ~  ~ , (2.26 c) 

n ~ - 1 2  
T r D t D ~ D ~  = 2 n  d t ~  . (2.26d) 

I t  would appear that considerable simplification has been achieved, but 
this is ha fact not really so. For example, (2.26b) hardly makes ma~fifest 
the entire content of (2.16), which also translates, using (2.24), into the 
identities 

% 
- ~  D i == d t ~ ~ F ~ F ~  , 

(2.27) 

If one translates (2.8) and (2.9) into matrix notation, obtaining 

[/v~, D~] = i f~7~ D~,  

(2.2s) 

(2.29) 
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then, on the one hand, their symmetric appearance has been destroyed, 
but, on the other hand, (2.28) implies the well-known general result tha t  
the matrices _F~ are the matrices of the adjoint representation o f  S U ( n ) ,  

and (2.29) implies that  the matrices D~, related to the F~ by (2.27), also 
transform according to this representation. Finally, we note tha t  the 
important  identities (2.10) and (2.23) do not translate into matrix 
notation without the introduction of further independent matrices. 

3. Tensor Analysis of the Octet Group 

I t  is evident tha t  tensor indices which take on eight values as do 
those of the d and ] tensors are tensor indices associated with the adjoint 
group S U ( 3 ) / Z ( 3 )  of SU(3)  rather than with SU(3) itself. In other 
words, just as ordinary Cartesian tensors, with indices takh~g on three 
values, refer to R (3)=--S U ( 2 ) / Z  (2), and spinors, whose indices take on 
only two values, refer to S U (2), so here we have tensors associated with 
S U (3)/Z (3), which are in fact Cartesian tensors in eight real dimensions, 
since S U ( 3 ) / Z ( 3 )  is isomorphic [11] to a subgroup of R(8), and tensors 
associated with S U (3). The tensor analysis based on the latter is well 
discussed in the literature [4], [12], whereas tha t  based on the former 
is not, probably for lack of the algebraic tools. We wish now to employ 
the results of the last section to discuss briefly some aspects of the 
analysis of tensors belonging to the octet group S U (3)/Z (3). 

We begin by  considering the "vectors" of the S U ( 3 ) / Z ( 3 )  group, 
which are real eight-vectors, called octets, and which transform according 
to the adjoint representation of S U(3). First of all consider the S U(3) 
invariants and octets tha t  can be formed if one has at one's disposal only 
a single octet vector a i and the tensors d and f. I t  is of course well known 
that  at most two linearly independent octets can be formed. We shall 
take these to be a i itself and (a • a)~: 

(a * a)i  : d t j  ~ a ja~  . (3.1) 

I t  is equally well known that  at most two independent S U (3) invariants 
can be formed, which we take to be 

I~(a) = a~ai, (3.2) 

13(a ) = (a * a)i a i : d i j  ~ a ta~a ~ . (3.3) 

In  ~erms of the notation 
( a b e >  = d i j  ~ a i b j %  , (3.4) 

we write I a (a) = <a s) quite often. ~nile the two statements made answer 
the questions of principle, it is clear that other octets and SU(3) in- 
variants can be written down. To exhibit explicitly how such quantities 
can be expressed in terms of the selected basis octets and S U (3) in- 
6* 
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va r ian ts  is in fact  essential  for pract ical  purposes.  For  octets,  we note  

/tj~ a j a k = O ,  (3.5) 

[ i j ~ a g ( a  * ~ ) ~ = 0 ,  (3.6) 

/ i j ~ ( a  * a ) j (a ,  a ) ~ = O ,  (3.7) 

dij~aj(a * a )~=112(a )  at ,  (3.8) 

2 1 
d t~(a  • a)j(a • a ) ~ : y I a ( a ) a i - - ~ - t ~ ( a  ) (a * a)t.  (3.9) 

Of these two are obvious,  and  three  require s t ra ight forward  use of 
identities given in section two. Turning  to S U(3) invar iants ,  we use 
results of section two, along with  (3.8) and  (3.9), to derive 

(a • a)~ (a • a)i = (a  a (a • a)> = 1 [ i  3 (a)]3, (3.10) 

1 
<a(a • a) (a • a)> = -~ Iz(a) I3(a), (3.11) 

2 1 
<(a • a)a> = y [ I a ( a ) ]  2 - -  ~ [ I ~ ( a ) ]  a . ( 3 . 1 2 )  

I t  is to be noted  t ha t  unless Ia(a ) = 0 the octets a~ and  (a • a)t are not  
orthogonal .  For  some purposes it  is desirable to  replace ( a ,  a)t by  Ot 
such t h a t  aiOt = 0, and  it  follows f rom (3.2) and  (3.3) t h a t  the  choice 

Oi = Ia(a) a i  - -  I2(a) (a * a ) i  , (3.13) 

satisfies the  or thogonal i ty  condition. We note  t h a t  

o,o, Es3(o)12} (3.1+ 
~ o w  both  Oi Oi and  I s (a), being the norms-squared  of real octet  vectors,  
are posit ive definite; hence (3.14) implies 4 

1 
~- [I~(a)] a - -  [Ia(a)] 2 ~ O .  (3.15) 

A fur ther  consequence of (3.5) to (3.7) t h a t  m a y  be wor th  noting is as 
follows. I n  contexts  in which one has a single real octet  vec tor  ai, all 
3 x 3 matr ices  are of the  form M =  c¢-+-[fia~+ ~ ( a ,  a)l ] 2i where 
c¢, /3, y are functions of I S (a) and  I a (a), and  accordingly commuta t ive .  
To  see this, note  [M, M ' ]  involves only t e rms  like fly '  2 i/ij~ a~(a • a)j )~7¢ 
which vanishes in view of (3.6). We now go on to consider the general 
tensor  representa t ion of S U(3)/Z(3). I n  general, a tensor  T~.k.  • • will 
ca r ry  an  irreducible representa t ion of S U(3)/Z (3) iY and only if 

1. its indices have  irreducible pe rmuta t ion  symmet ry ,  
2. all contract ions which can be Yormed using K_ronecker deltas and  

d and  ] tensors, are zero. 

4 The fact tha$ 6he cubic (2.20) necessarily has bhree real rooSs for any octet 
vector a~ likewise yields the result (3.15). 
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We do not at tempt a general discussion, but  illustrate using simple 
examples. Given a general tensor Ti j  of second rank, we know, of course, 
on the basis of 

8)< 8 - > 1 + 8 + 8 + 1 0 + 1 0 + 2 7 ,  

what irreducible tensors can be built from its components. Explicitly we 
find, using the results of section two in the consideration of contractions, 
that the irreducible constituents of the symmetric part of T~ are 

T i i ,  (1 component), 
1 

( T i j  + T i t  ) di j~ , (8 components), 
3 1 1 

(27 components), 

while those of the antisymmetric part  are 
1 

-2- (Ti i  -- Tjf) f i ~ ,  (8 components), 

1 1 1 T , 
-~ (T i~- -  T ~ i ) -  --3-/iJ1/~mk2 ( mk - -  Tkm) 

(20 components) . 

I t  is noteworthy that  the last tensor cannot be split up into two parts 
(corresponding to the 10 and 10 in the antisymmetric part  of 8 × 8) 
without discussion of a conjugation operation, a mat ter  not  taken up 
here. In  the special situation wherein there is only a single octet vector 
at one's disposal, so that  T i t  = a~as, only the symmetric part  exists and 
we have 

I~ (a) , (1 component) , 

((~ * a)i , (8 components) (3.16) 
3 1 

a iaj  - -  ~ d i j k (a • a)t: --  -~ 04 j I2 (a) .  

In further illustration, we consider a question which arose in the authors' 
s tudy [2] of chiral SU(3)  × SU(3)  dynamics: how many independent 
symmetric second rank tensors can be built when only a single octet 
vector a~ is a t  one's disposal. I t  is not hard to convince oneself that  the 
following are a minimal set of such tensors: 

5~, di¢~ak, aiaj, dij~(a * a)~ , 
(3.17) 

a t (a • a)~ + a~ (a • a)~, (a • a)i (a • a)j .  
Tensors such as 

di~ ~ djq~ a~aq, ] i ~  /sq~ a~aa , 

etc. can be expressed as linear combinations of those in the set (3.17), 
using identities given in section two. Similarly, one may show tha t  a 
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minimal set of antisymmetric rank two tensors built out of a single real 
octet vector is 

f i ~ a z ,  f i ~ ( a  * a)~, ai(a * a)j -- a~(a • a)i, dt~qar]¢¢~ (a • a)+. (3.18) 

4. Special Unitary 3 × 3 Matrices 

We wish here to give generalizations to S U(3) in terms of Gell-Mann 
matrices of certain familiar representations of elements of S U (2) in terms 
of Pauli matrices. 

I t  is well-known tha t  any special unitary matr ix  U can be written 
in the form 

U = e ~A (4.1) 

with A hermitian, to make U unitary,  and traceless, to ensure det U = 1. 
In  the 2 × 2 case, writing 

A = a .  v ,  (4.2) 

and putt ing a = 0 n, where n ~ = 1, so tha t  a 2 = 0 ~, one easily develops 

U = cos 0/2 + i sin 0/2 v"  n .  (4.3) 

An alternative description of any unitary matr ix  is the Cayley or rational 
representation. This allows almost any unitary matrix U to be written 
in terms of a hermitian matrix B in the form 

U = (1 ÷ i B )  (1 -- i B )  -1 (4.4) 

the two factors being commutative.  In  the two by two case, the corre- 
sponding U is unimodular ff and only ff B is traecless. In  this case 
writing B = b • v one converts (4.4) into the form 

l - - b ~ - 2 i b . v  
U ~-- 1 -~ b ~ (4.5) 

At the S U (2) level, relationships between different parametrizations are 
easily seen, and we may  alternatively write any U E S U (2) in the form 

U =  c o ÷ i c -  v (4.6a) 

in terms of real quantities co, c subject to 

co ~ -+- c 2 ----- 1. (4.6b) 

We wish here to consider the problem of parametrizing special uni tary 
3 × 3 matrices, i.e. elements of S U(3). The problem is very much harder 
than the SU(2)  problem in view of the fac~ tha t  the algebra of Gell- 
mann matrices, involving d-fensors, is much more complicated than tha t  
of the Pauh matrices. 

We discuss in turn the use of the exponential and Cayley representa- 
tions of U E S U(3) and the (not completely suceessfni) search for a result 
analogous to (4.6). 
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First  consider the exponential form (4.1) with A traceless and 
writ ten as 

A = a~2~. (4.7) 

We wish, in as close analogy as possible with (4.3), to express U in 
the form 

U = u0 + i u ~  (4.8) 
where 

u~ = x a ~  ÷ y ( a  • a)~ (4.9) 

with u0, x und y given explicitly as functions of the invariants 12 = aka~ ,  

I a = (aa}. A d~eet  approach, based on manipulation of the series expan- 
sion of e i A  and "use of the characteristic equation 

2 
A a - I , A  - - ~  13 = 0 (4.10) 

of A, quickly becomes unmanageable. An alternative approach consists 

of two steps, first, computation of u o = + Tr U as a function of I~ and 

I3,  ~nd second, c~lculation of x and y in terms of %. The first step is easy 
to perform but  leads ~o a complicated result. Let  T~(g = 1, 2, 3) be the 
three real la~ent roots of A, i.e. solutions ~ = ~ of 

2 
~ - -  I ~ o  - - - 3 - I a  = O,  (4.11) 

given explicitly [13] in terms of 12 and I8 by  means of 

= 2 (I~/3)1/2 cos I (Z + 2 ~ a ) ,  a = 1, 2, 3,  (4.12a) 

cos Z = V ~ I8  (I~) -31~.  (4.12b) 
I~ then follows tha t  

1 --I- X e ~% (4.13) u°  = --3 T r  U = 3 :~ 

To compute x ~nd y of (4.9), we develop 

t 
u~ = -- ~-Tri~tk U 

1 a 
= --  ~ Tr ~ (e iA) 

1 0 
- T r U  2 aak 

_ 1 ~ .  e~¢a Oep~ 
2 ~' Oa~ ' 

and using (4.7) get 
O(p~ __ 2(~aa k + d~,~a~a~) 

(4.14) 

a~, - -  3~** - I3 (4.15) 
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Hence the quanti t ies x and y of (4.9) can be identified as 

x = -- ~ ~ e~%(3 ~ 2 -- I2) -1 , (4.16) 

y = -- ~ e ~ % (a ~ - I2) -~ , (4.17) 

and, in vir tue of (4.12), the desired expression for U of form (4.1) with 
(4.7) has been obtained. While the result  with u0, x, y given as complex 
and  complicated functions of I s and I3 m~y seem disappointing as 
a generalization of (4.3) for S U (2), it seems clear t h a t  there is no explicit 
parametr izat ion of S U (3) which will no t  involve the  solution of a cubic 
(if no t  even a sixth order) equation. 

Turning now to  the  rat ional  or Cayley representat ion (4.4) of a 3 × 3 
un i ta ry  mat r ix  U, we do no t  assume B to be necessarily traceless bu t  
ra ther  set 

B = b 0 + ~ b ~ ,  (4.18) 

and see wha t  the restriction det  U = 1 implies. I f  any  3 × 3 uni ta ry  
matr ix  U is wri t ten in the  form (4.8) with Uo, u~ in general complex, then  
directly one obtains 

det  U = %0 ÷ UoUS _ 23_ i ( u 3 )  . (4.19) 

Applying this to  the consequence 

det  (1 -- i B) = det  (1 + i B) 

of det  U = 1, we deduce t h a t  b o mus t  be a funct ion of the  invariants  
Is, 13 which can be built out  of b e, which obeys 5 

2 
b0~= b o ( I  ~ + 3) - - ~ - I 3 ,  (4.20) 

and t h a t  
det  (1 -- i B )  ..... 1 + I e - 3bo ~ . (4.21) 

F r o m  (4.20), it follows tha t  det  U = 1 and b o = 0 require I a = 0. I n  order 
to  make  practical  use of the  Cayley representat ion we need to  be able 
to obtain (1 - i B )  -1  explicitly in the form 

where 

Directly one obtains 

( 1  - i B )  -1  = c o + i%21~,  

C i = ~ b  i -~ f i d i j  ~ b i b s .  

= ( 1  - -  ibo)  f2  -1  , 

f l =  i Q  -1  , 

c o = [ 3 2 ~ ( 1 - 3 i b 0 ) + 3 S 2 ] ~ 2  -1 ,  

5 The  condition that (4.20) have three real roots can be directly shown to be 
2 

satisfied, since the condition that x ~ = I2x  + -~  I3 have three real roo~s is satisfied. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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where  ,Q = det  (1 - i B )  = 1 + I~. - 3bo ~. Now, since 

U = 2 ( 1 -  i B )  - ~ -  1 

i t  follows t h a t  

U = ~- (1 -- 3ibo) ~Q-1 _ + 2i2~ 
(4.27) 

• [(1 -- ibo) b~ .+. i d i~b~b j ]  ~ - 1 .  

Thus  again  we are lead to  a pa ramet r i za t ion  of S U (3) based on a single 
real vector  b~ wherein scalar quant i t ies  involved are given explicit ly hi 
t e rms  of the  h ivar ian ts  fo rmed  f rom b~ only af ter  a cubic equat ion has  
been solved. I t  would seem however  t h a t  the  Cayley approach  leads to  
a more  manageable  final resul t  t h a n  the  exponent ia l  form. Resul t  (4.27) 
shows clearly how restr ic t ive on U is the condition b o = 0 in (4.14), since 
b 0 = 0 implies Tr  U real. 

F ina l ly  we consider the  possibil i ty of expressing a ma t r i x  U C S U (3) 
in the  fo rm 

U = ]o + igo + i ~ ( ] k  + ig~) ,  (4.28) 
where 

g, = x / ,  + y d ,  j~ [d~ (4.29) 

and  expressing ]o, go, x and y in t e rms  of the  invar iants  J~., J3 which can 
be buil t  out  of ]~. To  handle this problem,  we wri te  un i t a ry  U as 

U = v o + iv~2~ (4.30) 
and, as for (1 - i B )  -1, f ind 

= 1 de~ ~ v~vj)] . U -1 (det U) -1 [vo 2 A- ~3- v~v~ - ~ ( i v o v  k ÷ 

Put t ing  det  U = 1, and  equat ing U -~ to 

yields the  equat ions 
U t = Vo* - iv~:*)~ 

1 
vo* = Vo ~ + ~ VkVk , (4.31a) 

v~* = VoV ~ -- i dl i  ~ v i v i (4.31b) 

When  we pu t  v o = / o  + igo, ve = / k  + ig~, with g~ given b y  (4.29), (4.31) 
yields in fact  six equat ions for /o,  go, x ,y in t e rms  of J2 : ]~/~, J3 = {/3}. 
Of these four  are independent :  

2 
1 = ]o - go x + ~-  Y J 2 ,  

0 = - g o Y +  2 x ,  
(4.32) 2 

-- x = ]o x + go + y Y ( X J 2  + Y Ja) , 

2 (xJ~ + Y J 3 ) ,  - -  go = 2 ] o g o  + y 
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and  the  o ther  two are  consequences thereof.  I~o be t t e r  resul t  t h a n  the  
following was ob ta ined :  x and  y are given b y  

x = g0(1 -5 3/0) -1, y = 2(1 + 3/0) -1 (4.33) 

in t e rms  of/0,  go which are  re la ted  to  J2, J~ b y  

4 
(1 + 3/0 ) (1 - ]0) = ~ - J 2  - g02 , (4.34a) 

3g0(1 + 3]0 ) = - 2 [ g 0 s -  J2g0 + 
2 ] ~- J s j  • (4.34 b) 

E l imina t ion  of f0, go f rom (4.34) leads to equat ions  of s ix th  order  for 
]0 or go (and hence for x, y). I t  is of course possible t h a t  a more a t t r a c t i ve  
answer exists  - var ious  o ther  possibi l i t ies  have  been considered.  Eq.  
(4.33) provides  a useful  check on resul ts  for the  exponent ia l  or Cayley 
representa t ions .  
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